1
|
Daugelaite K, Lacour P, Winkler I, Koch ML, Schneider A, Schneider N, Coraggio F, Tolkachov A, Nguyen XP, Vilkaite A, Rehnitz J, Odom DT, Goncalves A. Granulosa cell transcription is similarly impacted by superovulation and aging and predicts early embryonic trajectories. Nat Commun 2025; 16:3658. [PMID: 40246835 PMCID: PMC12006393 DOI: 10.1038/s41467-025-58451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
In vitro fertilization efficiency is limited in part because a fraction of retrieved oocytes fails to fertilize. Accurately evaluating their quality could significantly improve in vitro fertilization efficiency, which would require better understanding how their maturation may be disrupted. Here, we quantitatively investigate the interplay between superovulation and aging in mouse oocytes and their paired granulosa cells using a newly adapted experimental methodology. We test the hypothesis that superovulation disrupts oocyte maturation, revealing the key intercellular communication pathways dysregulated at the transcriptional level by forced hormonal stimulation. We further demonstrate that granulosa cell transcriptional markers can prospectively predict an associated oocyte's early developmental potential. By using naturally ovulated old mice as a non-stimulated reference, we show that aging and superovulation dysregulate similar genes and interact with each other. By comparing mice and human transcriptional responses of granulosa cells, we find that age-related dysregulation of hormonal responses and cell cycle pathways are shared, though substantial divergence exists in other pathways.
Collapse
Affiliation(s)
- Klaudija Daugelaite
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karl-University Heidelberg, Heidelberg, Germany
| | - Perrine Lacour
- Faculty of Biosciences, Ruprecht-Karl-University Heidelberg, Heidelberg, Germany
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivana Winkler
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marie-Luise Koch
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Schneider
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Schneider
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francesca Coraggio
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Tolkachov
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cardiology, Angiology and Pneumology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Xuan Phuoc Nguyen
- Department of Gynecological Endocrinology and Fertility Disorders, University Women's Hospital Heidelberg, Heidelberg, Germany
| | - Adriana Vilkaite
- Department of Gynecological Endocrinology and Fertility Disorders, University Women's Hospital Heidelberg, Heidelberg, Germany
| | - Julia Rehnitz
- Department of Gynecological Endocrinology and Fertility Disorders, University Women's Hospital Heidelberg, Heidelberg, Germany
| | - Duncan T Odom
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Angela Goncalves
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Zhao Z, Huang S, Feng Q, Peng L, Zhao Q, Wang Z. Characterizing the Ovarian Cytogenetic Dynamics of Sichuan Bream ( Sinibrama taeniatus) During Vitellogenesis at a Single-Cell Resolution. Int J Mol Sci 2025; 26:2265. [PMID: 40076886 PMCID: PMC11900179 DOI: 10.3390/ijms26052265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Vitellogenesis in fish represents a critical phase of oogenesis, significantly influencing the nutritional provisioning for oocyte maturation and subsequent offspring development. However, research on the physiological mechanisms governing vitellogenesis at the single-cell level remains limited. In this study, we performed single-nucleus RNA sequencing (snRNA-seq) on the ovaries of Sichuan bream (Sinibrama taeniatus). We first identified six distinct cell types (germ cells, follicular cells, immune cells, stromal cells, endothelial cells, and epithelial cells) in the ovaries based on typical functional marker genes. Subsequently, we reconstructed the developmental trajectory of germ cells using pseudotime analysis, which describes the transcriptional dynamics of germ cells at various developmental stages. Additionally, we identified transcription factors (TFs) specific to germ cells that exhibit high activity at each developmental stage. Furthermore, we analyzed the genetic functional heterogeneity of germ cells and follicular cells at different developmental stages to elucidate their contributions to vitellogenesis. Finally, cell interaction analysis revealed that germ cells communicate with somatic cells or with each other via multiple receptors and ligands to regulate growth, development, and yolk acquisition. These findings enhance our understanding of the physiological mechanisms underlying vitellogenesis in fish, providing a theoretical foundation for regulating ovarian development in farmed fish.
Collapse
Affiliation(s)
- Zhe Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China; (Z.Z.); (S.H.); (Q.F.); (Q.Z.)
| | - Shixia Huang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China; (Z.Z.); (S.H.); (Q.F.); (Q.Z.)
| | - Qilin Feng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China; (Z.Z.); (S.H.); (Q.F.); (Q.Z.)
| | - Li Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China;
| | - Qiang Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China; (Z.Z.); (S.H.); (Q.F.); (Q.Z.)
| | - Zhijian Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 401329, China; (Z.Z.); (S.H.); (Q.F.); (Q.Z.)
| |
Collapse
|
3
|
Klabnik JL, Beever JE, Payton RR, Lamour KH, Schrick FN, Edwards JL. A Step Toward Understanding Direct Impacts of a Higher Estrus-Associated Temperature (HEAT): Transcript Level Changes in Cumulus-Oocyte Complexes Directly Exposed to Acute Elevated Temperature. Animals (Basel) 2025; 15:517. [PMID: 40003000 PMCID: PMC11851612 DOI: 10.3390/ani15040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Elevated body temperature (HEAT) in sexually receptive females is a normal part of the periovulatory microenvironment. The objective was to identify direct (first 6 h) and delayed (4 h or 18 h of recovery) effects at 41 °C exposure during in vitro maturation (IVM) on transcripts involved in steroidogenesis, oocyte maturation, or previously impacted by elevated temperature using targeted RNA-sequencing. Most transcripts (72.3%) were impacted in the first 2 to 4 hIVM. Twelve of the fifteen transcripts first impacted at 4 hIVM had a higher abundance and three had a lower abundance. Direct exposure to 41 °C impacted the transcripts related to progesterone production and signaling, germinal vesicle breakdown, oocyte meiotic progression, transcriptional activity and/or alternative splicing, cell cycle, cumulus expansion, and/or ovulation. Three transcripts demonstrated a delayed impact; changes were not seen until the COCs recovered for 4 h. The use of multidimensional scaling plots to 'visualize' samples highlights that oocytes exposed to an acute elevation in temperature are more advanced at the molecular level during the initial stages of maturation. Described efforts represent important steps towards providing a novel insight into the dynamic physiology of the COC in the estrual female bovid, during HEAT and after body temperature returns to baseline.
Collapse
Affiliation(s)
- Jessica L. Klabnik
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
| | - Jonathan E. Beever
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
- Department of Large Animal Clinical Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Rebecca R. Payton
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
| | - Kurt H. Lamour
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA;
| | - F. Neal Schrick
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
| | - J. Lannett Edwards
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
| |
Collapse
|
4
|
Orozco-Galindo BV, Sánchez-Ramírez B, González-Trevizo CL, Castro-Valenzuela B, Varela-Rodríguez L, Burrola-Barraza ME. Folliculogenesis: A Cellular Crosstalk Mechanism. Curr Issues Mol Biol 2025; 47:113. [PMID: 39996834 PMCID: PMC11854572 DOI: 10.3390/cimb47020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
In vitro embryo production has accelerated in the cattle industry in recent years. Because women are similar to cows, this represents an opportunity to improve women's reproductive protocols. This review focuses on crosstalk communication during folliculogenesis for an in-depth understanding of the events involved in developing the oocyte competence necessary to generate an embryo after fertilization. This knowledge can be used to improve oocytes in in vitro maturation cultures, which would allow us to obtain oocytes of high quality and competence, resulting in successful pregnancies in both women and cows. The first part of this review covers the concepts of cellular crosstalk before puberty in the primordial, primary, and secondary follicles. The next part involves cellular crosstalk after puberty, when gonadotropin hormones act on the ovary, promoting oocyte maturation. The final part comprises a perspective on using cow models to study human ovary physiology.
Collapse
Affiliation(s)
- Bianca Viviana Orozco-Galindo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua (UACH), Perif. Fco. R. Almada Km. 1, 31453 Chihuahua, Mexico; (B.V.O.-G.); (B.C.-V.)
| | - Blanca Sánchez-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua (UACH), Campus Universitario #2, 31125 Chihuahua, Mexico; (B.S.-R.); (L.V.-R.)
| | - Cynthia Lizeth González-Trevizo
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. H. Colegio Militar 4700, Nombre de Dios, 31300 Chihuahua, Mexico;
| | - Beatriz Castro-Valenzuela
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua (UACH), Perif. Fco. R. Almada Km. 1, 31453 Chihuahua, Mexico; (B.V.O.-G.); (B.C.-V.)
| | - Luis Varela-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua (UACH), Campus Universitario #2, 31125 Chihuahua, Mexico; (B.S.-R.); (L.V.-R.)
| | - M. Eduviges Burrola-Barraza
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua (UACH), Campus Universitario #2, 31125 Chihuahua, Mexico; (B.S.-R.); (L.V.-R.)
| |
Collapse
|
5
|
Vo K, Sharma Y, Chakravarthi VP, Mohamadi R, Bahadursingh ES, Mohamadi A, Dahiya V, Rosales CY, Pei GJ, Fields PE, Rumi MAK. Altered Expression of Epigenetic and Transcriptional Regulators in ERβ Knockout Rat Ovaries During Postnatal Development. Int J Mol Sci 2025; 26:760. [PMID: 39859473 PMCID: PMC11765817 DOI: 10.3390/ijms26020760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
We analyzed the transcriptome data of wildtype and estrogen receptor β knockout (ErβKO) rat ovaries during the early postnatal period and detected remarkable changes in epigenetic regulators and transcription factors. Compared with postnatal day (PD) 4.5 ovaries, PD 6.5 wildtype ovaries possessed 581 differentially expressed downstream transcripts (DEDTs), including 17 differentially expressed epigenetic regulators (DEERs) and 23 differentially expressed transcription factors (DETFs). Subsequently, compared with PD 6.5 ovaries, PD 8.5 wildtype ovaries showed 920 DEDTs, including 24 DEERs and 68 DETFs. The DEDTs, DEERs, and DETFs in wildtype ovaries represented the gene expression during primordial follicle activation and the gradual development of primary follicles of first-wave origin because the second-wave follicles remained dormant during this developmental period. When we compared the transcriptome data of age-matched ErβKO ovaries, we observed that PD 6.5 ErβKO ovaries had 744 DEDTs compared with PD 4.5 ovaries, including 46 DEERs and 55 DETFs. The loss of ERβ rapidly activated the primordial follicles of both first- and second-wave origin on PD 6.5 and showed a remarkable increase in DEDTs (744 vs. 581). However, compared with PD 6.5 ovaries, PD 8.5 ErβKO ovaries showed only 191 DEDTs, including 8 DEERs and 10 DETFs. This finding suggests that the PD 8.5 ErβKO ovaries did not undergo remarkable ovarian follicle activation greater than that had already occurred in PD 6.5 ErβKO ovaries. The results also showed that the numbers of DEERs and DETFs were associated with increased changes in DEDTs; the greater the number of DEERs or DETFs, the larger the number of DEDTs. In addition to the quantitative differences in DEERs and DETFs between the wildtype and ErβKO ovaries, the differentially expressed regulators showed distinct patterns. We identified that 17 transcripts were tied to follicle assembly, 6 to follicle activation, and 12 to steroidogenesis. Our observations indicate that a loss of ERβ dysregulates the epigenetic regulators and transcription factors in ErβKO ovaries, which disrupts the downstream genes in ovarian follicles and increases follicle activation. Further studies are required to clarify if ERβ directly or indirectly regulates DEDTs, including DEERs and DETFs, during the neonatal development of rat ovarian follicles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (K.V.); (Y.S.); (V.P.C.); (R.M.); (E.S.B.); (A.M.); (V.D.); (C.Y.R.); (P.E.F.)
| |
Collapse
|
6
|
Wang T, Zhang Z, Qu C, Song W, Li M, Shao X, Fukuda T, Gu J, Taniguchi N, Li W. Core fucosylation regulates the ovarian response via FSH receptor during follicular development. J Adv Res 2025; 67:105-120. [PMID: 38280716 PMCID: PMC11725149 DOI: 10.1016/j.jare.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024] Open
Abstract
INTRODUCTION Ovarian low response to follicle-stimulating hormone (FSH) causes infertility featuring hypergonadotropic hypogonadism, ovarian failure, and/or defective ovarian response. OBJECTIVES N-glycosylation is essential for FSH receptor (FSHR). Core fucosylation catalyzed by fucosyltransferase 8 (FUT8) is the most common N-glycosylation. Core fucosylation level changes between individuals and plays important roles in multiple physiological and pathological conditions. This study aims to elucidate the significance of FUT8 to modulate FSHR function in female fertility. METHODS Samples from patients classified as poor ovary responders (PORs) were detected with lectin blot and real-time PCR. Fut8 gene knockout (Fut8-/-) mice and FUT8-knockdown human granulosa cell line (KGN-KD) were established and in vitro fertilization (IVF) assay, western blot, molecular interaction, immunofluorescence and immunoprecipitation were applied. RESULTS Core fucosylation is indispensable for oocyte and follicular development. FSHR is a highly core-fucosylated glycoprotein. Loss of core fucosylation suppressed binding of FSHR to FSH, and attenuated FSHR downstream signaling in granulosa cells. Transcriptomic analysis revealed the downregulation of several transcripts crucial for oocyte meiotic progression and preimplantation development in Fut8-/- mice and in POR patients. Furthermore, loss of FUT8 inhibited the interaction between granulosa cells and oocytes, reduced transzonal projection (TZP) formation and caused poor developmental competence of oocytes after fertilization in vitro. While L-fucose administration increased the core fucosylation of FSHR, and its sensitivity to FSH. CONCLUSION This study first reveals a significant presence of core fucosylation in female fertility control. Decreased fucosylation on FSHR reduces the interaction of FSH-FSHR and subsequent signaling, which is a feature of the POR patients. Our results suggest that core fucosylation controls oocyte and follicular development via the FSH/FSHR pathway and is essential for female fertility in mammals.
Collapse
Affiliation(s)
- Tiantong Wang
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China; College of Basic Medical Sciences, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, Liaoning 116044, China
| | - Zhiwei Zhang
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Changduo Qu
- College of Basic Medical Sciences, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, Liaoning 116044, China
| | - Wanli Song
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, Liaoning 116044, China
| | - Xiaoguang Shao
- Medical Center for Reproductive and Genetic Research, Dalian Municipal Women and Children's Medical Center, 878 Xibei Road, Gezhenbao Street, Dalian, Liaoning 116037, China
| | - Tomohiko Fukuda
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Jianguo Gu
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuoku, Osaka 541-8567, Japan
| | - Wenzhe Li
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China; Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, China.
| |
Collapse
|
7
|
Sirait B, Wiweko B, Handayani N, Sundari AM, Muharam R, Jusuf AA, Suryandari DA, Rachman IA, Widyahening IS, Boediono A. Vitrification alters growth differentiation factor 9 and follicle-stimulating hormone receptor expression in human cumulus-mural granulosa cells. Clin Exp Reprod Med 2024; 51:293-300. [PMID: 38757276 PMCID: PMC11617908 DOI: 10.5653/cerm.2023.06198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE Ovarian tissue vitrification is widely utilized for fertility preservation in prepubertal and adolescent female patients with cancer. The current literature includes reports of successful pregnancy and live birth following autografting. However, the effects of the vitrification process on cumulus-mural granulosa cells (C-mGCs)-somatic cells in ovarian tissue crucial for oocyte maturation and early embryonic development-remain unclear. This study was conducted to explore the impact of vitrification on the cellular function of C-mGCs by quantifying the expression of growth differentiation factor 9 (GDF-9), bone morphogenetic protein 15 (BMP-15), follicle-stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), connexin 37, survivin, and caspase 3. METHODS Mature and immature C-mGCs were obtained from 38 women with polycystic ovary syndrome who participated in an in vitro fertilization program. The C-mGCs were then divided into two groups: fresh and vitrified. The expression levels of target genes were assessed using real-time quantitative polymerase chain reaction. RESULTS After vitrification, GDF-9 expression was significantly decreased among both mature and immature C-mGCs, with 0.2- and 0.1-fold changes, respectively (p<0.01). Similarly, FSHR expression in the mature and immature groups was reduced by 0.1- and 0.02-fold, respectively, following vitrification (p<0.01). The expression levels of the other genes, including BMP-15, LHR, connexin 37, survivin, and caspase 3, remained similar across the examined groups (p>0.05). CONCLUSION Vitrification may compromise oocyte maturation through reduced GDF-9 and FSHR expression in C-mGCs after warming.
Collapse
Affiliation(s)
- Batara Sirait
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
- Morula IVF Jakarta Clinic, Jakarta, Indonesia
- IRSI Research and Training Center, Jakarta, Indonesia
| | - Budi Wiweko
- Human Reproductive, Infertility, and Family Planning Research Center, Indonesian Medical Education and Research Institutes, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Nining Handayani
- Morula IVF Jakarta Clinic, Jakarta, Indonesia
- IRSI Research and Training Center, Jakarta, Indonesia
| | | | - Raden Muharam
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Ahmad Aulia Jusuf
- Department of Histology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Dwi Anita Suryandari
- Department of Biology Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Ichramsjah A. Rachman
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Indah Suci Widyahening
- Department of Community Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Arief Boediono
- Morula IVF Jakarta Clinic, Jakarta, Indonesia
- IRSI Research and Training Center, Jakarta, Indonesia
- Department of Anatomy, Physiology and Pharmacology, IPB University, Bogor, Indonesia
| |
Collapse
|
8
|
Zhang C, Nie Y, Xu B, Mu C, Tian GG, Li X, Cheng W, Zhang A, Li D, Wu J. Luteinizing Hormone Receptor Mutation (LHR N316S) Causes Abnormal Follicular Development Revealed by Follicle Single-Cell Analysis and CRISPR/Cas9. Interdiscip Sci 2024; 16:976-989. [PMID: 39150470 PMCID: PMC11512921 DOI: 10.1007/s12539-024-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
Abnormal interaction between granulosa cells and oocytes causes disordered development of ovarian follicles. However, the interactions between oocytes and cumulus granulosa cells (CGs), oocytes and mural granulosa cells (MGs), and CGs and MGs remain to be fully explored. Using single-cell RNA-sequencing (scRNA-seq), we determined the transcriptional profiles of oocytes, CGs and MGs in antral follicles. Analysis of scRNA-seq data revealed that CGs may regulate follicular development through the BMP15-KITL-KIT-PI3K-ARF6 pathway with elevated expression of luteinizing hormone receptor (LHR). Because internalization of the LHR is regulated by Arf6, we constructed LHRN316S mice by CRISPR/Cas9 to further explore mechanisms of follicular development and novel treatment strategies for female infertility. Ovaries of LHRN316S mice exhibited reduced numbers of corpora lutea and ovulation. The LHRN316S mice had a reduced rate of oocyte maturation in vitro and decreased serum progesterone levels. Mating LHRN316S female mice with ICR wild type male mice revealed that the infertility rate of LHRN316S mice was 21.4% (3/14). Litter sizes from LHRN316S mice were smaller than those from control wild type female mice. The oocytes from LHRN316S mice had an increased rate of maturation in vitro after progesterone administration in vitro. Furthermore, progesterone treated LHRN316S mice produced offspring numbers per litter equivalent to WT mice. These findings provide key insights into cellular interactions in ovarian follicles and provide important clues for infertility treatment.
Collapse
Affiliation(s)
- Chen Zhang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Hematology, Tangdu Hospital, Xi'an, 710032, China
| | - Yongqiang Nie
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bufang Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunlan Mu
- School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyong Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwei Cheng
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
9
|
Shen Z, Ma Y, Gao M, Gu L. Temporal metabolomics analysis reveals the metabolic patterns in goat cumulus cells during oocyte maturation. Gene 2024; 928:148772. [PMID: 39025339 DOI: 10.1016/j.gene.2024.148772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Cumulus cells play a crucial role in the oocyte growth and maturation processes through providing necessary nutrients and growth signals by gap junction communication. However, a global overview of metabolic events in goat cumulus cells is still lacking. In the present study, we collected cumulus cells from goat cumulus-oocyte complexes (COCs) at different developmental stages. Metabolomics analysis was performed to investigate the global metabolic patterns in cumulus cells during oocyte in vitro maturation. In particular, we revealed the several significantly altered metabolic pathways and metaboliccharacteristics in goat cumulus cells, including the accumulation of fatty acids, steroid hormones metabolism, active catabolism of arginine during meiotic resumption, and a progressive decline in nucleotide metabolism. In conclusion, the dataset generated by our metabolomic profiling will provide valuable information to understand the key metabolic pathways and metabolites involved in COCs development.
Collapse
Affiliation(s)
- Zhiyuan Shen
- College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin 300392, China
| | - Yixin Ma
- College of Animal Science & Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Ming Gao
- College of Animal Science & Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Ling Gu
- College of Animal Science & Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
10
|
Joyce K, Gad A, Menjivar NG, Gebremedhn S, Heredia D, Dubeux G, Lopez-Duarte MC, Bittar J, Gonella-Diaza A, Tesfaye D. Seasonal environmental fluctuations alter the transcriptome dynamics of oocytes and granulosa cells in beef cows. J Ovarian Res 2024; 17:201. [PMID: 39402580 PMCID: PMC11479552 DOI: 10.1186/s13048-024-01530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Examining the mechanistic cellular responses to heat stress could aid in addressing the increasing prevalence of decreased fertility due to elevated ambient temperatures. Here, we aimed to study the differential responses of oocytes and granulosa cells to thermal fluctuations due to seasonal differences. Dry beef cows (n = 10) were housed together, synchronized and subjected to a stimulation protocol to induce follicular growth before ovum pick-up (OPU). Two OPU's were conducted (summer and winter) to collect cumulus-oocyte-complexes (COCs) and granulosa cells. In addition, rectal temperatures and circulating blood samples were collected during OPU. Oocytes were separated from the adherent cumulus cells, and granulosa cells were isolated from the collected OPU fluid. RNA was extracted from pools of oocytes and granulosa cells, followed by library preparation and RNA-sequencing. Blood samples were further processed for the isolation of plasma and leukocytes. The transcript abundance of HSP70 and HSP90 in leukocytes was evaluated using RT-qPCR, and plasma cortisol levels were evaluated by immunoassay. Environmental data were collected daily for three weeks before each OPU session. Data were analyzed using MIXED, Glimmix or GENMOD procedures of SAS, according to each variable distribution. RESULTS Air temperatures (27.5 °C vs. 11.5 °C), average max air temperatures (33.7 °C vs. 16.9 °C), and temperature-humidity indexes, THI (79.16 vs. 53.39) were shown to contrast significantly comparing both the summer and winter seasons, respectively. Rectal temperatures (Summer: 39.2 ± 0.2 °C; Winter: 38.8 ± 0.2 °C) and leukocyte HSP70 transcript abundance (Summer: 4.18 ± 0.47 arbitrary units; Winter: 2.69 ± 0.66 arbitrary units) were shown to increase in the summer compared to the winter. No visual differences persisted in HSP90 transcript abundance in leukocytes and plasma cortisol concentrations during seasonal changes. Additionally, during the summer, 446 and 940 transcripts were up and downregulated in oocytes, while 1083 and 1126 transcripts were up and downregulated in the corresponding granulosa cells, respectively (Fold Change ≤ -2 or ≥ 2 and FDR ≤ 0.05). Downregulated transcripts in the oocytes were found to be involved in ECM-receptor interaction and focal adhesion pathways, while the upregulated transcripts were involved in protein digestion and absorption, ABC transporters, and oocyte meiosis pathways. Downregulated transcripts in the granulosa cells were shown to be involved in cell adhesion molecules, chemokine signaling, and cytokine-cytokine receptor interaction pathways, while those upregulated transcripts were involved in protein processing and metabolic pathways. CONCLUSION In conclusion, seasonal changes dramatically alter the gene expression profiles of oocytes and granulosa cells in beef cows, which may in part explain the seasonal discrepancies in pregnancy success rates during diverging climatic weather conditions.
Collapse
Affiliation(s)
- Kamryn Joyce
- North Florida Research and Education Center, University of Florida, Marianna, FL, 32446, USA
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- J.R. Simplot Company, 1099 W. Front St, Boise, ID, 83702, USA
| | - Daniella Heredia
- North Florida Research and Education Center, University of Florida, Marianna, FL, 32446, USA
| | - Georgia Dubeux
- North Florida Research and Education Center, University of Florida, Marianna, FL, 32446, USA
| | | | - Joao Bittar
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Angela Gonella-Diaza
- North Florida Research and Education Center, University of Florida, Marianna, FL, 32446, USA.
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
11
|
Maria da Silva Rosa P, Bridi A, de Ávila Ferronato G, Nociti RP, Camargo Dos Santos A, Cataldi TR, Santos GD, Chiaratti MR, Silva LA, Pugliesi G, Sangalli JR, Meirelles FV, Perecin F, Coelho da Silveira J. Corpus luteum proximity alters molecular signature of the small extracellular vesicles and cumulus cells in the bovine ovarian follicle environment. Mol Cell Endocrinol 2024; 592:112347. [PMID: 39181310 DOI: 10.1016/j.mce.2024.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Progesterone (P4) is predicted to act as a negative regulatory hormone for oocyte maturation events; however, its local effects during follicular development remain poorly understood in bovine. The complex process of oocyte meiosis progression is dependent on cellular communication among follicular cells. Besides, the breakdown of this communication, mainly between cumulus cells (CC) and oocyte, through the retraction of cumulus projections connecting these cells can impact oocyte maturation. In our study, we observed that follicles from the ovary ipsilateral to the corpus luteum (CL) containing high intrafollicular P4 concentrations enhance the abundance of proteins detected in follicular-derived small extracellular vesicles (sEVs) predicted to be involved in the retraction of membrane projections based on actin filaments, such as transzonal projections (TZPs). Conversely, we found that follicles from the ovary contralateral to the CL, which contained low intrafollicular P4 concentrations, had a high detection of proteins predicted to regulate the maintenance of TZPs. We also performed RNAseq analysis which demonstrated that 177 genes were differentially expressed in CC under the different P4 environments. Bioinformatic analysis points to changes associated to cell metabolism in cells from follicles ipsilateral to the CL in comparison to genes involved in cell communication in CC from follicles contralateral to the CL. Our functional analysis experiment confirmed that supplementation of cumulus-oocyte complexes during in vitro maturation with P4 at concentration similar to ipsilateral follicles reduces the number of TZPs. In summary, our study underscores a direct association between P4 concentration and cumulus-oocyte interaction, with potential consequences for the acquisition of oocyte competence.
Collapse
Affiliation(s)
- Paola Maria da Silva Rosa
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Giuliana de Ávila Ferronato
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Ricardo Perecin Nociti
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Thaís Regiani Cataldi
- Department of Genetic, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Gislaine Dos Santos
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marcos Roberto Chiaratti
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Luciano Andrade Silva
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano Rodrigues Sangalli
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| |
Collapse
|
12
|
Kanatsu-Shinohara M, Morimoto H, Liu T, Tamura M, Shinohara T. Sendai virus-mediated RNA delivery restores fertility to congenital and chemotherapy-induced infertile female mice. PNAS NEXUS 2024; 3:pgae375. [PMID: 39262851 PMCID: PMC11388103 DOI: 10.1093/pnasnexus/pgae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Current infertility treatment strategies focus on mature gametes, leaving a significant proportion of cases with gamete progenitors that stopped complete differentiation. On the other hand, recent advancements in next-generation sequencing have identified many candidate genes that may promote maturation of germ cells. Although gene therapy has shown success in mice, concerns about the integration of DNA vectors into oocytes hinder clinical applications. Here, we present the restoration of fertility in female mice through Sendai virus (SeV)-mediated RNA delivery. Ovaries lacking Kitl expression exhibit only primordial follicles due to impaired signaling to oocytes expressing the KIT tyrosine kinase. Despite SeVs being immunogenic and larger than the blood-follicle barrier, the administration of Kitl-expressing SeVs reinitiated oogenesis in genetically infertile mice that have only primordial follicles, resulting in the birth of normal offspring through natural mating. This virus also effectively addressed iatrogenic infertility induced by busulfan, a widely used cancer chemotherapy agent. Offspring born through SeV administration and natural mating displayed normal genomic imprinting patterns and fertility. Since SeVs pose no genotoxicity risk, the successful restoration of fertility by SeVs represents a promising approach for treating congenital infertility with somatic cell defects and protecting fertility of cancer patients who may become infertile due to loss of oocytes during cancer therapy.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
- AMED-CREST, AMED, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tianjiao Liu
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Duval C, Wyse BA, Tsang BK, Librach CL. Extracellular vesicles and their content in the context of polycystic ovarian syndrome and endometriosis: a review. J Ovarian Res 2024; 17:160. [PMID: 39103867 DOI: 10.1186/s13048-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Extracellular vesicles (EVs), particles enriched in bioactive molecules like proteins, nucleic acids, and lipids, are crucial mediators of intercellular communication and play key roles in various physiological and pathological processes. EVs have been shown to be involved in ovarian follicular function and to be altered in two prevalent gynecological disorders; polycystic ovarian syndrome (PCOS) and endometriosis.Ovarian follicles are complex microenvironments where folliculogenesis takes place with well-orchestrated interactions between granulosa cells, oocytes, and their surrounding stromal cells. Recent research unveiled the presence of EVs, including exosomes and microvesicles, in the follicular fluid (FFEVs), which constitutes part of the developing oocyte's microenvironment. In the context of PCOS, a multifaceted endocrine, reproductive, and metabolic disorder, studies have explored the dysregulation of these FFEVs and their cargo. Nine PCOS studies were included in this review and two miRNAs were commonly reported in two different studies, miR-379 and miR-200, both known to play a role in female reproduction. Studies have also demonstrated the potential use of EVs as diagnostic tools and treatment options.Endometriosis, another prevalent gynecological disorder characterized by ectopic growth of endometrial-like tissue, has also been linked to aberrant EV signaling. EVs in the peritoneal fluid of women with endometriosis carry molecules that modulate the immune response and promote the establishment and maintenance of endometriosis lesions. EVs derived from endometriosis lesions, serum and peritoneal fluid obtained from patients with endometriosis showed no commonly reported biomolecules between the eleven reviewed studies. Importantly, circulating EVs have been shown to be potential biomarkers, also reflecting the severity of the pathology.Understanding the interplay of EVs within human ovarian follicles may provide valuable insights into the pathophysiology of both PCOS and endometriosis. Targeting EV-mediated communication may open avenues for novel diagnostic and therapeutic approaches for these common gynecological disorders. More research is essential to unravel the mechanisms underlying EV involvement in folliculogenesis and its dysregulation in PCOS and endometriosis, ultimately leading to more effective and personalized interventions.
Collapse
Affiliation(s)
- Cyntia Duval
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Benjamin K Tsang
- Inflammation and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L Librach
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
14
|
Ren T, Xu M, Du X, Wang Y, Loor JJ, Lei L, Gao W, Du X, Song Y, Liu G, Li X. Research Progress on the Role of M6A in Regulating Economic Traits in Livestock. Int J Mol Sci 2024; 25:8365. [PMID: 39125935 PMCID: PMC11313175 DOI: 10.3390/ijms25158365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Reversible regulation of N6-methyladenosine (m6A) methylation of eukaryotic RNA via methyltransferases is an important epigenetic event affecting RNA metabolism. As such, m6A methylation plays crucial roles in regulating animal growth, development, reproduction, and disease progression. Herein, we review the latest research advancements in m6A methylation modifications and discuss regulatory aspects in the context of growth, development, and reproductive traits of livestock. New insights are highlighted and perspectives for the study of m6A methylation modifications in shaping economically important traits are discussed.
Collapse
Affiliation(s)
- Tuanhui Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Meng Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Xinyu Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Yanxi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| |
Collapse
|
15
|
Cai J, Luo X, Wang Z, Chen Z, Huang D, Cao H, Chen J, Wu J. Comparing GDF9 in mature follicles and clinical outcomes across different PCOS phenotype. Heliyon 2024; 10:e29879. [PMID: 38711644 PMCID: PMC11070807 DOI: 10.1016/j.heliyon.2024.e29879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is main cause of anovulatory infertility in women with gestational age. There are currently four distinct phenotypes associated with individualized endocrinology and metabolism. Growth differentiation factor 9 (GDF9) is a candidate as potential biomarker for the assessment of oocyte competence. The effect on oocyte capacity has not been evaluated and analyzed in PCOS phenotypes. Objective We aimed to screen the expression levels of GDF9 in mature follicles of women with controlled ovarian hyperstimulation (COS) with different PCOS phenotypes. To determine the correlation between the expression level of GDF9 and oocyte development ability. Methods In Part 1, we conducted a retrospective study comparing the clinical outcomes and endocrine characteristics of patients with PCOS according to different subgroups (depending on the presence or absence of the main features of polycystic ovarian morphology (PCOM), hyperandrogenism (HA), and oligo-anovulation (OA)) and non-PCOS control group. We stratified PCOS as phenotype A (n = 29), phenotype B (n = 18) and phenotype D (n = 24). In Part 2, the expression of GDF9 in follicular fluid (FF) and cumulus cells (CCs) were detected by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. Results In Part 1, the baseline clinical, hormonal, and ultrasonographic characteristics of the study population were matched with the presence or absence of the cardinal features of each PCOS phenotypes showed a clear difference. Phenotypes A and D had statistically significant associations with blastocyst formation and clinical pregnancy compared with phenotypes B (p < 0.001). In Part 2, the levels of GDF9 in FF and CCs for phenotype A and B were significantly were higher than those of phenotype D (P = 0.019, P = 0.0015, respectively). Multivariate logistic regression analysis showed that GDF9 was an important independent predictor of blastocyst formation (P<0.001). The blastocyst formation rate of phenotype A was higher than that of phenotype B and D (P<0.001). Combining the results of the two parts, GDF9 appears to play a powerful role in the development of embryos into blastocysts. Conclusions GDF9 expression varies with different PCOS phenotypes. Phenotype A had higher GDF9 levels and blastocyst formation ability.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Reproductive Medcine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, FuJian, 362000, PR China
| | - Xiangmin Luo
- Department of Reproductive Medcine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, FuJian, 362000, PR China
| | - Zhengyao Wang
- Department of Reproductive Medcine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, FuJian, 362000, PR China
| | - Zixuan Chen
- Department of Clinical Laboratory, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, FuJian, 362000, PR China
| | - Donghong Huang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, FuJian, 362000, PR China
| | - Hui Cao
- Department of Reproductive Medcine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, FuJian, 362000, PR China
| | - Jing Chen
- Department of Reproductive Medcine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, FuJian, 362000, PR China
| | - Jinxiang Wu
- Department of Reproductive Medcine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, FuJian, 362000, PR China
| |
Collapse
|
16
|
Li C, Zhang H, Wu H, Li J, Liu Q, Li Y, Pan M, Zhao X, Wei Q, Peng S, Ma B. Intermittent fasting improves the oocyte quality of obese mice through the regulation of maternal mRNA storage and translation by LSM14B. Free Radic Biol Med 2024; 217:157-172. [PMID: 38552928 DOI: 10.1016/j.freeradbiomed.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Obesity has significant repercussions for female reproductive health, including adverse effects on oocyte quality, fertility, embryo development and offspring health. Here, we showed that intermittent fasting (IF) has several notable effects on follicular development, oocyte development and maturation and offspring health in obese mice. IF treatment prevents obesity-associated germline-soma communication defects, mitochondrial dysfunction, oxidative damage, apoptosis, and spindle/chromosomal disruption. RNA-sequencing analysis of oocytes from normal diet (ND), high-fat diet (HFD), and HFD + IF mice indicated that IF treatment improved mitochondrial oxidative phosphorylation function and mRNA storage and translation, which was potentially mediated by the Smith-like family member 14 B (LSM14B). Knockdown of LSM14B by siRNA injection in oocytes from ND mice recapitulates all the translation, mitochondrial dysfunction and meiotic defect phenotypes of oocytes from HFD mice. Remarkably, the injection of Lsm14b mRNA into oocytes from HFD mice rescued the translation, mitochondrial dysfunction and meiotic defect phenotypes. These results demonstrated that dysfunction in the oocyte translation program is associated with obesity-induced meiotic defects, while IF treatment increased LSM14B expression and maternal mRNA translation and restored oocyte quality. This research has important implications for understanding the effects of obesity on female reproductive health and offers a potential nonpharmacological intervention to improve oocyte quality and fertility in obese individuals.
Collapse
Affiliation(s)
- Chan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hao Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Jingmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qingyang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yanxue Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Sha Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
17
|
Luis-Calero M, Marinaro F, Fernández-Hernández P, Ortiz-Rodríguez JM, G Casado J, Pericuesta E, Gutiérrez-Adán A, González E, Azkargorta M, Conde R, Bizkarguenaga M, Embade N, Elortza F, Falcón-Pérez JM, Millet Ó, González-Fernández L, Macías-García B. Characterization of preovulatory follicular fluid secretome and its effects on equine oocytes during in vitro maturation. Res Vet Sci 2024; 171:105222. [PMID: 38513461 DOI: 10.1016/j.rvsc.2024.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
In vitro maturation (IVM) of oocytes is clinically used in horses to produce blastocysts but current conditions used for horses are suboptimal. We analyzed the composition of equine preovulatory follicular fluid (FF) secretome and tested its effects on meiotic competence and gene expression in oocytes subjected to IVM. Preovulatory FF was obtained, concentrated using ultrafiltration with cut-off of 10 kDa, and stored at -80 °C. The metabolic and proteomic composition was analyzed, and its ultrastructural composition was assessed by cryo-transmission microscopy. Oocytes obtained post-mortem or by ovum pick up (OPU) were subjected to IVM in the absence (control) or presence of 20 or 40 μg/ml (S20 or S40) of secretome. Oocytes were then analyzed for chromatin configuration or snap frozen for gene expression analysis. Proteomic analysis detected 255 proteins in the Equus caballus database, mostly related to the complement cascade and cholesterol metabolism. Metabolomic analysis yielded 14 metabolites and cryo-transmission electron microscopy analysis revealed the presence of extracellular vesicles (EVs). No significant differences were detected in maturation rates among treatments. However, the expression of GDF9 and BMP15 significantly increased in OPU-derived oocytes compared to post-mortem oocytes (fold increase ± SEM: 9.4 ± 0.1 vs. 1 ± 0.5 for BMP15 and 9.9 ± 0.3 vs. 1 ± 0.5 for GDF9, respectively; p < 0.05). Secretome addition increased the expression of TNFAIP6 in S40 regardless of the oocyte source. Further research is necessary to fully understand whether secretome addition influences the developmental competence of equine oocytes.
Collapse
Affiliation(s)
- Marcos Luis-Calero
- Departamento de Medicina Animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | - Pablo Fernández-Hernández
- Departamento de Medicina Animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - José M Ortiz-Rodríguez
- Departamento de Medicina Animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Javier G Casado
- Unidad de inmunología, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, INIA-CSIC, Madrid, Spain
| | | | | | | | - Ricardo Conde
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Maider Bizkarguenaga
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | | | | | - Óscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Lauro González-Fernández
- Departamento de Bioquímica y Biología Molecular y Genética, Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain.
| | - Beatriz Macías-García
- Departamento de Medicina Animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain.
| |
Collapse
|
18
|
Ruvolo G, Matranga D, Barreca MM, Bosco L. AKT, p-AKT, ERK1/2 and p-ERK1/2 in Mural Granulosa Cells Are Not Correlated to Different Ovarian Stimulation Protocols in Patients Undergoing Assisted Reproductive Treatment. Life (Basel) 2024; 14:554. [PMID: 38792576 PMCID: PMC11121759 DOI: 10.3390/life14050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: In this paper we aim to study the relationship between the expression levels of molecules involved in apoptotic/survival pathways, considered as molecular markers of oocyte competence (i.e., AKT, p-AKT, ERK1/2, and p-ERK1/2) in mural granulosa cells (MGCs) and the administration of r-FSH alone or combined with exogenous r-LH, in ovarian stimulation protocol. Moreover, we aim to evaluate oocyte competence by comparing normally cleaved embryos that were transferred in the uterus, with embryos that were arrested during in vitro culture. (2) Methods: The study included 34 normo-responder women undergoing ICSI procedures. All subjects were divided into two groups. Group A consisted of 18 women stimulated with r-FSH and used as a control group; Group B consisted of 14 women stimulated with r-FSH combined with r-LH. The MGCs were obtained from individual follicles. Immunoblot analyses were carried out to analyze the AKT, p-AKT, ERK1/2, and p-ERK1/2 levels in MGCs and to correlate them with the ovarian stimulation protocol. Furthermore, the oocyte competence was evaluated, for each follicle, according to the development of the embryo during in vitro culture and the pregnancy outcome. (3) Results: We found no significant difference in the levels of molecules in isolated MGCs between groups A and B. These results, in light of our previous research, suggest for the first time, to our knowledge, that cumulus cells and mural granulosa cells in the same follicle show different expression levels of molecules involved in the apoptotic mechanism. (4) Conclusions: Our results could clarify some controversial data in the literature where cumulative cell pools of cumulus and granulosa were analyzed, described as ovarian follicle cells, and used as markers of oocyte competence. In this paper, we found evidence that cumulus and granulosa cells need to be analyzed separately.
Collapse
Affiliation(s)
- Giovanni Ruvolo
- Centro di Biologia della Riproduzione, 90141 Palermo, Italy;
| | - Domenica Matranga
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
| | - Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy;
| | - Liana Bosco
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy;
| |
Collapse
|
19
|
Tan J, Liu PP, Cao LY, Zou Y, Zhang ZY, Huang JL, Zhang ZQ, Xu DF, Fan L, Xia LZ, Xie Q, Tian LF, Xin CL, Li ZM, Wu QF. Reduced PATL2 Impairs the Proliferation of Ovarian Granulosa Cells by Decreasing ADM2 Expression in Patients with PCOS. Reprod Sci 2024; 31:1034-1044. [PMID: 38087182 DOI: 10.1007/s43032-023-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/29/2023] [Indexed: 03/24/2024]
Abstract
It is recognized that PCOS patients are often accompanied with aberrant follicular development, which is an important factor leading to infertility in patients. However, the relevant regulatory mechanisms of abnormal follicular development are not well understood. In the present study, by collecting human ovarian granulosa cells (GCs) from PCOS patients who underwent in vitro fertilization (IVF), we found that the proliferation ability of GCs in PCOS patients was significantly reduced. Surprisingly, PATL2 and adrenomedullin 2 (ADM2) were obviously decreased in the GCs of PCOS patients. To further explore the potential roles of PATL2 and ADM2 on GC, we transfected PATL2 siRNA into KGN cells to knock down the expression of PATL2. The results showed that the growth of GCs remarkably repressed after knocking down the PATL2, and ADM2 expression was also weakened. Subsequently, to study the relationship between PATL2 and ADM2, we constructed PATL2 mutant plasmid lacking the PAT construct and transfected it into KGN cells. The cells showed the normal PATL2 expression, but attenuated ADM2 expression and impaired proliferative ability of GCs. Finally, the rat PCOS model experiments further confirmed our findings in KGN cells. In conclusion, our study suggests that PATL2 promoted the proliferation of ovarian GCs by stabilizing the expression of ADM2 through "PAT" structure, which is beneficial to follicular development, whereas, in the ovary with polycystic lesions, reduction of PATL2 could result in the decreased expression of ADM2, subsequently weakened the proliferation ability of GCs and finally led to the occurrence of aberrant follicles.
Collapse
Affiliation(s)
- Jun Tan
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China.
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China.
| | - Pei-Pei Liu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Li-Yun Cao
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Yang Zou
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Zi-Yu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
- Department of Pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Jia-Lyu Huang
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Zhi-Qin Zhang
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Ding-Fei Xu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Lu Fan
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Lei-Zhen Xia
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Qi Xie
- Reproductive Medicine Center, Xinyu Maternal and Child Health Care Hospital, Xinyu, Jiangxi Province, China
| | - Li-Feng Tian
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Cai-Lin Xin
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Zeng-Ming Li
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Qiong-Fang Wu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| |
Collapse
|
20
|
Wittrien T, Ziegler A, Rühle A, Stomberg S, Meyer R, Bonneau D, Rodien P, Prunier-Mirebeau D, Coutant R, Behrends S. Heterozygous gain of function variant in GUCY1A2 may cause autonomous ovarian hyperfunction. Eur J Endocrinol 2024; 190:266-274. [PMID: 38578777 DOI: 10.1093/ejendo/lvae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
PURPOSE The purpose of this study was to characterize the phenotype associated with a de novo gain-of-function variant in the GUCY1A2 gene. METHODS An individual carrying the de novo heterozygous variant c.1458G>T p.(E486D) in GUCY1A2 was identified by exome sequencing. The effect of the corresponding enzyme variant α2E486D/β1 was evaluated using concentration-response measurements with wild-type enzyme and the variant in cytosolic fractions of HEK293 cells, UV-vis absorbance spectra of the corresponding purified enzymes, and examination of overexpressed fluorescent protein-tagged constructs by confocal laser scanning microscopy. RESULTS The patient presented with precocious peripheral puberty resembling the autonomous ovarian puberty seen in McCune-Albright syndrome. Additionally, the patient displayed severe intellectual disability. In vitro activity assays revealed an increased nitric oxide affinity for the mutant enzyme. The response to carbon monoxide was unchanged, while thermostability was decreased compared to wild type. Heme content, susceptibility to oxidation, and subcellular localization upon overexpression were unchanged. CONCLUSION Our data define a syndromic autonomous ovarian puberty likely due to the activating allele p.(E486D) in GUCY1A2 leading to an increase in cGMP. The overlap with the ovarian symptoms of McCune-Albright syndrome suggests an impact of this cGMP increase on the cAMP pathway in the ovary. Additional cases will be needed to ensure a causal link.
Collapse
Affiliation(s)
- Theresa Wittrien
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig-Institute of Technology, 38106 Braunschweig, Germany
| | - Alban Ziegler
- Department of Genetics, University Hospital of Angers, 49933 Angers, France
- Department of Genetics, CRMR AnDDI-Rares, University Hospital of Reims, 51092 Reims, France
| | - Anne Rühle
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig-Institute of Technology, 38106 Braunschweig, Germany
| | - Svenja Stomberg
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig-Institute of Technology, 38106 Braunschweig, Germany
| | - Ruben Meyer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig-Institute of Technology, 38106 Braunschweig, Germany
| | - Dominique Bonneau
- Department of Genetics, University Hospital of Angers, 49933 Angers, France
| | - Patrice Rodien
- Department of Endocrinology, Reference Center for Rare Thyroid and Hormone Receptor Diseases, University Hospital of Angers, 49933 Angers, France
| | - Delphine Prunier-Mirebeau
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, 49933 Angers, France
| | - Régis Coutant
- Department of Pediatric Endocrinology, University Hospital, 49933 Angers, France
| | - Sönke Behrends
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig-Institute of Technology, 38106 Braunschweig, Germany
- Semmelweiss University Budapest, Asklepios Campus, 20099 Hamburg, Germany
| |
Collapse
|
21
|
Zhang F, Song W, Yang R, Jin C, Xie Y, Shen Y, Gao X, Sun H, Nie T, Yue X, Song Z, Qi J, Zhang Q, He Y. Semen promotes oocyte development in Sebastesschlegelii elucidating ovarian development dynamics in live-bearing fish. iScience 2024; 27:109193. [PMID: 38433916 PMCID: PMC10907845 DOI: 10.1016/j.isci.2024.109193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
In some vertebrates and invertebrates, semen release factors affecting female physiology and behavior. Here, we report that semen delivered to females is potentially beneficial for promoting oocyte development in a viviparous teleost, Sebastes schlegelii. 88% of mated ovaries develop normally and give birth to larval fish, whereas 61% of non-mated ovaries are arrested in the previtellogenic stage. Semen's significant role (p < 0.0001) in promoting oocyte development may involve remodeling follicular cells and regulating the expression of the extracellular matrix, which facilitates cell communication. Furthermore, the ovarian response to semen may influence the brain, affecting hormone release, follicular cell development and steroid production, and crucial for oocyte growth. This mechanism, which could potentially delay maternal investment in offspring until male genetic input occurs to avoid energy wastage, has not been previously described in teleosts. These findings enhance our understanding of ovarian development in viviparous fish, with broader implications for reproductive biology.
Collapse
Affiliation(s)
- Fengyan Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Ruiyan Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Yuheng Xie
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Yiyang Shen
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Xiangyu Gao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Hao Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Tianci Nie
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Xinlu Yue
- Weihai Shenghang Ocean Science and Technology Co., Ltd, Weihai, Shandong 264200, China
| | - Zongcheng Song
- Weihai Shenghang Ocean Science and Technology Co., Ltd, Weihai, Shandong 264200, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
- Weihai Shenghang Ocean Science and Technology Co., Ltd, Weihai, Shandong 264200, China
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| |
Collapse
|
22
|
Richani D, Poljak A, Wang B, Mahbub SB, Biazik J, Campbell JM, Habibalahi A, Stocker WA, Marinova MB, Nixon B, Bustamante S, Skerrett-Byrne D, Harrison CA, Goldys E, Gilchrist RB. Oocyte and cumulus cell cooperativity and metabolic plasticity under the direction of oocyte paracrine factors. Am J Physiol Endocrinol Metab 2024; 326:E366-E381. [PMID: 38197792 DOI: 10.1152/ajpendo.00148.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Mammalian oocytes develop and mature in a mutually dependent relationship with surrounding cumulus cells. The oocyte actively regulates cumulus cell differentiation and function by secreting soluble paracrine oocyte-secreted factors (OSFs). We characterized the molecular mechanisms by which two model OSFs, cumulin and BMP15, regulate oocyte maturation and cumulus-oocyte cooperativity. Exposure to these OSFs during mouse oocyte maturation in vitro altered the proteomic and multispectral autofluorescence profiles of both the oocyte and cumulus cells. In oocytes, cumulin significantly upregulated proteins involved in nuclear function. In cumulus cells, both OSFs elicited marked upregulation of a variety of metabolic processes (mostly anabolic), including lipid, nucleotide, and carbohydrate metabolism, whereas mitochondrial metabolic processes were downregulated. The mitochondrial changes were validated by functional assays confirming altered mitochondrial morphology, respiration, and content while maintaining ATP homeostasis. Collectively, these data demonstrate that cumulin and BMP15 remodel cumulus cell metabolism, instructing them to upregulate their anabolic metabolic processes, while routine cellular functions are minimized in the oocyte during maturation, in preparation for ensuing embryonic development.NEW & NOTEWORTHY Oocyte-secreted factors (OSFs) promote oocyte and cumulus cell cooperativity by altering the molecular composition of both cell types. OSFs downregulate protein catabolic processes and upregulate processes associated with DNA binding, translation, and ribosome assembly in oocytes. In cumulus cells, OSFs alter mitochondrial number, morphology, and function, and enhance metabolic plasticity by upregulating anabolic pathways. Hence, the oocyte via OSFs, instructs cumulus cells to increase metabolic processes on its behalf, thereby subduing oocyte metabolism.
Collapse
Affiliation(s)
- Dulama Richani
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Baily Wang
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Saabah B Mahbub
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Joanna Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jared M Campbell
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Maria B Marinova
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - David Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ewa Goldys
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Ezz MA, Takahashi M, Rivera RM, Balboula AZ. Cathepsin L regulates oocyte meiosis and preimplantation embryo development. Cell Prolif 2024; 57:e13526. [PMID: 37417221 PMCID: PMC10771118 DOI: 10.1111/cpr.13526] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Early embryonic loss, caused by reduced embryo developmental competence, is the major cause of subfertility in humans and animals. This embryo developmental competence is determined during oocyte maturation and the first embryo divisions. Therefore, it is essential to identify the underlying molecules regulating these critical developmental stages. Cathepsin L (CTSL), a lysosomal cysteine protease, is involved in regulating cell cycle progression, proliferation and invasion of different cell types. However, CTSL role in mammalian embryo development is unknown. Using bovine in vitro maturation and culture systems, we show that CTSL is a key regulator for embryo developmental competence. We employed a specific CTSL detection assay in live cells to show that CTSL activity correlates with meiotic progression and early embryo development. Inhibiting CTSL activity during oocyte maturation or early embryo development significantly impaired oocyte and embryo developmental competence as evidenced by lower cleavage, blastocyst and hatched blastocyst rates. Moreover, enhancing CTSL activity, using recombinant CTSL (rCTSL), during oocyte maturation or early embryo development significantly improved oocyte and embryo developmental competence. Importantly, rCTSL supplementation during oocyte maturation and early embryo development significantly improved the developmental competence of heat-shocked oocytes/embryos which are notoriously known for reduced quality. Altogether, these results provide novel evidence that CTSL plays a pivotal role in regulating oocyte meiosis and early embryonic development.
Collapse
Affiliation(s)
- Mohamed Aboul Ezz
- Department of Theriogenology, Faculty of Veterinary MedicineMansoura UniversityMansouraEgypt
- Division of Animal SciencesUniversity of MissouriColumbiaMissouriUSA
| | | | | | | |
Collapse
|
24
|
Shi Y, Guo Y, Zhou J, Cui G, Cheng J, Wu Y, Zhao Y, Fang L, Han X, Yang Y, Sun Y. A spatiotemporal gene expression and cell atlases of the developing rat ovary. Cell Prolif 2023; 56:e13516. [PMID: 37309718 PMCID: PMC10693188 DOI: 10.1111/cpr.13516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
Normal ovarian development is necessary for the production of healthy oocytes. However, the characteristics of oocytes development at different stages and the regulatory relationship between oocytes and somatic cells remain to be fully explained. Here, we combined scRNA-seq and spatial transcriptomic sequencing to profile the transcriptomic atlas of developing ovarian of the rat. We identified four components from developing granulosa cells including cumulus, primitive, mural, and luteal cells, and constructed their differential transcriptional regulatory networks. Several novel growth signals from oocytes to cumulus cells were identified, such as JAG1-NOTCH2 and FGF9-FGFR2. Moreover, we observed three cumulus sequential phases during follicle development determined by the key transcriptional factors in each cumulus phase (Bckaf1, Gata6, Cebpb, etc.), as well as the potential pinpointed roles of macrophages in luteal regression. Altogether, the single-cell spatial transcriptomic profile of the ovary provides not only a new research dimension for temporal and spatial analysis of ovary development, but also valuable data resources and a research basis for in-depth excavation of the mechanisms of mammalian ovary development.
Collapse
Affiliation(s)
- Yong Shi
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of medical sciencesZhengzhou UniversityZhengzhouChina
| | - Yanjie Guo
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiayi Zhou
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guanshen Cui
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
| | - Jung‐Chien Cheng
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ying Wu
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Liang Zhao
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lanlan Fang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiao Han
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
| | - Yun‐Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Yingpu Sun
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
25
|
Fang X, Nie L, Putluri S, Ni N, Bartholin L, Li Q. Sertoli Cell-Specific Activation of Transforming Growth Factor Beta Receptor 1 Leads to Testicular Granulosa Cell Tumor Formation. Cells 2023; 12:2717. [PMID: 38067144 PMCID: PMC10706251 DOI: 10.3390/cells12232717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The transforming growth factor β (TGFβ) superfamily, consisting of protein ligands, receptors, and intracellular SMAD transducers, regulates fundamental biological processes and cancer development. Our previous study has shown that sustained activation of TGFβ receptor 1 (TGFBR1) driven by anti-Mullerian hormone receptor type 2 (Amhr2)-Cre in the mouse testis induces the formation of testicular granulosa cell tumors (TGCTs). As Amhr2-Cre is expressed in both Sertoli cells and Leydig cells, it remains unclear whether the activation of TGFBR1 in Sertoli cells alone is sufficient to induce TGCT formation. Therefore, the objective of this study was to determine whether Sertoli cell-activation of TGFBR1 drives oncogenesis in the testis. Our hypothesis was that overactivation of TGFBR1 in Sertoli cells would promote their transdifferentiation into granulosa-like cells and the formation of TGCTs. To test this hypothesis, we generated mice harboring constitutive activation of TGFBR1 in Sertoli cells using anti-Mullerian hormone (Amh)-Cre. Disorganized seminiferous tubules and tumor nodules were found in TGFBR1CA; Amh-Cre mice. A histological analysis showed that Sertoli cell-specific activation of TGFBR1 led to the development of neoplasms resembling granulosa cell tumors, which derailed spermatogenesis. Moreover, TGCTs expressed granulosa cell markers including FOXL2, FOXO1, and INHA. Using a dual fluorescence reporter line, the membrane-targeted tdTomato (mT)/membrane-targeted EGFP (mG) mouse, we provided evidence that Sertoli cells transdifferentiated toward a granulosa cell fate during tumorigenesis. Thus, our findings indicate that Sertoli cell-specific activation of TGFBR1 leads to the formation of TGCTs, supporting a key contribution of Sertoli cell reprogramming to the development of this testicular malignancy in our model.
Collapse
Affiliation(s)
- Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Linfeng Nie
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Satwikreddy Putluri
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Laurent Bartholin
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Lyon 1, F-69000 Lyon, France
- Centre Léon Bérard, F-69008 Lyon, France
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
26
|
Zhang CH, Liu XY, Wang J. Essential Role of Granulosa Cell Glucose and Lipid Metabolism on Oocytes and the Potential Metabolic Imbalance in Polycystic Ovary Syndrome. Int J Mol Sci 2023; 24:16247. [PMID: 38003436 PMCID: PMC10671516 DOI: 10.3390/ijms242216247] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Granulosa cells are crucial for the establishment and maintenance of bidirectional communication among oocytes. Various intercellular material exchange modes, including paracrine and gap junction, are used between them to achieve the efficient delivery of granulosa cell structural components, energy substrates, and signaling molecules to oocytes. Glucose metabolism and lipid metabolism are two basic energy metabolism pathways in granulosa cells; these are involved in the normal development of oocytes. Pyruvate, produced by granulosa cell glycolysis, is an important energy substrate for oocyte development. Granulosa cells regulate changes in intrafollicular hormone levels through the processing of steroid hormones to control the development process of oocytes. This article reviews the material exchange between oocytes and granulosa cells and expounds the significance of granulosa cells in the development of oocytes through both glucose metabolism and lipid metabolism. In addition, we discuss the effects of glucose and lipid metabolism on oocytes under pathological conditions and explore its relationship to polycystic ovary syndrome (PCOS). A series of changes were found in the endogenous molecules and ncRNAs that are related to glucose and lipid metabolism in granulosa cells under PCOS conditions. These findings provide a new therapeutic target for patients with PCOS; additionally, there is potential for improving the fertility of patients with PCOS and the clinical outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Xiang-Yi Liu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Jing Wang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
27
|
Pei Z, Deng K, Xu C, Zhang S. The molecular regulatory mechanisms of meiotic arrest and resumption in Oocyte development and maturation. Reprod Biol Endocrinol 2023; 21:90. [PMID: 37784186 PMCID: PMC10544615 DOI: 10.1186/s12958-023-01143-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
In human female primordial germ cells, the transition from mitosis to meiosis begins from the fetal stage. In germ cells, meiosis is arrested at the diplotene stage of prophase in meiosis I (MI) after synapsis and recombination of homologous chromosomes, which cannot be segregated. Within the follicle, the maintenance of oocyte meiotic arrest is primarily attributed to high cytoplasmic concentrations of cyclic adenosine monophosphate (cAMP). Depending on the specific species, oocytes can remain arrested for extended periods of time, ranging from months to even years. During estrus phase in animals or the menstrual cycle in humans, the resumption of meiosis occurs in certain oocytes due to a surge of luteinizing hormone (LH) levels. Any factor interfering with this process may lead to impaired oocyte maturation, which in turn affects female reproductive function. Nevertheless, the precise molecular mechanisms underlying this phenomenon has not been systematically summarized yet. To provide a comprehensive understanding of the recently uncovered regulatory network involved in oocyte development and maturation, the progress of the cellular and molecular mechanisms of oocyte nuclear maturation including meiosis arrest and meiosis resumption is summarized. Additionally, the advancements in understanding the molecular cytoplasmic events occurring in oocytes, such as maternal mRNA degradation, posttranslational regulation, and organelle distribution associated with the quality of oocyte maturation, are reviewed. Therefore, understanding the pathways regulating oocyte meiotic arrest and resumption will provide detailed insight into female reproductive system and provide a theoretical basis for further research and potential approaches for novel disease treatments.
Collapse
Affiliation(s)
- Zhenle Pei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Ke Deng
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| | - Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
28
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Silva BR, Barrozo LG, Nascimento DR, Costa FC, Azevedo VAN, Paulino LRFM, Lopes EPF, Batista ALPS, Aguiar FLN, Peixoto CA, Donato MAM, Rodrigues APR, Silva JRV. Effects of cyclic adenosine monophosphate modulating agents during oocyte pre-maturation and the role of melatonin on in vitro maturation of bovine cumulus-oocyte complexes. Anim Reprod Sci 2023; 257:107327. [PMID: 37696223 DOI: 10.1016/j.anireprosci.2023.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
This study investigated the effects of cyclic adenosine monophosphate modulating during cumulus-oocyte complexes (COCs) pre-maturation and the role of melatonin on in vitro maturation (IVM) of bovine COCs. In experiment one, COCs were pre-matured for 8 h in control medium or with 3-isobutyl-1-methylxanthine (IBMX) and forskolin, IBMX and C-type natriuretic peptide, c-type natriuretic peptide and forskolin or IBMX, forskolin and c-type natriuretic peptide. Then, meiotic progression was evaluated. In experiment two, COCs were pre-matured, followed by IVM in control medium alone or with 10-6, 10-7 or 10-8 M melatonin. After IVM, chromatin configuration, transzonal projections (TZPs), reactive oxygen species, mitochondrial distribution, ultrastructure and mRNA expression for antioxidant enzymes were evaluated. In experiment 1, COCs pre-matured with both C-type natriuretic peptide and forskolin or C-type natriuretic peptide, forskolin and IBMX had lower meiotic resumption rate when compared to control. Considering that IBMX had not an additional effect to potentiate inhibition of meiotic resumption, a combination of C-type natriuretic peptide and forskolin was chosen. In experiment 2, COCs matured with 10-8 M melatonin had greater rates of meiotic resumption when compared to the other treatments (P < 0.05). The COCs matured with 10-7 or 10-8 M melatonin had greater mitochondrial activity (P < 0.05), while those matured with 10-6 or 10-8 M of melatonin had greater levels of TZPs. Ultrastructure of oocyte and cumulus cells after IVM with melatonin was relatively well preserved. COCs matured with 10-8 M melatonin increased mRNA expression for superoxide dismutase (SOD) and catalase (CAT) (P < 0.05), when compared to non-cultured and pre-matured COCs, respectively. In conclusion, bovine COC pre-maturation with C-type natriuretic peptide and forskolin, followed by IVM with 10-8 M melatonin improves meiotic resumption rates, TZPs, mitochondrial distribution and mRNA expression for SOD and CAT.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Laryssa G Barrozo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Danisvânia R Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Francisco C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Laís R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Everton P F Lopes
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, Ceará, Brazil
| | - Ana L P S Batista
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Francisco L N Aguiar
- Department of Veterinary Medicine, Sousa Campus, Federal Institute of Education, Science and Technology of Paraíba, Sousa, Paraíba, Brazil
| | - Christina A Peixoto
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Mariana A M Donato
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ana P R Rodrigues
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, Ceará, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil.
| |
Collapse
|
30
|
Martoriati A, Molinaro C, Marchand G, Fliniaux I, Marin M, Bodart JF, Takeda-Uchimura Y, Lefebvre T, Dehennaut V, Cailliau K. Follicular cells protect Xenopus oocyte from abnormal maturation via integrin signaling downregulation and O-GlcNAcylation control. J Biol Chem 2023; 299:104950. [PMID: 37354972 PMCID: PMC10366548 DOI: 10.1016/j.jbc.2023.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Xenopus oocytes are encompassed by a layer of follicular cells that contribute to oocyte growth and meiosis in relation to oocyte maturation. However, the effects of the interaction between follicular cells and the oocyte surface on meiotic processes are unclear. Here, we investigated Xenopus follicular cell function using oocyte signaling and heterologous-expressing capabilities. We found that oocytes deprotected from their surrounding layer of follicular cells and expressing the epidermal growth factor (EGF) receptor (EGFR) and the Grb7 adaptor undergo accelerated prophase I to metaphase II meiosis progression upon stimulation by EGF. This unusual maturation unravels atypical spindle formation but is rescued by inhibiting integrin β1 or Grb7 binding to the EGFR. In addition, we determined that oocytes surrounded by their follicular cells expressing EGFR-Grb7 exhibit normal meiotic resumption. These oocytes are protected from abnormal meiotic spindle formation through the recruitment of O-GlcNAcylated Grb7, and OGT (O-GlcNAc transferase), the enzyme responsible for O-GlcNAcylation processes, in the integrin β1-EGFR complex. Folliculated oocytes can be forced to adopt an abnormal phenotype and exclusive Grb7 Y338 and Y188 phosphorylation instead of O-GlcNAcylation under integrin activation. Furthermore, an O-GlcNAcylation increase (by inhibition of O-GlcNAcase), the glycosidase that removes O-GlcNAc moieties, or decrease (by inhibition of OGT) amplifies oocyte spindle defects when follicular cells are absent highlighting a control of the meiotic spindle by the OGT-O-GlcNAcase duo. In summary, our study provides further insight into the role of the follicular cell layer in oocyte meiosis progression.
Collapse
Affiliation(s)
- Alain Martoriati
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Caroline Molinaro
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Guillaume Marchand
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Ingrid Fliniaux
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Matthieu Marin
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Jean-François Bodart
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yoshiko Takeda-Uchimura
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Tony Lefebvre
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Vanessa Dehennaut
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Katia Cailliau
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
| |
Collapse
|
31
|
Jiang X, Zhang Z, Hou M, Yang X, Cui L. Plasma exosomes and contained MiRNAs affect the reproductive phenotype in polycystic ovary syndrome. FASEB J 2023; 37:e22960. [PMID: 37335566 DOI: 10.1096/fj.202201940rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/01/2023] [Accepted: 04/25/2023] [Indexed: 06/21/2023]
Abstract
Anovulation is the main feature of infertile women with polycystic ovary syndrome (PCOS), and there is very limited understanding of the role of plasma exosomes and miRNAs in it. To identify the effect of PCOS patients' plasma exosomes and exosomal miRNAs, we isolated plasma exosomes of PCOS patients and normal women and injected into 8-week-old ICR female mice via tail vein. The changes in estrus cycle, serum hormone levels, and ovarian morphology were observed. KGN cells were cultured and transfected with mimics and inhibitors of differentially expressed exosomal miRNAs (miR-18a-3p, miR-20b-5p, miR-106a-5p, miR-126-3p, and miR-146a-5p) and then tested for steroid hormone synthesis, proliferation, and apoptosis. The results showed that female ICR mice injected with plasma exosomes from PCOS patients presented ovarian oligo-cyclicity. Hormone synthesis and proliferation of granulosa cells were affected by differentially expressed PCOS plasma-derived exosomal miRNAs, of which miR-126-3p having the most evident effect. MiR-126-3p affected the proliferation of granulosa cells by inhibiting PDGFRβ and its downstream PI3K-AKT pathway. Our results demonstrated plasma exosomes and contained miRNAs in PCOS patients affect the estrus cycle of mice, hormone secretion, and proliferation of granulosa cells. This study provides a novel understanding about the function of plasma exosomes and exosomal miRNAs in PCOS.
Collapse
Affiliation(s)
- Xiao Jiang
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhirong Zhang
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Min Hou
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xiaohe Yang
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Linlin Cui
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| |
Collapse
|
32
|
Wyse BA, Salehi R, Russell SJ, Sangaralingam M, Jahangiri S, Tsang BK, Librach CL. Obesity and PCOS radically alters the snRNA composition of follicular fluid extracellular vesicles. Front Endocrinol (Lausanne) 2023; 14:1205385. [PMID: 37404312 PMCID: PMC10315679 DOI: 10.3389/fendo.2023.1205385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction The ovarian follicle consists of the oocyte, somatic cells, and follicular fluid (FF). Proper signalling between these compartments is required for optimal folliculogenesis. The association between polycystic ovarian syndrome (PCOS) and extracellular vesicular small non-coding RNAs (snRNAs) signatures in follicular fluid (FF) and how this relates to adiposity is unknown. The purpose of this study was to determine whether FF extracellular vesicle (FFEV)-derived snRNAs are differentially expressed (DE) between PCOS and non-PCOS subjects; and if these differences are vesicle-specific and/or adiposity-dependent. Methods FF and granulosa cells (GC) were collected from 35 patients matched by demographic and stimulation parameters. FFEVs were isolated and snRNA libraries were constructed, sequenced, and analyzed. Results miRNAs were the most abundant biotype present, with specific enrichment in exosomes (EX), whereas in GCs long non-coding RNAs were the most abundant biotype. In obese PCOS vs. lean PCOS, pathway analysis revealed target genes involved in cell survival and apoptosis, leukocyte differentiation and migration, JAK/STAT, and MAPK signalling. In obese PCOS FFEVs were selectively enriched (FFEVs vs. GCs) for miRNAs targeting p53 signalling, cell survival and apoptosis, FOXO, Hippo, TNF, and MAPK signalling. Discussion We provide comprehensive profiling of snRNAs in FFEVs and GCs of PCOS and non-PCOS patients, highlighting the effect of adiposity on these findings. We hypothesize that the selective packaging and release of miRNAs specifically targeting anti-apoptotic genes into the FF may be an attempt by the follicle to reduce the apoptotic pressure of the GCs and stave off premature apoptosis of the follicle observed in PCOS.
Collapse
Affiliation(s)
- Brandon A. Wyse
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
| | - Reza Salehi
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Sahar Jahangiri
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- CReATe Biobank, Toronto, ON, Canada
| | - Benjamin K. Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L. Librach
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- CReATe Biobank, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, DAN Women & Babies Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
33
|
Crozet F, Letort G, Bulteau R, Da Silva C, Eichmuller A, Tortorelli AF, Blévinal J, Belle M, Dumont J, Piolot T, Dauphin A, Coulpier F, Chédotal A, Maître JL, Verlhac MH, Clarke HJ, Terret ME. Filopodia-like protrusions of adjacent somatic cells shape the developmental potential of oocytes. Life Sci Alliance 2023; 6:e202301963. [PMID: 36944420 PMCID: PMC10029974 DOI: 10.26508/lsa.202301963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The oocyte must grow and mature before fertilization, thanks to a close dialogue with the somatic cells that surround it. Part of this communication is through filopodia-like protrusions, called transzonal projections (TZPs), sent by the somatic cells to the oocyte membrane. To investigate the contribution of TZPs to oocyte quality, we impaired their structure by generating a full knockout mouse of the TZP structural component myosin-X (MYO10). Using spinning disk and super-resolution microscopy combined with a machine-learning approach to phenotype oocyte morphology, we show that the lack of Myo10 decreases TZP density during oocyte growth. Reduction in TZPs does not prevent oocyte growth but impairs oocyte-matrix integrity. Importantly, we reveal by transcriptomic analysis that gene expression is altered in TZP-deprived oocytes and that oocyte maturation and subsequent early embryonic development are partially affected, effectively reducing mouse fertility. We propose that TZPs play a role in the structural integrity of the germline-somatic complex, which is essential for regulating gene expression in the oocyte and thus its developmental potential.
Collapse
Affiliation(s)
- Flora Crozet
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Paris, France
| | - Gaëlle Letort
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Paris, France
| | - Rose Bulteau
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Christelle Da Silva
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Adrien Eichmuller
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3215, INSERM U934, Paris, France
| | - Anna Francesca Tortorelli
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3215, INSERM U934, Paris, France
| | | | - Morgane Belle
- Institut de la Vision, UMRS968/UMR7210/UM80, Paris, France
| | - Julien Dumont
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Tristan Piolot
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Aurélien Dauphin
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3215, INSERM U934, Paris, France
| | - Fanny Coulpier
- Genomics Core Facility, Institut de Biologie de l'ENS, Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alain Chédotal
- Institut de la Vision, UMRS968/UMR7210/UM80, Paris, France
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3215, INSERM U934, Paris, France
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
34
|
Coxir SA, Costa GMJ, Santos CFD, Alvarenga RDLLS, Lacerda SMDSN. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Hum Cell 2023:10.1007/s13577-023-00921-7. [PMID: 37237248 DOI: 10.1007/s13577-023-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.
Collapse
Affiliation(s)
- Sarah Abreu Coxir
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camilla Fernandes Dos Santos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
35
|
Gatti M, Belli M, De Rubeis M, Khalili MA, Familiari G, Nottola SA, Macchiarelli G, Hajderi E, Palmerini MG. Ultrastructural Evaluation of Mouse Oocytes Exposed In Vitro to Different Concentrations of the Fungicide Mancozeb. BIOLOGY 2023; 12:biology12050698. [PMID: 37237511 DOI: 10.3390/biology12050698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Mancozeb is a widely used fungicide, considered to be an endocrine disruptor. In vivo and in vitro studies evidenced its reproductive toxicity on mouse oocytes by altering spindle morphology, impairing oocyte maturation, fertilization, and embryo implantation. Mancozeb also induces dose-dependent toxicity on the ultrastructure of mouse granulosa cells, including chromatin condensation, membrane blebbing, and vacuolization. We evaluated the effects on the ultrastructure of mouse oocytes isolated from cumulus-oocyte complexes (COCs), exposed in vitro to increasing concentrations of mancozeb. COCs were matured in vitro with or without (control) low fungicide concentrations (0.001-1 μg/mL). All mature oocytes were collected and prepared for light and transmission electron microscopy. Results showed a preserved ultrastructure at the lowest doses (0.001-0.01 μg/mL), with evident clusters of round-to-ovoid mitochondria, visible electron-dense round cortical granules, and thin microvilli. Mancozeb concentration of 1 μg/mL affected organelle density concerning controls, with a reduction of mitochondria, appearing moderately vacuolated, cortical granules, and microvilli, short and less abundant. In summary, ultrastructural data revealed changes mainly at the highest concentration of mancozeb on mouse oocytes. This could be responsible for the previously described impaired capability in oocyte maturation, fertilization, and embryo implantation, demonstrating its impact on the reproductive health and fertility.
Collapse
Affiliation(s)
- Marta Gatti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Manuel Belli
- MEBIC Consortium, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mariacarla De Rubeis
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Mohammad Ali Khalili
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Edmond Hajderi
- Department of Pharmaceutical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
36
|
Bordás L, Somoskői B, Török D, Vincze BN, Cseh S. Post-thaw viability of mouse preantral follicles after cryopreservation with cryotube freezing and OPS vitrification procedures. Reprod Biol 2023; 23:100752. [PMID: 36905824 DOI: 10.1016/j.repbio.2023.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
In the field of reproductive science, there is an increased interest in the application of ovarian preantral follicles. Since the ovary contains a great amount of preantral follicles (PAF), the cryopreservation and in vitro culture of such follicles support the fertility preservation of domestic animals with high genetic value, endangered or zoo animals, and women before anticancer therapy. To date, no standard freezing or vitrification protocol is available in human or animals. The aim of the present study was to examine the viability of preantral follicles cryopreserved using freezing or vitrification protocols: cryotube freezing or OPS vitrification.
Collapse
Affiliation(s)
- Lilla Bordás
- University of Veterinary Medicine Budapest Department of Obstetrics and Food Animal Medicine Clinic, István st. 2, 1078 Budapest, Hungary
| | - Bence Somoskői
- University of Veterinary Medicine Budapest Department of Obstetrics and Food Animal Medicine Clinic, István st. 2, 1078 Budapest, Hungary.
| | - Dóra Török
- University of Veterinary Medicine Budapest Department of Obstetrics and Food Animal Medicine Clinic, István st. 2, 1078 Budapest, Hungary
| | - Boglárka Nóra Vincze
- University of Veterinary Medicine Budapest Department of Obstetrics and Food Animal Medicine Clinic, István st. 2, 1078 Budapest, Hungary
| | - Sándor Cseh
- University of Veterinary Medicine Budapest Department of Obstetrics and Food Animal Medicine Clinic, István st. 2, 1078 Budapest, Hungary
| |
Collapse
|
37
|
Venkataraman K, Shai N, Lakhiani P, Zylka S, Zhao J, Herre M, Zeng J, Neal LA, Molina H, Zhao L, Vosshall LB. Two novel, tightly linked, and rapidly evolving genes underlie Aedes aegypti mosquito reproductive resilience during drought. eLife 2023; 12:e80489. [PMID: 36744865 PMCID: PMC10076016 DOI: 10.7554/elife.80489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 01/29/2023] [Indexed: 02/07/2023] Open
Abstract
Female Aedes aegypti mosquitoes impose a severe global public health burden as vectors of multiple viral pathogens. Under optimal environmental conditions, Aedes aegypti females have access to human hosts that provide blood proteins for egg development, conspecific males that provide sperm for fertilization, and freshwater that serves as an egg-laying substrate suitable for offspring survival. As global temperatures rise, Aedes aegypti females are faced with climate challenges like intense droughts and intermittent precipitation, which create unpredictable, suboptimal conditions for egg-laying. Here, we show that under drought-like conditions simulated in the laboratory, females retain mature eggs in their ovaries for extended periods, while maintaining the viability of these eggs until they can be laid in freshwater. Using transcriptomic and proteomic profiling of Aedes aegypti ovaries, we identify two previously uncharacterized genes named tweedledee and tweedledum, each encoding a small, secreted protein that both show ovary-enriched, temporally-restricted expression during egg retention. These genes are mosquito-specific, linked within a syntenic locus, and rapidly evolving under positive selection, raising the possibility that they serve an adaptive function. CRISPR-Cas9 deletion of both tweedledee and tweedledum demonstrates that they are specifically required for extended retention of viable eggs. These results highlight an elegant example of taxon-restricted genes at the heart of an important adaptation that equips Aedes aegypti females with 'insurance' to flexibly extend their reproductive schedule without losing reproductive capacity, thus allowing this species to exploit unpredictable habitats in a changing world.
Collapse
Affiliation(s)
- Krithika Venkataraman
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Nadav Shai
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Priyanka Lakhiani
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller UniversityNew YorkUnited States
| | - Sarah Zylka
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Jieqing Zhao
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Margaret Herre
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| | - Joshua Zeng
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Lauren A Neal
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
| | - Henrik Molina
- Proteomics Resource Center, Rockefeller UniversityNew YorkUnited States
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller UniversityNew YorkUnited States
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| |
Collapse
|
38
|
Liu W, Chen Z, Li R, Zheng M, Pang X, Wen A, Yang B, Wang S. High and low dose of luzindole or 4-phenyl-2-propionamidotetralin (4-P-PDOT) reverse bovine granulosa cell response to melatonin. PeerJ 2023; 11:e14612. [PMID: 36684672 PMCID: PMC9851050 DOI: 10.7717/peerj.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/30/2022] [Indexed: 01/18/2023] Open
Abstract
Background Communication between oocytes and granulosa cells ultimately dictate follicle development or atresia. Melatonin is also involved in follicle development. This study aimed to investigate the effects of melatonin and its receptor antagonists on hormone secretion, as well as gene expression related to hormone synthesis, TGF-β superfamily, and follicle development in bovine granulosa cells, and assess the effects of melatonin in the presence of 4-P-PDOT and luzindole. Methods Bovine ovaries were collected from a local abattoir and follicular fluid (follicle diameter 5-8 mm) was collected for granulosa cell isolation and culture. Granulosa cells and culture medium were collected 48 h after treatment with melatonin at high dose concentrations (10-5 M) and low dose concentrations (10-9 M) in the absence/presence of 4-P-PDOT and luzindole (10-5 M or 10-9 M). Furthermore, the expression level of genes related to hormonal synthesis (CYP11A1, CYP19A1, StAR, and RUNX2), TGF-β superfamily (BMP6, INHA, INHBA, INHBB, and TGFBR3), and development (EGFR, DNMT1A, and FSHR) were detected in each experimental group by real-time quantitative PCR. In addition, the level of hormones in culture medium were detected using ELISA. Results Both 10-5 M and 10-9 M melatonin doses promoted the secretion of inhibin A and progesterone without affecting the production of inhibin B and estradiol. In addition, both promoted the gene expression of INHA, StAR, RUNX2, TGFBR3, EGFR, and DNMT1A, and inhibited the expression of BMP6, INHBB, CYP11A1, CYP19A1, and FSHR. When combined with different doses of 4-P-PDOT and luzindole, they exhibited different effects on the secretion of inhibin B, estradiol, inhibin A, and progesterone, and the expression of CYP19A1, RUNX2, BMP6, INHBB, EGFR, and DNMT1A induced by melatonin. Conclusion High and low dose melatonin receptor antagonists exhibited different effects in regulating hormone secretion and the expression of various genes in response to melatonin. Therefore, concentration effects must be considered when using luzindole or 4-P-PDOT.
Collapse
Affiliation(s)
- Wenju Liu
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, China,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Chen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Rui Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Menghao Zheng
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Xunsheng Pang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China,Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| |
Collapse
|
39
|
Miętkiewska K, Kordowitzki P, Pareek CS. Effects of Heat Stress on Bovine Oocytes and Early Embryonic Development-An Update. Cells 2022; 11:4073. [PMID: 36552837 PMCID: PMC9776454 DOI: 10.3390/cells11244073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Heat stress is a major threat to cattle reproduction today. It has been shown that the effect of high temperature not only has a negative effect on the hormonal balance, but also directly affects the quality of oocytes, disrupting the function of mitochondria, fragmenting their DNA and changing their maternal transcription. Studies suggest that the induction of HSP70 may reduce the apoptosis of granular layer cells caused by heat stress. It has been shown that the changes at the transcriptome level caused by heat stress are consistent with 46.4% of blastocyst development disorders. Cows from calves exposed to thermal stress in utero have a lower milk yield in their lifetime, exhibit immunological disorders, have a lower birth weight and display a shorter lifespan related to the expedited aging. In order to protect cow reproduction, the effects of heat stress at the intracellular and molecular levels should be tracked step by step, and the impacts of the dysregulation of thermal homeostasis (i.e., hyperthermy) should be taken into account.
Collapse
Affiliation(s)
- Klaudia Miętkiewska
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Pawel Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Chandra S. Pareek
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
40
|
Expression Patterns and Gonadotropin Regulation of the TGF-β II Receptor (Bmpr2) during Ovarian Development in the Ricefield Eel Monopterus albus. Int J Mol Sci 2022; 23:ijms232315349. [PMID: 36499673 PMCID: PMC9739225 DOI: 10.3390/ijms232315349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Bmpr2 plays a central role in the regulation of reproductive development in mammals, but its role during ovarian development in fish is still unclear. To ascertain the function of bmpr2 in ovarian development in the ricefield eel, we isolated and characterized the bmpr2 cDNA sequence; the localization of Bmpr2 protein was determined by immunohistochemical staining; and the expression patterns of bmpr2 in ovarian tissue incubated with FSH and hCG in vitro were analyzed. The full-length bmpr2 cDNA was 3311 bp, with 1061 amino acids encoded. Compared to other tissues, bmpr2 was abundantly expressed in the ovary and highly expressed in the early yolk accumulation (EV) stages of the ovary. In addition, a positive signal for Bmpr2 was detected in the cytoplasm of oocytes in primary growth (PG) and EV stages. In vitro, the expression level of gdf9, the ligand of bmpr2, in the 10 ng/mL FSH treatment group was significantly higher after incubation for 4 h than after incubation for different durations. However, bmpr2 expression in the 10 ng/mL FSH treatment group at 2 h, 4 h and 10 h was significantly lower. Importantly, the expression level of bmpr2 and gdf9 in the 100 IU/mL hCG group had similar changes that were significantly decreased at 4 h and 10 h. In summary, Bmpr2 might play a pivotal role in ovarian growth in the ricefield eel, and these results provide a better understanding of the function of bmpr2 in ovarian development and the basic data for further exploration of the regulatory mechanism of gdf9 in oocyte development.
Collapse
|
41
|
KANATSU-SHINOHARA M, LEE J, MIYAZAKI T, MORIMOTO H, SHINOHARA T. Adenovirus-mediated gene delivery restores fertility in congenitally infertile female mice. J Reprod Dev 2022; 68:369-376. [PMID: 36223953 PMCID: PMC9792657 DOI: 10.1262/jrd.2022-090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Oogenesis depends on close interactions between oocytes and granulosa cells. Abnormal signaling between these cell types can result in infertility. However, attempts to manipulate oocyte-granulosa cell interactions have had limited success, likely due to the blood-follicle barrier (BFB), which prevents the penetration of exogenous materials into ovarian follicles. Here, we used adenoviruses (AVs) to manipulate the oocyte-granulosa cell interactions. AVs penetrated the BFB and transduced granulosa cells through ovarian microinjection. Although AVs caused transient inflammation, they did not impair fertility in wild-type mice. Introduction of Kitl-expressing AVs into congenitally infertile KitlSl-t/KitlSl-t mutant mouse ovaries, which contained only primordial follicles because of a lack of Kitl expression, restored fertility through natural mating. The offspring showed no evidence of AV integration and exhibited normal genomic imprinting patterns for imprinted genes. These results demonstrate the usefulness of AVs for manipulating oogenesis and suggest the possibility of gene therapies for human female infertility.
Collapse
Affiliation(s)
- Mito KANATSU-SHINOHARA
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan,AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Jiyoung LEE
- Advanced Multidisciplinary Research Cluster, Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Takehiro MIYAZAKI
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroko MORIMOTO
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi SHINOHARA
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
42
|
Konstantinidou F, Budani MC, Marconi GD, Gonnella F, Sarra A, Trubiani O, Stuppia L, Tiboni GM, Gatta V. The Aftermath of Long-Term Cigarette Smoking on Telomere Length and Mitochondrial DNA Copy Number in Human Cumulus Cells Prior to In Vitro Fertilization-A Pilot Study. Antioxidants (Basel) 2022; 11:antiox11091841. [PMID: 36139914 PMCID: PMC9495883 DOI: 10.3390/antiox11091841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cigarette smoking among women of reproductive age is known to take a toll on systemic health and fertility potential by severely impacting ovarian tissues and cells, such as granulosa and cumulus cells (CCs). The purpose of this study was to determine the potential damage caused by tobacco smoke at a molecular level in the CCs of females who had undergone in vitro fertilization. The level of intracellular damage was determined by estimating the average telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN), as well as the expression profile of telomere maintenance genes TERF1, TERF2, POT1 and microRNAs miR-155, miR-23a and miR-185. Western blotting analysis was performed to detect consequent protein levels of TERF1, TERF2 and POT1. Our results evidenced significantly lower relative TL and mtDNA-CN and a down-regulation pattern for all three described genes and corresponding proteins in the CCs of smokers compared with controls (p < 0.05). No significant differences were found in the miRNAs’ modulation. Combined, our data add another piece to the puzzle of the complex regulatory molecular networks controlling the general effects of tobacco smoke in CCs. This pilot study extends the until now modest number of studies simultaneously investigating the mtDNA-CN and TL pathways in the human CCs of smoking women.
Collapse
Affiliation(s)
- Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Faculty of Bioscience, Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Maria Cristina Budani
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesca Gonnella
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Faculty of Bioscience, Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Annalina Sarra
- Department of Philosophical, Pedagogical and Quantitative Economic Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gian Mario Tiboni
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
43
|
Sinha N, Driscoll CS, Qi W, Huang B, Roy S, Knott JG, Wang J, Sen A. Anti-Müllerian hormone treatment enhances oocyte quality, embryonic development and live birth rate†. Biol Reprod 2022; 107:813-822. [PMID: 35657015 PMCID: PMC9476226 DOI: 10.1093/biolre/ioac116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 05/24/2022] [Indexed: 03/13/2025] Open
Abstract
The anti-Müllerian hormone (AMH) produced by the granulosa cells of growing follicles is critical for folliculogenesis and is clinically used as a diagnostic and prognostic marker of female fertility. Previous studies report that AMH-pretreatment in mice creates a pool of quiescent follicles that are released following superovulation, resulting in an increased number of ovulated oocytes. However, the quality and developmental competency of oocytes derived from AMH-induced accumulated follicles as well as the effect of AMH treatment on live birth are not known. This study reports that AMH priming positively affects oocyte maturation and early embryonic development culminating in higher number of live births. Our results show that AMH treatment results in good-quality oocytes with greater developmental competence that enhances embryonic development resulting in blastocysts with higher gene expression. The transcriptomic analysis of oocytes from AMH-primed mice compared with those of control mice reveal that AMH upregulates a large number of genes and pathways associated with oocyte quality and embryonic development. Mitochondrial function is the most affected pathway by AMH priming, which is supported by more abundant active mitochondria, mitochondrial DNA content and adenosine triphosphate levels in oocytes and embryos isolated from AMH-primed animals compared with control animals. These studies for the first time provide an insight into the overall impact of AMH on female fertility and highlight the critical knowledge necessary to develop AMH as a therapeutic option to improve female fertility.
Collapse
Affiliation(s)
- Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Science, East Lansing, MI, USA
| | - Chad S Driscoll
- Reproductive and Developmental Sciences Program, Department of Animal Science, East Lansing, MI, USA
| | - Wenjie Qi
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Binbin Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Science, East Lansing, MI, USA
| | - Jason G Knott
- Reproductive and Developmental Sciences Program, Department of Animal Science, East Lansing, MI, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Science, East Lansing, MI, USA
| |
Collapse
|
44
|
Capra E, Kosior MA, Cocchia N, Lazzari B, Del Prete C, Longobardi V, Pizzi F, Stella A, Frigerio R, Cretich M, Consiglio AL, Gasparrini B. Variations of follicular fluid extracellular vesicles miRNAs content in relation to development stage and season in buffalo. Sci Rep 2022; 12:14886. [PMID: 36050481 PMCID: PMC9437019 DOI: 10.1038/s41598-022-18438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
In buffalo (Bubalus bubalis) reproductive seasonality, causing cycles of milk production, is one of the major factors affecting farming profitability. Follicular fluid (FF) contains extracellular vesicles (EVs) playing an important role in modulating oocyte developmental competence and carrying microRNAs (miRNAs) essential for in vitro fertilization outcomes. The aim of this work was to characterize the FF-EVs-miRNA cargo of antral (An) and preovulatory (pO) follicles collected in the breeding (BS) and non-breeding (NBS) seasons, to unravel the molecular causes of the reduced oocyte competence recorded in buffalo during the NBS. In total, 1335 miRNAs (538 known Bos taurus miRNAs, 324 homologous to known miRNAs from other species and 473 new candidate miRNAs) were found. We identified 413 differentially expressed miRNAs (DE-miRNAs) (FDR < 0.05) between An and pO groups. A subset of the most significant DE-miRNAs between An and pO groups targets genes which function is related to the lipid and steroid metabolism, response to glucocorticoid and oestradiol stimulus. Comparison between BS and NBS showed 14 and 12 DE-miRNAs in An-FF-EVs and pO-FF-EVs, which regulate IL6 release and cellular adhesion, respectively. In conclusion, these results demonstrated that the miRNA cargo of buffalo FF-EVs varies in relation to both follicular development and season.
Collapse
Affiliation(s)
- Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Michal Andrzej Kosior
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Natascia Cocchia
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Chiara Del Prete
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Valentina Longobardi
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Flavia Pizzi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Alessandra Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche SCITEC-CNR, Milano, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche SCITEC-CNR, Milano, Italy
| | - Anna Lange Consiglio
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Via Celoria, 10, 20133, Lodi, Milano, Italy.
| | - Bianca Gasparrini
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| |
Collapse
|
45
|
AOP key event relationship report: Linking decreased androgen receptor activation with decreased granulosa cell proliferation of gonadotropin-independent follicles. Reprod Toxicol 2022; 112:136-147. [PMID: 35868514 DOI: 10.1016/j.reprotox.2022.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/08/2023]
Abstract
We recently proposed to formally recognize Key Event Relationships (KERs) as building blocks of Adverse Outcome Pathways (AOPs) that can be independently developed and peer-reviewed. Here, we follow this approach and provide an independent KER from AOP345, which describes androgen receptor (AR) antagonism leading to decreased female fertility. This KER connects AR antagonism to reduced granulosa cell proliferation of gonadotropin-independent follicles (KER2273). We have developed both the KER and the two adjacent Key Events (KEs). A systematic approach was used to ensure that all relevant supporting evidence for KER2273 was retrieved. Supporting evidence for the KER highlights the importance of AR action during the early stages of follicular development. Both biological plausibility and empirical evidence are presented, with the latter also assessed for quality. We believe that tackling isolated KERs instead of whole AOPs will accelerate the AOP development. Faster AOP development will lead to the development of simple test methods that will aid screening of chemicals, endocrine disruptor identification, risk assessment, and subsequent regulation.
Collapse
|
46
|
Kim M, Hwang SU, Yoon JD, Lee J, Kim E, Cai L, Choi H, Oh D, Lee G, Hyun SH. Physiological and Functional Roles of Neurotrophin-4 During In Vitro Maturation of Porcine Cumulus–Oocyte Complexes. Front Cell Dev Biol 2022; 10:908992. [PMID: 35898394 PMCID: PMC9310091 DOI: 10.3389/fcell.2022.908992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neurotrophin-4 (NT-4), a granulosa cell-derived factor and a member of the neurotrophin family, is known to promote follicular development and oocyte maturation in mammals. However, the physiological and functional roles of NT-4 in porcine ovarian development are not yet known. The aim of this study was to investigate the physiological role of NT-4-related signaling in the in vitro maturation (IVM) of porcine cumulus–oocyte complexes (COCs). The NT-4 protein and its receptors were detected in matured porcine COCs via immunofluorescence analysis. NT-4 was shown to promote the maturation of COCs by upregulating NFKB1 transcription via the neurotrophin/p75NTR signaling pathway. Notably, the mRNA expression levels of the oocyte-secreted factors GDF9 and BMP15, sperm–oocyte interaction regulator CD9, and DNA methylase DNMT3A were significantly upregulated in NT-4-treated than in untreated porcine oocytes. Concurrently, there were no significant differences in the levels of total and phosphorylated epidermal growth factor receptor and p38 mitogen-activated protein kinase between NT-4-treated and untreated cumulus cells (CCs); however, the level of phosphorylated ERK1/2 was significantly higher in NT-4-treated CCs. Both total and phosphorylated ERK1/2 levels were significantly higher in NT-4-treated than in untreated oocytes. In addition, NT-4 improved subsequent embryonic development after in vitro fertilization and somatic cell nuclear transfer. Therefore, the physiological and functional roles of NT-4 in porcine ovarian development include the promotion of oocyte maturation, CC expansion, and ERK1/2 phosphorylation in porcine COCs during IVM.
Collapse
Affiliation(s)
- Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Seon-Ung Hwang
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, United States
| | - Junchul David Yoon
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Joohyeong Lee
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Lian Cai
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| | - Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
- *Correspondence: Sang-Hwan Hyun,
| |
Collapse
|
47
|
Klabnik JL, Christenson LK, Gunewardena SSA, Pohler KG, Rispoli LA, Payton RR, Moorey SE, Neal Schrick F, Edwards JL. Heat-induced increases in body temperature in lactating dairy cows: impact on the cumulus and granulosa cell transcriptome of the periovulatory follicle. J Anim Sci 2022; 100:skac121. [PMID: 35772768 PMCID: PMC9246673 DOI: 10.1093/jas/skac121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Cows acutely heat stressed after a pharmacologically induced luteinizing hormone (LH) surge had periovulatory changes in the follicular fluid proteome that may potentiate ovulation and impact oocyte developmental competence. Because the cellular origins of differentially abundant proteins were not known, we have examined the cumulus and granulosa cell transcriptomes from the periovulatory follicle in cows exhibiting varying levels of hyperthermia when occurring after the LH surge. After pharmacological induction of a dominant follicle, lactating dairy cows were administered gonadotropin releasing hormone (GnRH) and maintained in thermoneutral conditions (~67 temperature-humidity index [THI]) or heat stress conditions where THI was steadily increased for ~12 h (71 to 86 THI) and was sufficient to steadily elevate rectal temperatures. Cumulus-oocyte complexes and mural granulosa cells were recovered by transvaginal aspiration of dominant follicle content ~16 h after GnRH. Rectal temperature was used as a continuous, independent variable to identify differentially expressed genes (DEGs) increased or decreased per each 1 °C change in temperature. Cumulus (n = 9 samples) and granulosa (n = 8 samples) cells differentially expressed (false discovery rate [FDR] < 0.05) 25 and 87 genes, respectively. The majority of DEGs were upregulated by hyperthermia. Steady increases in THI are more like the "turning of a dial" than the "flipping of a switch." The moderate but impactful increases in rectal temperature induced modest fold changes in gene expression (<2-fold per 1 °C change in rectal temperature). Identification of cumulus DEGs involved in cell junctions, plasma membrane rafts, and cell-cycle regulation are consistent with marked changes in the interconnectedness and function of cumulus after the LH surge. Depending on the extent to which impacts may be occurring at the junctional level, cumulus changes may have indirect but impactful consequences on the oocyte as it undergoes meiotic maturation. Two granulosa cell DEGs have been reported by others to promote ovulation. Based on what is known, several other DEGs are suggestive of impacts on collagen formation or angiogenesis. Collectively these and other findings provide important insight regarding the extent to which the transcriptomes of the components of the periovulatory follicle (cumulus and mural granulosa cells) are affected by varying degrees of hyperthermia.
Collapse
Affiliation(s)
- Jessica L Klabnik
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sumedha S A Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ky G Pohler
- Present address: Department of Animal Science, Pregnancy and Developmental Programming Area of Excellence, Texas A & M University, College Station, TX 77843, USA
| | - Louisa A Rispoli
- Present address: Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, OH 45220, USA
| | - Rebecca R Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| | - Sarah E Moorey
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| | - F Neal Schrick
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| |
Collapse
|
48
|
Horn EJ, Read CC, Edwards JL, Schrick FN, Rhinehart JD, Payton RR, Campagna SR, Klabnik JL, Clark HM, Myer PR, McLean KJ, Moorey SE. Preovulatory follicular fluid and serum metabolome profiles in lactating beef cows with thin, moderate, and obese body condition. J Anim Sci 2022; 100:skac152. [PMID: 35772755 PMCID: PMC9246665 DOI: 10.1093/jas/skac152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022] Open
Abstract
Extremes in body condition reduce fertility and overall productivity in beef cattle herds, due in part to altered systemic metabolic conditions that influence the intrafollicular and uterine environment. Follicular fluid and serum metabolome profiles are influenced by body composition in women and dairy cattle; however, such information is lacking in beef cattle. We hypothesized that body condition score (BCS)-related alterations in the metabolome of preovulatory follicular fluid and serum may influence oocyte maturation while impacting the oviductal or uterine environment. Therefore, we performed a study with the objective to determine the relationship between BCS and the metabolome of follicular fluid and serum in lactating beef cattle. We synchronized the development of a preovulatory follicle in 130 cows of varying BCS. We collected blood and performed transvaginal follicle aspirations to collect follicular fluid from the preovulatory follicle ~18 h after gonadotropin-releasing hormone administration to stimulate the preovulatory gonadotropin surge. We then selected follicular fluid and serum samples from cows with BCS 4 (Thin; n = 14), BCS 6 (Moderate; n = 18), or BCS >8 (Obese; n = 14) for ultra-high performance liquid chromatography-high resolution mass spectrometry. We identified differences in the follicular fluid or serum of thin, moderate, and obese animals based on multiple linear regression. MetaboAnalyst 5.0 was used for enrichment analysis of significant metabolites. We identified 38 metabolites in follicular fluid and 49 metabolites in serum. There were no significant differences in follicular fluid metabolite content among BCS classifications. There were 5, 22, and 1 serum metabolites differentially abundant between thin-obese, moderate-thin, and moderate-obese classifications, respectively (false discovery rate [FDR] < 0.10). These metabolites were enriched in multiple processes including "arginine biosynthesis," "arginine/proline metabolism," and "D-glutamine/D-glutamate metabolism" (FDR < 0.04). Pathways enriched with serum metabolites associated with BCS indicate potentially increased reactive oxygen species (ROS) in serum of thin cows. ROS crossing the blood follicular barrier may negatively impact the oocyte during oocyte maturation and contribute to the reduced pregnancy rates observed in thin beef cows.
Collapse
Affiliation(s)
- Emma J Horn
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Casey C Read
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - J Lannett Edwards
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - F Neal Schrick
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Justin D Rhinehart
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Rebecca R Payton
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Jessica L Klabnik
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Hannah M Clark
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Phillip R Myer
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Sarah E Moorey
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
49
|
Moorey SE, Hessock EA, Edwards JL. Preovulatory follicle contributions to oocyte competence in cattle: importance of the ever-evolving intrafollicular environment leading up to the luteinizing hormone surge. J Anim Sci 2022; 100:skac153. [PMID: 35772757 PMCID: PMC9246662 DOI: 10.1093/jas/skac153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
The preovulatory intrafollicular environment plays a major role in determining oocyte competence. The basis of this review is to highlight the importance of the preovulatory follicle's physiological status prior to the preovulatory luteinizing hormone (LH) surge and onset of oocyte maturation to promote an optimal follicular microenvironment and optimal oocyte developmental competence in cattle. While the underlying mechanisms remain unclear, and are likely multifactorial, the preovulatory follicle's physiological status prior to the preovulatory LH surge is highly influential on the oocyte's capacity to undergo postfertilization embryo development. Changes in the intrafollicular environment of the preovulatory follicle including steroid hormone production, metabolome profiles, and proteome profiles likely support the oocyte's developmental and metabolic competency. This review focuses on the relationship between bovine oocyte developmental competency and antral follicle progression to the preovulatory phase, the role of the preovulatory follicle in improving oocyte developmental competence in cattle, and the importance of the ever-evolving preovulatory intrafollicular environment for optimal fertility.
Collapse
Affiliation(s)
- Sarah E Moorey
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Emma A Hessock
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - J Lannett Edwards
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
50
|
Zhu X, Zhao S, Xu S, Zhang D, Zhu M, Pan Q, Huang J. Granulosa Cells Improved Mare Oocyte Cytoplasmic Maturation by Providing Collagens. Front Cell Dev Biol 2022; 10:914735. [PMID: 35846364 PMCID: PMC9280134 DOI: 10.3389/fcell.2022.914735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Assisted reproductive technology has important clinical applications and commercial values in the horse industry. However, this approach is limited largely by the low efficiency of oocyte in vitro maturation (IVM), especially cytoplasmic maturation. To improve the efficiency of mare oocyte IVM, we evaluated the effects of co-culture with cumulus–oocyte complexes (COCs) and granulosa cells (GCs) from follicles with small (<15 mm) and large diameters (>35 mm). Our results showed that oocyte nucleus maturation was not significantly improved by co-culturing with GCs. Interestingly, the cytoplasmic maturation of oocytes, defined by the distribution of cortical granules and mitochondria, as well as reactive oxygen species (ROS) levels, improved dramatically by co-culture with GCs, especially those derived from small follicles. Moreover, GCs promoted cumulus cell expansion by upregulating the expression of BMP15 in oocytes. To determine the mechanism underlying the effects of GCs, the transcriptomes of GCs from large and small follicles were compared. Expression levels of COL1A2, COL6A1, and COL6A2 were significantly higher in GCs from small follicles than in those from large follicles. These three genes were enriched in the extracellular matrix proteins-receptor interaction pathway and were involved in the regulation of collagens. Taken together, our results suggest that co-culture with GCs is beneficial to oocyte cytoplasmic maturation, and the increased expression of COL1A2, COL6A1, and COL6A2 improve the mare oocyte IVM system via the regulation of collagen.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingjie Pan
- *Correspondence: Qingjie Pan, ; Jiaojiao Huang,
| | | |
Collapse
|