1
|
Zhang H, Zhu Y, Ma J, Ma Y, Jin L, Li J, Yang R, Song G. Cyclic Acetal-Based Lipid Nanoparticles Deliver mRNA In Vivo for Tumor Immunotherapy. ACS APPLIED BIO MATERIALS 2025. [PMID: 40241379 DOI: 10.1021/acsabm.5c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Lipid nanoparticle (LNP)-mRNA-based tumor immunotherapy needs to address challenges such as low efficacy of mRNA delivery, targeted protein expression, and compromised innate immunogenicity. Here, we screen a panel of 16 cyclic acetal-based ionizable lipid nanoparticles by in vitro and in vivo assays to develop a more effective and safer system specifically for tumor immunotherapy and mRNA delivery. Furthermore, by incorporating a cyclic acetal-based adjuvant lipid YK-TLR-001, two optimized cyclic acetal-based LNP formulations (YK-712 and YK-716) are demonstrated to enhance mRNA expression in the spleens and to induce exceptional maturation of antigen-presenting cells (APCs) and to promote antigen presentation. Moreover, animal studies treated with these formulations show activated cellular immunogenicity in healthy mice and inhibited tumor growth in the B16F10 melanoma model. Thus, the cyclic acetal-based LNPs with YK-TLR-001 present a promising direction in the design of mRNA vectors for the advancement of mRNA tumor immunotherapy.
Collapse
Affiliation(s)
- Honglei Zhang
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, P. R. China
| | - Yizi Zhu
- National Institutes for Food and Drug Control, Beijing 100050, P. R. China
| | - Jingxuan Ma
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, P. R. China
| | - Yuqing Ma
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, P. R. China
| | - Lijie Jin
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, P. R. China
| | - Jing Li
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, P. R. China
| | - Rui Yang
- National Institutes for Food and Drug Control, Beijing 100050, P. R. China
| | - Gengshen Song
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, P. R. China
| |
Collapse
|
2
|
Mou T, Zhao Y, Jia J, Gao KC, Li SY, Kuang YQ. Immunogenicity and Protective Efficacy of an mRNA Vaccine Targeting HSV-2 UL41 in Mice. Vaccines (Basel) 2025; 13:271. [PMID: 40266094 PMCID: PMC11945300 DOI: 10.3390/vaccines13030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Herpes simplex virus 2 (HSV-2) is the primary cause of sexually transmitted genital ulcerative diseases, for which no effective prophylactic vaccine is currently available. However, the identification of appropriate targets for an HSV-2 mRNA vaccine remains an area requiring further investigation. METHODS The immunogenicity and protective effects of an HSV-2 UL41 mRNA vaccine were evaluated in a BALB/c mouse model. The mice were intramuscularly immunized twice, followed by HSV-2 infection at 28 days post boost. Clinical signs were monitored daily, and the viral load and tissue inflammation were assessed on days 1, 4, and 7 post infection. Dendritic cell (DC) activation in spleen tissue was analyzed via transcriptome sequencing. RESULTS A comparison of the clinical, immunological, and pathological characteristics of the groups that were immunized with the UL41 mRNA vaccine and then infected with HSV2, along with the control groups, revealed that the vaccine elicited both cellular and humoral immunity, inhibited viral replication, suppressed the inflammatory response, and provided protective effects against the virus in vivo. Furthermore, in vitro assays of DC expansion revealed that the vaccine immunization increased the induction of DCs from splenic cells. Transcriptomic analysis of these DCs revealed the activation of immune signaling pathways. CONCLUSIONS Our study suggests that the UL41 mRNA vaccine may provide effective protection against HSV-2-related diseases and holds promise as a potential mRNA vaccine candidate.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi-Qun Kuang
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China (Y.Z.)
| |
Collapse
|
3
|
Gao M, Zhong J, Liu X, Zhao Y, Zhu D, Shi X, Xu X, Zhou Q, Xuan W, Zhang Y, Zhou Y, Cheng J. Deciphering the Role of PEGylation on the Lipid Nanoparticle-Mediated mRNA Delivery to the Liver. ACS NANO 2025; 19:5966-5978. [PMID: 39899798 DOI: 10.1021/acsnano.4c09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Organ- and cell-specific delivery of mRNA via modular lipid nanoparticles (LNPs) is promising in treating various diseases, but targeted cargo delivery is still very challenging. Most previous work focuses on screening ionizable and helper lipids to address the above issues. Here, we report the multifacial role of PEGylated lipids in manipulating LNP-mediated delivery of mRNA to the liver. We employed the typical excipients in LNP products, including DLin-MC3-DMA, DPSC, and cholesterol. Five types of PEGylated lipids were selected, and their molar ratio was fixed at 1.5% with a constant PEG molecular weight of 2000 Da. The architecture of steric lipids dramatically affected the in vitro gene transfection, in vivo blood clearance, liver deposition, and targeting of specific cells, all of which were closely linked to the de-PEGylation rate. The fast de-PEGylation resulted in short blood circulation and high accumulation in the liver. However, the ultrafast de-PEGylation enabled the deposition of more LNPs in Kupffer cells other than hepatocytes. Surprisingly, simply changing the terminal groups of PEGylated lipids from methoxyl to carboxyl or amine could dramatically increase the liver delivery of LNPs, which might be associated with the accelerated de-PEGylation rate and enhanced LNP-cell interaction. The current work highlights the importance of manipulating steric lipids in promoting mRNA delivery, offering an alternative approach for formulating and optimizing mRNA LNPs.
Collapse
Affiliation(s)
- Menghua Gao
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Jiafeng Zhong
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Xinxin Liu
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Yanjun Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Dingcheng Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiaohuo Shi
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310030, China
| | - Xuehan Xu
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Qin Zhou
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wenjing Xuan
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yue Zhang
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Yaofeng Zhou
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Jianjun Cheng
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
4
|
Alyokhin AV, Rosenthal BM, Weber DC, Baker MB. Towards a unified approach in managing resistance to vaccines, drugs, and pesticides. Biol Rev Camb Philos Soc 2025. [PMID: 39807648 DOI: 10.1111/brv.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Everywhere, pests and pathogens evolve resistance to our control efforts, impairing human health and welfare. Developing sustainable solutions to this problem requires working with evolved immune and ecological systems, rather than against these evolutionary forces. We advocate a transdisciplinary approach to resistance based on an evolutionary foundation informed by the concepts of integrated pest management and One Health. Diverse, multimodal management approaches create a more challenging environment for the evolution of resistance. Given our permanent evolutionary and ecological relationships with pests and pathogens, responses to most biological threats to health and agriculture should seek sustainable harm reduction rather than eradication.
Collapse
Affiliation(s)
- Andrei V Alyokhin
- School of Biology and Ecology, University of Maine, 5722 Dering Hall, Orono, 04469, Maine, USA
| | - Benjamin M Rosenthal
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, US Department of Agriculture, 10300 Baltimore Avenue, Beltsville, 20705, Maryland, USA
| | - Donald C Weber
- Invasive Insect Biocontrol and Behaviour Laboratory, Agricultural Research Service, US Department of Agriculture, 10300 Baltimore Avenue, Beltsville, 20705, Maryland, USA
| | - Mitchell B Baker
- Biology Department, Queens College, City University of New York, 149th St, Flushing, 11367, New York, USA
| |
Collapse
|
5
|
Fu Q, Zhao X, Hu J, Jiao Y, Yan Y, Pan X, Wang X, Jiao F. mRNA vaccines in the context of cancer treatment: from concept to application. J Transl Med 2025; 23:12. [PMID: 39762875 PMCID: PMC11702060 DOI: 10.1186/s12967-024-06033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Immuno-oncology has witnessed remarkable advancements in the past decade, revolutionizing the landscape of cancer therapeutics in an encouraging manner. Among the diverse immunotherapy strategies, mRNA vaccines have ushered in a new era for the therapeutic management of malignant diseases, primarily due to their impressive impact on the COVID-19 pandemic. In this comprehensive review, we offer a systematic overview of mRNA vaccines, focusing on the optimization of structural design, the crucial role of delivery materials, and the administration route. Additionally, we summarize preclinical studies and clinical trials to provide valuable insights into the current status of mRNA vaccines in cancer treatment. Furthermore, we delve into a systematic discussion on the significant challenges facing the current development of mRNA tumor vaccines. These challenges encompass both intrinsic and external factors that are closely intertwined with the successful application of this innovative approach. To pave the way for a more promising future in cancer treatments, a deeper understanding of immunological mechanisms, an increasing number of high-quality clinical trials, and a well-established manufacturing platform are crucial. Collaborative efforts between scientists, clinicians, and industry engineers are essential to achieving these goals.
Collapse
Affiliation(s)
- Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Xiaoming Zhao
- Center of Physical Examination, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Xuchen Pan
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| |
Collapse
|
6
|
Ali AA, Tabll AA. Unlocking potential: Virus-like particles as a promising strategy for effective HCV vaccine development. Virology 2025; 602:110307. [PMID: 39580887 DOI: 10.1016/j.virol.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. The development of prophylactic vaccine is essential for HCV global eradication. Despite over three decades of research, no effective vaccine for HCV has been developed, primarily due to the virus's genetic diversity, immune evasion mechanisms, and incomplete understanding of protective immunity. However, Virus-Like Particles (VLPs) offer a promising approach to overcoming these challenges. VLPs mimic the structure of native virus but without the infectious genome, making them safe and non-infectious vaccines candidates. The capability of VLPs to incorporate neutralizing and conformational epitopes, and engage humoral and cellular immune responses, positions them as a promising tool for overcoming challenges associated with the HCV vaccine development. This review examines the challenges and immunological considerations for HCV vaccine development and provides an overview of the VLPs-based vaccines development. It also discusses future directions and public health implications of HCV vaccine development.
Collapse
Affiliation(s)
- Ahmed A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, (NRC), 12622, Cairo, Egypt.
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt; Egyptian Centre for Research and Regenerative Medicine (ECRRM), 11517, Cairo, Egypt.
| |
Collapse
|
7
|
Lee YS, Cheong MS, Lee J, Bang EK, Park SI, Park HJ, Bae SH, Yoon S, Roh G, Lee S, Cho Y, Ha D, Oh A, Lee SY, Choi EJ, Choi H, Jo S, Lee Y, Kim J, Kwak HW, Bang YJ, Lee D, Shim H, Park YK, Keum G, Nam JH, Kim W. Immunogenicity and protection of a triple repeat domain III mRNA vaccine against Zika virus. Vaccine 2025; 43:126518. [PMID: 39547049 DOI: 10.1016/j.vaccine.2024.126518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Zika virus (ZIKV) infection is primarily transmitted by mosquitoes and often asymptomatic in most individuals. Infection during pregnancy can lead to severe birth defects such as congenital microcephaly, and currently, there is no approved vaccine for ZIKV. Several studies are investigating the development of ZIKV vaccine using DNA and RNA as well as recombinant protein technologies; however, the outcomes thus far have not been consistently noteworthy. In this study, we designed an mRNA vaccine for ZIKV and evaluated its immunogenicity using a mouse model. Our vaccine, termed 3xEIII, encodes a triple repeat of domain III from the ZIKV E protein. We effectively encapsulated the mRNA within lipid nanoparticles (LNPs), administered 3xEIII to mice via two intramuscular injections, and assessed the induced humoral and cellular immune responses. Specifically, the vaccine elicited neutralizing antibodies that effectively eliminated ZIKV from the organs of challenged mice. Notably, 3xEIII conferred both protective effects and long-term immunity. In subsequent challenges conducted 40 weeks after boosting, immunized mice experienced temporary weight loss but showed significantly reduced viral titers in target organs by the 9th day post-infection. Conclusively from these findings, 3xEIII stands out as a promising noteworthy mRNA vaccine candidate for Zika virus.
Collapse
MESH Headings
- Animals
- Zika Virus Infection/prevention & control
- Zika Virus Infection/immunology
- Zika Virus/immunology
- Zika Virus/genetics
- Mice
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Female
- mRNA Vaccines
- Nanoparticles
- Disease Models, Animal
- Mice, Inbred BALB C
- Immunity, Humoral
- Immunogenicity, Vaccine
- Immunity, Cellular
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Injections, Intramuscular
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Liposomes
Collapse
Affiliation(s)
- Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Mi Sun Cheong
- GeneOne Life Science, Inc., 108 Yeoui-Daero, Yeongdeungpo-gu, Seoul 07335, Republic of Korea
| | - Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sang In Park
- Department of Biomedical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Seo-Hyeon Bae
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Subin Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Gahyun Roh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Seonghyun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Youngran Cho
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Dahyeon Ha
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Ayoung Oh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Soo-Yeon Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Eun-Jin Choi
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Huijeong Choi
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Sohee Jo
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Yeeun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Jungmin Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hye Won Kwak
- SML Biopharm, Inc., 17 Deokan-ro 104 beon-gil, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea
| | - Yoo-Jin Bang
- SML Biopharm, Inc., 17 Deokan-ro 104 beon-gil, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea
| | - Dabin Lee
- GeneOne Life Science, Inc., 108 Yeoui-Daero, Yeongdeungpo-gu, Seoul 07335, Republic of Korea
| | - Heeyoun Shim
- GeneOne Life Science, Inc., 108 Yeoui-Daero, Yeongdeungpo-gu, Seoul 07335, Republic of Korea
| | - Young Kun Park
- GeneOne Life Science, Inc., 108 Yeoui-Daero, Yeongdeungpo-gu, Seoul 07335, Republic of Korea
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea; BK21 four Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea; SML Biopharm, Inc., 17 Deokan-ro 104 beon-gil, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea.
| | - Wonil Kim
- GeneOne Life Science, Inc., 108 Yeoui-Daero, Yeongdeungpo-gu, Seoul 07335, Republic of Korea..
| |
Collapse
|
8
|
Ahmed MM, Okesanya OJ, Ukoaka BM, Ibrahim AM, Lucero-Prisno DE. Vesicular Stomatitis Virus: Insights into Pathogenesis, Immune Evasion, and Technological Innovations in Oncolytic and Vaccine Development. Viruses 2024; 16:1933. [PMID: 39772239 PMCID: PMC11680291 DOI: 10.3390/v16121933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications. The virus demonstrates remarkable versatility through its rapid replication cycle, robust immune response induction, and natural neurotropism. Recent technological innovations in VSV engineering have led to enhanced safety protocols and improved therapeutic modifications, particularly in cancer treatment. Attenuation strategies have successfully addressed safety concerns while maintaining the therapeutic efficacy of the virus. The molecular and cellular interactions of VSV, particularly its immune modulation capabilities and tumor-selective properties, have proven valuable in the development of targeted therapeutic strategies. This review explores these aspects, while highlighting the continuing evolution of VSV-based therapeutic approaches in precision medicine.
Collapse
Affiliation(s)
- Mohamed Mustaf Ahmed
- Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu 252, Somalia
| | - Olalekan John Okesanya
- Department of Medical Laboratory Science, Neuropsychiatric Hospital, Aro, Abeokuta 110101, Nigeria;
| | | | - Adamu Muhammad Ibrahim
- Department of Immunology, School of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto 840001, Nigeria;
| | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
- Research and Innovation Office, Southern Leyte State University, Leyte 6500, Philippines
- Research and Development Office, Biliran Province State University, Biliran 6549, Philippines
| |
Collapse
|
9
|
Shariati A, Khani P, Nasri F, Afkhami H, Khezrpour A, Kamrani S, Shariati F, Alavimanesh S, Modarressi MH. mRNA cancer vaccines from bench to bedside: a new era in cancer immunotherapy. Biomark Res 2024; 12:157. [PMID: 39696625 DOI: 10.1186/s40364-024-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Harnessing the power of the immune system to target cancer cells is one of the most appealing approaches for cancer therapy. Among these immunotherapies, messenger ribonucleic acid (mRNA) cancer vaccines are worthy of consideration, as they have demonstrated promising results in clinical trials. These vaccines have proven to be safe and well-tolerated. They can be easily mass-produced in a relatively short time and induce a systemic immune response effective against both the primary tumor and metastases. Transcripts encoding immunomodulatory molecules can also be incorporated into the mRNA, enhancing its efficacy. On the other hand, there are some challenges associated with their application, including mRNA instability, insufficient uptake by immune cells, and intrinsic immunogenicity, which can block mRNA translation. Many innovations have been suggested to overcome these obstacles, including structural modification (such as 5' cap modification), optimizing delivery vehicles (especially dendritic cells (DCs) and nanoparticles), and using antigens that can enhance immunogenicity by circumventing tolerance mechanisms. A popular approach is to combine mRNA cancer vaccines with traditional and novel cancer treatments like chemotherapy, radiotherapy, and immune checkpoint blockade (ICB). They are most efficacious when combined with other therapies like ICBs. There is still a long way to go before these vaccines enter the standard of care for cancer patients, but with the incredible pace of development in this field, their clinical application will soon be witnessed. This review highlights the recent advances and challenges of mRNA cancer vaccines. Finally, some of the most prominent clinical applications of these vaccines will be reviewed.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farzad Nasri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
10
|
Sanchez-Martinez ZV, Alpuche-Lazcano SP, Stuible M, Akache B, Renner TM, Deschatelets L, Dudani R, Harrison BA, McCluskie MJ, Hrapovic S, Blouin J, Wang X, Schuller M, Cui K, Cho JY, Durocher Y. SARS-CoV-2 spike-based virus-like particles incorporate influenza H1/N1 antigens and induce dual immunity in mice. Vaccine 2024; 42:126463. [PMID: 39481241 DOI: 10.1016/j.vaccine.2024.126463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
A vaccine effective against both SARS-CoV-2 and influenza A (IAV) viruses could represent a cost-effective strategy to reduce their combined public health burden as well as potential complications arising from co-infection. Based on previous findings that full-length SARS-CoV-2 spike (S) expression can induce high-level, enveloped VLP (eVLP) production in CHO cells, we tested whether IAV H1N1 hemagglutinin (H1) and neuraminidase (N1) could also be displayed on these particles. We found that co-incorporation of the IAV surface antigens in spike VLPs (S-VLPs) was highly efficient: upon transient co-expression of S + H1 or S + H1 + N1 in CHO cells, the resulting VLPs contained similar amounts of the SARS-CoV-2 S and IAV antigens. The self-assembled bivalent (S/H1) and trivalent (S/H1/N1) VLPs released into the culture media were purified by single-step chromatography using a S-VLP affinity resin. Western blot analysis and immuno‑gold labeling transmission electron microscopy (TEM) of purified VLPs confirmed the coexistence of S, H1 and N1 antigens in the same particles. Finally, we demonstrated that two doses of adjuvanted bivalent and trivalent VLPs elicit specific functional antibodies and cellular immunity in a mouse model, suggesting potential for combined SARS-CoV-2/IAV vaccine development.
Collapse
MESH Headings
- Animals
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Mice
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Influenza A Virus, H1N1 Subtype/immunology
- SARS-CoV-2/immunology
- Neuraminidase/immunology
- Antibodies, Viral/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- CHO Cells
- Cricetulus
- Influenza Vaccines/immunology
- Female
- Mice, Inbred BALB C
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Humans
- Antigens, Viral/immunology
- Antigens, Viral/genetics
Collapse
Affiliation(s)
- Zalma V Sanchez-Martinez
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada.; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada.; Current address: Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca Morelos (CP 62250), Mexico
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Bassel Akache
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Tyler M Renner
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Lise Deschatelets
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Renu Dudani
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Blair A Harrison
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Michael J McCluskie
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Sabahudin Hrapovic
- Aquatic and Crop Resources Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Julie Blouin
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Xinyu Wang
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Matthew Schuller
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Kai Cui
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Jae-Young Cho
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada.; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada..
| |
Collapse
|
11
|
Tscherne A, Kalodimou G, Kupke A, Rohde C, Freudenstein A, Jany S, Kumar S, Sutter G, Krähling V, Becker S, Volz A. Rapid Development of Modified Vaccinia Virus Ankara (MVA)-Based Vaccine Candidates Against Marburg Virus Suitable for Clinical Use in Humans. Vaccines (Basel) 2024; 12:1316. [PMID: 39771978 PMCID: PMC11680136 DOI: 10.3390/vaccines12121316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Marburg virus (MARV) is the etiological agent of Marburg Virus Disease (MVD), a rare but severe hemorrhagic fever disease with high case fatality rates in humans. Smaller outbreaks have frequently been reported in countries in Africa over the last few years, and confirmed human cases outside Africa are, so far, exclusively imported by returning travelers. Over the previous years, MARV has also spread to non-endemic African countries, demonstrating its potential to cause epidemics. Although MARV-specific vaccines are evaluated in preclinical and clinical research, none have been approved for human use. Modified Vaccinia virus Ankara (MVA), a well-established viral vector used to generate vaccines against emerging pathogens, can deliver multiple antigens and has a remarkable clinical safety and immunogenicity record, further supporting its evaluation as a vaccine against MARV. The rapid availability of safe and effective MVA-MARV vaccine candidates would expand the possibilities of multi-factored intervention strategies in endemic countries. METHODS We have used an optimized methodology to rapidly generate and characterize recombinant MVA candidate vaccines that meet the quality requirements to proceed to human clinical trials. As a proof-of-concept for the optimized methodology, we generated two recombinant MVAs that deliver either the MARV glycoprotein (MVA-MARV-GP) or the MARV nucleoprotein (MVA-MARV-NP). RESULTS Infections of human cell cultures with recombinant MVA-MARV-GP and MVA-MARV-NP confirmed the efficient synthesis of MARV-GP and MARV-NP proteins in mammalian cells, which are non-permissive for MVA replication. Prime-boost immunizations in C57BL/6J mice readily induced circulating serum antibodies binding to recombinant MARV-GP and MARV-NP proteins. Moreover, the MVA-MARV-candidate vaccines elicited MARV-specific T-cell responses in C57BL/6J mice. CONCLUSIONS We confirmed the suitability of our two backbone viruses MVA-mCherry and MVA-GFP in a proof-of-concept study to rapidly generate candidate vaccines against MARV. However, further studies are warranted to characterize the protective efficacy of these recombinant MVA-MARV vaccines in other preclinical models and to evaluate them as vaccine candidates in humans.
Collapse
Affiliation(s)
- Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschleißheim, Germany; (A.T.); (G.K.); (A.F.); (S.J.); (S.K.); (G.S.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschleißheim, Germany; (A.T.); (G.K.); (A.F.); (S.J.); (S.K.); (G.S.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany
| | - Alexandra Kupke
- Institute of Virology, Philipps University Marburg, 35037 Marburg, Germany; (A.K.); (C.R.); (S.B.)
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, 35037 Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps University Marburg, 35037 Marburg, Germany; (A.K.); (C.R.); (S.B.)
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, 35037 Marburg, Germany
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschleißheim, Germany; (A.T.); (G.K.); (A.F.); (S.J.); (S.K.); (G.S.)
| | - Sylvia Jany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschleißheim, Germany; (A.T.); (G.K.); (A.F.); (S.J.); (S.K.); (G.S.)
| | - Satendra Kumar
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschleißheim, Germany; (A.T.); (G.K.); (A.F.); (S.J.); (S.K.); (G.S.)
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschleißheim, Germany; (A.T.); (G.K.); (A.F.); (S.J.); (S.K.); (G.S.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany
| | - Verena Krähling
- Institute of Virology, Philipps University Marburg, 35037 Marburg, Germany; (A.K.); (C.R.); (S.B.)
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, 35037 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, 35037 Marburg, Germany; (A.K.); (C.R.); (S.B.)
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, 35037 Marburg, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| |
Collapse
|
12
|
Troncoso-Bravo T, Ramírez MA, Loaiza RA, Román-Cárdenas C, Papazisis G, Garrido D, González PA, Bueno SM, Kalergis AM. Advancement in the development of mRNA-based vaccines for respiratory viruses. Immunology 2024; 173:481-496. [PMID: 39161170 DOI: 10.1111/imm.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Acute respiratory infections are the leading cause of death and illness in children under 5 years old and represent a significant burden in older adults. Primarily caused by viruses infecting the lower respiratory tract, symptoms include cough, congestion, and low-grade fever, potentially leading to bronchiolitis and pneumonia. Messenger ribonucleic acid (mRNA)-based vaccines are biopharmaceutical formulations that employ mRNA molecules to induce specific immune responses, facilitating the expression of viral or bacterial antigens and promoting immunization against infectious diseases. Notably, this technology had significant relevance during the COVID-19 pandemic, as these formulations helped to limit SARS-CoV-2 virus infections, hospitalizations, and deaths. Importantly, mRNA vaccines promise to be implemented as new alternatives for fighting other respiratory viruses, such as influenza, human respiratory syncytial virus, and human metapneumovirus. This review article analyzes mRNA-based vaccines' main contributions, perspectives, challenges, and implications against respiratory viruses.
Collapse
Affiliation(s)
- Tays Troncoso-Bravo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Román-Cárdenas
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georgios Papazisis
- Laboratory of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Clinical Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniel Garrido
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Wang K, Leyba A, Hsu R. Addressing the unmet need in NSCLC progression with advances in second-line therapeutics. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1297-1320. [PMID: 39759220 PMCID: PMC11700623 DOI: 10.37349/etat.2024.00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 01/07/2025] Open
Abstract
Lung cancer is the leading cause of cancer mortality globally, with non-small cell lung cancer (NSCLC) accounting for 85% of cases. Despite advancements in first-line treatments such as immunotherapy and targeted therapies, resistance to these treatments is common, creating a significant unmet need for effective second-line therapies. This review evaluates current and emerging second-line therapeutic options for advanced or metastatic NSCLC, focusing on their efficacy and potential to improve patient outcomes. Anti-angiogenic drugs like ramucirumab combined with chemotherapy, particularly docetaxel, have shown moderate success. Antibody-drug conjugates (ADCs) targeting specific tumor antigens offer a promising avenue for targeted therapy, while chimeric antigen receptor (CAR)-T cell therapy and T-cell receptor therapy leverage the patient's immune system to combat cancer more effectively. mRNA vaccines, although in early stages, show potential for inducing robust immune responses against cancer-specific antigens. Building on this foundation, recent advancements in molecular testing and the exploration of the tumor microenvironment are opening new therapeutic avenues, further enhancing the potential for personalized second-line treatments in NSCLC. While ADCs and bispecific antibodies are gaining traction, more precise biomarkers are needed to optimize treatment response. Regular monitoring through techniques like liquid biopsies allows real-time tracking of mutations such as EGFR T790M, enabling timely therapeutic adjustments. Additionally, the role of neutrophils and macrophages in the tumor microenvironment is increasingly being recognized as a potential therapeutic avenue, with Smad3 emerging as a key target. Further research into drug sequencing, toxicity management, and biomarker development remains crucial to improving NSCLC treatment outcomes.
Collapse
Affiliation(s)
- Kinsley Wang
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Alexis Leyba
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Robert Hsu
- Department of Medicine, Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Park SA, Hwang D, Kim JH, Lee SY, Lee J, Kim HS, Kim KA, Lim B, Lee JE, Jeon YH, Oh TJ, Lee J, An S. Formulation of lipid nanoparticles containing ginsenoside Rg2 and protopanaxadiol for highly efficient delivery of mRNA. Biomater Sci 2024. [PMID: 39480551 DOI: 10.1039/d4bm01070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Lipid nanoparticles (LNPs) are widely recognized as crucial carriers of mRNA in therapeutic and vaccine development. The typical lipid composition of mRNA-LNP systems includes an ionizable lipid, a helper lipid, a polyethylene glycol (PEG)-lipid, and cholesterol. Concerns arise regarding cholesterol's susceptibility to oxidation, potentially leading to undesired immunological responses and toxicity. In this study, we formulated novel LNPs by replacing cholesterol with phytochemical-derived compounds, specifically ginsenoside Rg2 and its derivative phytosterol protopanaxadiol (PPD), and validated their efficacy as mRNA delivery systems. The mRNA-LNP complexes were manually prepared through a simple mixing process. The biocompatibility of these Rg2-based LNPs (Rg2-LNP) and PPD-based LNPs (PPD-LNP) was assessed through cell viability assays, while the protective function of LNPs for mRNA was demonstrated by RNase treatment. Enhanced green fluorescent protein (EGFP) mRNA delivery and expression in A549 and HeLa cells were analyzed using optical microscopy and flow cytometry. The expression efficiency of Rg2-LNP and PPD-LNP was compared with that of commercially available LNPs, with both novel formulations demonstrating superior transfection and EGFP expression. Furthermore, in vivo tests following intramuscular (I.M.) injection in hairless mice demonstrated efficient luciferase (Luc) mRNA delivery and effective Luc expression using Rg2-LNP and PPD-LNP compared to commercial LNPs. Results indicated that the efficiency of EGFP and Luc expression in Rg2-LNP and PPD-LNP surpassed that of the cholesterol-based LNP formulation. These findings suggest that Rg2-LNP and PPD-LNP are promising candidates for future drug and gene delivery systems.
Collapse
Affiliation(s)
- Sin A Park
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Dajeong Hwang
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Jae Hoon Kim
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Seung-Yeul Lee
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Han Sang Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-A Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bumhee Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Dong-gu, Daegu, 41061, Republic of Korea
| | - Jae-Eon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Dong-gu, Daegu, 41061, Republic of Korea
| | - Yong Hyun Jeon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Dong-gu, Daegu, 41061, Republic of Korea
| | - Tae Jeong Oh
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Jaewook Lee
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Sungwhan An
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| |
Collapse
|
15
|
Alom KM, Asa TA, Seo YJ. Simple Enzymatic Incorporation of 2'OMeU Nucleotide at the End of the Poly-A Tail for Enhancement of the mRNA Stability and Protein Expression. ACS Chem Biol 2024; 19:2206-2213. [PMID: 39301931 DOI: 10.1021/acschembio.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
This study focused on the efficient post-transcriptional incorporation of a modified nucleoside at the end of the poly-A tail of mRNA. The modified mRNA was obtained in high yield and served to enhance protein expression. Utilizing poly-U polymerase, our method successfully enabled a single 2'OMeU residue to be incorporated into mRNA, which unexpectedly provided significant stabilization, even with only a single incorporation, to enhance the resistance of mRNA to degradation by cellular exonuclease. This stabilization effect allowed the mRNA to remain viable within the cell for an extended period to ultimately increase the translation efficiency at least 3-fold. This approach to mRNA modification at the 3' end with a single 2'OMeU residue, by utilizing a straightforward tailing method, surpasses other ligation methods in terms of mRNA modification efficiency. Collectively, our results highlight the potential of this method to significantly advance the development of highly effective mRNA-based therapies in the future.
Collapse
Affiliation(s)
- Kazi Morshed Alom
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Tasnima Alam Asa
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
16
|
Xu Z, Song J, Zhang H, Wei Z, Wei D, Yang G, Demongeot J, Zeng Q. A mathematical model simulating the adaptive immune response in various vaccines and vaccination strategies. Sci Rep 2024; 14:23995. [PMID: 39402093 PMCID: PMC11473516 DOI: 10.1038/s41598-024-74221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/24/2024] [Indexed: 10/17/2024] Open
Abstract
Vaccination has been widely recognized as an effective measure for preventing infectious diseases. To facilitate quantitative research into the activation of adaptive immune responses in the human body by vaccines, it is important to develop an appropriate mathematical model, which can provide valuable guidance for vaccine development. In this study, we constructed a novel mathematical model to simulate the dynamics of antibody levels following vaccination, based on principles from immunology. Our model offers a concise and accurate representation of the kinetics of antibody response. We conducted a comparative analysis of antibody dynamics within the body after administering several common vaccines, including traditional inactivated vaccines, mRNA vaccines, and future attenuated vaccines based on defective interfering viral particles (DVG). Our findings suggest that booster shots play a crucial role in enhancing Immunoglobulin G (IgG) antibody levels, and we provide a detailed discussion on the advantages and disadvantages of different vaccine types. From a mathematical standpoint, our model proposes four essential approaches to guide vaccine design: enhancing antigenic T-cell immunogenicity, directing the production of high-affinity antibodies, reducing the rate of IgG decay, and lowering the peak level of vaccine antigen-antibody complexes. Our study contributes to the understanding of vaccine design and its application by explaining various phenomena and providing guidance in comprehending the interactions between antibodies and antigens during the immune process.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou, 253023, China.
| | - Jian Song
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Hongmei Zhang
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Zhenlin Wei
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Dongqing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, 473006, Henan, P. R. China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, 518055, Shenzhen, Guangdong, P. R. China
| | - Guangyu Yang
- Department of Arts, Dezhou University, 253023, Dezhou, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700, La Tronche, France.
| | - Qiangcheng Zeng
- Department of Life Science, Dezhou University, Dezhou, 253023, China.
| |
Collapse
|
17
|
Qu Y, Gao N, Zhang S, Gao L, He B, Wang C, Gong C, Shi Q, Li Z, Yang S, Xiao Y. Role of N6-methyladenosine RNA modification in cancer. MedComm (Beijing) 2024; 5:e715. [PMID: 39252821 PMCID: PMC11381670 DOI: 10.1002/mco2.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells. Previous studies have shown that m6A is pivotal in diverse diseases especially cancer. m6A corelates with the initiation, progression, resistance, invasion, and metastasis of cancer. However, despite these insights, a comprehensive understanding of its specific roles and mechanisms within the complex landscape of cancer is still elusive. This review begins by outlining the key regulatory proteins of m6A modification and their posttranslational modifications (PTMs), as well as the role in chromatin accessibility and transcriptional activity within cancer cells. Additionally, it highlights that m6A modifications impact cancer progression by modulating programmed cell death mechanisms and affecting the tumor microenvironment through various cancer-associated immune cells. Furthermore, the review discusses how microorganisms can induce enduring epigenetic changes and oncogenic effect in microorganism-associated cancers by altering m6A modifications. Last, it delves into the role of m6A modification in cancer immunotherapy, encompassing RNA therapy, immune checkpoint blockade, cytokine therapy, adoptive cell transfer therapy, and direct targeting of m6A regulators. Overall, this review clarifies the multifaceted role of m6A modification in cancer and explores targeted therapies aimed at manipulating m6A modification, aiming to advance cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Yi Qu
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Nannan Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shengwei Zhang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Limin Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Bing He
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chao Wang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chunli Gong
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Qiuyue Shi
- Department of Gastroenterology the First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhibin Li
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shiming Yang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Yufeng Xiao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
18
|
Wu B, Liu Y, Zhang X, Luo D, Wang X, Qiao C, Liu J. A bibliometric insight into nanomaterials in vaccine: trends, collaborations, and future avenues. Front Immunol 2024; 15:1420216. [PMID: 39188723 PMCID: PMC11345159 DOI: 10.3389/fimmu.2024.1420216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Background The emergence of nanotechnology has injected new vigor into vaccine research. Nanovaccine research has witnessed exponential growth in recent years; yet, a comprehensive analysis of related publications has been notably absent. Objective This study utilizes bibliometric methodologies to reveal the evolution of themes and the distribution of nanovaccine research. Methods Using tools such as VOSviewer, CiteSpace, Scimago Graphica, Pajek, R-bibliometrix, and R packages for the bibliometric analysis and visualization of literature retrieved from the Web of Science database. Results Nanovaccine research commenced in 1981. The publication volume exponentially increased, notably in 2021. Leading contributors include the United States, the Chinese Academy of Sciences, the "Vaccine", and researcher Zhao Kai. Other significant contributors comprise China, the University of California, San Diego, Veronique Preat, the Journal of Controlled Release, and the National Natural Science Foundation of China. The USA functions as a central hub for international cooperation. Financial support plays a pivotal role in driving research advancements. Key themes in highly cited articles include vaccine carrier design, cancer vaccines, nanomaterial properties, and COVID-19 vaccines. Among 7402 keywords, the principal nanocarriers include Chitosan, virus-like particles, gold nanoparticles, PLGA, and lipid nanoparticles. Nanovaccine is primarily intended to address diseases including SARS-CoV-2, cancer, influenza, and HIV. Clustering analysis of co-citation networks identifies 9 primary clusters, vividly illustrating the evolution of research themes over different periods. Co-citation bursts indicate that cancer vaccines, COVID-19 vaccines, and mRNA vaccines are pivotal areas of focus for current and future research in nanovaccines. "candidate vaccines," "protein nanoparticle," "cationic lipids," "ionizable lipids," "machine learning," "long-term storage," "personalized cancer vaccines," "neoantigens," "outer membrane vesicles," "in situ nanovaccine," and "biomimetic nanotechnologies" stand out as research interest. Conclusions This analysis emphasizes the increasing scholarly interest in nanovaccine research and highlights pivotal recent research themes such as cancer and COVID-19 vaccines, with lipid nanoparticle-mRNA vaccines leading novel research directions.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xuexue Zhang
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ding Luo
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuejie Wang
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Qiao
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Liu
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Makhijani S, Elossaily GM, Rojekar S, Ingle RG. mRNA-based vaccines - global approach, challenges, and could be a promising wayout for future pandemics. Pharm Dev Technol 2024; 29:559-565. [PMID: 38814266 DOI: 10.1080/10837450.2024.2361656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024]
Abstract
mRNA-based vaccines are assured to significantly boost biopharmaceuticals since outbreak of coronavirus disease- 2019. Respiratory infections, such as influenza, SARS, MERS, COVID-19, and respiratory syncytial virus, often have high transmission rates due to their airborne spread. Respiratory infections can lead to severe illness and death. These outbreaks can cause substantial economic and social disruption, as seen with the COVID-19 pandemic. In our interconnected world, respiratory diseases can spread rapidly across borders. mRNA-based vaccines (e.g. mRNA-1283) can reduce the transmission by creating immunity in the population, thus lowering the incidence and spread of these diseases. Vaccines are crucial for global health security, helping to prevent local outbreaks from becoming global pandemics. Nevertheless, various concerns remain such as intracellular delivery, susceptibility to degradation by catalytic hydrolysis, and instability due to several physiological conditions. Therefore, an hour needed to address these challenges and opportunities for attaining high-quality and stable mRNA-based vaccines with novel drug delivery systems. The authors contributed an extensive review of the mRNA-based clinical development, progress in stability, and delivery challenges to mitigate market needs. In addition, the authors discuss crucial advances in the growth of mRNA-based vaccines to date; which dominate an extensive scope of therapeutic implementation. Finally, recent mRNA-based vaccines in clinical trials, adjuvant benefits, and prospects are discussed.
Collapse
Affiliation(s)
- Shivani Makhijani
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DMIHER), Deemed to be University, Wardha, Maharashtra, India
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | | | - Rahul G Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DMIHER), Deemed to be University, Wardha, Maharashtra, India
| |
Collapse
|
20
|
Li W, Wang C, Zhang Y, Lu Y. Lipid Nanocarrier-Based mRNA Therapy: Challenges and Promise for Clinical Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310531. [PMID: 38287729 DOI: 10.1002/smll.202310531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Due to the outbreak of novel coronavirus pneumonia, messenger RNA (mRNA) technology has attracted heated attention. A specific, safe, and efficient mRNA delivery system is needed. Lipid nanocarriers have become attractive carriers for mRNA delivery due to their high delivery efficiency, few side effects, and easy modification to change their structures and functions. To achieve the desired biological effect, lipid nanocarriers must reach the designated location for effective drug delivery. Therefore, the effects of the composition of lipid nanocarriers on their key properties are briefly reviewed. In addition, the progress of smart drug delivery by changing the composition of lipid nanocarriers is summarized, and the importance of component design and structure is emphasized. Subsequently, this review summarizes the latest progress in lipid nanocarrier-based mRNA technology and provides corresponding strategies for its current challenges, putting forward valuable information for the future design of lipid nanocarriers and mRNA.
Collapse
Affiliation(s)
- Wenchao Li
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chen Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Pichon M, Hollenstein M. Controlled enzymatic synthesis of oligonucleotides. Commun Chem 2024; 7:138. [PMID: 38890393 PMCID: PMC11189433 DOI: 10.1038/s42004-024-01216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Oligonucleotides are advancing as essential materials for the development of new therapeutics, artificial genes, or in storage of information applications. Hitherto, our capacity to write (i.e., synthesize) oligonucleotides is not as efficient as that to read (i.e., sequencing) DNA/RNA. Alternative, biocatalytic methods for the de novo synthesis of natural or modified oligonucleotides are in dire need to circumvent the limitations of traditional synthetic approaches. This Perspective article summarizes recent progress made in controlled enzymatic synthesis, where temporary blocked nucleotides are incorporated into immobilized primers by polymerases. While robust protocols have been established for DNA, RNA or XNA synthesis is more challenging. Nevertheless, using a suitable combination of protected nucleotides and polymerase has shown promises to produce RNA oligonucleotides even though the production of long DNA/RNA/XNA sequences (>1000 nt) remains challenging. We surmise that merging ligase- and polymerase-based synthesis would help to circumvent the current shortcomings of controlled enzymatic synthesis.
Collapse
Affiliation(s)
- Maëva Pichon
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
22
|
Park JK, Lee EB, Winthrop KL. What rheumatologists need to know about mRNA vaccines: current status and future of mRNA vaccines in autoimmune inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:687-695. [PMID: 38413167 DOI: 10.1136/ard-2024-225492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Messenger RNA (mRNA) vaccines as a novel vaccine platform offer new tools to effectively combat both emerging and existing pathogens which were previously not possible. The 'plug and play' feature of mRNA vaccines enables swift design and production of vaccines targeting complex antigens and rapid incorporation of new vaccine constituents as needed. This feature makes them likely to be adopted for widespread clinical use in the future.Currently approved mRNA vaccines include only those against SARS-CoV-2 virus. These vaccines demonstrate robust immunogenicity and offer substantial protection against severe disease. Numerous mRNA vaccines against viral pathogens are in the early to late phase of development. Several mRNA vaccines for influenza are tested in clinical trials, with some already in phase 3 studies. Other vaccines in the early and late phases of development include those targeting Cytomegalovirus, varicella zoster virus, respiratory syncytial virus and Epstein-Barr virus. Many of these vaccines will likely be indicated for immunosuppressed populations including those with autoimmune inflammatory rheumatic diseases (AIIRD). This review focuses on the mechanism, safety and efficacy of mRNA in general and summarises the status of mRNA vaccines in development for common infectious diseases of particular interest for patients with AIIRD.
Collapse
Affiliation(s)
- Jin Kyun Park
- Rheumatology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
| | - Eun Bong Lee
- Internal Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
| | - Kevin L Winthrop
- School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
23
|
Song J, Zhang Y, Zhou C, Zhan J, Cheng X, Huang H, Mao S, Zong Z. The dawn of a new Era: mRNA vaccines in colorectal cancer immunotherapy. Int Immunopharmacol 2024; 132:112037. [PMID: 38599100 DOI: 10.1016/j.intimp.2024.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Colorectal cancer (CRC) is a typical cancer that accounts for 10% of all new cancer cases annually and nearly 10% of all cancer deaths. Despite significant progress in current classical interventions for CRC, these traditional strategies could be invasive and with numerous adverse effects. The poor prognosis of CRC patients highlights the evident and pressing need for more efficient and targeted treatment. Novel strategies regarding mRNA vaccines for anti-tumor therapy have also been well-developed since the successful application for the prevention of COVID-19. mRNA vaccine technology won the 2023 Nobel Prize in Physiology or Medicine, signaling a new direction in human anti-cancer treatment: mRNA medicine. As a promising new immunotherapy in CRC and other multiple cancer treatments, the mRNA vaccine has higher specificity, better efficacy, and fewer side effects than traditional strategies. The present review outlines the basics of mRNA vaccines and their advantages over other vaccines and informs an available strategy for developing efficient mRNA vaccines for CRC precise treatment. In the future, more exploration of mRNA vaccines for CRC shall be attached, fostering innovation to address existing limitations.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chulin Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; The Second Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianhao Zhan
- Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
24
|
Mainali N, Shrestha AB, Shrestha S, Chapagain S, Khanal B, Shrestha LB, Shrestha S, Jaiswal V. mRNA vaccines as a revolutionary approach to combat cancer. Postgrad Med J 2024; 100:279-282. [PMID: 38158700 DOI: 10.1093/postmj/qgad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Nischal Mainali
- Kathmandu Medical College, Sinamangal, Kathmandu, GPO Box 21266, Nepal
- Medical Research Hub, Kathmandu, Nepal
| | - Abhigan Babu Shrestha
- Medical Research Hub, Kathmandu, Nepal
- Faculty of Internal Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh
| | - Shubham Shrestha
- Medical Research Hub, Kathmandu, Nepal
- Patan Academy of Health Sciences, Lalitpur, P.O. Box 26500, Nepal
| | - Sanskriti Chapagain
- Medical Research Hub, Kathmandu, Nepal
- Devdaha Medical College and Research Institute Pvt. Ltd, Devdaha, Rupandehi, Nepal
| | - Barsha Khanal
- Medical Research Hub, Kathmandu, Nepal
- Shree Birendra Hospital, Chhauni, Kathmandu
| | - Lok Bahadur Shrestha
- Faculty of Medicine, School of Biomedical Science, the Kirby Institute, University of New South Wales, Kensington, New South Wales, Australia
| | - Sajina Shrestha
- Medical Research Hub, Kathmandu, Nepal
- KIST Medical College, Imadol, Patan, Nepal
| | - Vikash Jaiswal
- Department of Research and Academic Affairs, Larkin Community Hospital, South Miami, FL, United States
| |
Collapse
|
25
|
Niazi SK, Magoola M. Transcytosis-Driven Treatment of Neurodegenerative Disorders by mRNA-Expressed Antibody-Transferrin Conjugates. Biomedicines 2024; 12:851. [PMID: 38672205 PMCID: PMC11048317 DOI: 10.3390/biomedicines12040851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The recent setbacks in the withdrawal and approval delays of antibody treatments of neurodegenerative disorders (NDs), attributed to their poor entry across the blood-brain barrier (BBB), emphasize the need to bring novel approaches to enhance the entry across the BBB. One such approach is conjugating the antibodies that bind brain proteins responsible for NDs with the transferrin molecule. This glycoprotein transports iron into cells, connecting with the transferrin receptors (TfRs), piggybacking an antibody-transferrin complex that can subsequently release the antibody in the brain or stay connected while letting the antibody bind. This process increases the concentration of antibodies in the brain, enhancing therapeutic efficacy with targeted delivery and minimum systemic side effects. Currently, this approach is experimented with using drug-transferring conjugates assembled in vitro. Still, a more efficient and safer alternative is to express the conjugate using mRNA technology, as detailed in this paper. This approach will expedite safer discoveries that can be made available at a much lower cost than the recombinant process with in vitro conjugation. Most importantly, the recommendations made in this paper may save the antibodies against the NDs that seem to be failing despite their regulatory approvals.
Collapse
|
26
|
Zhu C, Pang S, Liu J, Duan Q. Current Progress, Challenges and Prospects in the Development of COVID-19 Vaccines. Drugs 2024; 84:403-423. [PMID: 38652356 DOI: 10.1007/s40265-024-02013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 04/25/2024]
Abstract
The COVID-19 pandemic has resulted in over 772 million confirmed cases, including nearly 7 million deaths, according to the World Health Organization (WHO). Leveraging rapid development, accelerated vaccine approval processes, and large-scale production of various COVID-19 vaccines using different technical platforms, the WHO declared an end to the global health emergency of COVID-19 on May 5, 2023. Current COVID-19 vaccines encompass inactivated, live attenuated, viral vector, protein subunit, nucleic acid (DNA and RNA), and virus-like particle (VLP) vaccines. However, the efficacy of these vaccines is diminishing due to the constant mutation of SARS-CoV-2 and the heightened immune evasion abilities of emerging variants. This review examines the impact of the COVID-19 pandemic, the biological characteristics of the virus, and its diverse variants. Moreover, the review underscores the effectiveness, advantages, and disadvantages of authorized COVID-19 vaccines. Additionally, it analyzes the challenges, strategies, and future prospects of developing a safe, broad-spectrum vaccine that confers sufficient and sustainable immune protection against new variants of SARS-CoV-2. These discussions not only offer insight for the development of next-generation COVID-19 vaccines but also summarize experiences for combating future emerging viruses.
Collapse
Affiliation(s)
- Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Shengmei Pang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jiaqi Liu
- Department of Veterinary Microbiology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Qiangde Duan
- Department of Veterinary Microbiology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
27
|
Parhiz H, Atochina-Vasserman EN, Weissman D. mRNA-based therapeutics: looking beyond COVID-19 vaccines. Lancet 2024; 403:1192-1204. [PMID: 38461842 DOI: 10.1016/s0140-6736(23)02444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/06/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024]
Abstract
Recent advances in mRNA technology and its delivery have enabled mRNA-based therapeutics to enter a new era in medicine. The rapid, potent, and transient nature of mRNA-encoded proteins, without the need to enter the nucleus or the risk of genomic integration, makes them desirable tools for treatment of a range of diseases, from infectious diseases to cancer and monogenic disorders. The rapid pace and ease of mass-scale manufacturability of mRNA-based therapeutics supported the global response to the COVID-19 pandemic. Nonetheless, challenges remain with regards to mRNA stability, duration of expression, delivery efficiency, and targetability, to broaden the applicability of mRNA therapeutics beyond COVID-19 vaccines. By learning from the rapidly expanding preclinical and clinical studies, we can optimise the mRNA platform to meet the clinical needs of each disease. Here, we will summarise the recent advances in mRNA technology; its use in vaccines, immunotherapeutics, protein replacement therapy, and genomic editing; and its delivery to desired specific cell types and organs for development of a new generation of targeted mRNA-based therapeutics.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Cao H, Li H, Luan N, Zhang H, Lin K, Hu J, Song J, Liu C. A rabies mRNA vaccine with H270P mutation in its glycoprotein induces strong cellular and humoral immunity. Vaccine 2024; 42:1116-1121. [PMID: 38262810 DOI: 10.1016/j.vaccine.2024.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Rabies is a lethal zoonotic disease that kills approximately 60,000 people each year. As the sole virion-surface protein, the rabies virus glycoprotein (RABV-G) mediates its host-cell entry. RABV-G's pre-fusion conformation displays major known neutralizing antibody epitopes, which can be used as immunogen for prophylaxis. H270P targeted mutation can stabilize RABV-G in the pre-fusion conformation. Herein, we report the development of a highly promising rabies mRNA vaccine composed of H270P targeted mutation packaged in lipid nanoparticle (LNP), named LNP-mRNA-G-H270P. Humoral and cellular immunity of this vaccine were assessed in mice comparing to the unmodified LNP-mRNA-G and a commercially available inactivated vaccine using one-way analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test. The results show the titer of RABV-G-specific IgG and virus-neutralization antibody titers (VNTs) in LNP-mRNA-G-H270P group were significant higher than those in LNP-mRNA-G and inactivated vaccine groups. Likewise, IFN-γ-secreting splenocytes, level of IL-2 in the supernatant of spleen cells, as well as IFN-γ-producing CD4+ T cells in LNP-mRNA-G-H270P group were significant higher than those in the other two vaccine groups. Hence, these results demonstrated that targeting the H270P mutation in RABV-G through an mRNA-LNP vaccine platform represents a promising strategy for developing a more efficacious rabies vaccine.
Collapse
Affiliation(s)
- Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Hui Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Haihao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Kangyang Lin
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Jingping Hu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.
| | - Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.
| |
Collapse
|
29
|
Enilama O, Yau K, Er L, Atiquzzaman M, Oliver MJ, Romney MG, Leis JA, Abe KT, Qi F, Colwill K, Gingras AC, Hladunewich MA, Levin A. Humoral Response Following 3 Doses of mRNA COVID-19 Vaccines in Patients With Non-Dialysis-Dependent CKD: An Observational Study. Can J Kidney Health Dis 2024; 11:20543581231224127. [PMID: 38292817 PMCID: PMC10826386 DOI: 10.1177/20543581231224127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Background Chronic kidney disease (CKD) is associated with a lower serologic response to vaccination compared to the general population. There is limited information regarding the serologic response to coronavirus disease 2019 (COVID-19) vaccination in the non-dialysis-dependent CKD (NDD-CKD) population, particularly after the third dose and whether this response varies by estimated glomerular filtration rate (eGFR). Methods The NDD-CKD (G1-G5) patients who received 3 doses of mRNA COVID-19 vaccines were recruited from renal clinics within British Columbia and Ontario, Canada. Between August 27, 2021, and November 30, 2022, blood samples were collected serially for serological testing every 3 months within a 9-month follow-up period. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) anti-spike, anti-receptor binding domain (RBD), and anti-nucleocapsid protein (NP) levels were determined by enzyme-linked immunosorbent assay (ELISA). Results Among 285 NDD-CKD patients, the median age was 67 (interquartile range [IQR], 52-77) years, 58% were men, 48% received BNT162b2 as their third dose, 22% were on immunosuppressive treatment, and COVID-19 infection by anti-NP seropositivity was observed in 37 of 285 (13%) patients. Following the third dose, anti-spike and anti-RBD levels peaked at 2 months, with geometric mean levels at 1131 and 1672 binding antibody units per milliliter (BAU/mL), respectively, and seropositivity rates above 93% and 85%, respectively, over the 9-month follow-up period. There was no association between eGFR or urine albumin-creatinine ratio (ACR) with mounting a robust antibody response or in antibody levels over time. The NDD-CKD patients on immunosuppressive treatment were less likely to mount a robust anti-spike response in univariable (odds ratio [OR] 0.43, 95% confidence interval [CI]: 0.20, 0.93) and multivariable (OR 0.52, 95% CI: 0.25, 1.10) analyses. An interaction between age, immunoglobulin G (IgG) antibody levels, and time was observed in both unadjusted (anti-spike: P = .005; anti-RBD: P = .03) and adjusted (anti-spike: P = .004; anti-RBD: P = .03) models, with older individuals having a more pronounced decline in antibody levels over time. Conclusion Most NDD-CKD patients were seropositive for anti-spike and anti-RBD after 3 doses of mRNA COVID-19 vaccines and we did not observe any differences in the antibody response by eGFR.
Collapse
Affiliation(s)
- Omosomi Enilama
- Experimental Medicine, Department of Medicine, The University of British Columbia, Vancouver, Canada
- Nephrology Research Program, Providence Research, Vancouver, BC, Canada
| | - Kevin Yau
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Nephrology, Department of Medicine, Unity Health Toronto, ON, Canada
| | - Lee Er
- BC Renal, Vancouver, BC, Canada
| | | | - Matthew J. Oliver
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Ontario Renal Network, Toronto, ON, Canada
| | - Marc G. Romney
- Department of Pathology and Laboratory Medicine, St. Paul’s Hospital, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Jerome A. Leis
- Division of Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Kento T. Abe
- Department of Molecular Genetics, University of Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Michelle A. Hladunewich
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Ontario Renal Network, Toronto, ON, Canada
| | - Adeera Levin
- BC Renal, Vancouver, BC, Canada
- Division of Nephrology, The University of British Columbia, Vancouver, Canada
- St. Paul’s Hospital, Vancouver, BC, Canada
| |
Collapse
|
30
|
Che S, Feng X, Li Z, Su Z, Ma G, Li Z, Yu A, Liu M, Zhang S. On-column capping of poly dT media-tethered mRNA accomplishes high capping efficiency, enhanced mRNA recovery, and improved stability against RNase. Biotechnol Bioeng 2024; 121:206-218. [PMID: 37747706 DOI: 10.1002/bit.28560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
The messenger RNA (mRNA) 5'-cap structure is indispensable for mRNA translation initiation and stability. Despite its importance, large-scale production of capped mRNA through in vitro transcription (IVT) synthesis using vaccinia capping enzyme (VCE) is challenging, due to the requirement of tedious and multiple pre-and-post separation steps causing mRNA loss and degradation. Here in the present study, we found that the VCE together with 2'-O-methyltransferase can efficiently catalyze the capping of poly dT media-tethered mRNA to produce mRNA with cap-1 structure under an optimized condition. We have therefore designed an integrated purification and solid-based capping protocol, which involved capturing the mRNA from the IVT system by using poly dT media through its affinity binding for 3'-end poly-A in mRNA, in situ capping of mRNA 5'-end by supplying the enzymes, and subsequent eluting of the capped mRNA from the poly dT media. Using mRNA encoding the enhanced green fluorescent protein as a model system, we have demonstrated that the new strategy greatly simplified the mRNA manufacturing process and improved its overall recovery without sacrificing the capping efficiency, as compared with the conventional process, which involved at least mRNA preseparation from IVT, solution-based capping, and post-separation and recovering steps. Specifically, the new process accomplished a 1.76-fold (84.21% over 47.79%) increase in mRNA overall recovery, a twofold decrease in operation time (70 vs. 140 min), and similar high capping efficiency (both close to 100%). Furthermore, the solid-based capping process greatly improved mRNA stability, such that the integrity of the mRNA could be well kept during the capping process even in the presence of exogenously added RNase; in contrast, mRNA in the solution-based capping process degraded almost completely. Meanwhile, we showed that such a strategy can be operated both in a batch mode and in an on-column continuous mode. The results presented in this work demonstrated that the new on-column capping process developed here can accomplish high capping efficiency, enhanced mRNA recovery, and improved stability against RNase; therefore, can act as a simple, efficient, and cost-effective platform technology suitable for large-scale production of capped mRNA.
Collapse
Affiliation(s)
- Shiyi Che
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
- Monash Suzhou Research Institute, Monash University, Suzhou, China
| | - Xue Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
- Monash Suzhou Research Institute, Monash University, Suzhou, China
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Zhikao Li
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
- Monash Suzhou Research Institute, Monash University, Suzhou, China
| | - Aibing Yu
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
- Monash Suzhou Research Institute, Monash University, Suzhou, China
| | - Minsu Liu
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
- Monash Suzhou Research Institute, Monash University, Suzhou, China
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Poveda C, Chen YL, Strych U. Generation and Characterization of In Vitro Transcribed mRNA. Methods Mol Biol 2024; 2786:147-165. [PMID: 38814393 DOI: 10.1007/978-1-0716-3770-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Here we describe the in vitro preparation of mRNA from DNA templates, including setting up the transcription reaction, mRNA capping, and mRNA labeling. We then describe methods used for mRNA characterization, including UV and fluorescence spectrophotometry, as well as gel electrophoresis. Moreover, characterization of the in vitro transcribed RNA using the Bioanalyzer instrument is described, allowing a higher resolution analysis of the target molecules. For the in vitro testing of the mRNA molecules, we include protocols for the transfection of various primary cell cultures and the confirmation of translation by intracellular staining and western blotting.
Collapse
Affiliation(s)
- Cristina Poveda
- Baylor College of Medicine, Department of Pediatrics, Division of Pediatric Tropical Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Yi-Lin Chen
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Ulrich Strych
- Baylor College of Medicine, Department of Pediatrics, Division of Pediatric Tropical Medicine, Houston, TX, USA.
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA.
| |
Collapse
|
32
|
Liu S, Hu M, Liu X, Liu X, Chen T, Zhu Y, Liang T, Xiao S, Li P, Ma X. Nanoparticles and Antiviral Vaccines. Vaccines (Basel) 2023; 12:30. [PMID: 38250843 PMCID: PMC10819235 DOI: 10.3390/vaccines12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Viruses have threatened human lives for decades, causing both chronic and acute infections accompanied by mild to severe symptoms. During the long journey of confrontation, humans have developed intricate immune systems to combat viral infections. In parallel, vaccines are invented and administrated to induce strong protective immunity while generating few adverse effects. With advancements in biochemistry and biophysics, different kinds of vaccines in versatile forms have been utilized to prevent virus infections, although the safety and effectiveness of these vaccines are diverse from each other. In this review, we first listed and described major pathogenic viruses and their pandemics that emerged in the past two centuries. Furthermore, we summarized the distinctive characteristics of different antiviral vaccines and adjuvants. Subsequently, in the main body, we reviewed recent advances of nanoparticles in the development of next-generation vaccines against influenza viruses, coronaviruses, HIV, hepatitis viruses, and many others. Specifically, we described applications of self-assembling protein polymers, virus-like particles, nano-carriers, and nano-adjuvants in antiviral vaccines. We also discussed the therapeutic potential of nanoparticles in developing safe and effective mucosal vaccines. Nanoparticle techniques could be promising platforms for developing broad-spectrum, preventive, or therapeutic antiviral vaccines.
Collapse
Affiliation(s)
- Sen Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Meilin Hu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Xiaoqing Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xingyu Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Tao Chen
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Yiqiang Zhu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Taizhen Liang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Shiqi Xiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Peiwen Li
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
33
|
Chen Z, Hu Y, Mei H. Advances in CAR-Engineered Immune Cell Generation: Engineering Approaches and Sourcing Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303215. [PMID: 37906032 PMCID: PMC10724421 DOI: 10.1002/advs.202303215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/03/2023] [Indexed: 11/02/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a highly efficacious treatment modality for refractory and relapsed hematopoietic malignancies in recent years. Furthermore, CAR technologies for cancer immunotherapy have expanded from CAR-T to CAR-natural killer cell (CAR-NK), CAR-cytokine-induced killer cell (CAR-CIK), and CAR-macrophage (CAR-MΦ) therapy. Nevertheless, the high cost and complex manufacturing processes of ex vivo generation of autologous CAR products have hampered broader application. There is an urgent need to develop an efficient and economical paradigm shift for exploring new sourcing strategies and engineering approaches toward generating CAR-engineered immune cells to benefit cancer patients. Currently, researchers are actively investigating various strategies to optimize the preparation and sourcing of these potent immunotherapeutic agents. In this work, the latest research progress is summarized. Perspectives on the future of CAR-engineered immune cell manufacturing are provided, and the engineering approaches, and diverse sources used for their development are focused upon.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Yu Hu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Heng Mei
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| |
Collapse
|
34
|
Shi L, Yang J, Nie Y, Huang Y, Gu H. Hybrid mRNA Nano Vaccine Potentiates Antigenic Peptide Presentation and Dendritic Cell Maturation for Effective Cancer Vaccine Therapy and Enhances Response to Immune Checkpoint Blockade. Adv Healthc Mater 2023; 12:e2301261. [PMID: 37822133 DOI: 10.1002/adhm.202301261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Cancer vaccines combined with immune checkpoint blockades (ICB) represent great potential application, yet the insufficient tumor antigen presentation and immature dendritic cells hinder improved efficacy. Here, a hybrid nano vaccine composed by hyper branched poly(beta-amino ester), modified iron oxide nano adjuvant and messenger RNA (mRNA) encoded with model antigen ovalbumin (OVA) is presented. The nano vaccine outperforms three commercialized reagents loaded with the same mRNA, including Lipofectamine MessengerMax, jetPRIME, and in vivo-jetRNA in promoting dendritic cells' transfection, maturation, and peptide presentation. In an OVA-expressing murine model, intratumoral administration of the nano vaccine significantly induced macrophages and dendritic cells' presenting peptides and expressing co-stimulatory CD86. The nano vaccine also elicited strong antigen-specific splenocyte response and promoted CD8+ T cell infiltration. In combination with ICB, the nano vaccine aroused robust tumor suppression in murine models with large tumor burdens (initial volume >300 mm3 ). The hybrid mRNA vaccine represents a versatile and readily transformable platform and augments response to ICB.
Collapse
Affiliation(s)
- Lu Shi
- Nano Biomedical Research Center, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Jingxing Yang
- Nano Biomedical Research Center, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Ying Nie
- Nano Biomedical Research Center, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yizhou Huang
- Nano Biomedical Research Center, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Hongchen Gu
- Nano Biomedical Research Center, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| |
Collapse
|
35
|
Mehta M, Bui TA, Yang X, Aksoy Y, Goldys EM, Deng W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS MATERIALS AU 2023; 3:600-619. [PMID: 38089666 PMCID: PMC10636777 DOI: 10.1021/acsmaterialsau.3c00032] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 02/13/2024]
Abstract
Over the past decade, the therapeutic potential of nanomaterials as novel drug delivery systems complementing conventional pharmacology has been widely acknowledged. Among these nanomaterials, lipid-based nanoparticles (LNPs) have shown remarkable pharmacological performance and promising therapeutic outcomes, thus gaining substantial interest in preclinical and clinical research. In this review, we introduce the main types of LNPs used in drug formulations such as liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, and lipid polymer hybrid nanoparticles, focusing on their main physicochemical properties and therapeutic potential. We discuss computational studies and modeling techniques to enhance the understanding of how LNPs interact with therapeutic cargo and to predict the potential effectiveness of such interactions in therapeutic applications. We also analyze the benefits and drawbacks of various LNP production techniques such as nanoprecipitation, emulsification, evaporation, thin film hydration, microfluidic-based methods, and an impingement jet mixer. Additionally, we discuss the major challenges associated with industrial development, including stability and sterilization, storage, regulatory compliance, reproducibility, and quality control. Overcoming these challenges and facilitating regulatory compliance represent the key steps toward LNP's successful commercialization and translation into clinical settings.
Collapse
Affiliation(s)
- Meenu Mehta
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Thuy Anh Bui
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xinpu Yang
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yagiz Aksoy
- Cancer
Diagnosis and Pathology Group, Kolling Institute of Medical Research,
Royal North Shore Hospital, St Leonards NSW 2065 Australia - Sydney
Medical School, University of Sydney, Sydney NSW 2006 Australia
| | - Ewa M. Goldys
- Graduate
School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale
Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - Wei Deng
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
36
|
Ma S, Li X, Mai Y, Guo J, Zuo W, Yang J. Immunotherapeutic treatment of lung cancer and bone metastasis with a mPLA/mRNA tumor vaccine. Acta Biomater 2023; 169:489-499. [PMID: 37536492 DOI: 10.1016/j.actbio.2023.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Malignant expansion and rapid metastasis are the main limiting factors to successful treatment of lung cancer. Messenger RNA (mRNA) tumor vaccines are a promising immunotherapeutic treatment for lung cancer as well as other metastatic cancers. Herein, we developed a mPLA/mRNA tumor vaccine (mLPR) to escort mRNA into the cytoplasm and improve immune response with the help of TLR4 agonist mPLA. After nasal administration, the mLPR vaccine stimulated the maturation of dendritic cells, reprogramed M2 macrophages into M1 macrophages, as well cross-activated innate and adaptive immune responses. The mLPR vaccine inhibited the development of lung cancer and reduced bone metastasis by means of immune cell activation, IFN-γ/IL-12 cytokine secretion, and natural killer cell-mediated antibody dependent cellular cytotoxicity. The mPLA/mRNA tumor vaccine will provide ideas and application prospects for the use of mRNA tumor vaccine in the treatment of lung cancer. STATEMENT OF SIGNIFICANCE: Lung cancer and bone metastasis seriously affect patient survival, and traditional treatment methods are inefficient and have many side effects. We have constructed an mRNA vaccine that simultaneously activates the innate immune and adaptive responses of the body, in order to achieve better immunotherapeutic effects. To sum up, we confirmed through vaccine design and in vitro and in vivo immunological studies that the mLPR vaccine stimulated the maturation of dendritic cells, reprogrammed M2 macrophages into M1 macrophages, as well cross activated in vivo and adaptive immune responses.
Collapse
Affiliation(s)
- Shijie Ma
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, PR China
| | - Xiaolong Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, PR China
| | - Yaping Mai
- Science and Technology Center, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, PR China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, PR China
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, PR China.
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, PR China.
| |
Collapse
|
37
|
Perrotta C, Fenizia C, Carnovale C, Pozzi M, Trabattoni D, Cervia D, Clementi E. Updated Considerations for the Immunopharmacological Aspects of the "Talented mRNA Vaccines". Vaccines (Basel) 2023; 11:1481. [PMID: 37766157 PMCID: PMC10534931 DOI: 10.3390/vaccines11091481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Messenger RNA (mRNA) vaccines belong to a new class of medications, RNA therapeutics, including both coding and non-coding RNAs. The use of mRNA as a therapy is based on the biological role of mRNA itself, namely its translation into a functional protein. The goal of mRNA vaccines is to produce a specific antigen in cells to elicit an immune response that might be prophylactic or therapeutic. The potential of mRNA as vaccine has been envisaged for years but its efficacy has been clearly demonstrated with the approval of COVID-19 vaccines in 2021. Since then, mRNA vaccines have been in the pipeline for diseases that are still untreatable. There are many advantages of mRNA vaccines over traditional vaccines, including easy and cost-effective production, high safety, and high-level antigen expression. However, the nature of mRNA itself and some technical issues pose challenges associated with the vaccines' development and use. Here we review the immunological and pharmacological features of mRNA vaccines by discussing their pharmacokinetics, mechanisms of action, and safety, with a particular attention on the advantages and challenges related to their administration. Furthermore, we present an overview of the areas of application and the clinical trials that utilize a mRNA vaccine as a treatment.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milano, Italy;
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy;
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| |
Collapse
|
38
|
Gupta S, Pellett S. Recent Developments in Vaccine Design: From Live Vaccines to Recombinant Toxin Vaccines. Toxins (Basel) 2023; 15:563. [PMID: 37755989 PMCID: PMC10536331 DOI: 10.3390/toxins15090563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Vaccines are one of the most effective strategies to prevent pathogen-induced illness in humans. The earliest vaccines were based on live inoculations with low doses of live or related pathogens, which carried a relatively high risk of developing the disease they were meant to prevent. The introduction of attenuated and killed pathogens as vaccines dramatically reduced these risks; however, attenuated live vaccines still carry a risk of reversion to a pathogenic strain capable of causing disease. This risk is completely eliminated with recombinant protein or subunit vaccines, which are atoxic and non-infectious. However, these vaccines require adjuvants and often significant optimization to induce robust T-cell responses and long-lasting immune memory. Some pathogens produce protein toxins that cause or contribute to disease. To protect against the effects of such toxins, chemically inactivated toxoid vaccines have been found to be effective. Toxoid vaccines are successfully used today at a global scale to protect against tetanus and diphtheria. Recent developments for toxoid vaccines are investigating the possibilities of utilizing recombinant protein toxins mutated to eliminate biologic activity instead of chemically inactivated toxins. Finally, one of the most contemporary approaches toward vaccine design utilizes messenger RNA (mRNA) as a vaccine candidate. This approach was used globally to protect against coronavirus disease during the COVID-19 pandemic that began in 2019, due to its advantages of quick production and scale-up, and effectiveness in eliciting a neutralizing antibody response. Nonetheless, mRNA vaccines require specialized storage and transport conditions, posing challenges for low- and middle-income countries. Among multiple available technologies for vaccine design and formulation, which technology is most appropriate? This review focuses on the considerable developments that have been made in utilizing diverse vaccine technologies with a focus on vaccines targeting bacterial toxins. We describe how advancements in vaccine technology, combined with a deeper understanding of pathogen-host interactions, offer exciting and promising avenues for the development of new and improved vaccines.
Collapse
Affiliation(s)
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| |
Collapse
|
39
|
Tsoumani ME, Voyiatzaki C, Efstathiou A. Malaria Vaccines: From the Past towards the mRNA Vaccine Era. Vaccines (Basel) 2023; 11:1452. [PMID: 37766129 PMCID: PMC10536368 DOI: 10.3390/vaccines11091452] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Plasmodium spp. is the etiological agent of malaria, a life-threatening parasitic disease transmitted by infected mosquitoes. Malaria remains a major global health challenge, particularly in endemic regions. Over the years, various vaccine candidates targeting different stages of Plasmodium parasite life-cycle have been explored, including subunit vaccines, vectored vaccines, and whole organism vaccines with Mosquirix, a vaccine based on a recombinant protein, as the only currently approved vaccine for Plasmodium falciparum malaria. Despite the aforementioned notable progress, challenges such as antigenic diversity, limited efficacy, resistant parasites escaping protective immunity and the need for multiple doses have hindered the development of a highly efficacious malaria vaccine. The recent success of mRNA-based vaccines against SARS-CoV-2 has sparked renewed interest in mRNA vaccine platforms. The unique mRNA vaccine features, including their potential for rapid development, scalability, and flexibility in antigen design, make them a promising avenue for malaria vaccine development. This review provides an overview of the malaria vaccines' evolution from the past towards the mRNA vaccine era and highlights their advantages in overcoming the limitations of previous malaria vaccine candidates.
Collapse
Affiliation(s)
- Maria E. Tsoumani
- Department of Biomedical Sciences, University of West Attica, 12243 Aigaleo, Greece; (M.E.T.); (C.V.)
| | - Chrysa Voyiatzaki
- Department of Biomedical Sciences, University of West Attica, 12243 Aigaleo, Greece; (M.E.T.); (C.V.)
| | - Antonia Efstathiou
- Department of Biomedical Sciences, University of West Attica, 12243 Aigaleo, Greece; (M.E.T.); (C.V.)
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
40
|
Prakash S. mRNA-Based Nanomedicine: A New Strategy for Treating Infectious Diseases and Beyond. Eur J Drug Metab Pharmacokinet 2023; 48:515-529. [PMID: 37656402 DOI: 10.1007/s13318-023-00849-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Messenger RNA (mRNA) has emerged as a new therapeutic agent for the prevention and treatment of a wide range of diseases. The recent achievement of the two lipid nanoparticle-mRNA vaccines developed by Moderna and Pfizer-BioNTech against coronavirus 2019 (COVID-19) disease in record time highlights the huge potential of mRNA technology and reshaping the landscape of vaccine development and the future of gene therapies. Challenges related to translational efficacy, mRNA stability, immunogenicity, and ensuring the quality of final products have been significantly improved by recent advancements in mRNA engineering and delivery. Thus, the present review aims to provide the latest innovations that incrementally overcome these issues and future directions in the context of ongoing clinical trials against infectious diseases and beyond.
Collapse
Affiliation(s)
- Satyendra Prakash
- Centre of Biotechnology, Faculty of Science, University of Allahabad, Allahabad, India.
| |
Collapse
|
41
|
Tai W, Zheng J, Zhang X, Shi J, Wang G, Guan X, Zhu J, Perlman S, Du L. MERS-CoV RBD-mRNA vaccine induces potent and broadly neutralizing antibodies with protection against MERS-CoV infection. Virus Res 2023; 334:199156. [PMID: 37336390 PMCID: PMC10278997 DOI: 10.1016/j.virusres.2023.199156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV), a highly pathogenic coronavirus in the same Betacoronavirus genus and Coronaviridae family as SARS-CoV-2, continues to post a threat to human health. Mortality remains high; therefore, there is a need to develop effective vaccines to prevent MERS-CoV infection. The receptor-binding domain (RBD) within the MERS-CoV spike (S) protein is a critical vaccine target. The latest mRNA technology has enabled rapid development of much-needed vaccines with high efficiency and scalable manufacturing capacity. Here, we designed a mRNA vaccine encoding the RBD of MERS-CoV S protein (RBD-mRNA) and evaluated its immunogenicity and protective efficacy in a mouse model. The data showed that nucleoside-modified RBD-mRNA, but not RBD-mRNA lacking the nucleoside modification, was stable and elicited broadly and durable neutralizing antibody and cellular immune responses, which neutralized the original strain and multiple MERS-CoV variants. Among all immunization routes tested, the intradermal route was appropriate for this RBD-mRNA to induce strong B-cell responses and the highest neutralizing antibody titers. Importantly, injection of nucleoside-modified RBD-mRNA through the intradermal route protected immunized mice against challenge with MERS-CoV. This protection correlated with serum neutralizing antibody titers. Overall, we have developed an effective MERS-CoV RBD-based mRNA vaccine (with potential for further development) that prevents infection by divergent strains of MERS-CoV.
Collapse
Affiliation(s)
- Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, and Department of Pediatrics, University of Iowa, Iowa City, IA, USA; Department of Microbiology and Immunology, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Juan Shi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Gang Wang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Xiaoqing Guan
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, and Department of Pediatrics, University of Iowa, Iowa City, IA, USA.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
42
|
Zhou W, Jiang L, Liao S, Wu F, Yang G, Hou L, Liu L, Pan X, Jia W, Zhang Y. Vaccines' New Era-RNA Vaccine. Viruses 2023; 15:1760. [PMID: 37632102 PMCID: PMC10458896 DOI: 10.3390/v15081760] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
RNA vaccines, including conventional messenger RNA (mRNA) vaccines, circular RNA (circRNA) vaccines, and self-amplifying RNA (saRNA) vaccines, have ushered in a promising future and revolutionized vaccine development. The success of mRNA vaccines in combating the COVID-19 pandemic caused by the SARS-CoV-2 virus that emerged in 2019 has highlighted the potential of RNA vaccines. These vaccines possess several advantages, such as high efficacy, adaptability, simplicity in antigen design, and the ability to induce both humoral and cellular immunity. They also offer rapid and cost-effective manufacturing, flexibility to target emerging or mutant pathogens and a potential approach for clearing immunotolerant microbes by targeting bacterial or parasitic survival mechanisms. The self-adjuvant effect of mRNA-lipid nanoparticle (LNP) formulations or circular RNA further enhances the potential of RNA vaccines. However, some challenges need to be addressed. These include the technology's immaturity, high research expenses, limited duration of antibody response, mRNA instability, low efficiency of circRNA cyclization, and the production of double-stranded RNA as a side product. These factors hinder the widespread adoption and utilization of RNA vaccines, particularly in developing countries. This review provides a comprehensive overview of mRNA, circRNA, and saRNA vaccines for infectious diseases while also discussing their development, current applications, and challenges.
Collapse
Affiliation(s)
- Wenshuo Zhou
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Linglei Jiang
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Shimiao Liao
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Feifei Wu
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Guohuan Yang
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Li Hou
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Lan Liu
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - Xinping Pan
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
| | - William Jia
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
- Shanghai-Virogin Biotech Co., Ltd., Shanghai 201800, China
| | - Yuntao Zhang
- CNBG-Virogin Biotech (Shanghai) Co., Ltd., Shanghai 201800, China; (W.Z.); (L.J.); (S.L.); (F.W.); (G.Y.); (L.H.); (L.L.); (X.P.); (W.J.)
- Sinopharm Group China National Biotech Group (CNBG) Co., Ltd., Beijing 100124, China
| |
Collapse
|
43
|
Mbatha LS, Akinyelu J, Maiyo F, Kudanga T. Future prospects in mRNA vaccine development. Biomed Mater 2023; 18:052006. [PMID: 37589309 DOI: 10.1088/1748-605x/aceceb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The recent advancements in messenger ribonucleic acid (mRNA) vaccine development have vastly enhanced their use as alternatives to conventional vaccines in the prevention of various infectious diseases and treatment of several types of cancers. This is mainly due to their remarkable ability to stimulate specific immune responses with minimal clinical side effects. This review gives a detailed overview of mRNA vaccines currently in use or at various stages of development, the recent advancements in mRNA vaccine development, and the challenges encountered in their development. Future perspectives on this technology are also discussed.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti state, Nigeria
| | - Fiona Maiyo
- Department of Medical Sciences, Kabarak University, Nairobi, Kenya
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| |
Collapse
|
44
|
Geary TG. New paradigms in research on Dirofilaria immitis. Parasit Vectors 2023; 16:247. [PMID: 37480077 PMCID: PMC10362759 DOI: 10.1186/s13071-023-05762-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Since the advent of ivermectin (along with melarsomine and doxycycline), heartworm has come to be viewed as a solved problem in veterinary medicine, diminishing investment into non-clinical research on Dirofilaria immitis. However, heartworm infections continue to pose problems for practitioners and their patients and seem to be increasing in frequency and geographic distribution. Resistance to preventative therapies (macrocyclic lactones) complicates the picture. The use of chemotherapy for other kinds of pathogens has benefitted enormously from research into the basic biology of the pathogen and on the host-pathogen interface. A lack of basic information on heartworms as parasites and how they interact with permissive and non-permissive hosts greatly limits the ability to discover new ways to prevent and treat heartworm disease. Recent advances in technical platforms will help overcome the intrinsic barriers that hamper research on D. immitis, most notably, the need for experimentally infected dogs to maintain the life cycle and provide material for experiments. Impressive achievements in the development of laboratory animal models for D. immitis will enhance efforts to discover new drugs for prevention or treatment, to characterize new diagnostic biomarkers and to identify key parasite-derived molecules that are essential for survival in permissive hosts, providing a rational basis for vaccine discovery. A 'genomics toolbox' for D. immitis could enable unprecedented insight into the negotiations between host and parasite that enable survival in a permissive host. The more we know about the pathogen and how it manipulates its host, the better able we will be to protect companion animals far into the future.
Collapse
Affiliation(s)
- Timothy G Geary
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, Canada.
- School of Biological Sciences, Queen's University-Belfast, Belfast, Northern Ireland.
| |
Collapse
|
45
|
Al Fayez N, Nassar MS, Alshehri AA, Alnefaie MK, Almughem FA, Alshehri BY, Alawad AO, Tawfik EA. Recent Advancement in mRNA Vaccine Development and Applications. Pharmaceutics 2023; 15:1972. [PMID: 37514158 PMCID: PMC10384963 DOI: 10.3390/pharmaceutics15071972] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Messenger RNA (mRNA) vaccine development for preventive and therapeutic applications has evolved rapidly over the last decade. The mRVNA vaccine has proven therapeutic efficacy in various applications, including infectious disease, immunotherapy, genetic disorders, regenerative medicine, and cancer. Many mRNA vaccines have made it to clinical trials, and a couple have obtained FDA approval. This emerging therapeutic approach has several advantages over conventional methods: safety; efficacy; adaptability; bulk production; and cost-effectiveness. However, it is worth mentioning that the delivery to the target site and in vivo degradation and thermal stability are boundaries that can alter their efficacy and outcomes. In this review, we shed light on different types of mRNA vaccines, their mode of action, and the process to optimize their development and overcome their limitations. We also have explored various delivery systems focusing on the nanoparticle-mediated delivery of the mRNA vaccine. Generally, the delivery system plays a vital role in enhancing mRNA vaccine stability, biocompatibility, and homing to the desired cells and tissues. In addition to their function as a delivery vehicle, they serve as a compartment that shields and protects the mRNA molecules against physical, chemical, and biological activities that can alter their efficiency. Finally, we focused on the future considerations that should be attained for safer and more efficient mRNA application underlining the advantages and disadvantages of the current mRNA vaccines.
Collapse
Affiliation(s)
- Nojoud Al Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Majed S Nassar
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Meshal K Alnefaie
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Fahad A Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Bayan Y Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah O Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Essam A Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
46
|
Rana I, Oh J, Baig J, Moon JH, Son S, Nam J. Nanocarriers for cancer nano-immunotherapy. Drug Deliv Transl Res 2023; 13:1936-1954. [PMID: 36190661 PMCID: PMC9528883 DOI: 10.1007/s13346-022-01241-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2022] [Indexed: 11/03/2022]
Abstract
The host immune system possesses an intrinsic ability to target and kill cancer cells in a specific and adaptable manner that can be further enhanced by cancer immunotherapy, which aims to train the immune system to boost the antitumor immune response. Several different categories of cancer immunotherapy have emerged as new standard cancer therapies in the clinic, including cancer vaccines, immune checkpoint inhibitors, adoptive T cell therapy, and oncolytic virus therapy. Despite the remarkable survival benefit for a subset of patients, the low response rate and immunotoxicity remain the major challenges for current cancer immunotherapy. Over the last few decades, nanomedicine has been intensively investigated with great enthusiasm, leading to marked advancements in nanoparticle platforms and nanoengineering technology. Advances in nanomedicine and immunotherapy have also led to the emergence of a nascent research field of nano-immunotherapy, which aims to realize the full therapeutic potential of immunotherapy with the aid of nanomedicine. In particular, nanocarriers present an exciting opportunity in immuno-oncology to boost the activity, increase specificity, decrease toxicity, and sustain the antitumor efficacy of immunological agents by potentiating immunostimulatory activity and favorably modulating pharmacological properties. This review discusses the potential of nanocarriers for cancer immunotherapy and introduces preclinical studies designed to improve clinical cancer immunotherapy modalities using nanocarrier-based engineering approaches. It also discusses the potential of nanocarriers to address the challenges currently faced by immuno-oncology as well as the challenges for their translation to clinical applications.
Collapse
Affiliation(s)
- Isra Rana
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jaeeun Oh
- Department of Biological Sciences, Inha University, Incheon, 22212, South Korea
| | - Juwon Baig
- Department of Biological Sciences, Inha University, Incheon, 22212, South Korea
| | - Jeong Hyun Moon
- Department of Biological Sciences, Inha University, Incheon, 22212, South Korea
| | - Sejin Son
- Department of Biological Sciences, Inha University, Incheon, 22212, South Korea.
- Department of Biological Sciences and Bioengineering, Inha University/Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon, South Korea.
| | - Jutaek Nam
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
47
|
Lee J, Woodruff MC, Kim EH, Nam JH. Knife's edge: Balancing immunogenicity and reactogenicity in mRNA vaccines. Exp Mol Med 2023; 55:1305-1313. [PMID: 37430088 PMCID: PMC10394010 DOI: 10.1038/s12276-023-00999-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 03/27/2023] [Indexed: 07/12/2023] Open
Abstract
Since the discovery of messenger RNA (mRNA), there have been tremendous efforts to wield them in the development of therapeutics and vaccines. During the COVID-19 pandemic, two mRNA vaccines were developed and approved in record-breaking time, revolutionizing the vaccine development landscape. Although first-generation COVID-19 mRNA vaccines have demonstrated over 90% efficacy, alongside strong immunogenicity in humoral and cell-mediated immune responses, their durability has lagged compared to long-lived vaccines, such as the yellow fever vaccine. Although worldwide vaccination campaigns have saved lives estimated in the tens of millions, side effects, ranging from mild reactogenicity to rare severe diseases, have been reported. This review provides an overview and mechanistic insights into immune responses and adverse effects documented primarily for COVID-19 mRNA vaccines. Furthermore, we discuss the perspectives of this promising vaccine platform and the challenges in balancing immunogenicity and adverse effects.
Collapse
Affiliation(s)
- Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea.
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
48
|
Czaja AJ. Incorporating the Molecular Mimicry of Environmental Antigens into the Causality of Autoimmune Hepatitis. Dig Dis Sci 2023:10.1007/s10620-023-07967-5. [PMID: 37160542 PMCID: PMC10169207 DOI: 10.1007/s10620-023-07967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Molecular mimicry between foreign and self-antigens has been implicated as a cause of autoimmune hepatitis in experimental models and cross-reacting antibodies in patients. This review describes the experimental and clinical evidence for molecular mimicry as a cause of autoimmune hepatitis, indicates the limitations and uncertainties of this premise, and encourages investigations that assess diverse environmental antigens as sources of disease-relevant molecular mimics. Pertinent articles were identified in PubMed using multiple search phrases. Several pathogens have linear or conformational epitopes that mimic the self-antigens of autoimmune hepatitis. The occurrence of an acute immune-mediated hepatitis after vaccination for severe acute respiratory syndrome (SARS)-associated coronavirus 2 (SARS-CoV-2) has suggested that vaccine-induced peptides may mimic disease-relevant tissue antigens. The intestinal microbiome is an under-evaluated source of gut-derived antigens that could also engage in molecular mimicry. Chaperone molecules may enhance the pathogenicity of molecular mimics, and they warrant investigation. Molecular mimics of immune dominant epitopes within cytochrome P450 IID6, the autoantigen most closely associated with autoimmune hepatitis, should be sought in diverse environmental antigens and assessed for pathogenicity. Avoidance strategies, dietary adjustments, vaccine improvement, and targeted manipulation of the intestinal microbiota may emerge as therapeutic possibilities. In conclusion, molecular mimicry may be a missing causality of autoimmune hepatitis. Molecular mimics of key immune dominant epitopes of disease-specific antigens must be sought in diverse environmental antigens. The ubiquity of molecular mimicry compels rigorous assessments of peptide mimics for immunogenicity and pathogenicity in experimental models. Molecular mimicry may complement epigenetic modifications as causative mechanisms of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
49
|
Li D, Liu Q, Yang M, Xu H, Zhu M, Zhang Y, Xu J, Tian C, Yao J, Wang L, Liang Y. Nanomaterials for mRNA-based therapeutics: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10492. [PMID: 37206219 PMCID: PMC10189457 DOI: 10.1002/btm2.10492] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Messenger RNA (mRNA) holds great potential in developing immunotherapy, protein replacement, and genome editing. In general, mRNA does not have the risk of being incorporated into the host genome and does not need to enter the nucleus for transfection, and it can be expressed even in nondividing cells. Therefore, mRNA-based therapeutics provide a promising strategy for clinical treatment. However, the efficient and safe delivery of mRNA remains a crucial constraint for the clinical application of mRNA therapeutics. Although the stability and tolerability of mRNA can be enhanced by directly retouching the mRNA structure, there is still an urgent need to improve the delivery of mRNA. Recently, significant progress has been made in nanobiotechnology, providing tools for developing mRNA nanocarriers. Nano-drug delivery system is directly used for loading, protecting, and releasing mRNA in the biological microenvironment and can be used to stimulate the translation of mRNA to develop effective intervention strategies. In the present review, we summarized the concept of emerging nanomaterials for mRNA delivery and the latest progress in enhancing the function of mRNA, primarily focusing on the role of exosomes in mRNA delivery. Moreover, we outlined its clinical applications so far. Finally, the key obstacles of mRNA nanocarriers are emphasized, and promising strategies to overcome these obstacles are proposed. Collectively, nano-design materials exert functions for specific mRNA applications, provide new perception for next-generation nanomaterials, and thus revolution of mRNA technology.
Collapse
Affiliation(s)
- De‐feng Li
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Qi‐song Liu
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Mei‐feng Yang
- Department of HematologyYantian District People's HospitalShenzhenGuangdongChina
| | - Hao‐ming Xu
- Department of Gastroenterology and HepatologyGuangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Min‐zheng Zhu
- Department of Gastroenterology and Hepatologythe Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouGuangdongChina
| | - Yuan Zhang
- Department of Medical AdministrationHuizhou Institute of Occupational Diseases Control and PreventionHuizhouGuangdongChina
| | - Jing Xu
- Department of Gastroenterology and HepatologyGuangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Cheng‐mei Tian
- Department of EmergencyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Jun Yao
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Li‐sheng Wang
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Yu‐jie Liang
- Department of Child and Adolescent PsychiatryShenzhen Kangning Hospital, Shenzhen Mental Health CenterShenzhenChina
- Affiliated Hospital of Jining Medical University, Jining Medical UniversityJiningShandongChina
| |
Collapse
|
50
|
Farlow A, Torreele E, Gray G, Ruxrungtham K, Rees H, Prasad S, Gomez C, Sall A, Magalhães J, Olliaro P, Terblanche P. The Future of Epidemic and Pandemic Vaccines to Serve Global Public Health Needs. Vaccines (Basel) 2023; 11:vaccines11030690. [PMID: 36992275 DOI: 10.3390/vaccines11030690] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
This Review initiates a wide-ranging discussion over 2023 by selecting and exploring core themes to be investigated more deeply in papers submitted to the Vaccines Special Issue on the "Future of Epidemic and Pandemic Vaccines to Serve Global Public Health Needs". To tackle the SARS-CoV-2 pandemic, an acceleration of vaccine development across different technology platforms resulted in the emergency use authorization of multiple vaccines in less than a year. Despite this record speed, many limitations surfaced including unequal access to products and technologies, regulatory hurdles, restrictions on the flow of intellectual property needed to develop and manufacture vaccines, clinical trials challenges, development of vaccines that did not curtail or prevent transmission, unsustainable strategies for dealing with variants, and the distorted allocation of funding to favour dominant companies in affluent countries. Key to future epidemic and pandemic responses will be sustainable, global-public-health-driven vaccine development and manufacturing based on equitable access to platform technologies, decentralised and localised innovation, and multiple developers and manufacturers, especially in low- and middle-income countries (LMICs). There is talk of flexible, modular pandemic preparedness, of technology access pools based on non-exclusive global licensing agreements in exchange for fair compensation, of WHO-supported vaccine technology transfer hubs and spokes, and of the creation of vaccine prototypes ready for phase I/II trials, etc. However, all these concepts face extraordinary challenges shaped by current commercial incentives, the unwillingness of pharmaceutical companies and governments to share intellectual property and know-how, the precariousness of building capacity based solely on COVID-19 vaccines, the focus on large-scale manufacturing capacity rather than small-scale rapid-response innovation to stop outbreaks when and where they occur, and the inability of many resource-limited countries to afford next-generation vaccines for their national vaccine programmes. Once the current high subsidies are gone and interest has waned, sustaining vaccine innovation and manufacturing capability in interpandemic periods will require equitable access to vaccine innovation and manufacturing capabilities in all regions of the world based on many vaccines, not just "pandemic vaccines". Public and philanthropic investments will need to leverage enforceable commitments to share vaccines and critical technology so that countries everywhere can establish and scale up vaccine development and manufacturing capability. This will only happen if we question all prior assumptions and learn the lessons offered by the current pandemic. We invite submissions to the special issue, which we hope will help guide the world towards a global vaccine research, development, and manufacturing ecosystem that better balances and integrates scientific, clinical trial, regulatory, and commercial interests and puts global public health needs first.
Collapse
Affiliation(s)
- Andrew Farlow
- Nuffield Department of Medicine, University of Oxford, Broad St., Oxford OX1 3BD, UK
- Oxford Martin School, University of Oxford, Broad St., Oxford OX1 3BD, UK
| | - Els Torreele
- Independent Consultant and Institute for Innovation & Public Purpose (IIPP), University College London, London WC1E 6BT, UK
| | - Glenda Gray
- Office of the President, South African Medical Research Council (SAMRC), Tygerberg 7050, South Africa
| | - Kiat Ruxrungtham
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Bangkok 10330, Thailand
- School of Global Health (SGH), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Helen Rees
- Wits RHI, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Sai Prasad
- Bharat Biotech International Limited, Genome Valley, Shameerpet, Hyderabad 500 078, India
| | - Carolina Gomez
- Facultad de Derecho, Universidad Nacional de Colombia, Cra 45, Bogotá 111321, Colombia
| | - Amadou Sall
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, Dakar 10200, Senegal
| | - Jorge Magalhães
- Centre for Technological Innovation, Institute of Drugs Technology-Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21041-210, Brazil
| | - Piero Olliaro
- ISARIC Global Support Centre International Severe Acute Respiratory and Emerging Infection Consortium, Pandemic Sciences Institute, University of Oxford, Oxford OX1 3BD, UK
| | | |
Collapse
|