1
|
Schenck FR, Baum JK, Boyer KE, Duffy JE, Fodrie FJ, Gaeckle J, Hanley TC, Hereu CM, Hovel KA, Jorgensen P, Martin DL, O'Connor NE, Peterson BJ, Stachowicz JJ, Hughes AR. Host traits and temperature predict biogeographical variation in seagrass disease prevalence. Proc Biol Sci 2025; 292:20243055. [PMID: 39933582 DOI: 10.1098/rspb.2024.3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Diseases are ubiquitous in natural systems, with broad effects across populations, communities and ecosystems. However, the drivers of many diseases remain poorly understood, particularly in marine environments, inhibiting effective conservation and management measures. We examined biogeographical patterns of infection in the foundational seagrass Zostera marina by the parasitic protist Labyrinthula zosterae, the causative agent of seagrass wasting disease, across >20° of latitude in two ocean basins. We then identified and characterized relationships among wasting disease prevalence and a suite of host traits and environmental variables. Host characteristics and transmission dynamics explained most of the variance in prevalence across our survey, yet the particular host traits underlying these relationships varied between oceans, with host size and nitrogen content important in the Pacific and host size and density most important in the Atlantic. Temperature was also a key predictor of prevalence, particularly in the Pacific Ocean. The strength and shape of the relationships between prevalence and some predictors differed in our large-scale survey versus previous experimental and site-specific work. These results show that both host characteristics and environment influence host-parasite interactions, and that some such effects scale up predictably, whereas others appear to depend on regional or local context.
Collapse
Affiliation(s)
- F R Schenck
- Massachusetts Division of Marine Fisheries, 30 Emerson Avenue, Gloucester, MA, USA
| | - J K Baum
- Department of Biology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, Canada
| | - K E Boyer
- Estuary and Ocean Science Center, San Franscisco State University, 3150 Paradise Drive, Tiburon, CA, USA
| | - J E Duffy
- MarineGEO Program, Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD, USA
| | - F J Fodrie
- Institute of Marine Science, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC, USA
| | - J Gaeckle
- Nearshore Habitat Program, Washington State Department of Natural Resources, Aquatic Resources Division, 1111 Washington Street SE, Olympia, WA, USA
| | - T C Hanley
- Department of Biology, Sacred Heart University, 5151 Park Avenue, Fairfield, CT, USA
| | - C M Hereu
- Facultad de Ciencias Marinas, Universidad Autonoma de Baja California, Carretera Tijuana-Ensenada 3917, Ensenada, Baja California, Mexico
| | - K A Hovel
- Department of Biology, Coastal and Marine Institute, San Diego State University, 550024 Campanile Drive, San Diego, CA, USA
| | - P Jorgensen
- Instituto de Investigaciones Marinas y Costeras (IIMyC-UNMdP-CONICET), Juan B. Justo 2550, Mar del Plata, Buenos Aires, Argentina
| | - D L Martin
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, USA
| | - N E O'Connor
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, College Green, Dublin, Ireland
| | - B J Peterson
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Highway, Southampton, NY, USA
| | - J J Stachowicz
- Department of Evolution and Ecology, University of California Davis, 1 Shields Avenue, Davis, CA, USA
| | - A R Hughes
- Coastal Sustainability Institute, Northeastern University, 430 Nahant Road, Nahant, MA, USA
| |
Collapse
|
2
|
McLeish M, Peláez A, Pagán I, Gavilán RG, Fraile A, García-Arenal F. Plant virus community structuring is shaped by habitat heterogeneity and traits for host plant resource utilisation. THE NEW PHYTOLOGIST 2024; 244:1585-1596. [PMID: 39327796 DOI: 10.1111/nph.20054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/12/2024] [Indexed: 09/28/2024]
Abstract
Host plants provide resources critical to viruses and the spatial structuring of plant communities affects the niches available for colonisation and disease emergence. However, large gaps remain in the understanding of mechanisms that govern plant-virus disease ecology across heterogeneous plant assemblages. We combine high-throughput sequencing, network, and metacommunity approaches to test whether habitat heterogeneity in plant community composition corresponded with virus resource utilisation traits of transmission mode and host range. A majority of viruses exhibited habitat specificity, with communities connected by key generalist viruses and potential host reservoirs. There was an association between habitat heterogeneity and virus community structuring, and between virus community structuring and resource utilisation traits of host range and transmission. The relationship between virus species distributions and virus trait responses to habitat heterogeneity was scale-dependent, being stronger at finer (site) than larger (habitat) spatial scales. Results indicate that habitat heterogeneity has a part in plant virus community assembly, and virus community structuring corresponds to virus trait responses that vary with the scale of observation. Distinctions in virus communities caused by plant resource compartmentalisation can be used to track trait responses of viruses to hosts important in forecasting disease emergence.
Collapse
Affiliation(s)
- Michael McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Adrián Peláez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Rosario G Gavilán
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense, Unidad de Botánica, Madrid, 28040, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
3
|
Pandey A, Wojan C, Feuka A, Craft ME, Manlove K, Pepin KM. The influence of social and spatial processes on the epidemiology of environmentally transmitted pathogens in wildlife: implications for management. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220532. [PMID: 39230447 PMCID: PMC11449208 DOI: 10.1098/rstb.2022.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 09/05/2024] Open
Abstract
Social and spatial structures of host populations play important roles in pathogen transmission. For environmentally transmitted pathogens, the host space use interacts with both the host social structure and the pathogen's environmental persistence (which determines the time-lag across which two hosts can transmit). Together, these factors shape the epidemiological dynamics of environmentally transmitted pathogens. While the importance of both social and spatial structures and environmental pathogen persistence has long been recognized in epidemiology, they are often considered separately. A better understanding of how these factors interact to determine disease dynamics is required for developing robust surveillance and management strategies. Here, we use a simple agent-based model where we vary host mobility (spatial), host gregariousness (social) and pathogen decay (environmental persistence), each from low to high levels to uncover how they affect epidemiological dynamics. By comparing epidemic peak, time to epidemic peak and final epidemic size, we show that longer infectious periods, higher group mobility, larger group size and longer pathogen persistence lead to larger, faster growing outbreaks, and explore how these processes interact to determine epidemiological outcomes such as the epidemic peak and the final epidemic size. We identify general principles that can be used for planning surveillance and control for wildlife host-pathogen systems with environmental transmission across a range of spatial behaviour, social structure and pathogen decay rates. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Aakash Pandey
- Department of Fisheries and Wildlife, Michigan State University , East Lansing, MI 48824, USA
| | - Chris Wojan
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul , MN 55108, USA
| | - Abigail Feuka
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
| | - Meggan E Craft
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul , MN 55108, USA
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill , Logan, UT 84322, USA
| | - Kim M Pepin
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
| |
Collapse
|
4
|
Zilio G, Deshpande JN, Duncan AB, Fronhofer EA, Kaltz O. Dispersal evolution and eco-evolutionary dynamics in antagonistic species interactions. Trends Ecol Evol 2024; 39:666-676. [PMID: 38637209 DOI: 10.1016/j.tree.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Dispersal evolution modifies diverse spatial processes, such as range expansions or biological invasions of single species, but we are currently lacking a realistic vision for metacommunities. Focusing on antagonistic species interactions, we review existing theory of dispersal evolution between natural enemies, and explain how this might be relevant for classic themes in host-parasite evolutionary ecology, namely virulence evolution or local adaptation. Specifically, we highlight the importance of considering the simultaneous (co)evolution of dispersal and interaction traits. Linking such multi-trait evolution with reciprocal demographic and epidemiological feedbacks might change basic predictions about coevolutionary processes and spatial dynamics of interacting species. Future challenges concern the integration of system-specific disease ecology or spatial modifiers, such as spatial network structure or environmental heterogeneity.
Collapse
Affiliation(s)
- Giacomo Zilio
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France; Centre d'Ecologie Fonctionelle et Evolutive (CEFE), University of Montpellier, CNRS, Montpellier, France.
| | - Jhelam N Deshpande
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Alison B Duncan
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Emanuel A Fronhofer
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Oliver Kaltz
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
5
|
Starkloff NC, Angelo T, Mahalila MP, Charles J, Kinung'hi S, Civitello DJ. Spatio-temporal variability in transmission risk of human schistosomes and animal trematodes in a seasonally desiccating East African landscape. Proc Biol Sci 2024; 291:20231766. [PMID: 38196367 PMCID: PMC10777146 DOI: 10.1098/rspb.2023.1766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024] Open
Abstract
Different populations of hosts and parasites experience distinct seasonality in environmental factors, depending on local-scale biotic and abiotic factors. This can lead to highly heterogeneous disease outcomes across host ranges. Variable seasonality characterizes urogenital schistosomiasis, a neglected tropical disease caused by parasitic trematodes (Schistosoma haematobium). Their intermediate hosts are aquatic Bulinus snails that are highly adapted to extreme rainfall seasonality, undergoing prolonged dormancy yearly. While Bulinus snails have a remarkable capacity for rebounding following dormancy, we investigated the extent to which parasite survival within snails is diminished. We conducted an investigation of seasonal snail schistosome dynamics in 109 ponds of variable ephemerality in Tanzania from August 2021 to July 2022. First, we found that ponds have two synchronized peaks of schistosome infection prevalence and observed cercariae, though of lower magnitude in the fully desiccating than non-desiccating ponds. Second, we evaluated total yearly schistosome prevalence across an ephemerality gradient, finding ponds with intermediate ephemerality to have the highest infection rates. We also investigated dynamics of non-schistosome trematodes, which lacked synonymity with schistosome patterns. We found peak schistosome transmission risk at intermediate pond ephemerality, thus the impacts of anticipated increases in landscape desiccation could result in increases or decreases in transmission risk with global change.
Collapse
Affiliation(s)
| | - Teckla Angelo
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
- Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
| | - Moses P. Mahalila
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | - Jenitha Charles
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | - Safari Kinung'hi
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | | |
Collapse
|
6
|
Mackenzie LS, Lambin X, Bryce E, Davies CL, Hassall R, Shati AAM, Sutherland C, Telfer SE. Patterns and drivers of vector-borne microparasites in a classic metapopulation. Parasitology 2023; 150:866-882. [PMID: 37519240 PMCID: PMC10577662 DOI: 10.1017/s0031182023000677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Many organisms live in fragmented populations, which has profound consequences on the dynamics of associated parasites. Metapopulation theory offers a canonical framework for predicting the effects of fragmentation on spatiotemporal host–parasite dynamics. However, empirical studies of parasites in classical metapopulations remain rare, particularly for vector-borne parasites. Here, we quantify spatiotemporal patterns and possible drivers of infection probability for several ectoparasites (fleas, Ixodes trianguliceps and Ixodes ricinus) and vector-borne microparasites (Babesia microti, Bartonella spp., Hepatozoon spp.) in a classically functioning metapopulation of water vole hosts. Results suggest that the relative importance of vector or host dynamics on microparasite infection probabilities is related to parasite life-histories. Bartonella, a microparasite with a fast life-history, was positively associated with both host and vector abundances at several spatial and temporal scales. In contrast, B. microti, a tick-borne parasite with a slow life-history, was only associated with vector dynamics. Further, we provide evidence that life-history shaped parasite dynamics, including occupancy and colonization rates, in the metapopulation. Lastly, our findings were consistent with the hypothesis that landscape connectivity was determined by distance-based dispersal of the focal hosts. We provide essential empirical evidence that contributes to the development of a comprehensive theory of metapopulation processes of vector-borne parasites.
Collapse
Affiliation(s)
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Emma Bryce
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Claire L. Davies
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Richard Hassall
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ali A. M. Shati
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Chris Sutherland
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Sandra E. Telfer
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
7
|
Abstract
Plant diseases are strongly influenced by host biodiversity, spatial structure, and abiotic conditions. All of these are undergoing rapid change, as the climate is warming, habitats are being lost, and nitrogen deposition is changing nutrient dynamics of ecosystems with ensuing consequences for biodiversity. Here, I review examples of plant-pathogen associations to demonstrate how our ability to understand, model and predict disease dynamics is becoming increasingly difficult, as both plant and pathogen populations and communities are undergoing extensive change. The extent of this change is influenced via both direct and combined effects of global change drivers, and especially the latter are still poorly understood. Change at one trophic level is expected to drive change also at the other, and hence feedback loops between plants and their pathogens are expected to drive changes in disease risk both through ecological as well as evolutionary mechanisms. Many of the examples discussed here demonstrate an increase in disease risk as a result of ongoing change, suggesting that unless we successfully mitigate global environmental change, plant disease is going to become an increasingly heavy burden on our societies with far-reaching consequences for food security and functioning of ecosystems.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO BOX 65 00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Starkloff NC, Angelo T, Mahalila MP, Charles J, Kinung’hi S, Civitello DJ. Spatiotemporal variability in transmission risk of human schistosomes and animal trematodes in a seasonally desiccating East African landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542103. [PMID: 37292923 PMCID: PMC10245890 DOI: 10.1101/2023.05.25.542103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Different populations of hosts and parasites experience distinct seasonality in environmental factors, depending on local-scale biotic and abiotic factors. This can lead to highly heterogenous disease outcomes across host ranges. Variable seasonality characterizes urogenital schistosomiasis, a neglected tropical disease caused by parasitic trematodes (Schistosoma haematobium). Their intermediate hosts are aquatic Bulinus snails that are highly adapted to extreme rainfall seasonality, undergoing dormancy for up to seven months yearly. While Bulinus snails have a remarkable capacity for rebounding following dormancy, parasite survival within snails is greatly diminished. We conducted a year-round investigation of seasonal snail-schistosome dynamics in 109 ponds of variable ephemerality in Tanzania. First, we found that ponds have two synchronized peaks of schistosome infection prevalence and cercariae release, though of lower magnitude in the fully desiccating ponds than non-desiccating ponds. Second, we evaluated total yearly prevalence across a gradient of an ephemerality, finding ponds with intermediate ephemerality to have the highest infection rates. We also investigated dynamics of non-schistosome trematodes, which lacked synonymity with schistosome patterns. We found peak schistosome transmission risk at intermediate pond ephemerality, thus the impacts of anticipated increases in landscape desiccation could result in increases or decreases in transmission risk with global change.
Collapse
Affiliation(s)
| | - Teckla Angelo
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | - Moses P. Mahalila
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | - Jenitha Charles
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | - Safari Kinung’hi
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | | |
Collapse
|
9
|
Hanley TC, Grabowski JH, Schneider EG, Barrett PD, Puishys LM, Spadafore R, McManus G, Helt WSK, Kinney H, Conor McManus M, Randall Hughes A. Host genetic identity determines parasite community structure across time and space in oyster restoration. Proc Biol Sci 2023; 290:20222560. [PMID: 36987644 PMCID: PMC10050946 DOI: 10.1098/rspb.2022.2560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Intraspecific variation in host susceptibility to individual parasite species is common, yet how these effects scale to mediate the structure of diverse parasite communities in nature is less well understood. To address this knowledge gap, we tested how host genetic identity affects parasite communities on restored reefs seeded with juvenile oysters from different sources-a regional commercial hatchery or one of two wild progenitor lines. We assessed prevalence and intensity of three micro- and two macroparasite species for 4 years following restoration. Despite the spatial proximity of restored reefs, oyster source identity strongly predicted parasite community prevalence across all years, with sources varying in their relative susceptibility to different parasites. Oyster seed source also predicted reef-level parasite intensities across space and through time. Our results highlight that host intraspecific variation can shape parasite community structure in natural systems, and reinforce the importance of considering source identity and diversity in restoration design.
Collapse
Affiliation(s)
- Torrance C. Hanley
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
- Massachusetts Bays National Estuary Partnership, Boston, MA 02114, USA
| | | | - Eric G. Schneider
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
- Rhode Island Department of Environmental Management, Division of Marine Fisheries, Jamestown, RI 02835, USA
| | - Patrick D. Barrett
- Rhode Island Department of Environmental Management, Division of Marine Fisheries, Jamestown, RI 02835, USA
| | - Lauren M. Puishys
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - Rachele Spadafore
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - Gwendolyn McManus
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | | | - Heather Kinney
- The Nature Conservancy, Rhode Island Chapter, Providence, RI 02906, USA
| | - M. Conor McManus
- Rhode Island Department of Environmental Management, Division of Marine Fisheries, Jamestown, RI 02835, USA
| | - A. Randall Hughes
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| |
Collapse
|
10
|
Maclot F, Debue V, Malmstrom CM, Filloux D, Roumagnac P, Eck M, Tamisier L, Blouin AG, Candresse T, Massart S. Long-Term Anthropogenic Management and Associated Loss of Plant Diversity Deeply Impact Virome Richness and Composition of Poaceae Communities. Microbiol Spectr 2023; 11:e0485022. [PMID: 36916941 PMCID: PMC10100685 DOI: 10.1128/spectrum.04850-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
Modern agriculture has influenced plant virus emergence through ecosystem simplification, introduction of new host species, and reduction in crop genetic diversity. Therefore, it is crucial to better understand virus distributions across cultivated and uncultivated communities in agro-ecological interfaces, as well as virus exchange among them. Here, we advance fundamental understanding in this area by characterizing the virome of three co-occurring replicated Poaceae community types that represent a gradient of grass species richness and management intensity, from highly managed crop monocultures to little-managed, species-rich grasslands. We performed a large-scale study on 950 wild and cultivated Poaceae over 2 years, combining untargeted virome analysis down to the virus species level with targeted detection of three plant viruses. Deep sequencing revealed (i) a diversified and largely unknown Poaceae virome (at least 51 virus species or taxa), with an abundance of so-called persistent viruses; (ii) an increase of virome richness with grass species richness within the community; (iii) stability of virome richness over time but a large viral intraspecific variability; and (iv) contrasting patterns of virus prevalence, coinfections, and spatial distribution among plant communities and species. Our findings highlight the complex structure of plant virus communities in nature and suggest the influence of anthropogenic management on viral distribution and prevalence. IMPORTANCE Because viruses have been mostly studied in cultivated plants, little is known about virus diversity and ecology in less-managed vegetation or about the influence of human management and agriculture on virome composition. Poaceae (grass family)-dominated communities provide invaluable opportunities to examine these ecological issues, as they are distributed worldwide across agro-ecological gradients, are essential for food security and conservation, and can be infected by numerous viruses. Here, we used multiple levels of analysis that considered plant communities, individual plants, virus species, and haplotypes to broaden understanding of the Poaceae virome and to evaluate host-parasite richness relationships within agro-ecological landscapes in our study area. We emphasized the influence of grass diversity and land use on the composition of viral communities and their life history strategies, and we demonstrated the complexity of plant-virus interactions in less-managed grass communities, such as the higher virus prevalence and overrepresentation of mixed virus infection compared to theoretical predictions.
Collapse
Affiliation(s)
- François Maclot
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Virginie Debue
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Carolyn M. Malmstrom
- Department of Plant Biology and Program in Ecology, Evolution, & Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Denis Filloux
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, CIRAD, INRAE, Institut Agro, IRD, University of Montpellier, Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, CIRAD, INRAE, Institut Agro, IRD, University of Montpellier, Montpellier, France
| | - Mathilde Eck
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Lucie Tamisier
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Arnaud G. Blouin
- Virology-Phytoplasmology Laboratory, Agroscope, Nyon, Switzerland
| | - Thierry Candresse
- University of Bordeaux, INRAE, UMR BFP, CS20032, Villenave d’Ornon, France
| | - Sébastien Massart
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
11
|
Zilio G, Nørgaard LS, Gougat-Barbera C, Hall MD, Fronhofer EA, Kaltz O. Travelling with a parasite: the evolution of resistance and dispersal syndromes during experimental range expansion. Proc Biol Sci 2023; 290:20221966. [PMID: 36598014 PMCID: PMC9811632 DOI: 10.1098/rspb.2022.1966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 01/05/2023] Open
Abstract
Rapid evolutionary change during range expansions can lead to diverging range core and front populations, with the emergence of dispersal syndromes (coupled responses in dispersal and life-history traits). Besides intraspecific effects, range expansions may be impacted by interspecific interactions such as parasitism. Yet, despite the potentially large impact of parasites imposing additional selective pressures on the host, their role on range expansions remains largely unexplored. Using microcosm populations of the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata, we studied experimental range expansions under parasite presence or absence. We found that the interaction of range expansion and parasite treatments affected the evolution of host dispersal syndromes. Namely, front populations showed different associations of population growth parameters and swimming behaviours than core populations, indicating divergent evolution. Parasitism reshaped trait associations, with hosts evolved in the presence of the parasite exhibiting overall increased resistance and reduced dispersal. Nonetheless, when comparing infected range core and front populations, we found a positive association, suggesting joint evolution of resistance and dispersal at the front. We conclude that host-parasite interactions during range expansions can change evolutionary trajectories; this in turn may feedback on the ecological dynamics of the range expansion and parasite epidemics.
Collapse
Affiliation(s)
- Giacomo Zilio
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier 34000, France
| | - Louise S. Nørgaard
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne 3800, Australia
| | | | - Matthew D. Hall
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne 3800, Australia
| | | | - Oliver Kaltz
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier 34000, France
| |
Collapse
|
12
|
McLeish MJ, Zamfir AD, Babalola BM, Peláez A, Fraile A, García-Arenal F. Metagenomics show high spatiotemporal virus diversity and ecological compartmentalisation: Virus infections of melon, Cucumis melo, crops, and adjacent wild communities. Virus Evol 2022; 8:veac095. [PMID: 36405340 PMCID: PMC9667876 DOI: 10.1093/ve/veac095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/24/2022] [Accepted: 09/30/2022] [Indexed: 07/22/2023] Open
Abstract
The emergence of viral diseases results from novel transmission dynamics between wild and crop plant communities. The bias of studies towards pathogenic viruses of crops has distracted from knowledge of non-antagonistic symbioses in wild plants. Here, we implemented a high-throughput approach to compare the viromes of melon (Cucumis melo) and wild plants of crop (Crop) and adjacent boundaries (Edge). Each of the 41-plant species examined was infected by at least one virus. The interactions of 104 virus operational taxonomic units (OTUs) with these hosts occurred largely within ecological compartments of either Crop or Edge, with Edge having traits of a reservoir community. Local scale patterns of infection were characterised by the positive correlation between plant and virus richness at each site, the tendency for increased specialist host use through seasons, and specialist host use by OTUs observed only in Crop, characterised local-scale patterns of infection. In this study of systematically sampled viromes of a crop and adjacent wild communities, most hosts showed no disease symptoms, suggesting non-antagonistic symbioses are common. The coexistence of viruses within species-rich ecological compartments of agro-systems might promote the evolution of a diversity of virus strategies for survival and transmission. These communities, including those suspected as reservoirs, are subject to sporadic changes in assemblages, and so too are the conditions that favour the emergence of disease.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Adrián D Zamfir
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Bisola M Babalola
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Adrián Peláez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
13
|
Kjær LJ, Schauber EM. The effect of landscape, transmission mode and social behavior on disease transmission: Simulating the transmission of chronic wasting disease in white-tailed deer (Odocoileus virginianus) populations using a spatially explicit agent-based model. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Wilber MQ, DeMarchi J, Fefferman NH, Silk MJ. High prevalence does not necessarily equal maintenance species: Avoiding biased claims of disease reservoirs when using surveillance data. J Anim Ecol 2022; 91:1740-1754. [PMID: 35838341 DOI: 10.1111/1365-2656.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022]
Abstract
1. Many pathogens of public health and conservation concern persist in host communities. Identifying candidate maintenance and reservoir species is therefore a central component of disease management. The term maintenance species implies that if all species but the putative maintenance species were removed, then the pathogen would still persist. In the absence of field manipulations, this statement inherently requires a causal or mechanistic model to assess. 2. However, we lack a systematic understanding of i) how often conclusions are made about maintenance and reservoir species without reference to mechanistic models ii) what types of biases may be associated with these conclusions and iii) how explicitly invoking causal or mechanistic modeling can help ameliorate these biases. Filling these knowledge gaps is critical for robust inference on pathogen persistence and spillover in multihost parasite systems, with clear implications for human and wildlife health. 3. To address these gaps, we performed a literature review on the evidence previous studies have used to make claims regarding maintenance or reservoir species. We then developed a multihost-parasite model to explore and demonstrate common biases that could arise when inferring maintenance potential from observational prevalence data. Finally, we developed new theory to show how model-driven inference of maintenance species can minimize and eliminate emergent biases. 4. In our review, we found that 83% of studies used some form of observational prevalence data to draw conclusions on maintenance potential and only 6% of these studies combined observational data with mechanistic modeling. Using our model, we demonstrate how the community, spatial, and temporal context of observational data can lead to substantial biases in inferences of maintenance potential. Importantly, our theory identifies that model-driven inference of maintenance species elucidates other streams of observational data that can be leveraged to correct these biases. 5. Model-driven inference is an essential, yet underused, component of multidisciplinary studies that make inference on host reservoir and maintenance species. Better integration of wildlife disease surveillance and mechanistic models is necessary to improve the robustness and reproducibility of our conclusions regarding maintenance and reservoir species.
Collapse
Affiliation(s)
- Mark Q Wilber
- Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, 37996, Knoxville, TN
| | - Joseph DeMarchi
- Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, 37996, Knoxville, TN
| | - Nina H Fefferman
- Department Ecology and Evolutionary Biology, University of Tennessee, 37996, Knoxville, TN.,Department of Mathematics, University of Tennessee, 37996, Knoxville, TN
| | - Matthew J Silk
- Department Ecology and Evolutionary Biology, University of Tennessee, 37996, Knoxville, TN
| |
Collapse
|
15
|
Navarro R, Ambrós S, Butković A, Carrasco JL, González R, Martínez F, Wu B, Elena SF. Defects in Plant Immunity Modulate the Rates and Patterns of RNA Virus Evolution. Virus Evol 2022; 8:veac059. [PMID: 35821716 PMCID: PMC9272744 DOI: 10.1093/ve/veac059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/13/2022] Open
Abstract
It is assumed that host genetic variability for susceptibility to infection conditions virus evolution. Differences in host susceptibility can drive a virus to diversify into strains that track different defense alleles (e.g. antigenic diversity) or to infect only the most susceptible genotypes. Here, we have studied how variability in host defenses determines the evolutionary fate of a plant RNA virus. We performed evolution experiments with Turnip mosaic potyvirus in Arabidopsis thaliana mutants that had disruptions in infection-response signaling pathways or in genes whose products are essential for potyvirus infection. Plant genotypes were classified into five phenogroups according to their response to infection. We found that evolution proceeded faster in more restrictive hosts than in more permissive ones. Most of the phenotypic differences shown by the ancestral virus across host genotypes were removed after evolution, suggesting the combined action of selection and chance. When all evolved viral lineages were tested in all plant genotypes used in the experiments, we found compelling evidences that the most restrictive plant genotypes selected for more generalist viruses, while more permissive genotypes selected for more specialist viruses. Sequencing the genomes of the evolved viral lineages, we found that selection targeted the multifunctional genome-linked protein VPg in most host genotypes. Overall, this work illustrates how different host defenses modulate the rates and extent of virus evolution.
Collapse
Affiliation(s)
- Rebeca Navarro
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Silvia Ambrós
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - José L Carrasco
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Rubén González
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Fernando Martínez
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Beilei Wu
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
- The Santa Fe Institute , Santa Fe NM87501, USA
| |
Collapse
|
16
|
Smith D, O'Brien D, Hall J, Sergeant C, Brookes LM, Harrison XA, Garner TWJ, Jehle R. Challenging a host-pathogen paradigm: Susceptibility to chytridiomycosis is decoupled from genetic erosion. J Evol Biol 2022; 35:589-598. [PMID: 35167143 PMCID: PMC9306973 DOI: 10.1111/jeb.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
The putatively positive association between host genetic diversity and the ability to defend against pathogens has long attracted the attention of evolutionary biologists. Chytridiomycosis, a disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), has emerged in recent decades as a cause of dramatic declines and extinctions across the amphibian clade. Bd susceptibility can vary widely across populations of the same species, but the relationship between standing genetic diversity and susceptibility has remained notably underexplored so far. Here, we focus on a putatively Bd-naive system of two mainland and two island populations of the common toad (Bufo bufo) at the edge of the species' range and use controlled infection experiments and dd-RAD sequencing of >10 000 SNPs across 95 individuals to characterize the role of host population identity, genetic variation and individual body mass in mediating host response to the pathogen. We found strong genetic differentiation between populations and marked variation in their susceptibility to Bd. This variation was not, however, governed by isolation-mediated genetic erosion, and individual heterozygosity was even found to be negatively correlated with survival. Individual survival during infection experiments was strongly positively related to body mass, which itself was unrelated to population of origin or heterozygosity. Our findings underscore the general importance of context-dependency when assessing the role of host genetic variation for the ability of defence against pathogens.
Collapse
Affiliation(s)
- Donal Smith
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
- Institute of ZoologyZoological Society of LondonLondonUK
| | | | | | - Chris Sergeant
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Lola M. Brookes
- Institute of ZoologyZoological Society of LondonLondonUK
- Highland Amphibian and Reptile ProjectDingwallUK
- MRC Centre for Global Infectious Disease AnalysisImperial College School of Public HealthLondonUK
- Royal Veterinary CollegeHatfieldUK
| | - Xavier A. Harrison
- Institute of ZoologyZoological Society of LondonLondonUK
- Centre for Ecology and ConservationUniversity of ExeterExeterUK
| | | | - Robert Jehle
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| |
Collapse
|
17
|
Wilber MQ, Yang A, Boughton R, Manlove KR, Miller RS, Pepin KM, Wittemyer G. A model for leveraging animal movement to understand spatio-temporal disease dynamics. Ecol Lett 2022; 25:1290-1304. [PMID: 35257466 DOI: 10.1111/ele.13986] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/27/2021] [Accepted: 02/04/2022] [Indexed: 12/19/2022]
Abstract
The ongoing explosion of fine-resolution movement data in animal systems provides a unique opportunity to empirically quantify spatial, temporal and individual variation in transmission risk and improve our ability to forecast disease outbreaks. However, we lack a generalizable model that can leverage movement data to quantify transmission risk and how it affects pathogen invasion and persistence on heterogeneous landscapes. We developed a flexible model 'Movement-driven modelling of spatio-temporal infection risk' (MoveSTIR) that leverages diverse data on animal movement to derive metrics of direct and indirect contact by decomposing transmission into constituent processes of contact formation and duration and pathogen deposition and acquisition. We use MoveSTIR to demonstrate that ignoring fine-scale animal movements on actual landscapes can mis-characterize transmission risk and epidemiological dynamics. MoveSTIR unifies previous work on epidemiological contact networks and can address applied and theoretical questions at the nexus of movement and disease ecology.
Collapse
Affiliation(s)
- Mark Q Wilber
- Forestry, Wildlife, and Fisheries, Institute of Agriculture, University of Tennessee, Knoxville, Tennessee, USA
| | - Anni Yang
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA.,Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA.,Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Raoul Boughton
- Archbold Biological Station, Buck Island Ranch, Lake Placid, Florida, USA
| | - Kezia R Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, Utah, USA
| | - Ryan S Miller
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Service, Center for Epidemiology and Animal Health, Fort Collins, Colorado, USA
| | - Kim M Pepin
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - George Wittemyer
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
18
|
Susi H, Sallinen S, Laine A. Coinfection with a virus constrains within-host infection load but increases transmission potential of a highly virulent fungal plant pathogen. Ecol Evol 2022; 12:e8673. [PMID: 35342557 PMCID: PMC8928890 DOI: 10.1002/ece3.8673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
The trade-off between within-host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life-history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross-kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within-host infection rate and transmission potential. The strains differed in the measured life-history traits and their correlations. Moreover, we found that under virus coinfection, within-host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within-host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within-host and between-host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between-hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within-host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade-off between within-host infection load and transmission may be strain specific, and that the pathogen life-history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.
Collapse
Affiliation(s)
- Hanna Susi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Suvi Sallinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
19
|
Methods Combining Genomic and Epidemiological Data in the Reconstruction of Transmission Trees: A Systematic Review. Pathogens 2022; 11:pathogens11020252. [PMID: 35215195 PMCID: PMC8875843 DOI: 10.3390/pathogens11020252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
In order to better understand transmission dynamics and appropriately target control and preventive measures, studies have aimed to identify who-infected-whom in actual outbreaks. Numerous reconstruction methods exist, each with their own assumptions, types of data, and inference strategy. Thus, selecting a method can be difficult. Following PRISMA guidelines, we systematically reviewed the literature for methods combing epidemiological and genomic data in transmission tree reconstruction. We identified 22 methods from the 41 selected articles. We defined three families according to how genomic data was handled: a non-phylogenetic family, a sequential phylogenetic family, and a simultaneous phylogenetic family. We discussed methods according to the data needed as well as the underlying sequence mutation, within-host evolution, transmission, and case observation. In the non-phylogenetic family consisting of eight methods, pairwise genetic distances were estimated. In the phylogenetic families, transmission trees were inferred from phylogenetic trees either simultaneously (nine methods) or sequentially (five methods). While a majority of methods (17/22) modeled the transmission process, few (8/22) took into account imperfect case detection. Within-host evolution was generally (7/8) modeled as a coalescent process. These practical and theoretical considerations were highlighted in order to help select the appropriate method for an outbreak.
Collapse
|
20
|
Ochai SO, Crafford JE, Hassim A, Byaruhanga C, Huang YH, Hartmann A, Dekker EH, van Schalkwyk OL, Kamath PL, Turner WC, van Heerden H. Immunological Evidence of Variation in Exposure and Immune Response to Bacillus anthracis in Herbivores of Kruger and Etosha National Parks. Front Immunol 2022; 13:814031. [PMID: 35237267 PMCID: PMC8882864 DOI: 10.3389/fimmu.2022.814031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure and immunity to generalist pathogens differ among host species and vary across spatial scales. Anthrax, caused by a multi-host bacterial pathogen, Bacillus anthracis, is enzootic in Kruger National Park (KNP), South Africa and Etosha National Park (ENP), Namibia. These parks share many of the same potential host species, yet the main anthrax host in one (greater kudu (Tragelaphus strepsiceros) in KNP and plains zebra (Equus quagga) in ENP) is only a minor host in the other. We investigated species and spatial patterns in anthrax mortalities, B. anthracis exposure, and the ability to neutralize the anthrax lethal toxin to determine if observed host mortality differences between locations could be attributed to population-level variation in pathogen exposure and/or immune response. Using serum collected from zebra and kudu in high and low incidence areas of each park (18- 20 samples/species/area), we estimated pathogen exposure from anti-protective antigen (PA) antibody response using enzyme-linked immunosorbent assay (ELISA) and lethal toxin neutralization with a toxin neutralization assay (TNA). Serological evidence of pathogen exposure followed mortality patterns within each system (kudus: 95% positive in KNP versus 40% in ENP; zebras: 83% positive in ENP versus 63% in KNP). Animals in the high-incidence area of KNP had higher anti-PA responses than those in the low-incidence area, but there were no significant differences in exposure by area within ENP. Toxin neutralizing ability was higher for host populations with lower exposure prevalence, i.e., higher in ENP kudus and KNP zebras than their conspecifics in the other park. These results indicate that host species differ in their exposure to and adaptive immunity against B. anthracis in the two parks. These patterns may be due to environmental differences such as vegetation, rainfall patterns, landscape or forage availability between these systems and their interplay with host behavior (foraging or other risky behaviors), resulting in differences in exposure frequency and dose, and hence immune response.
Collapse
Affiliation(s)
- Sunday O. Ochai
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Jan E. Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Ayesha Hassim
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Charles Byaruhanga
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Yen-Hua Huang
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Axel Hartmann
- Etosha Ecological Institute, Ministry of Environment, Forestry and Tourism, Okaukuejo, Namibia
| | - Edgar H. Dekker
- Office of the State Veterinarian, Department of Agriculture, Forestry and Fisheries, Government of South Africa, Skukuza, South Africa
| | - O. Louis van Schalkwyk
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Office of the State Veterinarian, Department of Agriculture, Forestry and Fisheries, Government of South Africa, Skukuza, South Africa
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Wendy C. Turner
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
21
|
Grimaudo AT, Hoyt JR, Yamada SA, Herzog CJ, Bennett AB, Langwig KE. Host traits and environment interact to determine persistence of bat populations impacted by white-nose syndrome. Ecol Lett 2022; 25:483-497. [PMID: 34935272 PMCID: PMC9299823 DOI: 10.1111/ele.13942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022]
Abstract
Emerging infectious diseases have resulted in severe population declines across diverse taxa. In some instances, despite attributes associated with high extinction risk, disease emergence and host declines are followed by host stabilisation for unknown reasons. While host, pathogen, and the environment are recognised as important factors that interact to determine host-pathogen coexistence, they are often considered independently. Here, we use a translocation experiment to disentangle the role of host traits and environmental conditions in driving the persistence of remnant bat populations a decade after they declined 70-99% due to white-nose syndrome and subsequently stabilised. While survival was significantly higher than during the initial epidemic within all sites, protection from severe disease only existed within a narrow environmental space, suggesting host traits conducive to surviving disease are highly environmentally dependent. Ultimately, population persistence following pathogen invasion is the product of host-pathogen interactions that vary across a patchwork of environments.
Collapse
Affiliation(s)
| | - Joseph R. Hoyt
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | | | - Carl J. Herzog
- New York State Department of Environmental ConservationAlbanyNew YorkUSA
| | | | - Kate E. Langwig
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
22
|
Eck JL, Barrès B, Soubeyrand S, Sirén J, Numminen E, Laine AL. Strain Diversity and Spatial Distribution Are Linked to Epidemic Dynamics in Host Populations. Am Nat 2022; 199:59-74. [DOI: 10.1086/717179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Brian JI, Aldridge DC. Both presence-absence and abundance models provide important and different information about parasite infracommunities. Parasitol Res 2021; 120:3933-3937. [PMID: 34599361 DOI: 10.1007/s00436-021-07327-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Joshua I Brian
- Aquatic Ecology Group, The David Attenborough Building, Department of Zoology, University of Cambridge, Cambridge, CB2 3QZ, UK.
| | - David C Aldridge
- Aquatic Ecology Group, The David Attenborough Building, Department of Zoology, University of Cambridge, Cambridge, CB2 3QZ, UK
| |
Collapse
|
24
|
Singh NK, Karisto P, Croll D. Population-level deep sequencing reveals the interplay of clonal and sexual reproduction in the fungal wheat pathogen Zymoseptoria tritici. Microb Genom 2021; 7:000678. [PMID: 34617882 PMCID: PMC8627204 DOI: 10.1099/mgen.0.000678] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/29/2021] [Indexed: 11/18/2022] Open
Abstract
Pathogens cause significant challenges to global food security. On annual crops, pathogens must re-infect from environmental sources in every growing season. Fungal pathogens have evolved mixed reproductive strategies to cope with the distinct challenges of colonizing growing plants. However, how pathogen diversity evolves during growing seasons remains largely unknown. Here, we performed a deep hierarchical sampling in a single experimental wheat field infected by the major fungal pathogen Zymoseptoria tritici. We analysed whole genome sequences of 177 isolates collected from 12 distinct cultivars replicated in space at three time points of the growing season to maximize capture of genetic diversity. The field population was highly diverse with 37 SNPs per kilobase, a linkage disequilibrium decay within 200-700 bp and a high effective population size. Using experimental infections, we tested a subset of the collected isolates on the dominant cultivar planted in the field. However, we found no significant difference in virulence of isolates collected from the same cultivar compared to isolates collected on other cultivars. About 20 % of the isolate genotypes were grouped into 15 clonal groups. Pairs of clones were disproportionally found at short distances (<5 m), consistent with experimental estimates for per-generation dispersal distances performed in the same field. This confirms predominant leaf-to-leaf transmission during the growing season. Surprisingly, levels of clonality did not increase over time in the field although reproduction is thought to be exclusively asexual during the growing season. Our study shows that the pathogen establishes vast and stable gene pools in single fields. Monitoring short-term evolutionary changes in crop pathogens will inform more durable strategies to contain diseases.
Collapse
Affiliation(s)
- Nikhil Kumar Singh
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Petteri Karisto
- Plant Health, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
25
|
Zilio G, Nørgaard LS, Petrucci G, Zeballos N, Gougat-Barbera C, Fronhofer EA, Kaltz O. Parasitism and host dispersal plasticity in an aquatic model system. J Evol Biol 2021; 34:1316-1325. [PMID: 34157176 DOI: 10.1111/jeb.13893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
Dispersal is a central determinant of spatial dynamics in communities and ecosystems, and various ecological factors can shape the evolution of constitutive and plastic dispersal behaviours. One important driver of dispersal plasticity is the biotic environment. Parasites, for example, influence the internal condition of infected hosts and define external patch quality. Thus, state-dependent dispersal may be determined by infection status and context-dependent dispersal by the abundance of infected hosts in the population. A prerequisite for such dispersal plasticity to evolve is a genetic basis on which natural selection can act. Using interconnected microcosms, we investigated dispersal in experimental populations of the freshwater protist Paramecium caudatum in response to the bacterial parasite Holospora undulata. For a collection of 20 natural host strains, we found substantial variation in constitutive dispersal and to a lesser degree in dispersal plasticity. First, infection tended to increase or decrease dispersal relative to uninfected controls, depending on strain identity, indicative of state-dependent dispersal plasticity. Infection additionally decreased host swimming speed compared to the uninfected counterparts. Second, for certain strains, there was a weak negative association between dispersal and infection prevalence, such that uninfected hosts dispersed less when infection was more frequent in the population, indicating context-dependent dispersal plasticity. Future experiments may test whether the observed differences in dispersal plasticity are sufficiently strong to be picked up by natural selection. The evolution of dispersal plasticity as a strategy to mitigate parasite effects spatially may have important implications for epidemiological dynamics.
Collapse
Affiliation(s)
- Giacomo Zilio
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France
| | - Louise S Nørgaard
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France.,School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Giovanni Petrucci
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France
| | - Nathalie Zeballos
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France.,CEFE, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France
| | | | | | - Oliver Kaltz
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France
| |
Collapse
|
26
|
Meierhofer MB, Lilley TM, Ruokolainen L, Johnson JS, Parratt SR, Morrison ML, Pierce BL, Evans JW, Anttila J. Ten-year projection of white-nose syndrome disease dynamics at the southern leading-edge of infection in North America. Proc Biol Sci 2021; 288:20210719. [PMID: 34074117 PMCID: PMC8170204 DOI: 10.1098/rspb.2021.0719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Predicting the emergence and spread of infectious diseases is critical for the effective conservation of biodiversity. White-nose syndrome (WNS), an emerging infectious disease of bats, has resulted in high mortality in eastern North America. Because the fungal causative agent Pseudogymnoascus destructans is constrained by temperature and humidity, spread dynamics may vary by geography. Environmental conditions in the southern part of the continent are different than the northeast, where disease dynamics are typically studied, making it difficult to predict how the disease will manifest. Herein, we modelled WNS pathogen spread in Texas based on cave densities and average dispersal distances of hosts, projecting these results out to 10 years. We parameterized a predictive model of WNS epidemiology and its effects on bat populations with observed cave environmental data. Our model suggests that bat populations in northern Texas will be more affected by WNS mortality than southern Texas. As such, we recommend prioritizing the preservation of large overwintering colonies of bats in north Texas through management actions. Our model illustrates that infectious disease spread and infectious disease severity can become uncoupled over a gradient of environmental variation and highlight the importance of understanding host, pathogen and environmental conditions across a breadth of environments.
Collapse
Affiliation(s)
- Melissa B Meierhofer
- Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, 534 John Kimbrough Boulevard, College Station, TX 77843, USA.,Natural Resources Institute, Texas A&M University, 534 John Kimbrough Boulevard, College Station, TX 77843, USA.,Finnish Museum of Natural History, University of Helsinki, Pohjoinen Rautatiekatu 13, 00100 Helsinki, Finland
| | - Thomas M Lilley
- Finnish Museum of Natural History, University of Helsinki, Pohjoinen Rautatiekatu 13, 00100 Helsinki, Finland
| | - Lasse Ruokolainen
- Department of Biosciences, University of Helsinki, Yliopistonkatu 4, 00100 Helsinki, Finland
| | - Joseph S Johnson
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Steven R Parratt
- Department of Ecology and Evolution, University of Liverpool, Liverpool L69 7BE, UK
| | - Michael L Morrison
- Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, 534 John Kimbrough Boulevard, College Station, TX 77843, USA
| | - Brian L Pierce
- Natural Resources Institute, Texas A&M University, 534 John Kimbrough Boulevard, College Station, TX 77843, USA
| | - Jonah W Evans
- Wildlife Diversity Program, Texas Parks and Wildlife, 4200 Smith School Road, Austin, TX 78744, USA
| | - Jani Anttila
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
27
|
Turner WC, Kamath PL, van Heerden H, Huang YH, Barandongo ZR, Bruce SA, Kausrud K. The roles of environmental variation and parasite survival in virulence-transmission relationships. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210088. [PMID: 34109041 PMCID: PMC8170194 DOI: 10.1098/rsos.210088] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.
Collapse
Affiliation(s)
- Wendy C. Turner
- US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Yen-Hua Huang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zoe R. Barandongo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kyrre Kausrud
- Section for Epidemiology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|
28
|
Susi H, Laine A. Agricultural land use disrupts biodiversity mediation of virus infections in wild plant populations. THE NEW PHYTOLOGIST 2021; 230:2447-2458. [PMID: 33341977 PMCID: PMC8248426 DOI: 10.1111/nph.17156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 06/08/2023]
Abstract
Human alteration of natural habitats may change the processes governing species interactions in wild communities. Wild populations are increasingly impacted by agricultural intensification, yet it is unknown whether this alters biodiversity mediation of disease dynamics. We investigated the association between plant diversity (species richness, diversity) and infection risk (virus richness, prevalence) in populations of Plantago lanceolata in natural landscapes as well as those occurring at the edges of cultivated fields. Altogether, 27 P. lanceolata populations were surveyed for population characteristics and sampled for PCR detection of five recently characterized viruses. We find that plant species richness and diversity correlated negatively with virus infection prevalence. Virus species richness declined with increasing plant diversity and richness in natural populations while in agricultural edge populations species richness was moderately higher, and not associated with plant richness. This difference was not explained by changes in host richness between these two habitats, suggesting potential pathogen spill-over and increased transmission of viruses across the agro-ecological interface. Host population connectivity significantly decreased virus infection prevalence. We conclude that human use of landscapes may change the ecological laws by which natural communities are formed with far reaching implications for ecosystem functioning and disease.
Collapse
Affiliation(s)
- Hanna Susi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiPO Box 65Helsinki00014Finland
| | - Anna‐Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiPO Box 65Helsinki00014Finland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| |
Collapse
|
29
|
Kürschner T, Scherer C, Radchuk V, Blaum N, Kramer‐Schadt S. Movement can mediate temporal mismatches between resource availability and biological events in host-pathogen interactions. Ecol Evol 2021; 11:5728-5741. [PMID: 34026043 PMCID: PMC8131764 DOI: 10.1002/ece3.7478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
Global change is shifting the timing of biological events, leading to temporal mismatches between biological events and resource availability. These temporal mismatches can threaten species' populations. Importantly, temporal mismatches not only exert strong pressures on the population dynamics of the focal species, but can also lead to substantial changes in pairwise species interactions such as host-pathogen systems. We adapted an established individual-based model of host-pathogen dynamics. The model describes a viral agent in a social host, while accounting for the host's explicit movement decisions. We aimed to investigate how temporal mismatches between seasonal resource availability and host life-history events affect host-pathogen coexistence, that is, disease persistence. Seasonal resource fluctuations only increased coexistence probability when in synchrony with the hosts' biological events. However, a temporal mismatch reduced host-pathogen coexistence, but only marginally. In tandem with an increasing temporal mismatch, our model showed a shift in the spatial distribution of infected hosts. It shifted from an even distribution under synchronous conditions toward the formation of disease hotspots, when host life history and resource availability mismatched completely. The spatial restriction of infected hosts to small hotspots in the landscape initially suggested a lower coexistence probability due to the critical loss of susceptible host individuals within those hotspots. However, the surrounding landscape facilitated demographic rescue through habitat-dependent movement. Our work demonstrates that the negative effects of temporal mismatches between host resource availability and host life history on host-pathogen coexistence can be reduced through the formation of temporary disease hotspots and host movement decisions, with implications for disease management under disturbances and global change.
Collapse
Affiliation(s)
- Tobias Kürschner
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Cédric Scherer
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Viktoriia Radchuk
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Niels Blaum
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Stephanie Kramer‐Schadt
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Department of EcologyTechnische Universität BerlinBerlinGermany
| |
Collapse
|
30
|
Karvonen A, Räihä V, Klemme I, Ashrafi R, Hyvärinen P, Sundberg LR. Quantity and Quality of Aquaculture Enrichments Influence Disease Epidemics and Provide Ecological Alternatives to Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10030335. [PMID: 33810018 PMCID: PMC8004632 DOI: 10.3390/antibiotics10030335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Environmental heterogeneity is a central component influencing the virulence and epidemiology of infectious diseases. The number and distribution of susceptible hosts determines disease transmission opportunities, shifting the epidemiological threshold between the spread and fadeout of a disease. Similarly, the presence and diversity of other hosts, pathogens and environmental microbes, may inhibit or accelerate an epidemic. This has important applied implications in farming environments, where high numbers of susceptible hosts are maintained in conditions of minimal environmental heterogeneity. We investigated how the quantity and quality of aquaculture enrichments (few vs. many stones; clean stones vs. stones conditioned in lake water) influenced the severity of infection of a pathogenic bacterium, Flavobacterium columnare, in salmonid fishes. We found that the conditioning of the stones significantly increased host survival in rearing tanks with few stones. A similar effect of increased host survival was also observed with a higher number of unconditioned stones. These results suggest that a simple increase in the heterogeneity of aquaculture environment can significantly reduce the impact of diseases, most likely operating through a reduction in pathogen transmission (stone quantity) and the formation of beneficial microbial communities (stone quality). This supports enriched rearing as an ecological and economic way to prevent bacterial infections with the minimal use of antimicrobials.
Collapse
Affiliation(s)
- Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland; (V.R.); (I.K.); (R.A.); (L.-R.S.)
- Correspondence: ; Tel.: +358-40-8053882; Fax: +358-14-2601021
| | - Ville Räihä
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland; (V.R.); (I.K.); (R.A.); (L.-R.S.)
| | - Ines Klemme
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland; (V.R.); (I.K.); (R.A.); (L.-R.S.)
| | - Roghaieh Ashrafi
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland; (V.R.); (I.K.); (R.A.); (L.-R.S.)
| | - Pekka Hyvärinen
- Natural Resources and Bioproduction, Natural Resources Institute Finland (Luke), Manamansalontie 90, 88300 Paltamo, Finland;
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland; (V.R.); (I.K.); (R.A.); (L.-R.S.)
- Nanoscience Center, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| |
Collapse
|
31
|
Nørgaard LS, Zilio G, Saade C, Gougat‐Barbera C, Hall MD, Fronhofer EA, Kaltz O. An evolutionary trade‐off between parasite virulence and dispersal at experimental invasion fronts. Ecol Lett 2021; 24:739-750. [DOI: 10.1111/ele.13692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Louise S. Nørgaard
- School of Biological Sciences Centre for Geometric Biology Monash University Melbourne3800Australia
- ISEMUniversity of MontpellierCNRSIRDEPHE Montpellier France
| | - Giacomo Zilio
- ISEMUniversity of MontpellierCNRSIRDEPHE Montpellier France
| | - Camille Saade
- ISEMUniversity of MontpellierCNRSIRDEPHE Montpellier France
| | | | - Matthew D. Hall
- School of Biological Sciences Centre for Geometric Biology Monash University Melbourne3800Australia
| | | | - Oliver Kaltz
- ISEMUniversity of MontpellierCNRSIRDEPHE Montpellier France
| |
Collapse
|
32
|
Papaïx J, Burdon JJ, Walker E, Barrett LG, Thrall PH. Metapopulation Structure Predicts Population Dynamics in the Cakile maritima- Alternaria brassicicola Host-Pathogen Interaction. Am Nat 2021; 197:E55-E71. [PMID: 33523787 DOI: 10.1086/712248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIn symbiotic interactions, spatiotemporal variation in the distribution or population dynamics of one species represents spatial and temporal heterogeneity of the landscape for the other. Such interdependent demographic dynamics result in situations where the relative importance of biotic and abiotic factors in determining ecological processes is complicated to decipher. Using a detailed survey of three metapopulations of the succulent plant Cakile maritima and the necrotrophic fungus Alternaria brassicicola located along the southeastern Australian coast, we developed a series of statistical analyses-namely, synchrony analysis, patch occupancy dynamics, and a spatially explicit metapopulation model-to understand how habitat quality, weather conditions, dispersal, and spatial structure determine metapopulation dynamics. Climatic conditions are important drivers, likely explaining the high synchrony among populations. Host availability, landscape features facilitating dispersal, and habitat conditions also impact the occurrence and spread of disease. Overall, we show that the collection of extensive data on host and pathogen population dynamics, in combination with spatially explicit epidemiological modeling, makes it possible to accurately predict disease dynamics-even when there is extreme variability in host population dynamics. Finally, we discuss the importance of genetic information for predicting demographic dynamics in this pathosystem.
Collapse
|
33
|
DeCandia AL, Schrom EC, Brandell EE, Stahler DR, vonHoldt BM. Sarcoptic mange severity is associated with reduced genomic variation and evidence of selection in Yellowstone National Park wolves ( Canis lupus). Evol Appl 2021; 14:429-445. [PMID: 33664786 PMCID: PMC7896714 DOI: 10.1111/eva.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 01/25/2023] Open
Abstract
Population genetic theory posits that molecular variation buffers against disease risk. Although this "monoculture effect" is well supported in agricultural settings, its applicability to wildlife populations remains in question. In the present study, we examined the genomics underlying individual-level disease severity and population-level consequences of sarcoptic mange infection in a wild population of canids. Using gray wolves (Canis lupus) reintroduced to Yellowstone National Park (YNP) as our focal system, we leveraged 25 years of observational data and biobanked blood and tissue to genotype 76,859 loci in over 400 wolves. At the individual level, we reported an inverse relationship between host genomic variation and infection severity. We additionally identified 410 loci significantly associated with mange severity, with annotations related to inflammation, immunity, and skin barrier integrity and disorders. We contextualized results within environmental, demographic, and behavioral variables, and confirmed that genetic variation was predictive of infection severity. At the population level, we reported decreased genome-wide variation since the initial gray wolf reintroduction event and identified evidence of selection acting against alleles associated with mange infection severity. We concluded that genomic variation plays an important role in disease severity in YNP wolves. This role scales from individual to population levels, and includes patterns of genome-wide variation in support of the monoculture effect and specific loci associated with the complex mange phenotype. Results yielded system-specific insights, while also highlighting the relevance of genomic analyses to wildlife disease ecology, evolution, and conservation.
Collapse
Affiliation(s)
| | - Edward C. Schrom
- Ecology & Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | | |
Collapse
|
34
|
Weiler J, Zilio G, Zeballos N, Nørgaard L, Conce Alberto WD, Krenek S, Kaltz O, Bright L. Among-Strain Variation in Resistance of Paramecium caudatum to the Endonuclear Parasite Holospora undulata: Geographic and Lineage-Specific Patterns. Front Microbiol 2020; 11:603046. [PMID: 33381098 PMCID: PMC7767928 DOI: 10.3389/fmicb.2020.603046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023] Open
Abstract
Resistance is a key determinant in interactions between hosts and their parasites. Understanding the amount and distribution of variation in this trait between strains can provide insights into (co)evolutionary processes and their potential to shape patterns of diversity in natural populations. Using controlled inoculation in experimental mass cultures, we investigated the quantitative variation in resistance to the bacterial parasite Holospora undulata across a worldwide collection of strains of its ciliate host Paramecium caudatum. We combined the observed variation with available information on the phylogeny and biogeography of the strains. We found substantial variation in resistance among strains, with upper-bound values of broad-sense heritability >0.5 (intraclass correlation coefficients). Strain estimates of resistance were repeatable between laboratories and ranged from total resistance to near-complete susceptibility. Early (1 week post inoculation) measurements provided higher estimates of resistance heritability than did later measurements (2-3 weeks), possibly due to diverging epidemiological dynamics in replicate cultures of the same strains. Genetic distance (based on a neutral marker) was positively correlated with the difference in resistance phenotype between strains (r = 0.45), essentially reflecting differences between highly divergent clades (haplogroups) within the host species. Haplogroup A strains, mostly European, were less resistant to the parasite (49% infection prevalence) than non-European haplogroup B strains (28%). At a smaller geographical scale (within Europe), strains that are geographically closer to the parasite origin (Southern Germany) were more susceptible to infection than those from further away. These patterns are consistent with a picture of local parasite adaptation. Our study demonstrates ample natural variation in resistance on which selection can act and hints at symbiont adaptation producing signatures in geographic and lineage-specific patterns of resistance in this model system.
Collapse
Affiliation(s)
- Jared Weiler
- Department of Biology, State University of New York, College at New Paltz, New Paltz, NY, United States
| | - Giacomo Zilio
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nathalie Zeballos
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Louise Nørgaard
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, VIC, Australia
| | - Winiffer D. Conce Alberto
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Sascha Krenek
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Oliver Kaltz
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Lydia Bright
- Department of Biology, State University of New York, College at New Paltz, New Paltz, NY, United States
| |
Collapse
|
35
|
Hulme PE, Baker R, Freckleton R, Hails RS, Hartley M, Harwood J, Marion G, Smith GC, Williamson M. The Epidemiological Framework for Biological Invasions (EFBI): an interdisciplinary foundation for the assessment of biosecurity threats. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.52463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Emerging microparasite (e.g. viruses, bacteria, protozoa and fungi) epidemics and the introduction of non-native pests and weeds are major biosecurity threats worldwide. The likelihood of these threats is often estimated from probabilities of their entry, establishment, spread and ease of prevention. If ecosystems are considered equivalent to hosts, then compartment disease models should provide a useful framework for understanding the processes that underpin non-native species invasions. To enable greater cross-fertilisation between these two disciplines, the Epidemiological Framework for Biological Invasions (EFBI) is developed that classifies ecosystems in relation to their invasion status: Susceptible, Exposed, Infectious and Resistant. These states are linked by transitions relating to transmission, latency and recovery. This viewpoint differs markedly from the species-centric approaches often applied to non-native species. It allows generalisations from epidemiology, such as the force of infection, the basic reproductive ratio R0, super-spreaders, herd immunity, cordon sanitaire and ring vaccination, to be discussed in the novel context of non-native species and helps identify important gaps in the study of biological invasions. The EFBI approach highlights several limitations inherent in current approaches to the study of biological invasions including: (i) the variance in non-native abundance across ecosystems is rarely reported; (ii) field data rarely (if ever) distinguish source from sink ecosystems; (iii) estimates of the susceptibility of ecosystems to invasion seldom account for differences in exposure to non-native species; and (iv) assessments of ecosystem susceptibility often confuse the processes that underpin patterns of spread within -and between- ecosystems. Using the invasion of lakes as a model, the EFBI approach is shown to present a new biosecurity perspective that takes account of ecosystem status and complements demographic models to deliver clearer insights into the dynamics of biological invasions at the landscape scale. It will help to identify whether management of the susceptibility of ecosystems, of the number of vectors, or of the diversity of pathways (for movement between ecosystems) is the best way of limiting or reversing the population growth of a non-native species. The framework can be adapted to incorporate increasing levels of complexity and realism and to provide insights into how to monitor, map and manage biological invasions more effectively.
Collapse
|
36
|
Namsanor J, Pitaksakulrat O, Kopolrat K, Kiatsopit N, Webster BL, Gower CM, Webster JP, Laha T, Saijuntha W, Laoprom N, Andrews RH, Petney TN, Blair D, Sithithaworn P. Impact of geography and time on genetic clusters of Opisthorchis viverrini identified by microsatellite and mitochondrial DNA analysis. Int J Parasitol 2020; 50:1133-1144. [PMID: 32866491 DOI: 10.1016/j.ijpara.2020.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Infection by the small liver fluke, Opisthorchis viverrini, causes serious public health problems, including cholangiocarcinoma, in Thailand and southeastern Asian countries. Previous studies have reported that O. viverrini represents a species complex with varying levels of genetic differentiation in Thailand and Lao PDR. In this study, we re-examined population genetic structure and genetic diversity of O. viverrini using extensive samples of the parasite collected over 15 years from 12 geographical localities in Thailand and eight localities in Lao PDR. Parasite life-cycle stages of 721 individuals of O. viverrini (91 cercariae, 230 metacercariae and 400 adult worms) were genotyped using 12 microsatellite loci. Metacercariae exhibited genetic diversity comparable with that of experimentally raised adults: metacercariae can therefore be used to represent O. viverrini populations without the need for laboratory definitive hosts. Data obtained from larval as well as adult worms identified two distinct genetic clusters of O. viverrini. Sequences of a portion of the mitochondrial cox1 gene strongly supported the existence of these two clusters. One, the widespread cluster, was found at all sampled sites. The second cluster occurred only in Phang Khon District, Sakon Nakhon Province (SPk), within the Songkram River wetland in Thailand. A striking feature of our data relates to the temporal dynamics of the SPk cluster, which was largely replaced by representatives of the widespread cluster over time. If the SPk cluster is excluded, no marked genetic differences were seen among O. viverrini populations from Thailand and Lao PDR. The underlying causes of the observed population structure and population dynamics of O. viverrini are not known.
Collapse
Affiliation(s)
- Jutamas Namsanor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Opal Pitaksakulrat
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kulthida Kopolrat
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nadda Kiatsopit
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bonnie L Webster
- Department of Life Sciences, Parasites and Vectors Division, Natural History Museum, London SW7 5BD, United Kingdom
| | - C M Gower
- Department of Pathobiology and Population Sciences, Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, Hertfordshire, AL9 7TA, United Kingdom
| | - Joanne P Webster
- Department of Pathobiology and Population Sciences, Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, Hertfordshire, AL9 7TA, United Kingdom
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Mahasarakham 44150 Thailand
| | - Nongluk Laoprom
- Department of Science, Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Ross H Andrews
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Imperial College London, Faculty of Medicine, St Mary's Campus, South Wharf Street, London W2 1NY, United Kingdom
| | - Trevor N Petney
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; State Museum of Natural History Karlsruhe, Evolution and Paleontology, Erbprinzenstrasse 13, 76133 Karlsruhe, Germany
| | - David Blair
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Paiboon Sithithaworn
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
37
|
Ferris C, Wright R, Brockhurst MA, Best A. The evolution of host resistance and parasite infectivity is highest in seasonal resource environments that oscillate at intermediate amplitudes. Proc Biol Sci 2020; 287:20200787. [PMID: 32453992 PMCID: PMC7287369 DOI: 10.1098/rspb.2020.0787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Seasonal environments vary in their amplitude of oscillation but the effects of this temporal heterogeneity for host-parasite coevolution are poorly understood. Here, we combined mathematical modelling and experimental evolution of a coevolving bacteria-phage interaction to show that the intensity of host-parasite coevolution peaked in environments that oscillate in their resource supply with intermediate amplitude. Our experimentally parameterized mathematical model explains that this pattern is primarily driven by the ecological effects of resource oscillations on host growth rates. Our findings suggest that in host-parasite systems where the host's but not the parasite's population growth dynamics are subject to seasonal forcing, the intensity of coevolution will peak at intermediate amplitudes but be constrained at extreme amplitudes of environmental oscillation.
Collapse
Affiliation(s)
- Charlotte Ferris
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, 226 Hounsfield Road, Sheffield S3 7RH, UK
| | - Rosanna Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael A. Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alex Best
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, 226 Hounsfield Road, Sheffield S3 7RH, UK
| |
Collapse
|
38
|
Numminen E, Laine AL. The spread of a wild plant pathogen is driven by the road network. PLoS Comput Biol 2020; 16:e1007703. [PMID: 32231370 PMCID: PMC7108725 DOI: 10.1371/journal.pcbi.1007703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Spatial analyses of pathogen occurrence in their natural surroundings entail unique opportunities for assessing in vivo drivers of disease epidemiology. Such studies are however confronted by the complexity of the landscape driving epidemic spread and disease persistence. Since relevant information on how the landscape influences epidemiological dynamics is rarely available, simple spatial models of spread are often used. In the current study we demonstrate both how more complex transmission pathways could be incorpoted to epidemiological analyses and how this can offer novel insights into understanding disease spread across the landscape. Our study is focused on Podosphaera plantaginis, a powdery mildew pathogen that transmits from one host plant to another by wind-dispersed spores. Its host populations often reside next to roads and thus we hypothesize that the road network influences the epidemiology of P. plantaginis. To analyse the impact of roads on the transmission dynamics, we consider a spatial dataset on the presence-absence records on the pathogen collected from a fragmented landscape of host populations. Using both mechanistic transmission modeling and statistical modeling with road-network summary statistics as predictors, we conclude the evident role of the road network in the progression of the epidemics: a phenomena which is manifested both in the enhanced transmission along the roads and in infections typically occurring at the central hub locations of the road network. We also demonstrate how the road network affects the spread of the pathogen using simulations. Jointly our results highlight how human alteration of natural landscapes may increase disease spread.
Collapse
Affiliation(s)
- Elina Numminen
- Research Centre for Ecological Change, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Anna-Liisa Laine
- Research Centre for Ecological Change, University of Helsinki, Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Fecchio A, Bell JA, Bosholn M, Vaughan JA, Tkach VV, Lutz HL, Cueto VR, Gorosito CA, González-Acuña D, Stromlund C, Kvasager D, Comiche KJM, Kirchgatter K, Pinho JB, Berv J, Anciães M, Fontana CS, Zyskowski K, Sampaio S, Dispoto JH, Galen SC, Weckstein JD, Clark NJ. An inverse latitudinal gradient in infection probability and phylogenetic diversity for Leucocytozoon blood parasites in New World birds. J Anim Ecol 2019; 89:423-435. [PMID: 31571223 DOI: 10.1111/1365-2656.13117] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/30/2019] [Indexed: 01/26/2023]
Abstract
Geographic variation in environmental conditions as well as host traits that promote parasite transmission may impact infection rates and community assembly of vector-transmitted parasites. Identifying the ecological, environmental and historical determinants of parasite distributions and diversity is therefore necessary to understand disease outbreaks under changing environments. Here, we identified the predictors and contributions of infection probability and phylogenetic diversity of Leucocytozoon (an avian blood parasite) at site and species levels across the New World. To explore spatial patterns in infection probability and lineage diversity for Leucocytozoon parasites, we surveyed 69 bird communities from Alaska to Patagonia. Using phylogenetic Bayesian hierarchical models and high-resolution satellite remote-sensing data, we determined the relative influence of climate, landscape, geography and host phylogeny on regional parasite community assembly. Infection rates and parasite diversity exhibited considerable variation across regions in the Americas. In opposition to the latitudinal gradient hypothesis, both the diversity and prevalence of Leucocytozoon parasites decreased towards the equator. Host relatedness and traits known to promote vector exposure neither predicted infection probability nor parasite diversity. Instead, the probability of a bird being infected with Leucocytozoon increased with increasing vegetation cover (NDVI) and moisture levels (NDWI), whereas the diversity of parasite lineages decreased with increasing NDVI. Infection rates and parasite diversity also tended to be higher in cooler regions and higher latitudes. Whereas temperature partially constrains Leucocytozoon diversity and infection rates, landscape features, such as vegetation cover and water body availability, play a significant role in modulating the probability of a bird being infected. This suggests that, for Leucocytozoon, the barriers to host shifting and parasite host range expansion are jointly determined by environmental filtering and landscape, but not by host phylogeny. Our results show that integrating host traits, host ancestry, bioclimatic data and microhabitat characteristics that are important for vector reproduction are imperative to understand and predict infection prevalence and diversity of vector-transmitted parasites. Unlike other vector-transmitted diseases, our results show that Leucocytozoon diversity and prevalence will likely decrease with warming temperatures.
Collapse
Affiliation(s)
- Alan Fecchio
- Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Jeffrey A Bell
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Mariane Bosholn
- Laboratório de Biologia Evolutiva e Comportamento Animal, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | | | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Holly L Lutz
- Department of Surgery, University of Chicago, Chicago, IL, USA.,Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Victor R Cueto
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET - Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Argentina
| | - Cristian A Gorosito
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET - Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Argentina
| | - Daniel González-Acuña
- Laboratorio de Parásitos y Enfermedades de Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Chad Stromlund
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Danielle Kvasager
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Kiba J M Comiche
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Sao Paulo, Brazil
| | - Karin Kirchgatter
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Sao Paulo, Brazil
| | - João B Pinho
- Laboratório de Ecologia de Aves, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Jacob Berv
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Marina Anciães
- Laboratório de Biologia Evolutiva e Comportamento Animal, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Carla S Fontana
- Laboratório de Ornitologia, Museu de Ciências e Tecnologia e Programa de Pós-graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kristof Zyskowski
- Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Sidnei Sampaio
- Laboratório de Evolução e Biogeografia, Universidade Federal da Bahia, Salvador, Brazil
| | - Janice H Dispoto
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
| | - Spencer C Galen
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA.,Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, USA
| | - Nicholas J Clark
- School of Veterinary Science, University of Queensland, Gatton, Qld, Australia
| |
Collapse
|
40
|
Stam R, Silva-Arias GA, Tellier A. Subsets of NLR genes show differential signatures of adaptation during colonization of new habitats. THE NEW PHYTOLOGIST 2019; 224:367-379. [PMID: 31230368 DOI: 10.1111/nph.16017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Nucleotide binding site, leucine-rich repeat receptors (NLRs) are canonical resistance (R) genes in plants, fungi and animals, functioning as central (helper) and peripheral (sensor) genes in a signalling network. We investigate NLR evolution during the colonization of novel habitats in a model tomato species, Solanum chilense. We used R-gene enrichment sequencing to obtain polymorphism data at NLRs of 140 plants sampled across 14 populations covering the whole species range. We inferred the past demographic history of habitat colonization by resequencing whole genomes from three S. chilense plants from three key populations and performing approximate Bayesian computation using data from the 14 populations. Using these parameters, we simulated the genetic differentiation statistics distribution expected under neutral NLR evolution and identified small subsets of outlier NLRs exhibiting signatures of selection across populations. NLRs under selection between habitats are more often helper genes, whereas those showing signatures of adaptation in single populations are more often sensor-NLRs. Thus, centrality in the NLR network does not constrain NLR evolvability, and new mutations in central genes in the network are key for R-gene adaptation during colonization of different habitats.
Collapse
Affiliation(s)
- Remco Stam
- Phytopathology, Technical University Munich, 85354, Freising, Germany
- Population Genetics, Technical University Munich, 85354, Freising, Germany
| | | | - Aurelien Tellier
- Population Genetics, Technical University Munich, 85354, Freising, Germany
| |
Collapse
|
41
|
González R, Butković A, Elena SF. Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus. Virus Evol 2019; 5:vez024. [PMID: 31768264 PMCID: PMC6863064 DOI: 10.1093/ve/vez024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Predicting viral emergence is difficult due to the stochastic nature of the underlying processes and the many factors that govern pathogen evolution. Environmental factors affecting the host, the pathogen and the interaction between both are key in emergence. In particular, infectious disease dynamics are affected by spatiotemporal heterogeneity in their environments. A broad knowledge of these factors will allow better estimating where and when viral emergence is more likely to occur. Here, we investigate how the population structure for susceptibility-to-infection genes of the plant Arabidopsis thaliana shapes the evolution of Turnip mosaic virus (TuMV). For doing so we have evolved TuMV lineages in two radically different host population structures: (1) a metapopulation subdivided into six demes (subpopulations); each one being composed of individuals from only one of six possible A. thaliana ecotypes and (2) a well-mixed population constituted by equal number of plants from the same six A. thaliana ecotypes. These two populations were evolved for twelve serial passages. At the end of the experimental evolution, we found faster adaptation of TuMV to each ecotype in the metapopulation than in the well-mixed heterogeneous host populations. However, viruses evolved in well-mixed populations were more pathogenic and infectious than viruses evolved in the metapopulation. Furthermore, the viruses evolved in the demes showed stronger signatures of local specialization than viruses evolved in the well-mixed populations. These results illustrate how the genetic diversity of hosts in an experimental ecosystem favors the evolution of virulence of a pathogen.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, València 46980, Spain
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, València 46980, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, València 46980, Spain.,The Santa Fe Institute, Santa Fe, 1399 Hyde Park Road, NM 87501, USA
| |
Collapse
|
42
|
Okamura B, Hartikainen H, Trew J. Waterbird-Mediated Dispersal and Freshwater Biodiversity: General Insights From Bryozoans. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
The global burden of pathogens and pests on major food crops. Nat Ecol Evol 2019; 3:430-439. [PMID: 30718852 DOI: 10.1038/s41559-018-0793-y] [Citation(s) in RCA: 1248] [Impact Index Per Article: 208.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/20/2018] [Indexed: 11/08/2022]
Abstract
Crop pathogens and pests reduce the yield and quality of agricultural production. They cause substantial economic losses and reduce food security at household, national and global levels. Quantitative, standardized information on crop losses is difficult to compile and compare across crops, agroecosystems and regions. Here, we report on an expert-based assessment of crop health, and provide numerical estimates of yield losses on an individual pathogen and pest basis for five major crops globally and in food security hotspots. Our results document losses associated with 137 pathogens and pests associated with wheat, rice, maize, potato and soybean worldwide. Our yield loss (range) estimates at a global level and per hotspot for wheat (21.5% (10.1-28.1%)), rice (30.0% (24.6-40.9%)), maize (22.5% (19.5-41.1%)), potato (17.2% (8.1-21.0%)) and soybean (21.4% (11.0-32.4%)) suggest that the highest losses are associated with food-deficit regions with fast-growing populations, and frequently with emerging or re-emerging pests and diseases. Our assessment highlights differences in impacts among crop pathogens and pests and among food security hotspots. This analysis contributes critical information to prioritize crop health management to improve the sustainability of agroecosystems in delivering services to societies.
Collapse
|
44
|
Brock PM, Fornace KM, Grigg MJ, Anstey NM, William T, Cox J, Drakeley CJ, Ferguson HM, Kao RR. Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proc Biol Sci 2019; 286:20182351. [PMID: 30963872 PMCID: PMC6367187 DOI: 10.1098/rspb.2018.2351] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
The complex transmission ecologies of vector-borne and zoonotic diseases pose challenges to their control, especially in changing landscapes. Human incidence of zoonotic malaria ( Plasmodium knowlesi) is associated with deforestation although mechanisms are unknown. Here, a novel application of a method for predicting disease occurrence that combines machine learning and statistics is used to identify the key spatial scales that define the relationship between zoonotic malaria cases and environmental change. Using data from satellite imagery, a case-control study, and a cross-sectional survey, predictive models of household-level occurrence of P. knowlesi were fitted with 16 variables summarized at 11 spatial scales simultaneously. The method identified a strong and well-defined peak of predictive influence of the proportion of cleared land within 1 km of households on P. knowlesi occurrence. Aspect (1 and 2 km), slope (0.5 km) and canopy regrowth (0.5 km) were important at small scales. By contrast, fragmentation of deforested areas influenced P. knowlesi occurrence probability most strongly at large scales (4 and 5 km). The identification of these spatial scales narrows the field of plausible mechanisms that connect land use change and P. knowlesi, allowing for the refinement of disease occurrence predictions and the design of spatially-targeted interventions.
Collapse
Affiliation(s)
- Patrick M. Brock
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kimberly M. Fornace
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0810, Australia
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0810, Australia
| | - Timothy William
- Gleneagles Kota Kinabalu Hospital, 88100, Kota Kinabalu, Sabah, Malaysia
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88560, Sabah, Malaysia
| | - Jon Cox
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Chris J. Drakeley
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Heather M. Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Rowland R. Kao
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| |
Collapse
|
45
|
Penczykowski RM, Parratt SR, Barrès B, Sallinen SK, Laine AL. Manipulating host resistance structure reveals impact of pathogen dispersal and environmental heterogeneity on epidemics. Ecology 2018; 99:2853-2863. [PMID: 30289567 DOI: 10.1002/ecy.2526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/20/2018] [Indexed: 11/08/2022]
Abstract
Understanding how variation in hosts, parasites, and the environment shapes patterns of disease is key to predicting ecological and evolutionary outcomes of epidemics. Yet in spatially structured populations, variation in host resistance may be spatially confounded with variation in parasite dispersal and environmental factors that affect disease processes. To tease apart these disease drivers, we paired surveys of natural epidemics with experiments manipulating spatial variation in host susceptibility to infection. We mapped epidemics of the wind-dispersed powdery mildew pathogen Podosphaera plantaginis in five populations of its plant host, Plantago lanceolata. At 15 replicate sites within each population, we deployed groups of healthy potted 'sentinel' plants from five allopatric host lines. By tracking which sentinels became infected in the field and measuring pathogen connectivity and microclimate at those sites, we could test how variation in these factors affected disease when spatial variation in host resistance and soil conditions was minimized. We found that the prevalence and severity of sentinel infection varied over small spatial scales in the field populations, largely due to heterogeneity in pathogen prevalence on wild plants and unmeasured environmental factors. Microclimate was critical for disease spread only at the onset of epidemics, where humidity increased infection risk. Sentinels were more likely to become infected than initially healthy wild plants at a given field site. However, in a follow-up laboratory inoculation study we detected no significant differences between wild and sentinel plant lines in their qualitative susceptibility to pathogen isolates from the field populations, suggesting that primarily non-genetic differences between sentinel and wild hosts drove their differential infection rates in the field. Our study leverages a multi-faceted experimental approach to disentangle important biotic and abiotic drivers of disease patterns within wild populations.
Collapse
Affiliation(s)
- Rachel M Penczykowski
- Research Centre for Ecological Change, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Steven R Parratt
- Research Centre for Ecological Change, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Benoit Barrès
- Research Centre for Ecological Change, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Suvi K Sallinen
- Research Centre for Ecological Change, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Anna-Liisa Laine
- Research Centre for Ecological Change, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| |
Collapse
|
46
|
Parratt SR, Laine A. Pathogen dynamics under both bottom-up host resistance and top-down hyperparasite attack. J Appl Ecol 2018; 55:2976-2985. [PMID: 30449900 PMCID: PMC6220889 DOI: 10.1111/1365-2664.13185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/19/2018] [Indexed: 02/04/2023]
Abstract
The relative importance of bottom-up versus top-down control of population dynamics has been the focus of much debate. In infectious disease biology, research is typically focused on the bottom-up process of host resistance, wherein the direction of control flows from the lower to the higher trophic level to impact on pathogen population size and epidemiology. However, the importance of top-down control by a pathogen's natural enemies has been mostly overlooked.Here, we explore the effects of, and interaction between, host genotype (i.e., genetic susceptibility to pathogen infection) and infection by a hyperparasitic fungus, Ampelomyces spp., on the establishment and early epidemic growth and transmission of a powdery mildew plant pathogen (Podosphaera plantaginis). We used a semi-natural field experiment to contrast the impacts of hyperparasite infection, host-plant resistance and spatial structure to reveal the key factors that determine pathogen spread. We then used a laboratory-based inoculation approach to test whether the field experiment results hold across multiple pathogen-host genetic combinations and to explore hyperparasite effects on the pathogen's later life-history stages.We found that hyperparasite infection had a negligible effect on within-host infection development and between-host spread of the pathogen during the onset of epidemics. In contrast, host-plant resistance was the major determinant of whether plants became infected, and host genotype and proximity to an infection source determined infection severity.Our laboratory study showed that, while the interaction between host and pathogen genotypes was the key determinant of infection outcome, hyperparasitism did, on average, reduce the severity of infection. Moreover, hyperparasite infection negatively influenced the production of the pathogen's overwintering structures. Synthesis and applications. Our results suggest that bottom-up host resistance affects pathogen spread, but top-down control of powdery mildew pathogens is likely more effective against later life-history stages. Further, while hyperparasitism in this system can reduce early pathogen growth under stable laboratory conditions, this effect is not detectable in a semi-natural environment. Considering the effects of hyperparasites at multiple points in pathogen's life history will be important when considering hyperparasite-derived biocontrol measures in other natural and agricultural systems.
Collapse
Affiliation(s)
- Steven R. Parratt
- Research Centre for Ecological ChangeUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Research Centre for Ecological ChangeUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
47
|
Daversa DR, Fenton A, Dell AI, Garner TWJ, Manica A. Infections on the move: how transient phases of host movement influence disease spread. Proc Biol Sci 2018; 284:rspb.2017.1807. [PMID: 29263283 PMCID: PMC5745403 DOI: 10.1098/rspb.2017.1807] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/20/2017] [Indexed: 11/12/2022] Open
Abstract
Animal movement impacts the spread of human and wildlife diseases, and there is significant interest in understanding the role of migrations, biological invasions and other wildlife movements in spatial infection dynamics. However, the influence of processes acting on infections during transient phases of host movement is poorly understood. We propose a conceptual framework that explicitly considers infection dynamics during transient phases of host movement to better predict infection spread through spatial host networks. Accounting for host transient movement captures key processes that occur while hosts move between locations, which together determine the rate at which hosts spread infections through networks. We review theoretical and empirical studies of host movement and infection spread, highlighting the multiple factors that impact the infection status of hosts. We then outline characteristics of hosts, parasites and the environment that influence these dynamics. Recent technological advances provide disease ecologists unprecedented ability to track the fine-scale movement of organisms. These, in conjunction with experimental testing of the factors driving infection dynamics during host movement, can inform models of infection spread based on constituent biological processes.
Collapse
Affiliation(s)
- D R Daversa
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK .,Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - A Fenton
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - A I Dell
- National Great Rivers Research and Education Centre (NGRREC), East Alton, IL 62024, USA.,Department of Biology, Washington University in St Louis, 1 Brookings Dr, St Louis, MO 63130, USA
| | - T W J Garner
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - A Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
48
|
Beyond R0 Maximisation: On Pathogen Evolution and Environmental Dimensions. Trends Ecol Evol 2018; 33:458-473. [DOI: 10.1016/j.tree.2018.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/03/2018] [Accepted: 02/13/2018] [Indexed: 01/28/2023]
|
49
|
Höckerstedt LM, Siren JP, Laine AL. Effect of spatial connectivity on host resistance in a highly fragmented natural pathosystem. J Evol Biol 2018; 31:844-852. [PMID: 29569292 PMCID: PMC6032904 DOI: 10.1111/jeb.13268] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
Both theory and experimental evolution studies predict migration to influence the outcome of antagonistic coevolution between hosts and their parasites, with higher migration rates leading to increased diversity and evolutionary potential. Migration rates are expected to vary in spatially structured natural pathosystems, yet how spatial structure generates variation in coevolutionary trajectories across populations occupying the same landscape has not been tested. Here, we studied the effect of spatial connectivity on host evolutionary potential in a natural pathosystem characterized by a stable Plantago lanceolata host network and a highly dynamic Podosphaera plantaginis parasite metapopulation. We designed a large inoculation experiment to test resistance of five isolated and five well‐connected host populations against sympatric and allopatric pathogen strains, over 4 years. Contrary to our expectations, we did not find consistently higher resistance against sympatric pathogen strains in the well‐connected populations. Instead, host local adaptation varied considerably among populations and through time with greater fluctuations observed in the well‐connected populations. Jointly, our results suggest that in populations where pathogens have successfully established, they have the upper hand in the coevolutionary arms race, but hosts may be better able to respond to pathogen‐imposed selection in the well‐connected than in the isolated populations. Hence, the ongoing and extensive fragmentation of natural habitats may increase vulnerability to diseases.
Collapse
Affiliation(s)
| | - Jukka Pekka Siren
- Department of Computer Science, School of Sciences, Aalto University, Espoo, Finland
| | - Anna-Liisa Laine
- Faculty of Environmental and Biological Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
50
|
Pulgarín-R PC, Gómez JP, Robinson S, Ricklefs RE, Cadena CD. Host species, and not environment, predicts variation in blood parasite prevalence, distribution, and diversity along a humidity gradient in northern South America. Ecol Evol 2018; 8:3800-3814. [PMID: 29721258 PMCID: PMC5916302 DOI: 10.1002/ece3.3785] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023] Open
Abstract
Environmental factors strongly influence the ecology and evolution of vector‐borne infectious diseases. However, our understanding of the influence of climatic variation on host–parasite interactions in tropical systems is rudimentary. We studied five species of birds and their haemosporidian parasites (Plasmodium and Haemoproteus) at 16 sampling sites to understand how environmental heterogeneity influences patterns of parasite prevalence, distribution, and diversity across a marked gradient in water availability in northern South America. We used molecular methods to screen for parasite infections and to identify parasite lineages. To characterize spatial heterogeneity in water availability, we used weather‐station and remotely sensed climate data. We estimated parasite prevalence while accounting for spatial autocorrelation, and used a model selection approach to determine the effect of variables related to water availability and host species on prevalence. The prevalence, distribution, and lineage diversity of haemosporidian parasites varied among localities and host species, but we found no support for the hypothesis that the prevalence and diversity of parasites increase with increasing water availability. Host species and host × climate interactions had stronger effects on infection prevalence, and parasite lineages were strongly associated with particular host species. Because climatic variables had little effect on the overall prevalence and lineage diversity of haemosporidian parasites across study sites, our results suggest that independent host–parasite dynamics may influence patterns in parasitism in environmentally heterogeneous landscapes.
Collapse
Affiliation(s)
- Paulo C Pulgarín-R
- Laboratorio de Biología Evolutiva de Vertebrados Departamento de Ciencias Biológicas Universidad de Los Andes Bogotá Colombia
| | - Juan P Gómez
- Florida Museum of Natural History University of Florida Gainesville FL USA.,Department of Biology University of Florida Gainesville FL USA.,Spatial Epidemiology and Ecology Research Laboratory Department of Geography Emerging Pathogens Institute University of Florida Gainesville FL USA
| | - Scott Robinson
- Florida Museum of Natural History University of Florida Gainesville FL USA.,Department of Biology University of Florida Gainesville FL USA
| | - Robert E Ricklefs
- Department of Biology University of Missouri-St. Louis St. Louis MO USA
| | - Carlos Daniel Cadena
- Laboratorio de Biología Evolutiva de Vertebrados Departamento de Ciencias Biológicas Universidad de Los Andes Bogotá Colombia
| |
Collapse
|