1
|
Wang Z, Cao G, Collier MP, Qiu X, Broadway-Stringer S, Šaman D, Ng JZY, Sen N, Azad AJ, Hooper C, Zimmermann J, McDonough MA, Brem J, Rabe P, Song H, Alderson TR, Schofield CJ, Bolla JR, Djinovic-Carugo K, Fürst DO, Warscheid B, Degiacomi MT, Allison TM, Hochberg GKA, Robinson CV, Gehmlich K, Benesch JLP. Filamin C dimerisation is regulated by HSPB7. Nat Commun 2025; 16:4090. [PMID: 40312381 PMCID: PMC12046049 DOI: 10.1038/s41467-025-58889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/02/2025] [Indexed: 05/03/2025] Open
Abstract
The biomechanical properties and responses of tissues underpin a variety important of physiological functions and pathologies. In striated muscle, the actin-binding protein filamin C (FLNC) is a key protein whose variants causative for a wide range of cardiomyopathies and musculoskeletal pathologies. FLNC is a multi-functional protein that interacts with a variety of partners, however, how it is regulated at the molecular level is not well understood. Here we investigate its interaction with HSPB7, a cardiac-specific molecular chaperone whose absence is embryonically lethal. We find that FLNC and HSPB7 interact in cardiac tissue under biomechanical stress, forming a strong hetero-dimer whose structure we solve by X-ray crystallography. Our quantitative analyses show that the hetero-dimer out-competes the FLNC homo-dimer interface, potentially acting to abrogate the ability of the protein to cross-link the actin cytoskeleton, and to enhance its diffusive mobility. We show that phosphorylation of FLNC at threonine 2677, located at the dimer interface and associated with cardiac stress, acts to favour the homo-dimer. Conversely, phosphorylation at tyrosine 2683, also at the dimer interface, has the opposite effect and shifts the equilibrium towards the hetero-dimer. Evolutionary analysis and ancestral sequence reconstruction reveals this interaction and its mechanisms of regulation to date around the time primitive hearts evolved in chordates. Our work therefore shows, structurally, how HSPB7 acts as a specific molecular chaperone that regulates FLNC dimerisation.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Guodong Cao
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Miranda P Collier
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Xingyu Qiu
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Dominik Šaman
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jediael Z Y Ng
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Navoneel Sen
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Amar J Azad
- Cardiovascular Sciences, School of Medical Sciences, University of Birmingham, Birmingham, UK
- Center of Biological Design, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Charlotte Hooper
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Johannes Zimmermann
- Biochemistry II, Theodor Boveri-Institute, Biocenter, Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany
| | | | - Jürgen Brem
- Department of Chemistry, Chemistry Research Laboratory, Oxford, UK
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Patrick Rabe
- Department of Chemistry, Chemistry Research Laboratory, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Haigang Song
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - T Reid Alderson
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, Germany
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory, Oxford, UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Jani R Bolla
- Department of Biology, University of Oxford, Oxford, UK
| | - Kristina Djinovic-Carugo
- European Molecular Biology Laboratory, Grenoble, France
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Bettina Warscheid
- Biochemistry II, Theodor Boveri-Institute, Biocenter, Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany
| | - Matteo T Degiacomi
- Department of Physics, Durham University, Durham, UK
- School of Informatics and EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Timothy M Allison
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Carol V Robinson
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Katja Gehmlich
- Cardiovascular Sciences, School of Medical Sciences, University of Birmingham, Birmingham, UK.
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK.
| | - Justin L P Benesch
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Holtzhausen C, Heil L, Klingel K, Fox H, Gummert J, Gärtner A, Schmidt A, Krüger M, Kirfel G, van der Ven PFM, Milting H, Clemen CS, Schröder R, Fürst DO, Tiesmeier J. Sudden cardiac death, arrhythmogenic cardiomyopathy and intercalated disc pathology due to reduced filamin C protein levels: a matter of life and death. Hum Mol Genet 2025; 34:726-738. [PMID: 39895064 DOI: 10.1093/hmg/ddaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
Mutations in the human FLNC gene encoding filamin C (FLNc) cause a broad spectrum of sporadic and familial cardiomyopathies and myopathies. We report on the genetic, clinical, morphological and biochemical findings in a German family harboring an FLNC variant that leads to severe cardiac disease comprising sudden cardiac death and arrhythmogenic cardiomyopathy. Genetic analysis identified a novel heterozygous FLNC variant in exon 16 (NM_001458.4:c.2495_2498delAGTA, het; p.K832TfsX45) in i) the index patient suffering from dilated cardiomyopathy necessitating heart transplantation, ii) a son, who died from sudden cardiac death, iii) a second son, who survived an episode of sudden cardiac arrest and iv) a third son affected by isolated skeletal muscle myopathy. FLNc protein levels were markedly reduced in cardiac tissue obtained from the index patient, implying that the p.K832TfsX45 FLNc variant most probably caused nonsense-mediated decay of the corresponding mRNA. Morphological analysis of the diseased cardiac tissue revealed extensive fibrotic remodeling, and marked degenerative changes of the contractile apparatus of cardiomyocytes and severe structural alterations of intercalated discs. Connexin-43 signal intensity at intercalated discs was diminished and FLNc labelling of myofibrils was attenuated or even absent. Proteome analyses demonstrated complex alterations of extracellular matrix and intercalated disc proteins. Our findings demonstrate that this novel, truncating FLNC mutation likely leads to haploinsufficiency, thereby causing a deleterious sequence of degenerative changes of cardiac tissue with extensive fibrotic remodeling and intercalated disc pathology as the structural basis for FLNC-related cardiomyopathy with life-threatening cardiac arrhythmias.
Collapse
MESH Headings
- Female
- Humans
- Male
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/pathology
- Arrhythmogenic Right Ventricular Dysplasia/genetics
- Arrhythmogenic Right Ventricular Dysplasia/pathology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Connexin 43/metabolism
- Connexin 43/genetics
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/pathology
- Filamins/genetics
- Filamins/metabolism
- Mutation
- Myocardium/pathology
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Pedigree
Collapse
Affiliation(s)
- Christian Holtzhausen
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Lorena Heil
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstr. 8, 72076 Tübingen, Germany
| | - Henrik Fox
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Jan Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Andreas Schmidt
- Center for Molecular Medicine (CMMC), Medical Faculty, and Excellence Cluster "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50937 Cologne, Germany
| | - Marcus Krüger
- Center for Molecular Medicine (CMMC), Medical Faculty, and Excellence Cluster "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50937 Cologne, Germany
| | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Peter F M van der Ven
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, 51147 Cologne, Germany
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Jens Tiesmeier
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, MLK-Hospital, Voedestr. 79, Luebbecke, Campus OWL, Ruhr-University Bochum, 32312 Lübbecke, Germany
| |
Collapse
|
3
|
Wang X, Lang Z, Yan Z, Xu J, Zhang J, Jiao L, Zhang H. Dilated cardiomyopathy: from genes and molecules to potential treatments. Mol Cell Biochem 2025:10.1007/s11010-025-05269-0. [PMID: 40155570 DOI: 10.1007/s11010-025-05269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Dilated cardiomyopathy is a myocardial condition marked by the enlargement of the heart's ventricular chambers and the gradual decline in systolic function, frequently resulting in congestive heart failure. Dilated cardiomyopathy has obvious familial characteristics, and mutations in related pathogenic genes can account for about 50% of patients with dilated cardiomyopathy. The most common genes related to dilated cardiomyopathy include TTN, LMNA, MYH7, etc. With more and more research on these genes, it will undoubtedly provide more potential targets and therapeutic pathways for the treatment of dilated cardiomyopathy. In addition, myocardial inflammation, myocardial metabolism abnormalities and cardiomyocyte apoptosis all have an important impact on the pathogenesis of dilated cardiomyopathy. Approximately half of sudden deaths among children and adolescents, along with the majority of patients undergoing heart transplantation, stem from cardiomyopathy. Therefore, precise and prompt clinical diagnosis holds paramount importance. Currently, diagnosis primarily hinges on the patient's medical background and imaging tests, with the significance of genetic testing steadily gaining prominence. The primary treatment for dilated cardiomyopathy remains heart transplantation. However, the scarcity of donors and the risk of severe immune rejection underscore the pressing need for novel therapies. Presently, research is actively exploring preclinical treatments like stem cell therapy as potential solutions.
Collapse
Affiliation(s)
- Xiumei Wang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou, 730000, The People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Zekun Lang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Zeyi Yan
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Jing Xu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Jinyuan Zhang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Lianhang Jiao
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Haijun Zhang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou, 730000, The People's Republic of China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China.
| |
Collapse
|
4
|
Katoh K. Integrin and Its Associated Proteins as a Mediator for Mechano-Signal Transduction. Biomolecules 2025; 15:166. [PMID: 40001469 PMCID: PMC11853369 DOI: 10.3390/biom15020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Mechano-signal transduction is a process in which cells perceive extracellular mechanical signals, convert them into intracellular biochemical signals, and produce a response. Integrins are cell surface receptors that sense the extracellular mechanical cues and bind to the extracellular matrix (ECM). This binding induces integrin clustering and activation. Cytoplasmic tails of activated integrins interact and induce cytoskeleton tensions via several adaptor proteins. Integrins monitor extracellular stiffness via cytoskeleton tensions and modulate ECM stiffness via downstream signaling pathways regulating the expression of genes of ECM components. Integrin-mediated mechano-transduction is very crucial for the cell as it regulates the cell physiology both in normal and diseased conditions according to extracellular mechanical cues. It regulates cell proliferation, survival, and migration. Abnormal mechanical cues such as extreme and prolonged mechanical stress result in pathological conditions including fibrosis, cancers, skin, and autoimmune disorders. This paper aims to explore the role of integrins and their associated proteins in mechano-signal transduction. It highlights the integrins and their associated proteins as targets for therapy development. Furthermore, it also presents the challenges to the targeted drug development, which can be drug resistance and cytotoxicity. It is concluded in this paper that research on integrin-mediated mechano-signal transduction and its relationship with cell physiology and pathologies will be an important step towards the development of effective therapies.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba 305-8521, Japan
| |
Collapse
|
5
|
Mulder T, Johnson J, González-Morales N. The filamins of Drosophila. Genome 2025; 68:1-11. [PMID: 39869855 DOI: 10.1139/gen-2024-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton. Filamins are required across various cells and tissues. In Drosophila early and recent studies have provided many details about filamin functions. This review centers on the two Drosophila filamins encoded by the cheerio and jitterbu g genes. We examine the structural and evolutionary aspects of filamin genes in flies, contrasting them with those of other model organisms. Then, we synthesize phenotypic data across diverse cell types. Additionally, we outline the genetic tools available for both genes. We also propose to divide filamins into typical and atypical based on the number of actin-binding domains and their relationship with other filamins.
Collapse
Affiliation(s)
- Tiara Mulder
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer Johnson
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
6
|
Maire K, Chamy L, Ghazali S, Carratala-Lasserre M, Zahm M, Bouisset C, Métais A, Combes-Soia L, de la Fuente-Vizuete L, Trad H, Chaubet A, Savignac M, Gonzalez de Peredo A, Subramaniam A, Joffre O, Lutz PG, Lamsoul I. Fine-tuning levels of filamins a and b as a specific mechanism sustaining Th2 lymphocyte functions. Nat Commun 2024; 15:10574. [PMID: 39639023 PMCID: PMC11621393 DOI: 10.1038/s41467-024-53768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Augmenting the portfolio of therapeutics for type 2-driven diseases is crucial to address unmet clinical needs and to design personalized treatment schemes. An attractive therapy for such diseases would consist in targeting the recruitment of T helper 2 (Th2) lymphocytes to inflammatory sites. Herein, we show the degradation of filamins (FLN) a and b by the ASB2α E3 ubiquitin ligase as a mechanism sustaining Th2 lymphocyte functions. Low levels of FLNa and FLNb confer an elongated shape to Th2 lymphocytes associated with efficient αVβ3 integrin-dependent cell migration. Genes encoding the αVβ3 integrin and ASB2α belong to the core of Th2-specific genes. Using genetically modified mice, we find that increasing the levels of FLNa and FLNb in Th2 lymphocytes reduces airway inflammation through diminished Th2 lymphocyte recruitment in inflamed lungs. Collectively, our results highlight ASB2α and its substrates FLNa and FLNb to alter Th2 lymphocyte-mediated responses.
Collapse
Affiliation(s)
- Kilian Maire
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Léa Chamy
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Samira Ghazali
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | | | - Margot Zahm
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Clément Bouisset
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucie Combes-Soia
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Hussein Trad
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Adeline Chaubet
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Magali Savignac
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arun Subramaniam
- Sanofi Immunology and Inflammation Research Therapeutic Area, Cambridge, MA, USA
| | - Olivier Joffre
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Pierre G Lutz
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| | - Isabelle Lamsoul
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| |
Collapse
|
7
|
Kokot T, Zimmermann JP, Schwäble AN, Reimann L, Herr AL, Höfflin N, Köhn M, Warscheid B. Protein phosphatase-1 regulates the binding of filamin C to FILIP1 in cultured skeletal muscle cells under mechanical stress. Sci Rep 2024; 14:27348. [PMID: 39521905 PMCID: PMC11550807 DOI: 10.1038/s41598-024-78953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The actin-binding protein filamin c (FLNc) is a key mediator in the response of skeletal muscle cells to mechanical stress. In addition to its function as a structural scaffold, FLNc acts as a signaling adaptor which is phosphorylated at S2234 in its mechanosensitive domain 20 (d20) through AKT. Here, we discovered a strong dephosphorylation of FLNc-pS2234 in cultured skeletal myotubes under acute mechanical stress, despite high AKT activity. We found that all three protein phosphatase 1 (PP1) isoforms are part of the FLNc d18-21 interactome. Enzymatic assays demonstrate that PP1 efficiently dephosphorylates FLNc-pS2234 and in vitro and in cells upon PP1 activation using specific modulators. FLNc-pS2234 dephosphorylation promotes the interaction with FILIP1, a mediator for filamin degradation. Altogether, we present a model in which dephosphorylation of FLNc d20 by the dominant action of PP1c prevails over AKT activity to promote the binding of the filamin degradation-inducing factor FILIP1 during acute mechanical stress.
Collapse
Affiliation(s)
- Thomas Kokot
- Integrative Signaling Research, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Johannes P Zimmermann
- Biochemistry II, Theodor-Boveri-Institut, Biozentrum, Faculty of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany
| | - Anja N Schwäble
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Current address: Celonic AG, Basel, Switzerland
| | - Lena Reimann
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Current address: Celonic AG, Basel, Switzerland
| | - Anna L Herr
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Current address: Sartorius CellGenix GmbH, Freiburg, Germany
| | - Nico Höfflin
- Integrative Signaling Research, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Maja Köhn
- Integrative Signaling Research, Institute of Biology III, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Biochemistry II, Theodor-Boveri-Institut, Biozentrum, Faculty of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany.
- Biochemistry - Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Goliusova DV, Sharikova MY, Lavrenteva KA, Lebedeva OS, Muranova LK, Gusev NB, Bogomazova AN, Lagarkova MA. Role of Filamin C in Muscle Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1546-1557. [PMID: 39418514 DOI: 10.1134/s0006297924090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Filamin C (FLNC) is a member of a high-molecular weight protein family, which bind actin filaments in the cytoskeleton of various cells. In human genome FLNC is encoded by the FLNC gene located on chromosome 7 and is expressed predominantly in striated skeletal and cardiac muscle cells. Filamin C is involved in organization and stabilization of thin actin filaments three-dimensional network in sarcomeres, and is supposed to play a role of mechanosensor transferring mechanical signals to different protein targets. Under mechanical stress FLNC can undergo unfolding that increases the risk of its aggregation. FLNC molecules with an impaired native structure could be eliminated by the BAG3-mediated chaperone-assisted selective autophagy. Mutations in the FLNC gene could be accompanied by the changes in FLNC interaction with its protein partners and could lead to formation of aggregates, which overload the autophagy and proteasome protein degradation systems, thus facilitating development of various pathological processes. Molecular mechanisms of the FLNC-associated congenital disorders, called filaminopathies, remain poorly understood. This review is devoted to analysis of the structure and mechanisms of filamin C function in muscle and heart cells in normal state and in the FLNC-associated pathologies. The presented data summarize the results of research at the molecular, cellular, and tissue levels and allow us to outline promising ways for further investigation of pathogenetic mechanisms in filaminopathies.
Collapse
Affiliation(s)
- Daria V Goliusova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita Y Sharikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Kristina A Lavrenteva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Lidia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
9
|
Katsuta H, Sokabe M, Hirata H. From stress fiber to focal adhesion: a role of actin crosslinkers in force transmission. Front Cell Dev Biol 2024; 12:1444827. [PMID: 39193363 PMCID: PMC11347286 DOI: 10.3389/fcell.2024.1444827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
The contractile apparatus, stress fiber (SF), is connected to the cell adhesion machinery, focal adhesion (FA), at the termini of SF. The SF-FA complex is essential for various mechanical activities of cells, including cell adhesion to the extracellular matrix (ECM), ECM rigidity sensing, and cell migration. This mini-review highlights the importance of SF mechanics in these cellular activities. Actin-crosslinking proteins solidify SFs by attenuating myosin-driven flows of actin and myosin filaments within the SF. In the solidified SFs, viscous slippage between actin filaments in SFs and between the filaments and the surrounding cytosol is reduced, leading to efficient transmission of myosin-generated contractile force along the SFs. Hence, SF solidification via actin crosslinking ensures exertion of a large force to FAs, enabling FA maturation, ECM rigidity sensing and cell migration. We further discuss intracellular mechanisms for tuning crosslinker-modulated SF mechanics and the potential relationship between the aberrance of SF mechanics and pathology including cancer.
Collapse
Affiliation(s)
- Hiroki Katsuta
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Sokabe
- Human Information Systems Laboratories, Kanazawa Institute of Technology, Hakusan, Japan
| | - Hiroaki Hirata
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan, Japan
| |
Collapse
|
10
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to linker of nucleoskeleton and cytoskeleton complexes and CDC-42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. Genetics 2024; 227:iyae071. [PMID: 38797871 PMCID: PMC11228842 DOI: 10.1093/genetics/iyae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and proinflammatory responses. Studies performed in tissue culture cells have implicated linker of nucleoskeleton and cytoskeleton (LINC) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In Caenorhabditis elegans larvae, six pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here, we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin-binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function; this and structural predictions suggest that FLN-2 does not function as a filamin. The immunoglobulin-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
11
|
Shead KD, Salyahetdinova V, Baillie GS. Charting the importance of filamin A posttranslational modifications. Biochem J 2024; 481:865-881. [PMID: 38958472 PMCID: PMC11346442 DOI: 10.1042/bcj20240121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Filamin A is an essential protein in the cell cytoskeleton because of its actin binding properties and unique homodimer rod-shaped structure, which organises actin into three-dimensional orthogonal networks imperative to cell motility, spreading and adhesion. Filamin A is subject to extensive posttranslational modification (PTM) which serves to co-ordinate cellular architecture and to modulate its large protein-protein interaction network which is key to the protein's role as a cellular signalling hub. Characterised PTMs include phosphorylation, irreversible cleavage, ubiquitin mediated degradation, hydroxylation and O-GlcNAcylation, with preliminary evidence of tyrosylation, carbonylation and acetylation. Each modification and its relation to filamin A function will be described here. These modifications are often aberrantly applied in a range of diseases including, but not limited to, cancer, cardiovascular disease and neurological disease and we discuss the concept of target specific PTMs with novel therapeutic modalities. In summary, our review represents a topical 'one-stop-shop' that enables understanding of filamin A function in cell homeostasis and provides insight into how a variety of modifications add an extra level of Filamin A control.
Collapse
Affiliation(s)
- Kyle D. Shead
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G128QQ, U.K
| | - Veneta Salyahetdinova
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G128QQ, U.K
| | - George S. Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G128QQ, U.K
| |
Collapse
|
12
|
Maya-Aguirre CA, Torres A, Gutiérrez-Castañeda LD, Salazar LM, Abreu-Villaça Y, Manhães AC, Arenas NE. Changes in the proteome of Apis mellifera acutely exposed to sublethal dosage of glyphosate and imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45954-45969. [PMID: 38980489 PMCID: PMC11269427 DOI: 10.1007/s11356-024-34185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.
Collapse
Affiliation(s)
- Carlos Andrés Maya-Aguirre
- Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C, Colombia
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Angela Torres
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Luz Dary Gutiérrez-Castañeda
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Luz Mary Salazar
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Nelson Enrique Arenas
- Facultad de Medicina, Universidad de Cartagena, Campus Zaragocilla, Barrio Zaragocilla, Carrera 50a #24-63, Cartagena de Indias, Bolivar, Colombia.
| |
Collapse
|
13
|
Wyle Y, Lu N, Hepfer J, Sayal R, Martinez T, Wang A. The Role of Biophysical Factors in Organ Development: Insights from Current Organoid Models. Bioengineering (Basel) 2024; 11:619. [PMID: 38927855 PMCID: PMC11200479 DOI: 10.3390/bioengineering11060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Biophysical factors play a fundamental role in human embryonic development. Traditional in vitro models of organogenesis focused on the biochemical environment and did not consider the effects of mechanical forces on developing tissue. While most human tissue has a Young's modulus in the low kilopascal range, the standard cell culture substrate, plasma-treated polystyrene, has a Young's modulus of 3 gigapascals, making it 10,000-100,000 times stiffer than native tissues. Modern in vitro approaches attempt to recapitulate the biophysical niche of native organs and have yielded more clinically relevant models of human tissues. Since Clevers' conception of intestinal organoids in 2009, the field has expanded rapidly, generating stem-cell derived structures, which are transcriptionally similar to fetal tissues, for nearly every organ system in the human body. For this reason, we conjecture that organoids will make their first clinical impact in fetal regenerative medicine as the structures generated ex vivo will better match native fetal tissues. Moreover, autologously sourced transplanted tissues would be able to grow with the developing embryo in a dynamic, fetal environment. As organoid technologies evolve, the resultant tissues will approach the structure and function of adult human organs and may help bridge the gap between preclinical drug candidates and clinically approved therapeutics. In this review, we discuss roles of tissue stiffness, viscoelasticity, and shear forces in organ formation and disease development, suggesting that these physical parameters should be further integrated into organoid models to improve their physiological relevance and therapeutic applicability. It also points to the mechanotransductive Hippo-YAP/TAZ signaling pathway as a key player in the interplay between extracellular matrix stiffness, cellular mechanics, and biochemical pathways. We conclude by highlighting how frontiers in physics can be applied to biology, for example, how quantum entanglement may be applied to better predict spontaneous DNA mutations. In the future, contemporary physical theories may be leveraged to better understand seemingly stochastic events during organogenesis.
Collapse
Affiliation(s)
- Yofiel Wyle
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
| | - Nathan Lu
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Jason Hepfer
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Rahul Sayal
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Taylor Martinez
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817, USA
| |
Collapse
|
14
|
Georgana I, Scutts SR, Gao C, Lu Y, Torres AA, Ren H, Emmott E, Men J, Oei K, Smith GL. Filamin B restricts vaccinia virus spread and is targeted by vaccinia virus protein C4. J Virol 2024; 98:e0148523. [PMID: 38412044 PMCID: PMC10949515 DOI: 10.1128/jvi.01485-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.
Collapse
Affiliation(s)
- Iliana Georgana
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Chen Gao
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alice A. Torres
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edward Emmott
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jinghao Men
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Keefe Oei
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Das A, Yesupatham S, Allison D, Tanwar H, Gnanasekaran J, Kear B, Wang X, Wang S, Zachariadou C, Abbasi Y, Chung M, Ozato K, Liu C, Foster B, Thumbigere-Math V. Murine IRF8 Mutation Offers New Insight into Osteoclast and Root Resorption. J Dent Res 2024; 103:318-328. [PMID: 38343385 PMCID: PMC10985390 DOI: 10.1177/00220345231222173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Interferon regulatory factor 8 (IRF8), a transcription factor expressed in immune cells, functions as a negative regulator of osteoclasts and helps maintain dental and skeletal homeostasis. Previously, we reported that a novel mutation in the IRF8 gene increases susceptibility to multiple idiopathic cervical root resorption (MICRR), a form of tooth root resorption mediated by increased osteoclast activity. The IRF8 G388S variant in the highly conserved C-terminal motif is predicted to alter the protein structure, likely impairing IRF8 function. To investigate the molecular basis of MICRR and IRF8 function in osteoclastogenesis, we generated Irf8 knock-in (KI) mice using CRISPR/Cas9 technique modeling the human IRF8G388S mutation. The heterozygous (Het) and homozygous (Homo) Irf8 KI mice showed no gross morphological defects, and the development of hematopoietic cells was unaffected and similar to wild-type (WT) mice. The Irf8 KI Het and Homo mice showed no difference in macrophage gene signatures important for antimicrobial defenses and inflammatory cytokine production. Consistent with the phenotype observed in MICRR patients, Irf8 KI Het and Homo mice demonstrated significantly increased osteoclast formation and resorption activity in vivo and in vitro when compared to WT mice. The oral ligature-inserted Het and Homo mice displayed significantly increased root resorption and osteoclast-mediated alveolar bone loss compared to WT mice. The increased osteoclastogenesis noted in KI mice is due to the inability of IRF8G388S mutation to inhibit NFATc1-dependent transcriptional activation and downstream osteoclast specific transcripts, as well as its impact on autophagy-related pathways of osteoclast differentiation. This translational study delineates the IRF8 domain important for osteoclast function and provides novel insights into the IRF8 mutation associated with MICRR. IRF8G388S mutation mainly affects osteoclastogenesis while sparing immune cell development and function. These insights extend beyond oral health and significantly advance our understanding of skeletal disorders mediated by increased osteoclast activity and IRF8's role in osteoclastogenesis.
Collapse
Affiliation(s)
- A. Das
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - S.K. Yesupatham
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - D. Allison
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - H. Tanwar
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - J. Gnanasekaran
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - B. Kear
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - X. Wang
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - S. Wang
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - C. Zachariadou
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Y. Abbasi
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - M.K. Chung
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - K. Ozato
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - C. Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - B.L. Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - V. Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
16
|
Gao S, He L, Lam CK, Taylor MRG, Mestroni L, Lombardi R, Chen SN. Filamin C Deficiency Impairs Sarcomere Stability and Activates Focal Adhesion Kinase through PDGFRA Signaling in Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells 2024; 13:278. [PMID: 38334670 PMCID: PMC10854597 DOI: 10.3390/cells13030278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Truncating mutations in filamin C (FLNC) are associated with dilated cardiomyopathy and arrhythmogenic cardiomyopathy. FLNC is an actin-binding protein and is known to interact with transmembrane and structural proteins; hence, the ablation of FLNC in cardiomyocytes is expected to dysregulate cell adhesion, cytoskeletal organization, sarcomere structural integrity, and likely nuclear function. Our previous study showed that the transcriptional profiles of FLNC homozygous deletions in human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly comparable to the transcriptome profiles of hiPSC-CMs from patients with FLNC truncating mutations. Therefore, in this study, we used CRISPR-Cas-engineered hiPSC-derived FLNC knockout cardiac myocytes as a model of FLNC cardiomyopathy to determine pathogenic mechanisms and to examine structural changes caused by FLNC deficiency. RNA sequencing data indicated the significant upregulation of focal adhesion signaling and the dysregulation of thin filament genes in FLNC-knockout (FLNCKO) hiPSC-CMs compared to isogenic hiPSC-CMs. Furthermore, our findings suggest that the complete loss of FLNC in cardiomyocytes led to cytoskeletal defects and the activation of focal adhesion kinase. Pharmacological inhibition of PDGFRA signaling using crenolanib (an FDA-approved drug) reduced focal adhesion kinase activation and partially normalized the focal adhesion signaling pathway. The findings from this study suggest the opportunity in repurposing FDA-approved drug as a therapeutic strategy to treat FLNC cardiomyopathy.
Collapse
Affiliation(s)
- Shanshan Gao
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| | - Lingaonan He
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| | - Chi Keung Lam
- Department of Biological Sciences, University of Delaware, Newark, NE 19716, USA;
| | - Matthew R. G. Taylor
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| | - Raffaella Lombardi
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
- Department of Advanced Biomedical Sciences, “Federico II” University of Naples, 80138 Naples, Italy
| | - Suet Nee Chen
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| |
Collapse
|
17
|
Amado NG, Nosyreva ED, Thompson D, Egeland TJ, Ogujiofor OW, Yang M, Fusco AN, Passoni N, Mathews J, Cantarel B, Baker LA, Syeda R. PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome. Nat Commun 2024; 15:339. [PMID: 38184690 PMCID: PMC10771463 DOI: 10.1038/s41467-023-44594-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Prune belly syndrome (PBS), also known as Eagle-Barret syndrome, is a rare, multi-system congenital myopathy primarily affecting males. Phenotypically, PBS cases manifest three cardinal pathological features: urinary tract dilation with poorly contractile smooth muscle, wrinkled flaccid ventral abdominal wall with skeletal muscle deficiency, and intra-abdominal undescended testes. Genetically, PBS is poorly understood. After performing whole exome sequencing in PBS patients, we identify one compound heterozygous variant in the PIEZO1 gene. PIEZO1 is a cation-selective channel activated by various mechanical forces and widely expressed throughout the lower urinary tract. Here we conduct an extensive functional analysis of the PIEZO1 PBS variants that reveal loss-of-function characteristics in the pressure-induced normalized open probability (NPo) of the channel, while no change is observed in single-channel currents. Furthermore, Yoda1, a PIEZO1 activator, can rescue the NPo defect of the PBS mutant channels. Thus, PIEZO1 mutations may be causal for PBS and the in vitro cellular pathophysiological phenotype could be rescued by the small molecule, Yoda1. Activation of PIEZO1 might provide a promising means of treating PBS and other related bladder dysfunctional states.
Collapse
Affiliation(s)
- Nathalia G Amado
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elena D Nosyreva
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Thompson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas J Egeland
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Osita W Ogujiofor
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michelle Yang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandria N Fusco
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Niccolo Passoni
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeremy Mathews
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandi Cantarel
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda A Baker
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Ruhma Syeda
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Amiri S, Muresan C, Shang X, Huet-Calderwood C, Schwartz MA, Calderwood DA, Murrell M. Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton. Nat Commun 2023; 14:8011. [PMID: 38049429 PMCID: PMC10695988 DOI: 10.1038/s41467-023-43612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
The filamentous actin (F-actin) cytoskeleton is a composite material consisting of cortical actin and bundled F-actin stress fibers, which together mediate the mechanical behaviors of the cell, from cell division to cell migration. However, as mechanical forces are typically measured upon transmission to the extracellular matrix, the internal distribution of forces within the cytoskeleton is unknown. Likewise, how distinct F-actin architectures contribute to the generation and transmission of mechanical forces is unclear. Therefore, we have developed a molecular tension sensor that embeds into the F-actin cytoskeleton. Using this sensor, we measure tension within stress fibers and cortical actin, as the cell is subject to uniaxial stretch. We find that the mechanical response, as measured by FRET, depends on the direction of applied stretch relative to the cell's axis of alignment. When the cell is aligned parallel to the direction of the stretch, stress fibers and cortical actin both accumulate tension. By contrast, when aligned perpendicular to the direction of stretch, stress fibers relax tension while the cortex accumulates tension, indicating mechanical anisotropy within the cytoskeleton. We further show that myosin inhibition regulates this anisotropy. Thus, the mechanical anisotropy of the cell and the coordination between distinct F-actin architectures vary and depend upon applied load.
Collapse
Affiliation(s)
- Sorosh Amiri
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Mechanical Engineering and Material Science, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Camelia Muresan
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Xingbo Shang
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | | | - Martin A Schwartz
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Yale Cardiovascular Research Center, 300 George St, New Haven, CT, 06511, USA
| | - David A Calderwood
- Department of Pharmacology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
| | - Michael Murrell
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA.
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA.
- Department of Physics, 217 Prospect Street, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
19
|
Jiang N, Su Z, Sun Y, Ren R, Zhou J, Bi R, Zhu S. Spatial Heterogeneity Directs Energy Dissipation in Condylar Fibrocartilage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301051. [PMID: 37156747 DOI: 10.1002/smll.202301051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Condylar fibrocartilage with structural and compositional heterogeneity can efficiently orchestrate load-bearing and energy dissipation, making the temporomandibular joint (TMJ) survive high occlusion loads for a prolonged lifetime. How the thin condylar fibrocartilage can achieve efficient energy dissipation to cushion enormous stresses remains an open question in biology and tissue engineering. Here, three distinct zones in the condylar fibrocartilage are identified by analyzing the components and structure from the macro-and microscale to the nanoscale. Specific proteins are highly expressed in each zone related to its mechanics. The heterogeneity of condylar fibrocartilage can direct energy dissipation through the nano-micron-macro gradient spatial scale, by atomic force microscope (AFM), nanoindentation, dynamic mechanical analyzer assay (DMA), and the corresponding energy dissipation mechanisms are exclusive for each distinct zone. This study reveals the significance of the heterogeneity of condylar fibrocartilage in mechanical behavior and provides new insights into the research methods for cartilage biomechanics and the design of energy-dissipative materials.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhan Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yixin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rong Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahao Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
20
|
Zhou X, Fang X, Ithychanda SS, Wu T, Gu Y, Chen C, Wang L, Bogomolovas J, Qin J, Chen J. Interaction of Filamin C With Actin Is Essential for Cardiac Development and Function. Circ Res 2023; 133:400-411. [PMID: 37492967 PMCID: PMC10529502 DOI: 10.1161/circresaha.123.322750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND FLNC (filamin C), a member of the filamin family predominantly expressed in striated muscles, plays a crucial role in bridging the cytoskeleton and ECM (extracellular matrix) in cardiomyocytes, thereby maintaining heart integrity and function. Although genetic variants within the N-terminal ABD (actin-binding domain) of FLNC have been identified in patients with cardiomyopathy, the precise contribution of the actin-binding capability to FLNC's function in mammalian hearts remains poorly understood. METHODS We conducted in silico analysis of the 3-dimensional structure of mouse FLNC to identify key amino acid residues within the ABD that are essential for FLNC's actin-binding capacity. Subsequently, we performed coimmunoprecipitation and immunofluorescent assays to validate the in silico findings and assess the impact of these mutations on the interactions with other binding partners and the subcellular localization of FLNC. Additionally, we generated and analyzed knock-in mouse models in which the FLNC-actin interaction was completely disrupted by these mutations. RESULTS Our findings revealed that F93A/L98E mutations completely disrupted FLNC-actin interaction while preserving FLNC's ability to interact with other binding partners ITGB1 (β1 integrin) and γ-SAG (γ-sarcoglycan), as well as maintaining FLNC subcellular localization. Loss of FLNC-actin interaction in embryonic cardiomyocytes resulted in embryonic lethality and cardiac developmental defects, including ventricular wall malformation and reduced cardiomyocyte proliferation. Moreover, disruption of FLNC-actin interaction in adult cardiomyocytes led to severe dilated cardiomyopathy, enhanced lethality and dysregulation of key cytoskeleton components. CONCLUSIONS Our data strongly support the crucial role of FLNC as a bridge between actin filaments and ECM through its interactions with actin, ITGB1, γ-SAG, and other associated proteins in cardiomyocytes. Disruption of FLN-actin interaction may result in detachment of actin filaments from the extracellular matrix, ultimately impairing normal cardiac development and function. These findings also provide insights into mechanisms underlying cardiomyopathy associated with genetic variants in FLNC ABD and other regions.
Collapse
Affiliation(s)
- Xiaohai Zhou
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Xi Fang
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Sujay Subbayya Ithychanda
- Department of Cardiovascular and Metabolic Sciences (S.S.I., J.Q.), Lerner Research Institute, Cleveland Clinic, OH
| | - Tongbin Wu
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Yusu Gu
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Chao Chen
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Li Wang
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Julius Bogomolovas
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Jun Qin
- Department of Cardiovascular and Metabolic Sciences (S.S.I., J.Q.), Lerner Research Institute, Cleveland Clinic, OH
| | - Ju Chen
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| |
Collapse
|
21
|
Cai L, Cui Y, Guo D, Chen H, Li J, Zhou X, Xie J. Microenvironmental Stiffness Directs Chondrogenic Lineages of Stem Cells from the Human Apical Papilla via Cooperation between ROCK and Smad3 Signaling. ACS Biomater Sci Eng 2023; 9:4831-4845. [PMID: 36797839 DOI: 10.1021/acsbiomaterials.2c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cell-based cartilage tissue engineering faces a great challenge in the repair process, partly due to the special physical microenvironment. Human stem cell from apical papilla (hSCAP) shows great potential as seed cells because of its versatile differentiation capacity. However, whether hSCAP has potent chondrogenic differentiation ability in the physical microenvironment of chondroid remains unknown. In this study, we fabricated poly(dimethylsiloxane) (PDMS) substrates with different stiffnesses and investigated the chondrogenic differentiation potential of hSCAPs. First, we found that hSCAPs cultured on soft substrates spread more narrowly accompanied by cortical actin organization, a hallmark of differentiated chondrocytes. On the contrary, stiff substrates were favorable for cell spreading and stress fiber formation. More importantly, the increased chondrogenic differentiation of hSCAPs seeded on soft substrates was confirmed by characterizing increased extracellular proteoglycan aggregation through Alcian blue staining and Safranin O staining and enhanced markers toward chondrogenic differentiation including SRY-box transcription factor 9 (Sox9), type II collagen (Col2), and aggrecan in both normal α-minimum essential medium (αMEM) and specific chondrogenic medium (CM) culture conditions. Then, we investigated the mechanosensing/mechanotransduction governing the chondrogenic differentiation of hSCAPs in response to different stiffnesses and found that stiffness-sensitive integrin β1 and focal adhesion kinase (FAK) were essential for mechanical signal perception and were oriented at the start of mechanotransduction induced by matrix stiffness. We next showed that the increased nuclear accumulation of Smad3 signaling and target Sox9 facilitated the chondrogenic differentiation of hSCAPs on the soft substrates and further verified the importance of Rho-associated protein kinase (ROCK) signaling in regulating chondrogenic differentiation and its driving factors, Smad3 and Sox9. By using SIS3, the specific inhibitor of p-Smad3, and miRNA targeting Rho-associated protein kinase 1 (ROCK-1), we finally confirmed the importance of ROCK/Smad3/Sox9 axis in the chondrogenic differentiation of hSCAPs in response to substrate stiffness. These results help us to increase the understanding of how microenvironmental stiffness directs chondrogenic differentiation from the aspects of mechanosensing, mechanotransduction, and cell fate decision, which will be of great value in the application of hSCAPs in cartilage tissue engineering.
Collapse
Affiliation(s)
- Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Daimo Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hao Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiazhou Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to LINC complexes and Cdc42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552041. [PMID: 37577634 PMCID: PMC10418278 DOI: 10.1101/2023.08.04.552041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and pro-inflammatory responses. Studies performed in tissue culture cells have implicated LINC (linker of nucleoskeleton and cytoskeleton) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In C. elegans larvae, 6 pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function, this and structural predictions suggest that FLN-2 is not a divergent filamin. The immunoglobulin (Ig)-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
23
|
Awoniyi LO, Cunha DM, Sarapulov AV, Hernández-Pérez S, Runsala M, Tejeda-González B, Šuštar V, Balci MÖ, Petrov P, Mattila PK. B cell receptor-induced protein dynamics and the emerging role of SUMOylation revealed by proximity proteomics. J Cell Sci 2023; 136:jcs261119. [PMID: 37417469 PMCID: PMC10445728 DOI: 10.1242/jcs.261119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023] Open
Abstract
Successful B cell activation, which is critical for high-affinity antibody production, is controlled by the B cell antigen receptor (BCR). However, we still lack a comprehensive protein-level view of the very dynamic multi-branched cellular events triggered by antigen binding. Here, we employed APEX2 proximity biotinylation to study antigen-induced changes, 5-15 min after receptor activation, at the vicinity of the plasma membrane lipid rafts, wherein BCR enriches upon activation. The data reveals dynamics of signaling proteins, as well as various players linked to the subsequent processes, such as actin cytoskeleton remodeling and endocytosis. Interestingly, our differential expression analysis identified dynamic responses in various proteins previously not linked to early B cell activation. We demonstrate active SUMOylation at the sites of BCR activation in various conditions and report its functional role in BCR signaling through the AKT and ERK1/2 axes.
Collapse
Affiliation(s)
- Luqman O. Awoniyi
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Diogo M. Cunha
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Alexey V. Sarapulov
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Sara Hernández-Pérez
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Marika Runsala
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Blanca Tejeda-González
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Vid Šuštar
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
| | - M. Özge Balci
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Petar Petrov
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| | - Pieta K. Mattila
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20014 Turku, Finland
| |
Collapse
|
24
|
Deng Y, Yan J. Force-Dependent Structural Changes of Filamin C Rod Domains Regulated by Filamin C Dimer. J Am Chem Soc 2023; 145:14670-14678. [PMID: 37369984 PMCID: PMC10348313 DOI: 10.1021/jacs.3c02303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/29/2023]
Abstract
Filamin C (FLNC), a large dimeric actin-binding protein in muscle cells, plays a critical role in transmitting force in the cytoskeleton and that between membrane receptors and the cytoskeleton. It performs crucial mechanosensing and downstream mechanotransduction functions via force-dependent interactions with signaling proteins. Mutations in FLNC have been linked to muscle and heart diseases. The mechanical responses of the force-bearing elements in FLNC have not been determined. This study investigated the mechanical responses of FLNC domains and their dimerization interface using magnetic tweezers. Results showed high stability of the N-terminal domains in the rod-1 segment but significant changes in the rod-2 domains in response to forces of a few piconewtons (pN). The dimerization interface, formed by the R24 domain, has a lifetime of seconds to tens of seconds at pN forces, and it dissociates within 1 s at forces greater than 14 pN. The findings suggest the FLNC dimerization interface provides sufficient mechanical stability that enables force-dependent structural changes in rod-2 domains for signaling protein binding and maintains structural integrity of the rod-1 domains.
Collapse
Affiliation(s)
- Yunxin Deng
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Jie Yan
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
- Department
of Physics, National University of Singapore, Singapore 117542, Singapore
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
25
|
Zhao X, Kiyozuka K, Konishi A, Kawabata-Iwakawa R, Minamishima YA, Obinata H. Actin-binding protein Filamin B regulates the cell-surface retention of endothelial sphingosine 1-phosphate receptor 1. J Biol Chem 2023:104851. [PMID: 37220855 PMCID: PMC10300261 DOI: 10.1016/j.jbc.2023.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor essential for vascular development and postnatal vascular homeostasis. When exposed to sphingosine 1-phosphate (S1P) in the blood of ∼1 μM, S1PR1 in endothelial cells retains cell-surface localization, while lymphocyte S1PR1 shows almost complete internalization, suggesting the cell-surface retention of S1PR1 is endothelial cell-specific. To identify regulating factors that function to retain S1PR1 on the endothelial cell surface, here we utilized an enzyme-catalyzed proximity labeling technique followed by proteomic analyses. We identified Filamin B (FLNB), an actin-binding protein involved in F-actin cross-linking, as a candidate regulating protein. We show FLNB knockdown by RNA interference induced massive internalization of S1PR1 into early endosomes, which was partially ligand-dependent and required receptor phosphorylation. Further investigation showed FLNB was also important for the recycling of internalized S1PR1 back to the cell surface. FLNB knockdown did not affect the localization of S1PR3, another S1P receptor subtype expressed in endothelial cells, nor did it affect localization of ectopically expressed β2-adrenergic receptor. Functionally, we show FLNB knockdown in endothelial cells impaired S1P-induced intracellular phosphorylation events and directed cell migration and enhancement of the vascular barrier. Taken together, our results demonstrate that FLNB is a novel regulator critical for S1PR1 cell-surface localization and thereby proper endothelial cell function.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Keisuke Kiyozuka
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Akimitsu Konishi
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
| | | | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Gunma, Japan.
| |
Collapse
|
26
|
Ketebo AA, Din SU, Lee G, Park S. Mechanobiological Analysis of Nanoparticle Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101682. [PMID: 37242097 DOI: 10.3390/nano13101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Nanoparticles (NPs) are commonly used in healthcare and nanotherapy, but their toxicity at high concentrations is well-known. Recent research has shown that NPs can also cause toxicity at low concentrations, disrupting various cellular functions and leading to altered mechanobiological behavior. While researchers have used different methods to investigate the effects of NPs on cells, including gene expression and cell adhesion assays, the use of mechanobiological tools in this context has been underutilized. This review emphasizes the importance of further exploring the mechanobiological effects of NPs, which could reveal valuable insights into the mechanisms behind NP toxicity. To investigate these effects, different methods, including the use of polydimethylsiloxane (PDMS) pillars to study cell motility, traction force production, and rigidity sensing contractions, have been employed. Understanding how NPs affect cell cytoskeletal functions through mechanobiology could have significant implications, such as developing innovative drug delivery systems and tissue engineering techniques, and could improve the safety of NPs for biomedical applications. In summary, this review highlights the significance of incorporating mechanobiology into the study of NP toxicity and demonstrates the potential of this interdisciplinary field to advance our knowledge and practical use of NPs.
Collapse
Affiliation(s)
- Abdurazak Aman Ketebo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16499, Republic of Korea
| | - Shahab Ud Din
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16499, Republic of Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
27
|
Bermúdez-Jiménez FJ, Carriel V, Santos-Mateo JJ, Fernández A, García-Hernández S, Ramos KA, Piqueras-Flores J, Cabrera-Romero E, Barriales-Villa R, de la Higuera Romero L, Alcalá López JE, Gimeno Blanes JR, Sánchez-Porras D, Campos F, Alaminos M, Oyonarte-Ramírez JM, Álvarez M, Tercedor L, Brodehl A, Jiménez-Jáimez J. ROD2 domain filamin C missense mutations exhibit a distinctive cardiac phenotype with restrictive/hypertrophic cardiomyopathy and saw-tooth myocardium. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2023; 76:301-311. [PMID: 35952944 DOI: 10.1016/j.rec.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/28/2022] [Indexed: 04/29/2023]
Abstract
INTRODUCTION AND OBJECTIVES Missense mutations in the filamin C (FLNC) gene have been reported as cause of inherited cardiomyopathy. Knowledge of the pathogenicity and genotype-phenotype correlation remains scarce. Our aim was to describe a distinctive cardiac phenotype related to rare missense FLNC variants in the ROD2 domain. METHODS We recruited 21 unrelated families genetically evaluated because of hypertrophic cardiomyopathy (HCM)/restrictive cardiomyopathy (RCM) phenotype carrying rare missense variants in the ROD2 domain of FLNC (FLNC-mRod2). Carriers underwent advanced cardiac imaging and genetic cascade screening. Myocardial tissue from 3 explanted hearts of a missense FLNC carrier was histologically analyzed and compared with an FLNC-truncating variant heart sample and a healthy control. Plasmids independently containing 3 FLNC missense variants were transfected and analyzed using confocal microscopy. RESULTS Eleven families (52%) with 20 assessed individuals (37 [23.7-52.7]) years showed 15 cases with a cardiac phenotype consisting of an overlap of HCM-RCM and left ventricular hypertrabeculation (saw-tooth appearance). During a median follow-up of 6.49 years, they presented with advanced heart failure: 16 (80%) diastolic dysfunction, 3 heart transplants, 3 heart failure deaths) and absence of cardiac conduction disturbances or skeletal myopathy. A total of 6 families had moderate genotype-phenotype segregation, and the remaining were de novo variants. Differential extracellular matrix remodeling and FLNC distribution among cardiomyocytes were confirmed on histology. HT1080 and H9c2 cells did not reveal cytoplasmic aggregation of mutant FLNC. CONCLUSIONS FLNC-mRod2 variants show a high prevalence of an overlapped phenotype comprising RCM, HCM and deep hypertrabeculation with saw-tooth appearance and distinctive cardiac histopathological remodeling.
Collapse
Affiliation(s)
- Francisco José Bermúdez-Jiménez
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Víctor Carriel
- Departamento de Histología, Grupo de Ingeniería Tisular, Universidad de Granada, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Juan José Santos-Mateo
- Servicio de Cardiología, Hospital Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia (IMIB), Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-Guard Heart), Amsterdam, Netherlands
| | - Adrián Fernández
- Servicio de Cardiología, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - Soledad García-Hernández
- Health in Code SL, Cardiología y Departamento Científico, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Karina Analía Ramos
- Servicio de Cardiología, Hospital Centenario, Facultad de Ciencias Médicas, Universidad de Rosario, Argentina
| | - Jesús Piqueras-Flores
- Servicio de Cardiología, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Eva Cabrera-Romero
- Servicio de Cardiología, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Roberto Barriales-Villa
- Complexo Hospitalario Universitario A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Luis de la Higuera Romero
- Health in Code SL, Cardiología y Departamento Científico, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Juan Emilio Alcalá López
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Juan Ramón Gimeno Blanes
- Servicio de Cardiología, Hospital Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia (IMIB), Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-Guard Heart), Amsterdam, Netherlands
| | - David Sánchez-Porras
- Departamento de Histología, Grupo de Ingeniería Tisular, Universidad de Granada, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Fernando Campos
- Departamento de Histología, Grupo de Ingeniería Tisular, Universidad de Granada, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Miguel Alaminos
- Departamento de Histología, Grupo de Ingeniería Tisular, Universidad de Granada, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - José Manuel Oyonarte-Ramírez
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Miguel Álvarez
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Luis Tercedor
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Juan Jiménez-Jáimez
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibsGRANADA, Granada, Spain.
| |
Collapse
|
28
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
29
|
Zhang H, Mao Z, Yang Z, Nakamura F. Identification of Filamin A Mechanobinding Partner III: SAV1 Specifically Interacts with Filamin A Mechanosensitive Domain 21. Biochemistry 2023; 62:1197-1208. [PMID: 36857526 DOI: 10.1021/acs.biochem.2c00665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Filamin A (FLNA) cross-links actin filaments and mediates mechanotransduction by force-induced conformational changes of its domains. FLNA's mechanosensitive immunoglobulin-like repeats (R) interact with each other to create cryptic binding sites, which can be exposed by physiologically relevant mechanical forces. Using the FLNA mechanosensing domains as an affinity ligand followed by stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics, we recently identified smoothelin and fimbacin as FLNA mechanobinding proteins. Here, using the mechanosensing domain as an affinity ligand and two labeled amino acids, we identify salvador homologue 1 (SAV1), a component of the Hippo pathway kinase cascade, as a new FLNA mechanobinding partner. We demonstrate that SAV1 specifically interacts with the cryptic C-D cleft of FLNA R21 and map the FLNA-binding site on SAV1. We show that point mutations on the R21 C strand block the SAV1 interaction and find that SAV1 contains a FLNA-binding motif in the central region (116Phe-124Val). Point mutations F116A and T118A (FT/AA) disrupt the interaction. A proximity ligation assay reveals that their interaction occurs in the cytosol in an actin polymerization-dependent manner. Although SAV1 is typically found in the cytosol, disrupting the interaction between SAV1 and FLNA causes SAV1 to diffuse to the nucleus and YAP1 to diffuse to the cytosol in an inverse relationship. These results suggest that FLNA mediates regulation of the Hippo pathway through actin polymerization-dependent interaction with SAV1.
Collapse
Affiliation(s)
- Huaguan Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Zhenfeng Mao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Ziwei Yang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
30
|
Feng Z, Mao Z, Yang Z, Liu X, Nakamura F. The force-dependent filamin A-G3BP1 interaction regulates phase-separated stress granule formation. J Cell Sci 2023; 136:297259. [PMID: 36806943 DOI: 10.1242/jcs.260684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Filamin A (FLNA) is an actin crosslinking protein that mediates mechanotransduction. External and internal mechanical forces, through the actin cytoskeleton, can induce conformational changes of the FLNA molecule to expose cryptic binding sites for its binding partners. Here, we identified Ras GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) as a new FLNA mechanobinding partner. Unlike other FLNA binding partners to the mechanosensing domain repeat 21 (R21), G3BP1 requires an additional neighboring repeat R22 to interact. We demonstrated that their interaction occurs in the cytosol of living cells in an actin polymerization-dependent manner. We also mapped the FLNA-binding site on G3BP1 and found that a F360A point mutation in the RNA recognition motif disrupts the interaction. RNA interfered with the FLNA-G3BP1 interaction, and FLNA did not localize in RNA-rich stress granules (SGs). Disruption of the interaction was sufficient to promote phase-separated SG formation, and arsenite treatment further stimulated the formation of SGs. Taken together, these data identify G3BP1 as a new mechanobinding protein that interacts with the FLNA mechanosensing domain R21 and suggest that SG formation is partially regulated by mechanical force.
Collapse
Affiliation(s)
- Ziyi Feng
- School of Pharmaceutical Science and Technology, Life Science Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zhenfeng Mao
- School of Pharmaceutical Science and Technology, Life Science Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Ziwei Yang
- School of Pharmaceutical Science and Technology, Life Science Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xiaowei Liu
- School of Pharmaceutical Science and Technology, Life Science Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Life Science Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
31
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Stark M, Levin M, Ulitsky I, Assaraf YG. Folylpolyglutamate synthetase mRNA G-quadruplexes regulate its cell protrusion localization and enhance a cancer cell invasive phenotype upon folate repletion. BMC Biol 2023; 21:13. [PMID: 36721160 PMCID: PMC9889130 DOI: 10.1186/s12915-023-01525-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Folates are crucial for the biosynthesis of nucleotides and amino acids, essential for cell proliferation and development. Folate deficiency induces DNA damage, developmental defects, and tumorigenicity. The obligatory enzyme folylpolyglutamate synthetase (FPGS) mediates intracellular folate retention via cytosolic and mitochondrial folate polyglutamylation. Our previous paper demonstrated the association of the cytosolic FPGS (cFPGS) with the cytoskeleton and various cell protrusion proteins. Based on these recent findings, the aim of the current study was to investigate the potential role of cFPGS at cell protrusions. RESULTS Here we uncovered a central role for two G-quadruplex (GQ) motifs in the 3'UTR of FPGS mediating the localization of cFPGS mRNA and protein at cell protrusions. Using the MBSV6-loop reporter system and fluorescence microscopy, we demonstrate that following folate deprivation, cFPGS mRNA is retained in the endoplasmic reticulum, whereas upon 15 min of folate repletion, this mRNA is rapidly translocated to cell protrusions in a 3'UTR- and actin-dependent manner. The actin dependency of this folate-induced mRNA translocation is shown by treatment with Latrunculin B and inhibitors of the Ras homolog family member A (RhoA) pathway. Upon folate repletion, the FPGS 3'UTR GQs induce an amoeboid/mesenchymal hybrid cell phenotype during migration and invasion through a collagen gel matrix. Targeted disruption of the 3'UTR GQ motifs by introducing point mutations or masking them by antisense oligonucleotides abrogated cell protrusion targeting of cFPGS mRNA. CONCLUSIONS Collectively, the GQ motifs within the 3'UTR of FPGS regulate its transcript and protein localization at cell protrusions in response to a folate cue, inducing cancer cell invasive phenotype. These novel findings suggest that the 3'UTR GQ motifs of FPGS constitute an attractive druggable target aimed at inhibition of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Michal Stark
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - May Levin
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel ,grid.507132.2Present address: May Levin, MeMed Diagnostics Ltd, Tirat Carmel, Israel
| | - Igor Ulitsky
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yehuda G. Assaraf
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
33
|
Mao Z, Nakamura F. Interaction of LARP4 to filamin A mechanosensing domain regulates cell migrations. Front Cell Dev Biol 2023; 11:1152109. [PMID: 37169020 PMCID: PMC10164935 DOI: 10.3389/fcell.2023.1152109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023] Open
Abstract
Filamin A (FLNA) is an actin cross-linking protein that mediates mechanotransduction. Force-dependent conformational changes of FLNA molecule expose cryptic binding site of FLNA, allowing interaction with partners such as integrin, smoothelin, and fimbacin. Here, we identified La-related protein 4 (LARP4) as a new FLNA mechanobinding partner. LARP4 specifically interacts with the cleft formed by C and D strands of immunoglobulin-like repeat 21 (R21) which is blocked by A strand of R20 without force. We validated the interaction between LARP4 and FLNA R21 both in vivo and in vitro. We also determined the critical amino acid that is responsible for the interaction and generated the non-FLNA-binding mutant LARP4 (F277A in human: F273A in mouse Larp4) that disrupts the interaction. Fluorescence recovery after photobleaching (FRAP) of GFP-labeled LARP4 in living cells demonstrated that mutant LARP4 diffuses faster than WT LARP4. Proximity ligation assay (PLA) also confirmed their interaction and disruption of actin polymerization diminishes the interaction. Data mining of RNAseq analysis of LARP4 knockdown (KD) HEK293T cells suggested that LARP4 is involved in morphogenesis and cell motility. Consistent with this prediction, we found that KD of LARP4 increases cell migration speed and expression of the F277A mutant LARP4 in LARP4-KD cells also leads to a higher cell migration speed compared to WT LARP4. These results demonstrated that the LARP4 interaction with FLNA regulates cell migration.
Collapse
|
34
|
Wu T, Xu Y, Zhang L, Liang Z, Zhou X, Evans SM, Chen J. Filamin C is Essential for mammalian myocardial integrity. PLoS Genet 2023; 19:e1010630. [PMID: 36706168 PMCID: PMC9907827 DOI: 10.1371/journal.pgen.1010630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/08/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
FLNC, encoding filamin C, is one of the most mutated genes in dilated and hypertrophic cardiomyopathy. However, the precise role of filamin C in mammalian heart remains unclear. In this study, we demonstrated Flnc global (FlncgKO) and cardiomyocyte-specific knockout (FlnccKO) mice died in utero from severely ruptured ventricular myocardium, indicating filamin C is required to maintain the structural integrity of myocardium in the mammalian heart. Contrary to the common belief that filamin C acts as an integrin inactivator, we observed attenuated activation of β1 integrin specifically in the myocardium of FlncgKO mice. Although deleting β1 integrin from cardiomyocytes did not recapitulate the heart rupture phenotype in Flnc knockout mice, deleting both β1 integrin and filamin C from cardiomyocytes resulted in much more severe heart ruptures than deleting filamin C alone. Our results demonstrated that filamin C works in concert with β1 integrin to maintain the structural integrity of myocardium during mammalian heart development.
Collapse
Affiliation(s)
- Tongbin Wu
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yujun Xu
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Lunfeng Zhang
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Zhengyu Liang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Xiaohai Zhou
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Sylvia M. Evans
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
35
|
Jobst M, Kiss E, Gerner C, Marko D, Del Favero G. Activation of autophagy triggers mitochondrial loss and changes acetylation profile relevant for mechanotransduction in bladder cancer cells. Arch Toxicol 2023; 97:217-233. [PMID: 36214828 PMCID: PMC9816236 DOI: 10.1007/s00204-022-03375-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/05/2022] [Indexed: 01/19/2023]
Abstract
Bladder cells are constantly exposed to multiple xenobiotics and bioactive metabolites. In addition to this challenging chemical environment, they are also exposed to shear stress originating from urine and interstitial fluids. Hence, physiological function of bladder cells relies on a high biochemical and biomechanical adaptive competence, which, in turn, is largely supported via autophagy-related mechanisms. As a negative side of this plasticity, bladder cancer cells are known to adapt readily to chemotherapeutic programs. At the molecular level, autophagy was described to support resistance against pharmacological treatments and to contribute to the maintenance of cell structure and metabolic competence. In this study, we enhanced autophagy with rapamycin (1-100 nM) and assessed its effects on the motility of bladder cells, as well as the capability to respond to shear stress. We observed that rapamycin reduced cell migration and the mechanical-induced translocation potential of Krüppel-like transcription factor 2 (KLF2). These effects were accompanied by a rearrangement of cytoskeletal elements and mitochondrial loss. In parallel, intracellular acetylation levels were decreased. Mechanistically, inhibition of the NAD + -dependent deacetylase sirtuin-1 (SIRT1) with nicotinamide (NAM; 0.1-5 mM) restored acetylation levels hampered by rapamycin and cell motility. Taken together, we described the effects of rapamycin on cytoskeletal elements crucial for mechanotransduction and the dependency of these changes on the mitochondrial turnover caused by autophagy activation. Additionally, we could show that targeted metabolic intervention could revert the outcome of autophagy activation, reinforcing the idea that bladder cells can easily adapt to multiple xenobiotics and circumvent in this way the effects of single chemicals.
Collapse
Affiliation(s)
- Maximilian Jobst
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal, Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria ,Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria ,Core Facility Multimodal, Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria
| |
Collapse
|
36
|
The Expanding Spectrum of FLNC Cardiomyopathy. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mutations in gene encoding filamin C (FLNC) have been historically associated with hypertrophic cardiomyopathy (HCM) and myofibrillar myopathy [...]
Collapse
|
37
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
38
|
Quan M, Lv H, Liu Z, Li K, Zhang C, Shi L, Yang X, Lei P, Zhu Y, Ai D. MST1 Suppresses Disturbed Flow Induced Atherosclerosis. Circ Res 2022; 131:748-764. [PMID: 36164986 DOI: 10.1161/circresaha.122.321322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Atherosclerosis occurs mainly at arterial branching points exposed to disturbed blood flow. How MST1 (mammalian sterile 20-like kinase 1), the primary kinase in the mechanosensitive Hippo pathway modulates disturbed flow induced endothelial cells (ECs) activation and atherosclerosis remains unclear. METHODS To assess the role of MST1 in vivo, mice with EC-specific Mst1 deficiency on ApoE-/- background (Mst1iECKOApoE-/-) were used in an atherosclerosis model generated by carotid artery ligation. Mass spectrometry, immunoprecipitation, proximity ligation assay, and dye uptake assay were used to identify the functional substrate of MST1. Human umbilical vein endothelial cells and human aortic endothelial cells were subjected to oscillatory shear stress that mimic disturbed flow in experiments conducted in vitro. RESULTS We found that the phosphorylation of endothelial MST1 was significantly inhibited in oscillatory shear stress-exposed regions of human and mouse arteries and ECs. Ectopic lenti-mediated overexpression of wild-type MST1, but not a kinase-deficient mutant of MST1, reversed disturbed flow-caused EC activation and atherosclerosis in EC-specific Mst1 deficiency on ApoE-/- background (Mst1iECKOApoE-/-). Inhibition of MST1 by oscillatory shear stress led to reduced phosphorylation of Cx43 (connexin 43) at Ser255, the Cx43 hemichannel open, EC activation, and atherosclerosis, which were blocked by TAT-GAP19, a Cx43 hemichannel inhibitory peptide. Mass spectrometry studies identified that Filamin B fueled the translocation of Cx43 to lipid rafts for further hemichannel open. Finally, lenti-mediated overexpression of the Cx43S255 mutant into glutamate to mimic phosphorylation blunted disturbed flow-induced EC activation, thereby inhibiting the atherogenesis in both ApoE-/- and Mst1 iECKOApoE-/- mice. CONCLUSIONS Our study reveals that inhibition of the MST1-Cx43 axis is an essential driver of oscillatory shear stress-induced endothelial dysfunction and atherosclerosis, which provides a new therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Meixi Quan
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University (M.Q., H.L., D.A.), Tianjin Medical University, China.,Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Huizhen Lv
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University (M.Q., H.L., D.A.), Tianjin Medical University, China.,Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Zening Liu
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Kan Li
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Chenghu Zhang
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (L.S.), Tianjin Medical University, China
| | - XinYu Yang
- Department of Neurosurgery (X.Y.), Tianjin Medical University General Hospital, China
| | - Ping Lei
- Department of Geriatrics (P.L.), Tianjin Medical University General Hospital, China
| | - Yi Zhu
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Ding Ai
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University (M.Q., H.L., D.A.), Tianjin Medical University, China.,Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| |
Collapse
|
39
|
Kai F, Ou G, Tourdot RW, Stashko C, Gaietta G, Swift MF, Volkmann N, Long AF, Han Y, Huang HH, Northey JJ, Leidal AM, Viasnoff V, Bryant DM, Guo W, Wiita AP, Guo M, Dumont S, Hanein D, Radhakrishnan R, Weaver VM. ECM dimensionality tunes actin tension to modulate endoplasmic reticulum function and spheroid phenotypes of mammary epithelial cells. EMBO J 2022; 41:e109205. [PMID: 35880301 PMCID: PMC9434103 DOI: 10.15252/embj.2021109205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Patient-derived organoids and cellular spheroids recapitulate tissue physiology with remarkable fidelity. We investigated how engagement with a reconstituted basement membrane in three dimensions (3D) supports the polarized, stress resilient tissue phenotype of mammary epithelial spheroids. Cells interacting with reconstituted basement membrane in 3D had reduced levels of total and actin-associated filamin and decreased cortical actin tension that increased plasma membrane protrusions to promote negative plasma membrane curvature and plasma membrane protein associations linked to protein secretion. By contrast, cells engaging a reconstituted basement membrane in 2D had high cortical actin tension that forced filamin unfolding and endoplasmic reticulum (ER) associations. Enhanced filamin-ER interactions increased levels of PKR-like ER kinase effectors and ER-plasma membrane contact sites that compromised calcium homeostasis and diminished cell viability. Consequently, cells with decreased cortical actin tension had reduced ER stress and survived better. Consistently, cortical actin tension in cellular spheroids regulated polarized basement membrane membrane deposition and sensitivity to exogenous stress. The findings implicate cortical actin tension-mediated filamin unfolding in ER function and underscore the importance of tissue mechanics in organoid homeostasis.
Collapse
Affiliation(s)
- FuiBoon Kai
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Guanqing Ou
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Richard W Tourdot
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Connor Stashko
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | | - Niels Volkmann
- Scintillon InstituteSan DiegoCAUSA
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut PasteurUniversité Paris Cité, CNRS UMR3528ParisFrance
| | - Alexandra F Long
- Tetrad Graduate ProgramUniversity of California San FranciscoSan FranciscoCAUSA
- Department of Bioengineering and Therapeutic SciencesDepartment of Cell & Tissue Biology, University of California San FranciscoSan FranciscoCAUSA
| | - Yulong Han
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Hector H Huang
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Jason J Northey
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Andrew M Leidal
- Department of PathologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Virgile Viasnoff
- Mechanobiology InstituteNational University of SingaporeSingapore CitySingapore
| | | | - Wei Guo
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Arun P Wiita
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Ming Guo
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Sophie Dumont
- Department of Bioengineering and Therapeutic SciencesDepartment of Cell & Tissue Biology, University of California San FranciscoSan FranciscoCAUSA
- Chan Zuckerberg BiohubSan FranciscoCAUSA
| | - Dorit Hanein
- Scintillon InstituteSan DiegoCAUSA
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut PasteurUniversité Paris Cité, CNRS UMR3528ParisFrance
| | - Ravi Radhakrishnan
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
- Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoCAUSA
- UCSF Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
40
|
Koehler S, Huber TB, Denholm B. A protective role for <i>Drosophila</i> Filamin in nephrocytes via Yorkie mediated hypertrophy. Life Sci Alliance 2022; 5:e202101281. [PMID: 35922155 PMCID: PMC9351128 DOI: 10.26508/lsa.202101281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Podocytes are specialized epithelial cells of the kidney glomerulus and are an essential part of the filtration barrier. Because of their position, they are exposed to constant biomechanical forces such as shear stress and hydrostatic pressure. These forces increase during disease, resulting in podocyte injury. It is likely podocytes have adaptative responses to help buffer against deleterious mechanical force and thus reduce injury. However, these responses remain largely unknown. Here, using the <i>Drosophila</i> model, we show the mechanosensor Cheerio (dFilamin) provides a key protective role in nephrocytes. We found expression of an activated mechanosensitive variant of Cheerio rescued filtration function and induced compensatory and hypertrophic growth in nephrocytes depleted of the nephrocyte diaphragm proteins Sns or Duf. Delineating the protective pathway downstream of Cheerio we found repression of the Hippo pathway induces nephrocyte hypertrophy, whereas Hippo activation reversed the Cheerio-mediated hypertrophy. Furthermore, we find Yorkie was activated upon expression of active Cheerio. Taken together, our data suggest that Cheerio acts via the Hippo pathway to induce hypertrophic growth, as a protective response in abnormal nephrocytes.
Collapse
Affiliation(s)
- Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barry Denholm
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
41
|
Jain M, Weber A, Maly K, Manjaly G, Deek J, Tsvyetkova O, Stulić M, Toca‐Herrera JL, Jantsch MF. A-to-I RNA editing of Filamin A regulates cellular adhesion, migration and mechanical properties. FEBS J 2022; 289:4580-4601. [PMID: 35124883 PMCID: PMC9546289 DOI: 10.1111/febs.16391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 12/23/2021] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
A-to-I RNA editing by ADARs is an abundant epitranscriptomic RNA-modification in metazoa. In mammals, Flna pre-mRNA harbours a single conserved A-to-I RNA editing site that introduces a Q-to-R amino acid change in Ig repeat 22 of the encoded protein. Previously, we showed that FLNA editing regulates smooth muscle contraction in the cardiovascular system and affects cardiac health. The present study investigates how ADAR2-mediated A-to-I RNA editing of Flna affects actin crosslinking, cell mechanics, cellular adhesion and cell migration. Cellular assays and AFM measurements demonstrate that the edited version of FLNA increases cellular stiffness and adhesion but impairs cell migration in both, mouse fibroblasts and human tumour cells. In vitro, edited FLNA leads to increased actin crosslinking, forming actin gels of higher stress resistance. Our study shows that Flna RNA editing is a novel regulator of cytoskeletal organisation, affecting the mechanical property and mechanotransduction of cells.
Collapse
Affiliation(s)
- Mamta Jain
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Andreas Weber
- Department of NanobiotechnologyInstitute for BiophysicsUniversity of Natural Resources and Life Sciences Vienna (BOKU)Austria
| | - Kathrin Maly
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Greeshma Manjaly
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Joanna Deek
- Department of Physics, Cellular Biophysics E27Technical University of MunichGarchingGermany
| | - Olena Tsvyetkova
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Maja Stulić
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - José L. Toca‐Herrera
- Department of NanobiotechnologyInstitute for BiophysicsUniversity of Natural Resources and Life Sciences Vienna (BOKU)Austria
| | - Michael F. Jantsch
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| |
Collapse
|
42
|
Integrin Regulators in Neutrophils. Cells 2022; 11:cells11132025. [PMID: 35805108 PMCID: PMC9266208 DOI: 10.3390/cells11132025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and are critical for innate immunity and inflammation. Integrins are critical for neutrophil functions, especially for their recruitment to sites of inflammation or infections. Integrin conformational changes during activation have been heavily investigated but are still not fully understood. Many regulators, such as talin, Rap1-interacting adaptor molecule (RIAM), Rap1, and kindlin, are critical for integrin activation and might be potential targets for integrin-regulating drugs in treating inflammatory diseases. In this review, we outline integrin activation regulators in neutrophils with a focus on the above critical regulators, as well as newly discovered modulators that are involved in integrin activation.
Collapse
|
43
|
Xu YH, Feng YF, Zou R, Yuan F, Yuan YZ. Silencing of YAP attenuates pericyte-myofibroblast transition and subretinal fibrosis in experimental model of choroidal neovascularization. Cell Biol Int 2022; 46:1249-1263. [PMID: 35475568 DOI: 10.1002/cbin.11809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 11/07/2022]
Abstract
Age-related macular degeneration (AMD) is the main reason of irreversible vision loss in the elderly. The subretinal fibrosis subsequent to choroidal neovascularization (CNV) is an important feature in the late stage of wet AMD and is considered to be one reason for incomplete response to anti-VEGF drugs. Recent studies have shown that pericyte-myofibroblast transition (PMT) is an important pathological process involving fibrotic diseases of various organs. However, the specific role and mechanism of PMT in the subretinal fibrosis of CNV have not been clarified. It has been clear that the Hippo pathway along with its downstream effector Yes-associated protein (YAP) plays an important role in both epithelial and endothelial myofibroblast development. Therefore, we speculate whether YAP participates in PMT of pericytes and promotes fibrosis of CNV. In this study, experimental CNV was induced by laser photocoagulation in C57BL/6J (B6) mice, and aberrant YAP overexpression was detected in the retinal pigment epithelial/choroid/sclera tissues of the laser-injured eyes. YAP knockdown reduced the proliferation, migration, and differentiation of human retinal microvascular pericytes in vitro. It also reduced subretinal fibrosis of laser-induced CNV in vivo. Moreover, by proteomics-based analysis of pericyte conditioned medium (PC-CM) and bioinformatic analyses, we identified that the crosstalk between Hippo/YAP and MAPK/Erk was involved in expression of filamin A in hypoxic pericytes. These findings suggest that Hippo/YAP and MAPK/Erk are linked together to mediate pericyte proliferation, migration as well as differentiation, which may embody potential implications for treatment in diseases related to CNV.
Collapse
Affiliation(s)
- Ya-Hui Xu
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Ophthalmology, Northern Jiangsu Peoples' Hospital, Yangzhou, China
| | - Yi-Fan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rong Zou
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan-Zhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Ophthalmology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| |
Collapse
|
44
|
Zieba J, Forlenza KN, Heard K, Martin JH, Bosakova M, Cohn DH, Robertson SP, Krejci P, Krakow D. Intervertebral disc degeneration is rescued by TGFβ/BMP signaling modulation in an ex vivo filamin B mouse model. Bone Res 2022; 10:37. [PMID: 35474298 PMCID: PMC9042866 DOI: 10.1038/s41413-022-00200-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Spondylocarpotarsal syndrome (SCT) is a rare musculoskeletal disorder characterized by short stature and vertebral, carpal, and tarsal fusions resulting from biallelic nonsense mutations in the gene encoding filamin B (FLNB). Utilizing a FLNB knockout mouse, we showed that the vertebral fusions in SCT evolved from intervertebral disc (IVD) degeneration and ossification of the annulus fibrosus (AF), eventually leading to full trabecular bone formation. This resulted from alterations in the TGFβ/BMP signaling pathway that included increased canonical TGFβ and noncanonical BMP signaling. In this study, the role of FLNB in the TGFβ/BMP pathway was elucidated using in vitro, in vivo, and ex vivo treatment methodologies. The data demonstrated that FLNB interacts with inhibitory Smads 6 and 7 (i-Smads) to regulate TGFβ/BMP signaling and that loss of FLNB produces increased TGFβ receptor activity and decreased Smad 1 ubiquitination. Through the use of small molecule inhibitors in an ex vivo spine model, TGFβ/BMP signaling was modulated to design a targeted treatment for SCT and disc degeneration. Inhibition of canonical and noncanonical TGFβ/BMP pathway activity restored Flnb-/- IVD morphology. These most effective improvements resulted from specific inhibition of TGFβ and p38 signaling activation. FLNB acts as a bridge for TGFβ/BMP signaling crosstalk through i-Smads and is key for the critical balance in TGFβ/BMP signaling that maintains the IVD. These findings further our understanding of IVD biology and reveal new molecular targets for disc degeneration as well as congenital vertebral fusion disorders.
Collapse
Affiliation(s)
- Jennifer Zieba
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
| | | | - Kelly Heard
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
| | - Jorge H Martin
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Daniel H Cohn
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, Los Angeles, CA, 90095, USA.
- Department of Obstetrics and Gynecology, Los Angeles, CA, 90095, USA.
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
45
|
Miles L, Powell J, Kozak C, Song Y. Mechanosensitive Ion Channels, Axonal Growth, and Regeneration. Neuroscientist 2022:10738584221088575. [PMID: 35414308 PMCID: PMC9556659 DOI: 10.1177/10738584221088575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cells sense and respond to mechanical stimuli by converting those stimuli into biological signals, a process known as mechanotransduction. Mechanotransduction is essential in diverse cellular functions, including tissue development, touch sensitivity, pain, and neuronal pathfinding. In the search for key players of mechanotransduction, several families of ion channels were identified as being mechanosensitive and were demonstrated to be activated directly by mechanical forces in both the membrane bilayer and the cytoskeleton. More recently, Piezo ion channels were discovered as a bona fide mechanosensitive ion channel, and its characterization led to a cascade of research that revealed the diverse functions of Piezo proteins and, in particular, their involvement in neuronal repair.
Collapse
Affiliation(s)
- Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Casey Kozak
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuanquan Song
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
47
|
Chen SN, Lam CK, Wan YW, Gao S, Malak OA, Zhao SR, Lombardi R, Ambardekar AV, Bristow MR, Cleveland J, Gigli M, Sinagra G, Graw S, Taylor MR, Wu JC, Mestroni L. Activation of PDGFRA signaling contributes to filamin C-related arrhythmogenic cardiomyopathy. SCIENCE ADVANCES 2022; 8:eabk0052. [PMID: 35196083 PMCID: PMC8865769 DOI: 10.1126/sciadv.abk0052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/25/2021] [Indexed: 05/07/2023]
Abstract
FLNC truncating mutations (FLNCtv) are prevalent causes of inherited dilated cardiomyopathy (DCM), with a high risk of developing arrhythmogenic cardiomyopathy. We investigated the molecular mechanisms of mutant FLNC in the pathogenesis of arrhythmogenic DCM (a-DCM) using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We demonstrated that iPSC-CMs from two patients with different FLNCtv mutations displayed arrhythmias and impaired contraction. FLNC ablation induced a similar phenotype, suggesting that FLNCtv are loss-of-function mutations. Coimmunoprecipitation and proteomic analysis identified β-catenin (CTNNB1) as a downstream target. FLNC deficiency induced nuclear translocation of CTNNB1 and subsequently activated the platelet-derived growth factor receptor alpha (PDGFRA) pathway, which were also observed in human hearts with a-DCM and FLNCtv. Treatment with the PDGFRA inhibitor, crenolanib, improved contractile function of patient iPSC-CMs. Collectively, our findings suggest that PDGFRA signaling is implicated in the pathogenesis, and inhibition of this pathway is a potential therapeutic strategy in FLNC-related cardiomyopathies.
Collapse
Affiliation(s)
- Suet Nee Chen
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shanshan Gao
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Olfat A. Malak
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shane Rui Zhao
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Raffaella Lombardi
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
- Department of Advanced Biomedical Sciences University of Naples “Federico II”, Naples, Italy
| | - Amrut V. Ambardekar
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Michael R. Bristow
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Joseph Cleveland
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Marta Gigli
- Cardiovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Sharon Graw
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Matthew R.G. Taylor
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| |
Collapse
|
48
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
49
|
Powers JD, Kirkland NJ, Liu C, Razu SS, Fang X, Engler AJ, Chen J, McCulloch AD. Subcellular Remodeling in Filamin C Deficient Mouse Hearts Impairs Myocyte Tension Development during Progression of Dilated Cardiomyopathy. Int J Mol Sci 2022; 23:871. [PMID: 35055055 PMCID: PMC8779483 DOI: 10.3390/ijms23020871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a life-threatening form of heart disease that is typically characterized by progressive thinning of the ventricular walls, chamber dilation, and systolic dysfunction. Multiple mutations in the gene encoding filamin C (FLNC), an actin-binding cytoskeletal protein in cardiomyocytes, have been found in patients with DCM. However, the mechanisms that lead to contractile impairment and DCM in patients with FLNC variants are poorly understood. To determine how FLNC regulates systolic force transmission and DCM remodeling, we used an inducible, cardiac-specific FLNC-knockout (icKO) model to produce a rapid onset of DCM in adult mice. Loss of FLNC reduced systolic force development in single cardiomyocytes and isolated papillary muscles but did not affect twitch kinetics or calcium transients. Electron and immunofluorescence microscopy showed significant defects in Z-disk alignment in icKO mice and altered myofilament lattice geometry. Moreover, a loss of FLNC induces a softening myocyte cortex and structural adaptations at the subcellular level that contribute to disrupted longitudinal force production during contraction. Spatially explicit computational models showed that these structural defects could be explained by a loss of inter-myofibril elastic coupling at the Z-disk. Our work identifies FLNC as a key regulator of the multiscale ultrastructure of cardiomyocytes and therefore plays an important role in maintaining systolic mechanotransmission pathways, the dysfunction of which may be key in driving progressive DCM.
Collapse
Affiliation(s)
- Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Natalie J. Kirkland
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Swithin S. Razu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Adam J. Engler
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Ju Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
50
|
Belyaeva V, Wachner S, Gyoergy A, Emtenani S, Gridchyn I, Akhmanova M, Linder M, Roblek M, Sibilia M, Siekhaus D. Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila. PLoS Biol 2022; 20:e3001494. [PMID: 34990456 PMCID: PMC8735623 DOI: 10.1371/journal.pbio.3001494] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/25/2021] [Indexed: 12/20/2022] Open
Abstract
The infiltration of immune cells into tissues underlies the establishment of tissue-resident macrophages and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here, we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio, which are themselves required for invasion. Both the filamin and the tetraspanin enhance the cortical activity of Rho1 and the formin Diaphanous and thus the assembly of cortical actin, which is a critical function since expressing a dominant active form of Diaphanous can rescue the Dfos macrophage invasion defect. In vivo imaging shows that Dfos enhances the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the properties of the macrophage nucleus from affecting tissue entry. We thus identify strengthening the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues. The infiltration of immune cells into tissue underlies the establishment of tissue-resident macrophages, and responses to infections and tumors, but how do they overcome tissue barriers? This study shows that macrophages upregulate the proto-oncogene Fos, increasing the density and crosslinking of cortical actin, thereby counteracting the tension of surrounding tissues and protecting the macrophage nucleus.
Collapse
Affiliation(s)
- Vera Belyaeva
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Stephanie Wachner
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Attila Gyoergy
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shamsi Emtenani
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Igor Gridchyn
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Akhmanova
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Markus Linder
- Institute of Cancer Research, Department of Medicine 1, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Marko Roblek
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine 1, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daria Siekhaus
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- * E-mail:
| |
Collapse
|