1
|
Brownfield BA, Fromme JC. Structural insights into traffic through the Golgi complex. Curr Opin Cell Biol 2025; 94:102505. [PMID: 40157309 DOI: 10.1016/j.ceb.2025.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
The Golgi complex is the central sorting station of eukaryotic cells. Several unique trafficking pathways direct the transport of proteins between the Golgi and the endoplasmic reticulum, plasma membrane, and endolysosomal system. In this review we highlight several recent studies that use structural biology approaches to discover and characterize novel mechanisms cells use to control the flow of traffic through the Golgi. These studies provide important new insights into how activation of Arf and Rab GTPases is regulated, how cargo proteins are sorted during vesicle biogenesis, and how vesicle tethers identify their target compartments.
Collapse
Affiliation(s)
- Bryce A Brownfield
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Cai J, Zhou H, Liu M, Zhang D, Lv J, Xue H, Zhou H, Zhang W. Host immunity and intracellular bacteria evasion mechanisms: Enhancing host-directed therapies with drug delivery systems. Int J Antimicrob Agents 2025; 65:107492. [PMID: 40107461 DOI: 10.1016/j.ijantimicag.2025.107492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Host-directed therapies (HDTs) have been investigated as a potential solution to combat intracellular and drug-resistant bacteria. HDTs stem from extensive research on the intricate interactions between the host and intracellular bacteria, leading to a treatment approach that relies on immunoregulation. To improve the bioavailability and safety of HDTs, researchers have utilized diverse drug delivery systems (DDS) to encapsulate and transport therapeutic agents to target cells. In this review, we first introduce the three mechanisms of bactericidal action and intracellular bacterial evasion: autophagy, reactive oxygen species (ROS), and inflammatory cytokines, with a particular focus on autophagy. Special attention is given to the detailed mechanism of xenophagy in clearing intracellular bacteria, a crucial selective autophagy process that specifically targets and degrades intracellular pathogens. Following this, we present the application of DDS to modulate these regulatory methods for intracellular bacteria elimination. By integrating insights from immunology and nanomedicine, this review highlights the emerging role of DDS in advancing HDTs for intracellular bacterial infections and paving the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Jiayang Cai
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Han Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Mingwei Liu
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Dingjian Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Jingxuan Lv
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Haokun Xue
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Houcheng Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China.
| |
Collapse
|
3
|
Park K, Ju S, Choi H, Gao P, Bang G, Choi JH, Jang J, Morris AJ, Kang BH, Hsu VW, Park SY. PITPβ promotes COPI vesicle fission through lipid transfer and membrane contact formation. J Cell Biol 2025; 224:e202407166. [PMID: 40214667 PMCID: PMC11987707 DOI: 10.1083/jcb.202407166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 02/18/2025] [Indexed: 04/14/2025] Open
Abstract
Intracellular transport among organellar compartments occurs in two general ways: by membrane-bound carriers and membrane contacts. Specific circumstances that involve the coordination of these two modes of transport remain to be defined. By studying coat protein I (COPI) transport, we find that phosphatidylcholine with short acyl chains (sPC) is delivered through membrane contact from the endoplasmic reticulum (ER) to sites of COPI vesicle formation at the Golgi to support the fission stage. Phosphatidylinositol transfer protein beta (PITPβ) plays a key role in this process, with the elucidation of this role shedding new insights into how PITPβ acts, providing a mechanistic understanding of a specific circumstance when vesicular transport requires membrane contact and contributing to the general understanding of how intracellular transport carriers are formed.
Collapse
Affiliation(s)
- Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyewon Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Peng Gao
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jung Hoon Choi
- Department of Bio-Chemical Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Andrew J. Morris
- University of Arkansas for Medical Sciences, Arkansas Children’s Nutrition Research Center, and Central Arkansas VA Healthcare System, Little Rock, AR, USA
| | - Byung-Ho Kang
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Victor W. Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
4
|
Herrera-Moro Huitron L, Cruz-Holguin VJ, Ulloa-Aguilar JM, De Jesús-González LA, Osuna-Ramos JF, Guzmán-Huerta M, de León-Bautista MP, León-Reyes G, García-Cordero J, Cedillo-Barrón L, Cerna-Cortes JF, León-Juárez M. Beyond Infection: The Role of Secreted Viral Proteins in Pathogenesis, Disease Severity and Diagnostic Applications. Cells 2025; 14:624. [PMID: 40358148 PMCID: PMC12071779 DOI: 10.3390/cells14090624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Secreted viral proteins are crucial in virus-host interactions, as they modify the host microenvironment to promote infection. These secreted proteins could alter immune and inflammatory responses, allowing viruses to evade defense mechanisms such as cytotoxic T cell activation and antibody neutralization. Some secreted proteins mimic host molecules to suppress antiviral responses, making them valuable targets for antivirals and diagnostics. Notable examples include BARF1 from Epstein-Barr virus, associated with gastric cancer; vIL-10 from Epstein-Barr virus, which regulates immune responses and contributes to autoimmune diseases; NS1 from dengue virus, associated with vascular permeability and early diagnosis; and NSP4 from rotavirus as an enterotoxin, among others. The study of these proteins improves our understanding of viral pathogenesis and helps to develop innovative treatments for infectious and non-infectious diseases, taking advantage of the evolutionary adaptations of viruses. This review explores their impact on the infection cycle, disease progression, and key processes, such as cell cycle regulation, apoptosis, and cell signaling. Research on these proteins deepens our basic knowledge of virology and generates alternative methods for detecting biomarkers and creating more effective therapies, as well as implementing some emerging technologies, such as biosensors and plasmon resonance, for the diagnosis of viral diseases.
Collapse
Affiliation(s)
- Luis Herrera-Moro Huitron
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico; (L.H.-M.H.); (V.J.C.-H.); (J.M.U.-A.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Víctor Javier Cruz-Holguin
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico; (L.H.-M.H.); (V.J.C.-H.); (J.M.U.-A.)
| | - José Manuel Ulloa-Aguilar
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico; (L.H.-M.H.); (V.J.C.-H.); (J.M.U.-A.)
| | | | | | - Mario Guzmán-Huerta
- Departamento de Medicina Traslacional, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico;
| | - Mercedes Piedad de León-Bautista
- Escuela de Medicina, Universidad Vasco de Quiroga, Morelia 58090, Mexico;
- Laboratorio de Enfermedades Infecciosas y Genómica (INEX LAB), Morelia 58280, Mexico
| | - Guadalupe León-Reyes
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México 14610, Mexico;
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico; (J.G.-C.); (L.C.-B.)
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico; (J.G.-C.); (L.C.-B.)
| | - Jorge Francisco Cerna-Cortes
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Moisés León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico; (L.H.-M.H.); (V.J.C.-H.); (J.M.U.-A.)
| |
Collapse
|
5
|
Du X, Liu Y, He X, Tao L, Fang M, Chu M. Identification and expression profile analysis of circRNAs associated with goat uterus with different fecundity during estrous cycle. BMC Genomics 2025; 26:349. [PMID: 40197288 PMCID: PMC11974169 DOI: 10.1186/s12864-025-11489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/13/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND The Yunshang Black Goat, a distinguished meat goat breed native to China, is renowned for its superior reproductive capabilities. Despite this, there is considerable phenotypic variability within the breed. During the reproductive cycle, the uterus plays a pivotal role, with its functions evolving in line with the different stages of the cycle. This study focuses on the uterine tissues, including both the endometrium and myometrium, of Yunshang Black Goats with high fecundity (HF) and low fecundity (LF) during the proliferative (FP) and secretory (LP) phases of the estrous cycle. By examining these tissues, we aim to elucidate the underlying molecular and physiological mechanisms of the observed differences in reproductive success. RESULTS High-throughput sequencing was conducted, followed by bioinformatics analysis to identify the expression profiles of circRNAs. A total of 7,445 circRNAs were identified through the integration of findings from find_circ and CIRI2 software. Comparative analyses between the FPLF vs. FPHF and LPLF vs. LPHF revealed 149 differentially expressed (DE) circRNAs (94 up-regulated and 55 down-regulated) and 276 DE circRNAs (56 up-regulated and 220 down-regulated), respectively. The enrichment analysis indicated that the primary pathways involved were the Sphingolipid signaling pathway, MAPK signaling pathway, and GnRH signaling pathway, all of which are closely associated with cellular growth and development. Additionally, several key candidate genes were identified, such as FGF2 and MBTPS1. We also predicted a total of 281 miRNA-circRNA binding pairs, encompassing 263 circRNAs and 60 miRNAs, and simultaneously, 14 coding circRNAs were anticipated. CONCLUSION Based on the analysis, we have established the expression profiles of circRNAs during the follicular and luteal phases, respectively. Furthermore, using various analytical methods and data from high- and low-yield experimental control groups over different periods, we have identified multiple circRNAs that affect the high reproductive capacity of goats. Through enrichment analysis of the host genes of these circRNAs, we have discovered several key candidate genes. These findings provide fundamental data for the study of the molecular mechanisms underlying the fecundity of goats and pave the way for future genetic improvement strategies.
Collapse
Affiliation(s)
- Xiaolong Du
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- Department of Animal Genetics and Breeding, Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, MARA, China Agricultural University, Beijing, 100193, China
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Lin Tao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, MARA, China Agricultural University, Beijing, 100193, China.
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| |
Collapse
|
6
|
Zhang S, Luo J, Chen Y, Li H. Vesicle trafficking mediated by small GTPase CfRab6 in association with CfRic1 and CfRgp1 governs growth, conidiation, and pathogenicity of Colletotrichum fructicola. Int J Biol Macromol 2025; 289:138988. [PMID: 39706448 DOI: 10.1016/j.ijbiomac.2024.138988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Small GTPase of the Rab family functions as molecular switch in vesicle trafficking, regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In our ongoing efforts to study the pathogenesis of Colletotrichum fructicola, the causal agent of anthracnose in edible-oil plant Camellia oleifera, we identified CfRab6 as the Rab GTPase and characterized its roles in C. fructicola. Consistent with our hypothesis, targeted gene deletion revealed that the ΔCfrab6 mutant displays defects in vesicle trafficking, including endocytosis and autophagy. These combined effects led to the impairments in growth, conidia, and pathogenicity. Moreover, we demonstrated the critical importance of the GDP/GTP motifs are crucial for the normal function of CfRab6. Additionally, our findings demonstrated that CfRic1 and CfRgp1 act as conserved GEFs for CfRab6, supported by their interactions with CfRab6 and the partial restoration of the active GTP-bound CfRab6, which alleviated phenotypic defects in the ΔCfric1 and ΔCfrgp1 mutants. In conclusion, our study sheds new light on the significance of CfRab6-mediated vesicle trafficking in the physiology and pathogenicity of C. fructicola, which might offer new potential targets for the management of anthracnose disease.
Collapse
Affiliation(s)
- Shengpei Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - Jing Luo
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - Yan Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - He Li
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China.
| |
Collapse
|
7
|
Xu L, Guo J, Xie X, Wang H, Jiang A, Huang C, Yang H, Luo S, Chen L. GTPase GPN3 facilitates cell proliferation and migration in non-small cell lung cancer by impeding clathrin-mediated endocytosis of EGFR. Cell Death Discov 2025; 11:38. [PMID: 39893205 PMCID: PMC11787391 DOI: 10.1038/s41420-025-02317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/12/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Small GTPases play a critical role as regulatory molecules in signaling transduction and various cellular processes, contributing to the development of human diseases, including cancers. GPN3, an evolutionarily conserved member of the GPN-loop GTPase subfamily classified in 2007 according to its structure, has limited knowledge regarding its cellular functions and molecular mechanisms. In this study, we demonstrate that GPN3 interacts with clathrin light chain A (CLTA), a vesicle coat protein, as well as clathrin-mediated endocytosis associated modulators AP2B1 and AP2S1. Upregulation of GPN3 leads to the inhibition of clathrin-coated pit invagination. Furthermore, we discovered that GPN3 interacts with the epidermal growth factor receptor (EGFR) and regulates the co-localization of EGFR and CLTA, as well as the localization of EGFR in early endosomes upon EGF stimulation. As a result, this leads to a decrease in endocytic levels of EGFR and an increase in the accumulation of EGFR on the cell membrane surface, thereby prolonging activation of EGFR signaling. The functional effects exerted by GPN3 are dependent on cellular levels of GTP abundance. Furthermore, our findings indicate that aberrant overexpression of GPN3 is observed in non-small cell lung cancer (NSCLC) tissues compared to adjacent normal tissues, and high expression levels of GPN3 are associated with poor prognosis for NSCLC patients. Collectively, these findings reveal that GPN3 acts as an oncogene promoting cell proliferation and migration in NSCLC through regulation of clathrin-dependent EGFR endocytosis. These results suggest that targeting GPN3 could serve as a novel prognostic biomarker and therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Linlin Xu
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiankun Guo
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xinsheng Xie
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hailong Wang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Alan Jiang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Changhua Huang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hua Yang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Limin Chen
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
8
|
Fresquez T, Tam BM, Eshelman SC, Moritz OL, Robichaux MA, Deretic D. Rabin8 phosphorylated by NDR2, the canine early retinal degeneration gene product, directs rhodopsin Golgi-to-cilia trafficking. J Cell Sci 2025; 138:JCS263401. [PMID: 39774853 PMCID: PMC11828469 DOI: 10.1242/jcs.263401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The Rab11-Rabin8-Rab8 ciliogenesis complex regulates the expansion of cilia-derived light-sensing organelles, the rod outer segments, via post-Golgi rhodopsin transport carriers (RTCs). Rabin8 (also known as RAB3IP), an effector of Rab11 proteins and a nucleotide exchange factor (GEF) for Rab8 proteins, is phosphorylated at S272 by NDR2 kinase (also known as STK38L), the canine early retinal degeneration (erd) gene product linked to the human ciliopathy Leber congenital amaurosis (LCA). Here, we define the step at which NDR2 phosphorylates Rabin8 and regulates Rab11-to-Rab8 succession in Xenopus laevis transgenic rod photoreceptors expressing human GFP-Rabin8 and its mutants. GFP-Rabin8 accumulated with endogenous Rabin8 at the Golgi-apposed exit sites (GESs), also known as the trans-Golgi network (TGN). Rabin8 mutants deficient in Rab11 binding prevented membrane association of GFP-Rabin8. GFP-Rabin8 and NDR2 kinase both interacted with the RTC-associated R-SNARE VAMP7 at the trans-Golgi and the GESs. Here, GFP-Rabin8 and the phosphomimetic GFP-Rabin8-S272E integrated into RTCs, which were subsequently functionalized by Rabin8 Rab8 GEF activity. Non-phosphorylatable GFP-Rabin8-S272A caused significant GES enlargement and deformation, possibly leading to unconventional membrane advancement toward the cilium, bypassing RTCs. Rabin8 phosphorylation loss due to an NDR2 gene disruption thereby likely causes dysfunctional rhodopsin Golgi-to-cilia trafficking underlying retinal degeneration and early-onset blindness.
Collapse
Affiliation(s)
- Theresa Fresquez
- Department of Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Beatrice M. Tam
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Shannon C. Eshelman
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Orson L. Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Michael A. Robichaux
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia 26506, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Dusanka Deretic
- Department of Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
9
|
Wang J, Yan X, Wang W, Wang S, Jiang H, Zhu X, Li Z, Cai D, Xia Y. Rab21-Targeted Nano Drug Delivery System-Based FFPG for Efficient Paclitaxel Delivery to Inhibit Lung Cancer Progression. Pharmaceutics 2025; 17:94. [PMID: 39861741 PMCID: PMC11768108 DOI: 10.3390/pharmaceutics17010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Platycodon grandiflorus (PG) has been widely researched as a conductant drug for the treatment of lung diseases by ancient and modern traditional Chinese medicine (TCM) practitioners. Inspired by the mechanism and our previous finding about fructans and fructooligosaccharides from Platycodon grandiflorus (FFPG), we developed a nano drug delivery system (NDDS) targeting lung cancer. The aim was to improve the efficiency of the liposomal delivery of Paclitaxel (PTX) and enhance the anti-tumor efficacy. Methods: The FFPG-Lip-PTX NDDS was prepared by electrostatic adsorption. Dynamic light scattering, zeta potential, and transmission electron microscopy were used for physical characterization. The release behavior of the NDDS was simulated by dialysis. The uptake of the NDDS was observed by confocal microscopy and flow cytometry. Cytotoxicity, apoptosis, migration, and invasion experiments were used to evaluate the anti-tumor ability of the NDDS in vitro. The penetration and inhibition of tumor proliferation were further analyzed via a 3D tumor sphere model. Finally, in vivo biological distribution and pharmacodynamic experiments verified the targeting and anti-tumor ability of the FFPG-Lip-PTX NDDS. Results: FFPG-Lip-PTX possessed a homogeneous particle size distribution, high encapsulation efficiency, and stability. In vitro experiments confirmed that FFPG promoted the uptake of the NNDS by tumor cells and enhanced cytotoxicity. It also increased the anti-tumor effect by promoting cell apoptosis and inhibiting invasion and metastasis. The same conclusion was obtained in 3D tumor spheres. In vivo experiments exhibited that FFPG-lips-PTX showed more significant lung cancer-targeting activity and anti-tumor effects. Conclusions: In this study, a novel lung-targeted NDDS is proposed to enhance the therapeutic effect of chemotherapy drugs on lung cancer.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China;
| | - Xueying Yan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
| | - Wenfei Wang
- Bio-Pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China;
| | - Shu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
| | - Hongxiang Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
| | - Xinhua Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
| | - Zhehui Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
| | - Defu Cai
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China;
| | - Yonggang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
| |
Collapse
|
10
|
Ferreira AL, Menezes A, Sandim V, Queiroz Monteiro RD, Nogueira FCS, Evaristo JAM, Abreu Pereira DD, Carneiro K. Histone deacetylase inhibition disrupts the molecular signature of the glioblastoma secretome related to extracellular vesicle-associated proteins and targets RAB7a and RAB14 in vitro. Biochem Biophys Res Commun 2024; 736:150847. [PMID: 39454304 DOI: 10.1016/j.bbrc.2024.150847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor with a poor prognosis. While Histone Deacetylase inhibitors have shown promising results in inhibiting cancer cell invasion and promoting apoptosis, their effects on GBM secretion, specifically focusing on extracellular vesicles (EVs) secretion, remain largely unexplored. Using label-free NANOLC-MS/MS methodology, we identified significant changes in the abundance of membrane traffic regulatory proteins in the secretome of U87MG cells after the treatment with the HDAC inhibitor Trichostatin A (TSA). In silico analysis showed that TSA treatment disrupted the secretion pattern of EVs-associated proteins and cellular signaling pathways, both qualitatively and quantitatively. Notably, RAB14/RAB7a interaction was only observed in the secretome of cells treated with TSA. In vitro assays revealed that TSA treatment of glioma cells increased EVs secretion and intracellular protein levels of RAB7a and RAB14 without affecting gene expression, suggesting a role of these two EVs-associated proteins in grade IV glioma cells. Additionally, an integrative approach using clinical data highlighted a correlation between DNA mutations affecting vesicle traffic coding-genes and clinical and phenotypic outcomes in glioma patients. These findings provide insights into the interplay between epigenetics and GBM intracellular trafficking, potentially leading to improved strategies for targeting and modifying the complex signaling network established between GBM cells and the tumor cell microenvironment.
Collapse
Affiliation(s)
- Ana Luiza Ferreira
- Instituto de Ciências Biomédicas e Programa de Pós-graduação Em Medicina (Anatomia Patológica), UFRJ/RJ, Brazil.
| | - Aline Menezes
- Instituto de Ciências Biomédicas e Programa de Pós-graduação Em Medicina (Anatomia Patológica), UFRJ/RJ, Brazil.
| | - Vanessa Sandim
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, UFRJ/RJ, Brazil.
| | - Robson de Queiroz Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, UFRJ/RJ, Brazil.
| | - Fábio César Sousa Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Laboratory of Proteomics (LabProt), LADETEC, Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, UFRJ/RJ, Brazil.
| | | | - Denise de Abreu Pereira
- Programa de Oncobiologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional Do Câncer, INCA/RJ, Brazil.
| | - Katia Carneiro
- Instituto de Ciências Biomédicas e Programa de Pós-graduação Em Medicina (Anatomia Patológica), UFRJ/RJ, Brazil.
| |
Collapse
|
11
|
Volpiana MW, Nenadic A, Beh CT. Regulation of yeast polarized exocytosis by phosphoinositide lipids. Cell Mol Life Sci 2024; 81:457. [PMID: 39560727 DOI: 10.1007/s00018-024-05483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Phosphoinositides help steer membrane trafficking routes within eukaryotic cells. In polarized exocytosis, which targets vesicular cargo to sites of polarized growth at the plasma membrane (PM), the two phosphoinositides phosphatidylinositol 4-phosphate (PI4P) and its derivative phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) pave the pathway for vesicle transport from the Golgi to the PM. PI4P is a critical regulator of mechanisms that shape late Golgi membranes for vesicle biogenesis and release. Although enriched in vesicle membranes, PI4P is inexplicably removed from post-Golgi vesicles during their transit to the PM, which drives subsequent steps in exocytosis. At the PM, PI(4,5)P2 recruits effectors that establish polarized membrane sites for targeting the vesicular delivery of secretory cargo. The budding yeast Saccharomyces cerevisiae provides an elegant model to unravel the complexities of phosphoinositide regulation during polarized exocytosis. Here, we review how PI4P and PI(4,5)P2 promote yeast vesicle biogenesis, exocyst complex assembly and vesicle docking at polarized cortical sites, and suggest how these steps might impact related mechanisms of human disease.
Collapse
Affiliation(s)
- Matthew W Volpiana
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
12
|
Borroto MC, Patel H, Srivastava S, Swanson LC, Keren B, Whalen S, Mignot C, Wang X, Chen Q, Rosenfeld JA, McLean S, Littlejohn RO, Emrick L, Burrage LC, Attali R, Lesca G, Acquaviva-Bourdain C, Sarret C, Seaver LH, Platzer K, Bartolomaeus T, Wünsch C, Fischer S, Rodriguez Barreto AM, Granadillo JL, Schreiner E, Brunet T, Schatz UA, Thiffault I, Mullegama SV, Michaud JL, Hamdan FF, Rossignol E, Campeau PM. Cohort Expansion and Genotype-Phenotype Analysis of RAB11A-Associated Neurodevelopmental Disorder. Pediatr Neurol 2024; 160:45-53. [PMID: 39181022 DOI: 10.1016/j.pediatrneurol.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/07/2023] [Accepted: 07/13/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND GTPases of the Rab family are important orchestrators of membrane trafficking, and their dysregulation has been linked to a variety of neuropathologies. In 2017, we established a causal link between RAB11A variants and developmental and epileptic encephalopathy. In this study, we expand the phenotype of RAB11A-associated neurodevelopmental disorder and explore genotype-phenotype correlations. METHODS We assessed 16 patients with pathogenic or likely pathogenic RAB11A variants, generally de novo, heterozygous missense variants. One individual had a homozygous nonsense variant, although concomitant with a pathogenic LAMA2 variant, which made their respective contributions to the phenotype difficult to discriminate. RESULTS We reinforce the finding that certain RAB11A missense variants lead to intellectual disability and developmental delays. Other clinical features might include gait disturbances, hypotonia, magnetic resonance imaging abnormalities, visual anomalies, dysmorphisms, early adrenarche, and obesity. Epilepsy seems to be less common and linked to variants outside the binding sites. Individuals with variants in the binding sites seem to have a more multisystemic, nonepileptic phenotype. CONCLUSIONS Similar to other Rab-related disorders, RAB11A-associated neurodevelopmental disorder can also impact gait, tonus, brain anatomy and physiology, vision, adrenarche, and body weight and structure. Epilepsy seems to affect the minority of patients with variants outside the binding sites.
Collapse
Affiliation(s)
| | - Heena Patel
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, Québec, Canada
| | - Siddharth Srivastava
- Department of Neurology, Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lindsay C Swanson
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Boris Keren
- Département de génétique, APHP-Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Sandra Whalen
- UF de Génétique Clinique et Centre de Reference Anomalies du Développement et Syndromes Malformatifs, APHP, Sorbonne Université, Hôpital Trousseau, Paris, France
| | - Cyril Mignot
- Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière and Hôpital Trousseau, APHP, Sorbonne Université, Paris, France
| | | | - Qian Chen
- Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Scott McLean
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | - Rebecca O Littlejohn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | - Lisa Emrick
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ruben Attali
- Genomic Research Department, Emedgene, an Illumina Company, Tel Aviv, Israel
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, University Claude Bernard Lyon 1, Lyon, France
| | - Cecile Acquaviva-Bourdain
- Hospices civils de Lyon, service biochimie et biologie moléculaire, UF maladies héréditaires du métabolisme, Bron, France
| | - Catherine Sarret
- CHU Estaing, Pôle Pédiatrie, Service de Génétique, Clermont-Ferrand, France
| | - Laurie H Seaver
- Corewell Health Helen DeVos Children's Hospital, Grand Rapids, Michigan; Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, Michigan
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Cornelia Wünsch
- Sozialpädiatrisches Zentrum Leipzig - Frühe Hilfe Leipzig e.V., Leipzig, Germany
| | - Susann Fischer
- Sozialpädiatrisches Zentrum Leipzig - Frühe Hilfe Leipzig e.V., Leipzig, Germany
| | | | - Jorge L Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Elisabeth Schreiner
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, LMU - University of Munich, Munich, Germany
| | - Ulrich A Schatz
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Isabelle Thiffault
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, Missouri
| | | | - Jacques L Michaud
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, Québec, Canada; Departments of Pediatrics and Neurosciences, Université de Montréal, Montreal, Québec, Canada
| | - Fadi F Hamdan
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, Québec, Canada; Department of Pediatrics, University of Montreal, Montreal, Québec, Canada
| | - Elsa Rossignol
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, Québec, Canada
| | - Philippe M Campeau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, Québec, Canada; Department of Pediatrics, University of Montreal, Montreal, Québec, Canada.
| |
Collapse
|
13
|
Feng N, Zhang R, Wen X, Wang W, Zhang N, Zheng J, Zhang L, Liu N. RABIF promotes hepatocellular carcinoma progression through regulation of mitophagy and glycolysis. Commun Biol 2024; 7:1333. [PMID: 39414994 PMCID: PMC11484875 DOI: 10.1038/s42003-024-07028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
The RAB interacting factor (RABIF) is a putative guanine nucleotide exchange factor that also functions as a RAB-stabilizing holdase chaperone. It has been implicated in pathogenesis of several cancers. However, the functional role and molecular mechanism of RABIF in hepatocellular carcinoma (HCC) are not entirely known. Here, we demonstrate an upregulation of RABIF in patients with HCC, correlating with a poor prognosis. RABIF inhibition results in decreased HCC cell growth both in vitro and in vivo. Our study reveals that depleting RABIF attenuates the STOML2-PARL-PGAM5 axis-mediated mitophagy. Consequently, this reduction in mitophagy results in diminished mitochondrial reactive oxygen species (mitoROS) production, thereby alleviating the HIF1α-mediated downregulation of glycolytic genes HK1, HKDC1, and LDHB. Additionally, we illustrate that RABIF regulates glucose uptake by controlling RAB10 expression. Importantly, the knockout of RABIF or blockade of mitophagy sensitizes HCC cells to sorafenib. This study uncovers a previously unrecognized role of RABIF crucial for HCC growth and identifies it as a potential therapeutic target.
Collapse
Affiliation(s)
- Ning Feng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rui Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nie Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Pathology and Laboratory of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
14
|
Li Y, Zhao Y, He Y, Liu F, Xia L, Liu K, Zhang M, Chen K. New targets and designed inhibitors of ASAP Arf-GAPs derived from structural characterization of the ASAP1/440-kD ankyrin-B interaction. J Biol Chem 2024; 300:107762. [PMID: 39265663 PMCID: PMC11490884 DOI: 10.1016/j.jbc.2024.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
ASAP1 and its paralog ASAP2 belong to a PI4,5P2-dependent Arf GTPase-activating protein (Arf-GAP) family capable of modulating membrane and cytoskeletal dynamics. ASAPs regulate cell adhesive structures such as invadosomes and focal adhesions during cell attachment and migration. Malfunctioning of ASAP1 has been implicated in the malignant phenotypes of various cancers. Here, we discovered that the SH3 domain of ASAP1 or ASAP2 specifically binds to a 12-residue, positively charged peptide fragment from the 440 kDa giant ankyrin-B, a neuronal axon specific scaffold protein. The high-resolution structure of the ASAP1-SH3 domain in complex with the gAnkB peptide revealed a noncanonical SH3-ligand binding mode with high affinity and specificity. Structural analysis of the complex readily uncovered a consensus ASAP1-SH3 binding motif, which allowed the discovery of a number of previously unknown binding partners of ASAP1-SH3 including Clasp1/Clasp2, ALS2, β-Pix, DAPK3, PHIP, and Limk1. Fittingly, these newly identified ASAP1 binding partners are primarily key modulators of the cytoskeletons. Finally, we designed a cell-penetrating, highly potent ASAP1 SH3 domain binding peptide with a Kd ∼7 nM as a tool for studying the roles of ASAPs in different cellular processes.
Collapse
Affiliation(s)
- Yubing Li
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yipeng Zhao
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yaojun He
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fang Liu
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Lu Xia
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Kai Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Keyu Chen
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
15
|
Park K, Ju S, Choi H, Gao P, Bang G, Choi JH, Jang J, Morris AJ, Kang BH, Hsu VW, Park SY. PITPβ promotes COPI vesicle fission through lipid transfer and membrane contact formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596058. [PMID: 38853868 PMCID: PMC11160616 DOI: 10.1101/2024.05.27.596058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Intracellular transport among organellar compartments occurs in two general ways, by membrane-bound carriers or membrane contacts. Specific circumstances that involve the coordination of these two modes of transport remain to be defined. Studying Coat Protein I (COPI) transport, we find that phosphatidylcholine with short acyl chains (sPC) is delivered through membrane contact from the endoplasmic reticulum (ER) to sites of COPI vesicle formation at the Golgi to support the fission stage. Phosphatidylinositol transfer protein beta (PITPβ) plays a key role in this process, with the elucidation of this role advancing a new understanding of how PITPβ acts, providing a mechanistic understanding of a specific circumstance when vesicular transport requires membrane contact, and contributing to a basic understanding of how transport carriers in a model intracellular pathway are formed.
Collapse
Affiliation(s)
- Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyewon Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Peng Gao
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jung Hoon Choi
- Department of Bio-Chemical Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Andrew J. Morris
- University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, AR 72205, USA
| | - Byung-Ho Kang
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Victor W. Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
16
|
Peixoto-Neves D, Jaggar JH. Physiological functions and pathological involvement of ion channel trafficking in the vasculature. J Physiol 2024; 602:3275-3296. [PMID: 37818949 PMCID: PMC11006830 DOI: 10.1113/jp285007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
A variety of ion channels regulate membrane potential and calcium influx in arterial smooth muscle and endothelial cells to modify vascular functions, including contractility. The current (I) generated by a population of ion channels is equally dependent upon their number (N), open probability (Po) and single channel current (i), such that I = N.PO.i. A conventional view had been that ion channels traffic to the plasma membrane in a passive manner, resulting in a static surface population. It was also considered that channels assemble with auxiliary subunits prior to anterograde trafficking of the multimeric complex to the plasma membrane. Recent studies have demonstrated that physiological stimuli can regulate the surface abundance (N) of several different ion channels in arterial smooth muscle and endothelial cells to control arterial contractility. Physiological stimuli can also regulate the number of auxiliary subunits present in the plasma membrane to modify the biophysical properties, regulatory mechanisms and physiological functions of some ion channels. Furthermore, ion channel trafficking becomes dysfunctional in the vasculature during hypertension, which negatively impacts the regulation of contractility. The temporal kinetics of ion channel and auxiliary subunit trafficking can also vary depending on the signalling mechanisms and proteins involved. This review will summarize recent work that has uncovered the mechanisms, functions and pathological modifications of ion channel trafficking in arterial smooth muscle and endothelial cells.
Collapse
Affiliation(s)
| | - Jonathan H. Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38139
| |
Collapse
|
17
|
O'Donoghue L, Smolenski A. Roles of G proteins and their GTPase-activating proteins in platelets. Biosci Rep 2024; 44:BSR20231420. [PMID: 38808367 PMCID: PMC11139668 DOI: 10.1042/bsr20231420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Platelets are small anucleate blood cells supporting vascular function. They circulate in a quiescent state monitoring the vasculature for injuries. Platelets adhere to injury sites and can be rapidly activated to secrete granules and to form platelet/platelet aggregates. These responses are controlled by signalling networks that include G proteins and their regulatory guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Recent proteomics studies have revealed the complete spectrum of G proteins, GEFs, and GAPs present in platelets. Some of these proteins are specific for platelets and very few have been characterised in detail. GEFs and GAPs play a major role in setting local levels of active GTP-bound G proteins in response to activating and inhibitory signals encountered by platelets. Thus, GEFs and GAPs are highly regulated themselves and appear to integrate G protein regulation with other cellular processes. This review focuses on GAPs of small G proteins of the Arf, Rab, Ras, and Rho families, as well as of heterotrimeric G proteins found in platelets.
Collapse
Affiliation(s)
- Lorna O'Donoghue
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| | - Albert Smolenski
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| |
Collapse
|
18
|
Jiang T, Liu E, Li Z, Yan C, Zhang X, Guan J, Zhan Y, Zhao B, Ding W. SIRT1-Rab7 axis attenuates NLRP3 and STING activation through late endosomal-dependent mitophagy during sepsis-induced acute lung injury. Int J Surg 2024; 110:2649-2668. [PMID: 38445453 PMCID: PMC11093444 DOI: 10.1097/js9.0000000000001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a leading cause of mortality in patients with sepsis due to proinflammatory endothelial changes and endothelial permeability defects. Mitochondrial dysfunction is recognized as a critical mediator in the pathogenesis of sepsis-induced ALI. Although mitophagy regulation of mitochondrial quality is well recognized, little is known about its role in lung ECs during sepsis-induced ALI. Sirtuin 1 (SIRT1) is a histone protein deacetylase involved in inflammation, mitophagy, and cellular senescence. Here, the authors show a type of late endosome-dependent mitophagy that inhibits NLRP3 and STING activation through SIRT1 signaling during sepsis-induced ALI. METHODS C57BL/6J male mice with or without administration of the SIRT1 inhibitor EX527 in the CLP model and lung ECs in vitro were developed to identify mitophagy mechanisms that underlie the cross-talk between SIRT1 signaling and sepsis-induced ALI. RESULTS SIRT1 deficient mice exhibited exacerbated sepsis-induced ALI. Knockdown of SIRT1 interfered with mitophagy through late endosome Rab7, leading to the accumulation of damaged mitochondria and inducing excessive mitochondrial reactive oxygen species (mtROS) generation and cytosolic release of mitochondrial DNA (mtDNA), which triggered NLRP3 inflammasome and the cytosolic nucleotide sensing pathways (STING) over-activation. Pharmacological inhibition of STING and NLRP3 i n vivo or genetic knockdown in vitro reversed SIRT1 deficiency mediated endothelial permeability defects and endothelial inflammation in sepsis-induced ALI. Moreover, activation of SIRT1 with SRT1720 in vivo or overexpression of SIRT1 in vitro protected against sepsis-induced ALI. CONCLUSION These findings suggest that SIRT1 signaling is essential for restricting STING and NLRP3 hyperactivation by promoting endosomal-mediated mitophagy in lung ECs, providing potential therapeutic targets for treating sepsis-induced ALI.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| | - Enran Liu
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| | - Zhiyuan Li
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| | - Congmin Yan
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| | - Xiaoyun Zhang
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| | - Jingting Guan
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| | - Yuanbo Zhan
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital, Harbin Medical University
| | - Bo Zhao
- School of Forestry, Northeast Forestry University, Harbin, People’s Republic of China
| | - Wengang Ding
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| |
Collapse
|
19
|
Koike S, Jahn R. Rab GTPases and phosphoinositides fine-tune SNAREs dependent targeting specificity of intracellular vesicle traffic. Nat Commun 2024; 15:2508. [PMID: 38509070 PMCID: PMC10954720 DOI: 10.1038/s41467-024-46678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
In the secretory pathway the destination of trafficking vesicles is determined by specific proteins that, with the notable exception of SNAREs, are recruited from soluble pools. Previously we have shown that microinjected proteoliposomes containing early or late endosomal SNAREs, respectively, are targeted to the corresponding endogenous compartments, with targeting specificity being dependent on the recruitment of tethering factors by some of the SNAREs. Here, we show that targeting of SNARE-containing liposomes is refined upon inclusion of polyphosphoinositides and Rab5. Intriguingly, targeting specificity is dependent on the concentration of PtdIns(3)P, and on the recruitment of PtdIns(3)P binding proteins such as rabenosyn-5 and PIKfyve, with conversion of PtdIns(3)P into PtdIns(3,5)P2 re-routing the liposomes towards late endosomes despite the presence of GTP-Rab5 and early endosomal SNAREs. Our data reveal a complex interplay between permissive and inhibitory targeting signals that sharpen a basic targeting and fusion machinery for conveying selectivity in intracellular membrane traffic.
Collapse
Affiliation(s)
- Seiichi Koike
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- University of Toyama, Laboratory of Molecular and Cellular Biology, Department of Life Sciences and Bioengineering, 3190 Gofuku, Toyama City, 930-8555, Japan
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
20
|
Gagliardi S, Mitruccio M, Di Corato R, Romano R, Aloisi A, Rinaldi R, Alifano P, Guerra F, Bucci C. Defects of mitochondria-lysosomes communication induce secretion of mitochondria-derived vesicles and drive chemoresistance in ovarian cancer cells. Cell Commun Signal 2024; 22:165. [PMID: 38448982 PMCID: PMC10916030 DOI: 10.1186/s12964-024-01507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Among the mechanisms of mitochondrial quality control (MQC), generation of mitochondria-derived vesicles (MDVs) is a process to avoid complete failure of mitochondria determining lysosomal degradation of mitochondrial damaged proteins. In this context, RAB7, a late endocytic small GTPase, controls delivery of MDVs to late endosomes for subsequent lysosomal degradation. We previously demonstrated that RAB7 has a pivotal role in response to cisplatin (CDDP) regulating resistance to the drug by extracellular vesicle (EVs) secretion. METHODS Western blot and immunofluorescence analysis were used to analyze structure and function of endosomes and lysosomes in CDDP chemosensitive and chemoresistant ovarian cancer cell lines. EVs were purified from chemosensitive and chemoresistant cells by ultracentrifugation or immunoisolation to analyze their mitochondrial DNA and protein content. Treatment with cyanide m-chlorophenylhydrazone (CCCP) and RAB7 modulation were used, respectively, to understand the role of mitochondrial and late endosomal/lysosomal alterations on MDV secretion. Using conditioned media from chemoresistant cells the effect of MDVs on the viability after CDDP treatment was determined. Seahorse assays and immunofluorescence analysis were used to study the biochemical role of MDVs and the uptake and intracellular localization of MDVs, respectively. RESULTS We observed that CDDP-chemoresistant cells are characterized by increased MDV secretion, impairment of late endocytic traffic, RAB7 downregulation, an increase of RAB7 in EVs, compared to chemosensitive cells, and downregulation of the TFEB-mTOR pathway overseeing lysosomal and mitochondrial biogenesis and turnover. We established that MDVs can be secreted rather than delivered to lysosomes and are able to deliver CDDP outside the cells. We showed increased secretion of MDVs by chemoresistant cells ultimately caused by the extrusion of RAB7 in EVs, resulting in a dramatic drop in its intracellular content, as a novel mechanism to regulate RAB7 levels. We demonstrated that MDVs purified from chemoresistant cells induce chemoresistance in RAB7-modulated process, and, after uptake from recipient cells, MDVs localize to mitochondria and slow down mitochondrial activity. CONCLUSIONS Dysfunctional MQC in chemoresistant cells determines a block in lysosomal degradation of MDVs and their consequent secretion, suggesting that MQC is not able to eliminate damaged mitochondria whose components are secreted becoming effectors and potential markers of chemoresistance.
Collapse
Affiliation(s)
- Sinforosa Gagliardi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Marco Mitruccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Riccardo Di Corato
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce, 73100, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, 73010, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Alessandra Aloisi
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce, 73100, Italy
| | - Rosaria Rinaldi
- Department of Mathematics and Physics "E. De Giorgi", University of Salento, Via Monteroni, Lecce, 73100, Italy
- Scuola Superiore ISUFI, University of Salento, Via Monteroni, University Campus, Lecce, 73100, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy.
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy.
| |
Collapse
|
21
|
Duan HD, Jain BK, Li H, Graham TR, Li H. Structural insight into an Arl1-ArfGEF complex involved in Golgi recruitment of a GRIP-domain golgin. Nat Commun 2024; 15:1942. [PMID: 38431634 PMCID: PMC10908827 DOI: 10.1038/s41467-024-46304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Arl1 is an Arf-like (Arl) GTP-binding protein that interacts with the guanine nucleotide exchange factor Gea2 to recruit the golgin Imh1 to the Golgi. The Arl1-Gea2 complex also binds and activates the phosphatidylserine flippase Drs2 and these functions may be related, although the underlying molecular mechanism is unclear. Here we report high-resolution cryo-EM structures of the full-length Gea2 and the Arl1-Gea2 complex. Gea2 is a large protein with 1459 residues and is composed of six domains (DCB, HUS, SEC7, HDS1-3). We show that Gea2 assembles a stable dimer via an extensive interface involving hydrophobic and electrostatic interactions in the DCB and HUS region. Contrary to the previous report on a Gea2 homolog in which Arl1 binds to the dimerization surface of the DCB domain, implying a disrupted dimer upon Arl1 binding, we find that Arl1 binds to the outside surface of the Gea2 DCB domain, leaving the Gea2 dimer intact. The interaction between Arl1 and Gea2 involves the classic FWY aromatic residue triad as well as two Arl1-specific residues. We show that key mutations that disrupt the Arl1-Gea2 interaction abrogate Imh1 Golgi association. This work clarifies the Arl1-Gea2 interaction and improves our understanding of molecular events in the membrane trafficking.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
22
|
Kumar R, Khan M, Francis V, Aguila A, Kulasekaran G, Banks E, McPherson PS. DENND6A links Arl8b to a Rab34/RILP/dynein complex, regulating lysosomal positioning and autophagy. Nat Commun 2024; 15:919. [PMID: 38296963 PMCID: PMC10830484 DOI: 10.1038/s41467-024-44957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Lysosomes help maintain cellular proteostasis, and defects in lysosomal positioning and function can cause disease, including neurodegenerative disorders. The spatiotemporal distribution of lysosomes is regulated by small GTPases including Rabs, which are activated by guanine nucleotide exchange factors (GEFs). DENN domain proteins are the largest family of Rab GEFs. Using a cell-based assay, we screened DENND6A, a member of the DENN domain protein family against all known Rabs and identified it as a potential GEF for 20 Rabs, including Rab34. Here, we demonstrate that DENND6A activates Rab34, which recruits a RILP/dynein complex to lysosomes, promoting lysosome retrograde transport. Further, we identify DENND6A as an effector of Arl8b, a major regulatory GTPase on lysosomes. We demonstrate that Arl8b recruits DENND6A to peripheral lysosomes to activate Rab34 and initiate retrograde transport, regulating nutrient-dependent lysosomal juxtanuclear repositioning. Loss of DENND6A impairs autophagic flux. Our findings support a model whereby Arl8b/DENND6A/Rab34-dependent lysosomal retrograde trafficking controls autophagy.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada.
| | - Maleeha Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Vincent Francis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Adriana Aguila
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Emily Banks
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada.
| |
Collapse
|
23
|
Li P, Zhu H, Wang C, Zeng F, Jia J, Feng S, Han X, Shen S, Wang Y, Hao Z, Dong J. StRAB4 gene is required for filamentous growth, conidial development, and pathogenicity in Setosphaeria turcica. Front Microbiol 2024; 14:1302081. [PMID: 38264490 PMCID: PMC10804457 DOI: 10.3389/fmicb.2023.1302081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Setosphaeria turcica, the fungal pathogen responsible for northern corn leaf blight in maize, forms specialized infectious structures called appressoria that are critical for fungal penetration of maize epidermal cells. The Rab family of proteins play a crucial role in the growth, development, and pathogenesis of many eukaryotic species. Rab4, in particular, is a key regulator of endocytosis and vesicle trafficking, essential for filamentous growth and successful infection by other fungal pathogens. In this study, we silenced StRAB4 in S. turcica to gain a better understanding the function of Rab4 in this plant pathogen. Phenotypically, the mutants exhibited a reduced growth rate, a significant decline in conidia production, and an abnormal conidial morphology. These phenotypes indicate that StRab4 plays an instrumental role in regulating mycelial growth and conidial development in S. turcica. Further investigations revealed that StRab4 is a positive regulator of cell wall integrity and melanin secretion. Functional enrichment analysis of differentially expressed genes highlighted primary enrichments in peroxisome pathways, oxidoreductase and catalytic activities, membrane components, and cell wall organization processes. Collectively, our findings emphasize the significant role of StRab4 in S. turcica infection and pathogenicity in maize and provide valuable insights into fungal behavior and disease mechanisms.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Hang Zhu
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Chengze Wang
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Fanli Zeng
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jingzhe Jia
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shang Feng
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xinpeng Han
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shen Shen
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yanhui Wang
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
24
|
Liang J, Wang WF, Zhang Y, Chai YQ, Li YG, Jiang SL, Zhu XH, Guo YL, Wei Z, Sun XZ, Kuang HX, Xia YG. Fructooligosaccharides and fructans from Platycodon grandiflorum: Structural characterization, lung-oriented guidance and targetability. Carbohydr Polym 2024; 323:121457. [PMID: 37940316 DOI: 10.1016/j.carbpol.2023.121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023]
Abstract
Platycodon grandiflorum (PG) has been widely applied as a conductant drug by ancient and modern traditional Chinese medicine practitioners during long-term clinical practice. However, determining how to guide other medicines to the targeted lungs in traditional Chinese medicine (TCM) prescription remains unclear. An ethanol soluble fraction (Fr. B) was obtained by macroporous resin and 75 % ethanol precipitate. The components were unambiguously determined as fructooligosaccharides and small molecule weight (Mw) fructans according to HILIC-ESI--MS/MS, MS/MS and 1/2D NMR. We discovered that the Fr. B possesses the lung-oriented guidance and targetability by activating Golgi apparatus and endoplasmic reticulum (Golgi-ER) transport system. Rab21, a highly expressed transmembrane protein in the lungs, was found to be the core-affinity target of Fr. B which physically colocalized with the Golgi-ER and directly interacted with Rab21 to accelerate the uptake of extracellular therapeutic substances. The lung-oriented guidance and targetability of Fr. B was validated by the transient knockdown and overexpression of Rab21 considering dynamic observations of colocalization interactions among Fr. B, extracellular substances, and the Golgi-ER. Together, our results delineate a potential mechanism of Fr. B toward lung-oriented guidance and targetability via a direct targeting affinity of Rab21 and resulting collective stimulation of key Golgi-ER transport effectors for the acceleration of extracellular substances into the lungs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Wen-Fei Wang
- Bio-pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yi Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yan-Qun Chai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Ya-Ge Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Si-Liang Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Xin-Hua Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yu-Li Guo
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Zhen Wei
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Xi-Zhe Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China.
| |
Collapse
|
25
|
Rysiewicz B, Błasiak E, Mystek P, Dziedzicka-Wasylewska M, Polit A. Beyond the G protein α subunit: investigating the functional impact of other components of the Gαi 3 heterotrimers. Cell Commun Signal 2023; 21:279. [PMID: 37817242 PMCID: PMC10566112 DOI: 10.1186/s12964-023-01307-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Specific interactions between G protein-coupled receptors (GPCRs) and G proteins play a key role in mediating signaling events. While there is little doubt regarding receptor preference for Gα subunits, the preferences for specific Gβ and Gγ subunits and the effects of different Gβγ dimer compositions on GPCR signaling are poorly understood. In this study, we aimed to investigate the subcellular localization and functional response of Gαi3-based heterotrimers with different combinations of Gβ and Gγ subunits. METHODS Live-cell imaging microscopy and colocalization analysis were used to investigate the subcellular localization of Gαi3 in combination with Gβ1 or Gβ2 heterotrimers, along with representative Gγ subunits. Furthermore, fluorescence lifetime imaging microscopy (FLIM-FRET) was used to investigate the nanoscale distribution of Gαi3-based heterotrimers in the plasma membrane, specifically with the dopamine D2 receptor (D2R). In addition, the functional response of the system was assessed by monitoring intracellular cAMP levels and conducting bioinformatics analysis to further characterize the heterotrimer complexes. RESULTS Our results show that Gαi3 heterotrimers mainly localize to the plasma membrane, although the degree of colocalization is influenced by the accompanying Gβ and Gγ subunits. Heterotrimers containing Gβ2 showed slightly lower membrane localization compared to those containing Gβ1, but certain combinations, such as Gαi3β2γ8 and Gαi3β2γ10, deviated from this trend. Examination of the spatial arrangement of Gαi3 in relation to D2R and of changes in intracellular cAMP level showed that the strongest functional response is observed for those trimers for which the distance between the receptor and the Gα subunit is smallest, i.e. complexes containing Gβ1 and Gγ8 or Gγ10 subunit. Deprivation of Gαi3 lipid modifications resulted in a significant decrease in the amount of protein present in the cell membrane, but did not always affect intracellular cAMP levels. CONCLUSION Our studies show that the composition of G protein heterotrimers has a significant impact on the strength and specificity of GPCR-mediated signaling. Different heterotrimers may exhibit different conformations, which further affects the interactions of heterotrimers and GPCRs, as well as their interactions with membrane lipids. This study contributes to the understanding of the complex signaling mechanisms underlying GPCR-G-protein interactions and highlights the importance of the diversity of Gβ and Gγ subunits in G-protein signaling pathways. Video Abstract.
Collapse
Affiliation(s)
- Beata Rysiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ewa Błasiak
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paweł Mystek
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
26
|
Guo Y, Chen Y, Wang Q, Wang Z, Gong L, Sun Y, Song Z, Chang H, Zhang G, Wang H. Emodin and rhapontigenin inhibit the replication of African swine fever virus by interfering with virus entry. Vet Microbiol 2023; 284:109794. [PMID: 37295229 DOI: 10.1016/j.vetmic.2023.109794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Africa swine fever (ASF) is a highly pathogenic contagion caused by African swine fever virus (ASFV), which not only affects the development of domestic pig industry, but also causes huge losses to the world agricultural economy. Vaccine development targeting ASFV remains elusive, which leads to severe difficulties in disease prevention and control. Emodin (EM) and rhapontigenin (RHAG), which are extracted from the dried rhizome of Polygonum knotweed, have various biological properties such as anti-neoplastic and anti-bacterial activities, but no studies have reported that they have anti-ASFV effects. This study discovered that EM and RHAG at different concentrations had a significant dose-dependent inhibitory effect on the ASFV GZ201801 strain in porcine alveolar macrophages (PAMs), and at the specified concentration, EM and RHAG showed continuous inhibition at 24 h, 48 h and 72 h. Not only did they strongly impact virion attachment and internalization, but also inhibit the early stages of ASFV replication. Further research proved that the expression level of Rab 7 protein was reduced by EM and RHAG, and treatments with EM and RHAG induced the accumulation of free cholesterol in endosomes and inhibited endosomal acidification, which prevented the virus from escaping and shelling from late endosomes. This study summarized the application of EM and RHAG in inhibiting ASFV replication in-vitro. Similarly, EM and RHAG targeted Rab 7 in the viral endocytosis pathway, inhibited viral infection, and induced the accumulation of cholesterol in the endosomes and the acidification of the endosomes to inhibit uncoating. A reference could be made to the results of this study when developing antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Yanchen Guo
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Qiumei Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Zhiyuan Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Zebu Song
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Hao Chang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China.
| |
Collapse
|
27
|
Wang J, Zheng LF, Ren S, Li DL, Chen C, Sun HH, Liu LY, Guo H, Zhao TJ. ARF6 plays a general role in targeting palmitoylated proteins from the Golgi to the plasma membrane. J Cell Sci 2023; 136:jcs261319. [PMID: 37461827 DOI: 10.1242/jcs.261319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
Protein palmitoylation is a post-translational lipid modification of proteins. Accumulating evidence reveals that palmitoylation functions as a sorting signal to direct proteins to destinations; however, the sorting mechanism remains largely unknown. Here, we show that ARF6 plays a general role in targeting palmitoylated proteins from the Golgi to the plasma membrane (PM). Through shRNA screening, we identified ARF6 as the key small GTPase in targeting CD36, a palmitoylated protein, from the Golgi to the PM. We found that the N-terminal myristoylation of ARF6 is required for its binding with palmitoylated CD36, and the GTP-bound form of ARF6 facilitates the delivery of CD36 to the PM. Analysis of stable isotope labeling by amino acids in cell culture revealed that ARF6 might facilitate the sorting of 359 of the 531 palmitoylated PM proteins, indicating a general role of ARF6. Our study has thus identified a sorting mechanism for targeting palmitoylated proteins from the Golgi to the PM.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Lang-Fan Zheng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Su Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dong-Lin Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Chen Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hui-Hui Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Li-Ying Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Tong-Jin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
28
|
Li FL, Guan KL. The Arf family GTPases: Regulation of vesicle biogenesis and beyond. Bioessays 2023; 45:e2200214. [PMID: 36998106 PMCID: PMC10282109 DOI: 10.1002/bies.202200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
The Arf family proteins are best known for their roles in the vesicle biogenesis. However, they also play fundamental roles in a wide range of cellular regulation besides vesicular trafficking, such as modulation of lipid metabolic enzymes, cytoskeleton remodeling, ciliogenesis, lysosomal, and mitochondrial morphology and functions. Growing studies continue to expand the downstream effector landscape of Arf proteins, especially for the less-studied members, revealing new biological functions, such as amino acid sensing. Experiments with cutting-edge technologies and in vivo functional studies in the last decade help to provide a more comprehensive view of Arf family functions. In this review, we summarize the cellular functions that are regulated by at least two different Arf members with an emphasis on those beyond vesicle biogenesis.
Collapse
Affiliation(s)
- Fu-Long Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
30
|
Takahashi T, Shirai J, Matsuda M, Nakanaga S, Matsushita S, Wakita K, Hayashishita M, Suzuki R, Noguchi A, Yokota N, Kawahara H. Protein quality control machinery supports primary ciliogenesis by eliminating GDP-bound Rab8-family GTPases. iScience 2023; 26:106652. [PMID: 37182096 PMCID: PMC10173616 DOI: 10.1016/j.isci.2023.106652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/27/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
The small GTPase Rab8 plays a vital role in the vesicular trafficking of cargo proteins from the trans-Golgi network to target membranes. Upon reaching its target destination, Rab8 is released from the vesicular membrane into the cytoplasm via guanosine triphosphate (GTP) hydrolysis. The fate of GDP-bound Rab8 released from the destination membranes, however, has not been investigated adequately. In this study, we found that GDP-bound Rab8 subfamily proteins are targeted for immediate degradation, and the pre-emptive quality control machinery is responsible for eliminating these proteins in a nucleotide-specific manner. We provide evidence that components of this quality control machinery have a critical role in vesicular trafficking events, including the formation of primary cilia, a process regulated by the Rab8 subfamily. These results suggest that the protein degradation machinery plays a critical role in the integrity of membrane trafficking by limiting the excessive accumulation of GDP-bound Rab8 subfamily proteins.
Collapse
Affiliation(s)
- Toshiki Takahashi
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Jun Shirai
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Miyo Matsuda
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Sae Nakanaga
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shin Matsushita
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kei Wakita
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Mizuki Hayashishita
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Rigel Suzuki
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Aya Noguchi
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Naoto Yokota
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Hiroyuki Kawahara
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Corresponding author
| |
Collapse
|
31
|
Hu J, Zhang D, Tian K, Ren C, Li H, Lin C, Huang X, Liu J, Mao W, Zhang J. Small-molecule LRRK2 inhibitors for PD therapy: Current achievements and future perspectives. Eur J Med Chem 2023; 256:115475. [PMID: 37201428 DOI: 10.1016/j.ejmech.2023.115475] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein that orchestrates a diverse array of cellular processes, including vesicle transport, autophagy, lysosome degradation, neurotransmission, and mitochondrial activity. Hyperactivation of LRRK2 triggers vesicle transport dysfunction, neuroinflammation, accumulation of α-synuclein, mitochondrial dysfunction, and the loss of cilia, ultimately leading to Parkinson's disease (PD). Therefore, targeting LRRK2 protein is a promising therapeutic strategy for PD. The clinical translation of LRRK2 inhibitors was historically impeded by issues surrounding tissue specificity. Recent studies have identified LRRK2 inhibitors that have no effect on peripheral tissues. Currently, there are four small-molecule LRRK2 inhibitors undergoing clinical trials. This review provides a summary of the structure and biological functions of LRRK2, along with an overview of the binding modes and structure-activity relationships (SARs) of small-molecule inhibitors targeting LRRK2. It offers valuable references for developing novel drugs targeting LRRK2.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changyu Ren
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Heng Li
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoli Huang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wuyu Mao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
32
|
Li X, Liu D, Griffis E, Novick P. Exploring the consequences of redirecting an exocytic Rab onto endocytic vesicles. Mol Biol Cell 2023; 34:ar38. [PMID: 36857153 PMCID: PMC10162416 DOI: 10.1091/mbc.e23-01-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Bidirectional vesicular traffic links compartments along the exocytic and endocytic pathways. Rab GTPases have been implicated in specifying the direction of vesicular transport. To explore this possibility, we sought to redirect an exocytic Rab, Sec4, onto endocytic vesicles by fusing the catalytic domain of the Sec4 GEF, Sec2, onto the CUE localization domain of Vps9, a GEF for the endocytic Rab Ypt51. The Sec2GEF-GFP-CUE construct localized to bright puncta predominantly near sites of polarized growth, and this localization was dependent on the ability of the CUE domain to bind to the ubiquitin moieties added to the cytoplasmic tails of proteins destined for endocytic internalization. Sec4 and Sec4 effectors were recruited to these puncta with various efficiencies. Cells expressing Sec2GEF-GFP-CUE grew surprisingly well and secreted protein at near-normal efficiency, implying that Golgi-derived secretory vesicles were delivered to polarized sites of cell growth despite the misdirection of Sec4 and its effectors. A low efficiency mechanism for localization of Sec2 to secretory vesicles that is independent of known cues might be responsible. In total, the results suggest that while Rabs may play a critical role in specifying the direction of vesicular transport, cells are remarkably tolerant of Rab misdirection.
Collapse
Affiliation(s)
- Xia Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Eric Griffis
- Nikon Imaging Center, University of California, San Diego, La Jolla, CA 92093-0694
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| |
Collapse
|
33
|
Tapia D, Cavieres VA, Burgos PV, Cancino J. Impact of interorganelle coordination between the conventional early secretory pathway and autophagy in cellular homeostasis and stress response. Front Cell Dev Biol 2023; 11:1069256. [PMID: 37152281 PMCID: PMC10160633 DOI: 10.3389/fcell.2023.1069256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The conventional early secretory pathway and autophagy are two essential interconnected cellular processes that are crucial for maintaining cellular homeostasis. The conventional secretory pathway is an anabolic cellular process synthesizing and delivering proteins to distinct locations, including different organelles, the plasma membrane, and the extracellular media. On the other hand, autophagy is a catabolic cellular process that engulfs damaged organelles and aberrant cytosolic constituents into the double autophagosome membrane. After fusion with the lysosome and autolysosome formation, this process triggers digestion and recycling. A growing list of evidence indicates that these anabolic and catabolic processes are mutually regulated. While knowledge about the molecular actors involved in the coordination and functional cooperation between these two processes has increased over time, the mechanisms are still poorly understood. This review article summarized and discussed the most relevant evidence about the key molecular players implicated in the interorganelle crosstalk between the early secretory pathway and autophagy under normal and stressful conditions.
Collapse
Affiliation(s)
- Diego Tapia
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V. Burgos
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Jorge Cancino
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
34
|
Meng K, Zhu P, Shi L, Li S. Determination of the Salmonella intracellular lifestyle by the diversified interaction of Type III secretion system effectors and host GTPases. WIREs Mech Dis 2023; 15:e1587. [PMID: 36250298 DOI: 10.1002/wsbm.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Intracellular bacteria have developed sophisticated strategies to subvert the host endomembrane system to establish a stable replication niche. Small GTPases are critical players in regulating each step of membrane trafficking events, such as vesicle biogenesis, cargo transport, tethering, and fusion events. Salmonella is a widely studied facultative intracellular bacteria. Salmonella delivers several virulence proteins, termed effectors, to regulate GTPase dynamics and subvert host trafficking for their benefit. In this review, we summarize an updated and systematic understanding of the interactions between bacterial effectors and host GTPases in determining the intracellular lifestyle of Salmonella. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Kun Meng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ping Zhu
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liuliu Shi
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
35
|
RAB7A GTPase Is Involved in Mitophagosome Formation and Autophagosome-Lysosome Fusion in N2a Cells Treated with the Prion Protein Fragment 106-126. Mol Neurobiol 2023; 60:1391-1407. [PMID: 36449254 DOI: 10.1007/s12035-022-03118-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022]
Abstract
Failed communication between mitochondria and lysosomes causes dysfunctional mitochondria, which may induce mitochondria-related neurodegenerative diseases. Here, we show that RAB7A, a small GTPase of the Rab family, mediates the crosstalk between these two important organelles to maintain homeostasis in N2a cells treated with PrP106-126. Specifically, we demonstrate that mitophagy deficiency in N2a cells caused by PrP106-126 is associated with dysregulated RAB7A localization in mitochondria. Cells lacking RAB7A display decreased mitochondrial colocalization with lysosomes and significantly increased mitochondrial protein expression, resulting in inhibited mitophagy. In contrast, overexpression of GTP-bound RAB7A directly induces lysosome colocalization with mitochondria. Further study revealed that GTP-bound RAB7A protects mitochondrial homeostasis by supporting autophagosome biogenesis. Moreover, we suggest that depletion of RAB7A leads to gross morphological changes in lysosomes, which prevents autophagosome-lysosome fusion and interferes with the breakdown of autophagic cargo within lysosomes. Overexpression of GTP-bound RAB7A can also alleviate PrP106-126-induced morphological damage and dysfunction of mitochondria, reducing neuronal apoptosis. Collectively, our data demonstrate that RAB7A successfully drives mitochondria to the autophagosomal lumen for degradation, suggesting that the communication of proteotoxic stress from mitochondria to lysosomes requires RAB7A, as a signaling molecule, to establish a link between the disturbed mitochondrial network and its remodeling. These findings indicate that small molecules regulating mitophagy have the potential to modulate cellular homeostasis and the clinical course of neurodegenerative diseases. Proposed model of mitophagy regulated by RAB7A. (1) Accumulating PrP106-126 induced mitophagy. (2) RAB7A is recruited to mitochondria. (3) ATG5-12 and ATG9A (5) vesicles are recruited to the autophagosome formation sites in a RAB7A-dependent manner. The ATG5-12 complex recruits and anchors LC3-I to form active LC3-II (4), accelerating mitophagosomal formation. The ATG9A vesicles are thought to be a source of membranes for autophagosome assembly. The recruitment of proteins and lipids induces membrane expansion and subsequent closure to form the mitophagosome. (6) Maintenance of the normal low lysosomal PH depends on active (GTP-bound) RAB7A. (7) RAB7A recruits effector molecules responsible for tight membrane interactions, and directly or indirectly, the subsequent autophagosome merges with the lysosome, and the cargo is completely degraded.
Collapse
|
36
|
Li X, Liu D, Griffis E, Novick P. Exploring the consequences of redirecting an exocytic Rab onto endocytic vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527811. [PMID: 36798320 PMCID: PMC9934678 DOI: 10.1101/2023.02.09.527811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Bidirectional vesicular traffic links compartments along the exocytic and endocytic pathways. Rab GTPases have been implicated in specifying the direction of vesicular transport because anterograde vesicles are marked with a different Rab than retrograde vesicles. To explore this proposal, we sought to redirect an exocytic Rab, Sec4, onto endocytic vesicles by fusing the catalytic domain of the Sec4 GEF, Sec2, onto the CUE localization domain of Vps9, a GEF for the endocytic Rab, Ypt51. The Sec2GEF-GFP-CUE construct was found to localize to bright puncta predominantly near sites of polarized growth and this localization was strongly dependent upon the ability of the CUE domain to bind to the ubiquitin moieties added to the cytoplasmic tails of proteins destined for endocytic internalization. Sec4 and Sec4 effectors were recruited to these puncta with varying efficiency. The puncta appeared to consist of clusters of 80 nm vesicles and although the puncta are largely static, FRAP analysis suggests that traffic into and out of these clusters continues. Cells expressing Sec2GEF-GFP-CUE grew surprisingly well and secreted protein at near normal efficiency, implying that Golgi derived secretory vesicles were delivered to polarized sites of cell growth, where they tethered and fused with the plasma membrane despite the misdirection of Sec4 and its effectors. In total, the results suggest that while Rabs play a critical role in regulating vesicular transport, cells are remarkably tolerant of Rab misdirection.
Collapse
Affiliation(s)
- Xia Li
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| | - Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| | - Eric Griffis
- Nikon Imaging Center, University of California at San Diego, La Jolla, California, United States
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| |
Collapse
|
37
|
Rab44 Deficiency Induces Impaired Immune Responses to Nickel Allergy. Int J Mol Sci 2023; 24:ijms24020994. [PMID: 36674510 PMCID: PMC9866195 DOI: 10.3390/ijms24020994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Rab44 was recently identified as an atypical Rab GTPase that possesses EF-hand and coiled-coil domains at the N-terminus, and a Rab-GTPase domain at the C-terminus. Rab44 is highly expressed in immune-related cells such as mast cells, macrophages, osteoclasts, and granulocyte-lineage cells in the bone marrow. Therefore, it is speculated that Rab44 is involved in the inflammation and differentiation of immune cells. However, little is known about the role of Rab44 in inflammation. In this study, we showed that Rab44 was upregulated during the early phase of differentiation of M1- and M2-type macrophages. Rab44-deficient mice exhibited impaired tumor necrosis factor alpha and interleukin-10 production after lipopolysaccharide (LPS) stimulation. The number of granulocytes in Rab44-deficient mice was lower, but the lymphocyte count in Rab44-deficient mice was significantly higher than that in wild-type mice after LPS stimulation. Moreover, Rab44-deficient macrophages showed impaired nickel-induced toxicity, and Rab44-deficient mice showed impaired nickel-induced hypersensitivity. Upon nickel hypersensitivity induction, Rab44-deficient mice showed different frequencies of immune cells in the blood and ears. Thus, it is likely that Rab44 is implicated in immune cell differentiation and inflammation, and Rab44 deficiency induces impaired immune responses to nickel allergies.
Collapse
|
38
|
Jiang C, Diao F, Ma Z, Zhang J, Bai J, Nauwynck H, Jiang P, Liu X. Autophagy induced by Rab1a-ULK1 interaction promotes porcine reproductive and respiratory syndrome virus replication. Virus Res 2023; 323:198989. [PMID: 36306941 PMCID: PMC10194350 DOI: 10.1016/j.virusres.2022.198989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus from the Nidovirales order, continues to be a threat to the swine industry worldwide causing reproductive failure and respiratory disease in pigs. Previous studies have demonstrated that autophagy plays a positive role in PRRSV replication. However, its mechanism is less clearly understood. Herein, we report first that the protein level of Rab1a, a member of the Ras superfamily of GTPases, is upregulated during PRRSV infection. Subsequently, we demonstrate that Rab1a enhances PRRSV replication through an autophagy pathway as evidenced by knocking down the autophagy-related 7 (ATG7) gene, the key adaptor of autophagy. Importantly, we reveal that Rab1a interacts with ULK1 and promotes ULK1 phosphorylation dependent on its GTP-binding activity. These data indicate that PRRSV utilizes the Rab1a-ULK1 complex to initiate autophagy, which, in turn, benefits viral replication. These findings further highlight the interplay between PRRSV replication and the autophagy pathway, deepening our understanding of PRRSV infection.
Collapse
Affiliation(s)
- Chenlong Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Feifei Diao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zicheng Ma
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
39
|
Loose M, Auer A, Brognara G, Budiman HR, Kowalski L, Matijević I. In vitro
reconstitution of small
GTPase
regulation. FEBS Lett 2022; 597:762-777. [PMID: 36448231 DOI: 10.1002/1873-3468.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
Small GTPases play essential roles in the organization of eukaryotic cells. In recent years, it has become clear that their intracellular functions result from intricate biochemical networks of the GTPase and their regulators that dynamically bind to a membrane surface. Due to the inherent complexities of their interactions, however, revealing the underlying mechanisms of action is often difficult to achieve from in vivo studies. This review summarizes in vitro reconstitution approaches developed to obtain a better mechanistic understanding of how small GTPase activities are regulated in space and time.
Collapse
Affiliation(s)
- Martin Loose
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| | - Albert Auer
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| | - Gabriel Brognara
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| | | | - Lukasz Kowalski
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| | - Ivana Matijević
- Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria
| |
Collapse
|
40
|
Luchetti F, Nasoni MG, Burattini S, Mohammadi A, Pagliarini M, Canonico B, Ambrogini P, Balduini W, Reiter RJ, Carloni S. Melatonin Attenuates Ischemic-like Cell Injury by Promoting Autophagosome Maturation via the Sirt1/FoxO1/Rab7 Axis in Hippocampal HT22 Cells and in Organotypic Cultures. Cells 2022; 11:3701. [PMID: 36429130 PMCID: PMC9688641 DOI: 10.3390/cells11223701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Dysfunctional autophagy is linked to neuronal damage in ischemia/reperfusion injury. The Ras-related protein 7 (Rab7), a member of the Rab family of small GTPases, appears crucial for the progression of the autophagic flux, and its activity is strictly interconnected with the histone deacetylase Silent information regulator 1 (Sirt1) and transcription factor Forkhead box class O1 (FoxO1). The present study assessed the neuroprotective role of melatonin in the modulation of the Sirt1/FoxO1/Rab7 axis in HT22 cells and organotypic hippocampal cultures exposed to oxygen-glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin re-established physiological levels of autophagy and reduced propidium iodide-positive cells, speeding up autophagosome (AP) maturation and increasing lysosomal activity. Our study revealed that melatonin modulates autophagic pathways, increasing the expression of both Rab7 and FoxO1 and restoring the Sirt1 expression affected by OGD/R. In addition, the Sirt1 inhibitor EX-527 significantly reduced Rab7, Sirt1, and FoxO1 expression, as well as autolysosomes formation, and blocked the neuroprotective effect of melatonin. Overall, our findings provide, for the first time, new insights into the neuroprotective role of melatonin against ischemic injury through the activation of the Sirt1/FoxO1/Rab7 axis.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Maria G. Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Atefeh Mohammadi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marica Pagliarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
41
|
Das AS, Sherry EC, Vaughan RM, Henderson ML, Zieba J, Uhl KL, Koehn O, Bupp CP, Rajasekaran S, Li X, Chhetri SB, Nissim S, Williams CL, Prokop JW. The complex, dynamic SpliceOme of the small GTPase transcripts altered by technique, sex, genetics, tissue specificity, and RNA base editing. Front Cell Dev Biol 2022; 10:1033695. [PMID: 36467401 PMCID: PMC9714508 DOI: 10.3389/fcell.2022.1033695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 04/04/2024] Open
Abstract
The small GTPase family is well-studied in cancer and cellular physiology. With 162 annotated human genes, the family has a broad expression throughout cells of the body. Members of the family have multiple exons that require splicing. Yet, the role of splicing within the family has been underexplored. We have studied the splicing dynamics of small GTPases throughout 41,671 samples by integrating Nanopore and Illumina sequencing techniques. Within this work, we have made several discoveries. 1). Using the GTEx long read data of 92 samples, each small GTPase gene averages two transcripts, with 83 genes (51%) expressing two or more isoforms. 2). Cross-tissue analysis of GTEx from 17,382 samples shows 41 genes (25%) expressing two or more protein-coding isoforms. These include protein-changing transcripts in genes such as RHOA, RAB37, RAB40C, RAB4B, RAB5C, RHOC, RAB1A, RAN, RHEB, RAC1, and KRAS. 3). The isolation and library technique of the RNAseq influences the abundance of non-sense-mediated decay and retained intron transcripts of small GTPases, which are observed more often in genes than appreciated. 4). Analysis of 16,243 samples of "Blood PAXgene" identified seven genes (3.7%; RHOA, RAB40C, RAB4B, RAB37, RAB5B, RAB5C, RHOC) with two or more transcripts expressed as the major isoform (75% of the total gene), suggesting a role of genetics in altering splicing. 5). Rare (ARL6, RAB23, ARL13B, HRAS, NRAS) and common variants (GEM, RHOC, MRAS, RAB5B, RERG, ARL16) can influence splicing and have an impact on phenotypes and diseases. 6). Multiple genes (RAB9A, RAP2C, ARL4A, RAB3A, RAB26, RAB3C, RASL10A, RAB40B, and HRAS) have sex differences in transcript expression. 7). Several exons are included or excluded for small GTPase genes (RASEF, KRAS, RAC1, RHEB, ARL4A, RHOA, RAB30, RHOBTB1, ARL16, RAP1A) in one or more forms of cancer. 8). Ten transcripts are altered in hypoxia (SAR1B, IFT27, ARL14, RAB11A, RAB10, RAB38, RAN, RIT1, RAB9A) with RHOA identified to have a transient 3'UTR RNA base editing at a conserved site found in all of its transcripts. Overall, we show a remarkable and dynamic role of splicing within the small GTPase family that requires future explorations.
Collapse
Affiliation(s)
- Akansha S. Das
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Biology, Washington and Jefferson College, Washington, PA, United States
| | - Emily C. Sherry
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, United States
| | - Robert M. Vaughan
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Marian L. Henderson
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- The Department of Biology, Calvin University, Grand Rapids, MI, United States
| | - Jacob Zieba
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Olivia Koehn
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Medical Genetics, Spectrum Health and Helen DeVos Children’s Hospital, Grand Rapids, MI, United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Pediatric Critical Care Medicine, Helen DeVos Children’s Hospital Spectrum Health, Grand Rapids, MI, United States
- Office of Research, Spectrum Health, Grand Rapids, MI, United States
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Surya B. Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MA, United States
| | - Sahar Nissim
- Genetics and Gastroenterology Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| | - Carol L. Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
42
|
Stasic AJ, Moreno SNJ, Carruthers VB, Dou Z. The Toxoplasma plant-like vacuolar compartment (PLVAC). J Eukaryot Microbiol 2022; 69:e12951. [PMID: 36218001 PMCID: PMC10576567 DOI: 10.1111/jeu.12951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii belongs to the phylum Apicomplexa and is an important cause of congenital disease and infection in immunocompromised patients. T. gondii shares several characteristics with plants including a nonphotosynthetic plastid termed apicoplast and a multivesicular organelle that was named the plant-like vacuole (PLV) or vacuolar compartment (VAC). The name plant-like vacuole was selected based on its resemblance in composition and function to plant vacuoles. The name VAC represents its general vacuolar characteristics. We will refer to the organelle as PLVAC in this review. New findings in recent years have revealed that the PLVAC represents the lysosomal compartment of T. gondii which has adapted peculiarities to fulfill specific Toxoplasma needs. In this review, we discuss the composition and functions of the PLVAC highlighting its roles in ion storage and homeostasis, endocytosis, exocytosis, and autophagy.
Collapse
Affiliation(s)
- Andrew J Stasic
- Department of Microbiology, Heartland FPG, Carmel, Indiana, USA
| | - Silvia N J Moreno
- Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
| | - Vern B Carruthers
- Department of Microbiology & Immunology, University of Michigan Medical School, Michigan, Ann Arbor, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, South Carolina, Clemson, USA
| |
Collapse
|
43
|
Francis CR, Kushner EJ. Capturing membrane trafficking events during 3D angiogenic development in vitro. Microcirculation 2022; 29:e12726. [PMID: 34415654 PMCID: PMC8858330 DOI: 10.1111/micc.12726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Vesicular trafficking dictates protein localization, functional activity, and half-life, providing a critically important regulatory step in tissue development; however, there is little information detailing endothelial-specific trafficking signatures. This is due, in part, to limitations in visualizing trafficking events in endothelial tissues. Our aim in this investigation was to explore the use of a 3-dimensional (3D) in vitro sprouting model to image endothelial membrane trafficking events. METHODS Endothelial cells were challenged to grow sprouts in a fibrin bead assay. Thereafter, spouts were transfected with fluorescent proteins and stained for various cell markers. Sprouts were then imaged for trafficking events using live and fixed-cell microscopy. RESULTS Our results demonstrate that fibrin bead sprouts have a strong apicobasal polarity marked by apical localization of proteins moesin and podocalyxin. Comparison of trafficking mediators Rab27a and Rab35 between 3D sprouts and 2D culture showed that vesicular carriers can be imaged at high resolution, exhibiting proper membrane polarity solely in 3D sprouts. Lastly, we imaged exocytic events of von Willebrand Factor and demonstrated a distinct imaging advantage for monitoring secretion events in 3D sprouts as compared with 2D culture. CONCLUSIONS Our results establish that the fibrin bead sprouting assay is well-suited for imaging of trafficking events during angiogenic growth.
Collapse
Affiliation(s)
| | - Erich J. Kushner
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| |
Collapse
|
44
|
Fasciani I, Carli M, Petragnano F, Colaianni F, Aloisi G, Maggio R, Scarselli M, Rossi M. GPCRs in Intracellular Compartments: New Targets for Drug Discovery. Biomolecules 2022; 12:1343. [PMID: 36291552 PMCID: PMC9599219 DOI: 10.3390/biom12101343] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 08/02/2023] Open
Abstract
The architecture of eukaryotic cells is defined by extensive membrane-delimited compartments, which entails separate metabolic processes that would otherwise interfere with each other, leading to functional differences between cells. G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors, and their signal transduction is traditionally viewed as a chain of events initiated from the plasma membrane. Furthermore, their intracellular trafficking, internalization, and recycling were considered only to regulate receptor desensitization and cell surface expression. On the contrary, accumulating data strongly suggest that GPCRs also signal from intracellular compartments. GPCRs localize in the membranes of endosomes, nucleus, Golgi and endoplasmic reticulum apparatuses, mitochondria, and cell division compartments. Importantly, from these sites they have shown to orchestrate multiple signals that regulate different cell pathways. In this review, we summarize the current knowledge of this fascinating phenomenon, explaining how GPCRs reach the intracellular sites, are stimulated by the endogenous ligands, and their potential physiological/pathophysiological roles. Finally, we illustrate several mechanisms involved in the modulation of the compartmentalized GPCR signaling by drugs and endogenous ligands. Understanding how GPCR signaling compartmentalization is regulated will provide a unique opportunity to develop novel pharmaceutical approaches to target GPCRs and potentially lead the way towards new therapeutic approaches.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marco Carli
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesco Colaianni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Mario Rossi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
45
|
Rai P, Kumar Roy J. Endosomal recycling protein Rab11 in Parkin and Pink1 signaling in Drosophila model of Parkinson's disease. Exp Cell Res 2022; 420:113357. [PMID: 36116557 DOI: 10.1016/j.yexcr.2022.113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases are progressive disorders of the nervous system primarily affecting the loss of neuronal cells present in the brain. Although most neurodegenerative cases are sporadic, some familial genes are found to be involved in the neurodegenerative diseases. The extensively studied parkin and pink1 gene products are known to be involved in the removal of damaged mitochondria via autophagy (mitophagy), a quality control process. If the function of any of these genes is somehow disrupted, accumulation of damaged mitochondria occurs in the forms of protein aggregates in the cytoplasm, leading to formation of the Lewy-bodies. Autophagy is an important catabolic process where the endosomal Rab proteins are seen to be involved. Rab11, an endosomal recycling protein, serves as an ATG9A carrier that helps in autophagosome formation and maturation. Earlier studies have reported that loss of Rab11 prevents the fusion of autophagosomes with the late endosomes hampering the autophagy pathway resulting in apoptosis of cells. In this study, we have emphasized on the importance and functional role of Rab11 in the molecular pathway of Parkin/Pink1 in Parkinson's disease.
Collapse
Affiliation(s)
- Pooja Rai
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
46
|
Li F, Wu Z, Gao Y, Bowling FZ, Franklin JM, Hu C, Suhandynata RT, Frohman MA, Airola MV, Zhou H, Guan K. Defining the proximal interaction networks of Arf GTPases reveals a mechanism for the regulation of PLD1 and PI4KB. EMBO J 2022; 41:e110698. [PMID: 35844135 PMCID: PMC9433938 DOI: 10.15252/embj.2022110698] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 12/16/2022] Open
Abstract
The Arf GTPase family is involved in a wide range of cellular regulation including membrane trafficking and organelle-structure assembly. Here, we have generated a proximity interaction network for the Arf family using the miniTurboID approach combined with TMT-based quantitative mass spectrometry. Our interactome confirmed known interactions and identified many novel interactors that provide leads for defining Arf pathway cell biological functions. We explored the unexpected finding that phospholipase D1 (PLD1) preferentially interacts with two closely related but poorly studied Arf family GTPases, ARL11 and ARL14, showing that PLD1 is activated by ARL11/14 and may recruit these GTPases to membrane vesicles, and that PLD1 and ARL11 collaborate to promote macrophage phagocytosis. Moreover, ARL5A and ARL5B were found to interact with and recruit phosphatidylinositol 4-kinase beta (PI4KB) at trans-Golgi, thus promoting PI4KB's function in PI4P synthesis and protein secretion.
Collapse
Affiliation(s)
- Fu‐Long Li
- Department of Pharmacology and Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Zhengming Wu
- Department of Pharmacology and Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Yong‐Qi Gao
- Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Forrest Z Bowling
- Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookNYUSA
| | - J Matthew Franklin
- Department of Pharmacology and Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Chongze Hu
- Department of Nanoengineering, Program of Materials Science and EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Raymond T Suhandynata
- Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Michael A Frohman
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNYUSA
| | - Michael V Airola
- Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookNYUSA
| | - Huilin Zhou
- Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Kun‐Liang Guan
- Department of Pharmacology and Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
47
|
Wang MX, Liuyu T, Zhang ZD. Multifaceted Roles of the E3 Ubiquitin Ligase RING Finger Protein 115 in Immunity and Diseases. Front Immunol 2022; 13:936579. [PMID: 35844553 PMCID: PMC9279554 DOI: 10.3389/fimmu.2022.936579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Ubiquitination is a post-translational modification that plays essential roles in various physiological and pathological processes. Protein ubiquitination depends on E3 ubiquitin ligases that catalyze the conjugation of ubiquitin molecules on lysine residues of targeted substrates. RING finger protein 115 (RNF115), also known as breast cancer associated gene 2 (BCA2) and Rab7-interacting RING finger protein (Rabring7), has been identified as a highly expressed protein in breast cancer cells and tissues. Later, it has been demonstrated that RNF115 catalyzes ubiquitination of a series of proteins to modulate a number of signaling pathways, and thereby regulates viral infections, autoimmunity, cell proliferation and death and tumorigenesis. In this review, we introduce the identification, expression and activity regulation of RNF115, summarize the substrates and functions of RNF115 in different pathways, and discuss the roles of RNF115 as a biomarker or therapeutic target in diseases.
Collapse
Affiliation(s)
- Mei-Xia Wang
- The Executive Master of Business Administration (EMBA) Program, School of Management, Fudan University, Shanghai, China
| | - Tianzi Liuyu
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-dong Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Zhang Z, Li H, Gan H, Tang Z, Guo Y, Yao S, Liuyu T, Zhong B, Lin D. RNF115 Inhibits the Post-ER Trafficking of TLRs and TLRs-Mediated Immune Responses by Catalyzing K11-Linked Ubiquitination of RAB1A and RAB13. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105391. [PMID: 35343654 PMCID: PMC9165487 DOI: 10.1002/advs.202105391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/07/2022] [Indexed: 05/16/2023]
Abstract
The subcellular localization and intracellular trafficking of Toll-like receptors (TLRs) critically regulate TLRs-mediated antimicrobial immunity and autoimmunity. Here, it is demonstrated that the E3 ubiquitin ligase RNF115 inhibits the post-endoplasmic reticulum (ER) trafficking of TLRs and TLRs-mediated immune responses by catalyzing ubiquitination of the small GTPases RAB1A and RAB13. It is shown that the 14-3-3 chaperones bind to AKT1-phosphorylated RNF115 and facilitate RNF115 localizing on the ER and the Golgi apparatus. RNF115 interacts with RAB1A and RAB13 and catalyzes K11-linked ubiquitination on the Lys49 and Lys61 residues of RAB1A and on the Lys46 and Lys58 residues of RAB13, respectively. Such a modification impairs the recruitment of guanosine diphosphate (GDP) dissociation inhibitor 1 (GDI1) to RAB1A and RAB13, a prerequisite for the reactivation of RAB proteins. Consistently, knockdown of RAB1A and RAB13 in Rnf115+/+ and Rnf115-/- cells markedly inhibits the post-ER and the post-Golgi trafficking of TLRs, respectively. In addition, reconstitution of RAB1AK49/61R or RAB13K46/58R into Rnf115+/+ cells but not Rnf115-/- cells promotes the trafficking of TLRs from the ER to the Golgi apparatus and from the Golgi apparatus to the cell surface, respectively. These findings uncover a common and step-wise regulatory mechanism for the post-ER trafficking of TLRs.
Collapse
Affiliation(s)
- Zhi‐Dong Zhang
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhan430061China
| | - Hong‐Xu Li
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Hu Gan
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Zhen Tang
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Yu‐Yao Guo
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Shu‐Qi Yao
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Tianzi Liuyu
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Bo Zhong
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Dandan Lin
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhan430061China
| |
Collapse
|
49
|
Wang T, Jin MJ, Li LK. The GTP-Bound form of Rab3D Promotes Lipid Droplet Growth in Adipocyte. Mol Biol 2022. [DOI: 10.1134/s0026893322040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
ARHGAP1 Transported with Influenza Viral Genome Ensures Integrity of Viral Particle Surface through Efficient Budozone Formation. mBio 2022; 13:e0072122. [PMID: 35475647 PMCID: PMC9239208 DOI: 10.1128/mbio.00721-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Influenza viral particles are assembled at the plasma membrane concomitantly with Rab11a-mediated endocytic transport of viral ribonucleoprotein complexes (vRNPs). The mechanism of spatiotemporal regulation of viral budozone formation and its regulatory molecules on the endocytic vesicles remain unclear. Here, we performed a proximity-based proteomics approach for Rab11a and found that ARHGAP1, a Rho GTPase-activating protein, is transported through the Rab11a-mediated apical transport of vRNP. ARHGAP1 stabilized actin filaments in infected cells for the lateral clustering of hemagglutinin (HA) molecules, a viral surface membrane protein, to the budozone. Disruption of the HA clustering results in the production of virions with low HA content, and such virions were less resistant to protease and had enhanced antigenicity, presumably because reduced clustering of viral membrane proteins exposes hidden surfaces. Collectively, these results demonstrate that Rab11a-mediated endocytic transport of ARHGAP1 with vRNPs stimulates budozone formation to ensure the integrity of virion surface required for viral survival.
Collapse
|