1
|
Yang X, Si M, Liu T, Yang J, Jiang L, Sun X, Yu H. The aryl hydrocarbon receptor affects the inflammatory response of bone marrow mesenchymal stem cell via the hippo-YAP pathway to exacerbate systemic lupus erythematosus. FASEB J 2025; 39:e70410. [PMID: 39985295 DOI: 10.1096/fj.202402784r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
The impaired immune regulation of bone marrow mesenchymal stem cells (BM-MSCs) disrupts T-cell homeostasis and alters the immunological environment in individuals with systemic lupus erythematosus (SLE). However, the specific molecular mechanisms underlying the defective immune functions of BM-MSCs in patients with SLE remain unclear. Here, we report that BM-MSCs derived from MRL/lpr mice exhibit a diminished proliferative capacity, elevated levels of aryl hydrocarbon receptor (AhR) and increased levels of secreted proinflammatory cytokines, including IL-1β, IL-6, and TNF-α. These BM-MSCs can increase splenocyte proliferation and upregulate the expression of retinoic acid receptor-related orphan receptor gamma t (RORγt) in EL4 cells, which constitute a murine T-cell lymphoblastic leukemia cell line. Furthermore, MRL/lpr mice treated with FICZ (an AhR agonist) displayed splenomegaly and exacerbated renal pathology, alongside increased levels of AhR, and inflammatory cytokines. Notably, BM-MSCs isolated from FICZ-treated mice also facilitated splenocyte proliferation and increased the RORγt level in EL4 cells during coculture. Similar effects were observed when BM-MSCs were exposed to FICZ in vitro, but these effects were reversed by the administration of CH223191 (an AhR antagonist). Additionally, the expression of Yes-associated protein (YAP) was significantly increased in both MRL/lpr mice and FICZ-treated BM-MSCs. Importantly, verteporfin (a Hippo-YAP inhibitor) attenuated the elevated RORγt levels in EL4 cells and the increased splenocyte proliferation. This study advances our understanding of SLE pathogenesis by pinpointing AhR as a pivotal modulator of the inflammatory response of BM-MSCs through the Hippo-YAP pathway in individuals with SLE. This novel insight not only enriches the current knowledge of SLE mechanisms but also highlights new potential therapeutic targets for SLE.
Collapse
Affiliation(s)
- Xingzhi Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Mingjun Si
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Ting Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jingyu Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Lili Jiang
- School of Material Science and Technology, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haitao Yu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Laboratory Medicine, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Harris EM, Chamseddine S, Chu A, Senkpeil L, Nikiciuk M, Bourdine A, Magin L, Al-Musa A, Woods B, Ozdogan E, Saker S, van Konijnenburg DPH, Yee CS, Nelson RW, Lee P, Halyabar O, Hale RC, Day-Lewis M, Henderson LA, Nguyen AA, Elkins M, Ohsumi TK, Gutierrez-Arcelus M, Peyper JM, Platt CD, Grace RF, LaBere B, Chou J. T cell and autoantibody profiling for primary immune regulatory disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.02.25.24303331. [PMID: 38464255 PMCID: PMC10925364 DOI: 10.1101/2024.02.25.24303331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Limited clinical tools exist for characterizing primary immune regulatory disorders (PIRD), which are often diagnoses of exclusion. Increased CD4+CXCR5+PD1+ circulating T follicular helper (cTfh) cell percentages have been identified as a marker of active disease in some, but not all, autoimmune disorders. Objective To develop a diagnostic approach that combines measurements of cellular and serologic autoimmunity. Methods We recruited 71 controls and 101 pediatric patients with PIRD with autoimmunity. Flow cytometry was used to measure CD4+CXCR5+ T cells expressing the chemokine receptors CXCR3 and/or CCR6. IgG and IgA autoantibodies were quantified in 56 patients and 20 controls using a microarray featuring 1616 full-length, conformationally intact protein antigens. The 97.5th percentile in the controls serves as the upper limit of normal for percentages of cTfh cells, CD4+CXCR5+ T cells expressing CXCR3 and/or CCR6, and autoantibody intensity and number. Results We found that 27.7% of patients had increased percentages of CD4+CXCR5+PD1+ cTfh cells and 42.5% had increased percentages of CD4+CXCR5+ cells expressing CXCR3 and/or CCR6. Patients had significantly more diverse IgG and IgA autoantibodies than controls and 37.5% had increased numbers of high-titer autoantibodies. Integrating measurements of cTfh cells, CD4+CXCR5+ T cells with CXCR3 and/or CCR6, and numbers of high-titer autoantibodies had 71.4% sensitivity (95% CI: 0.5852 - 0.8158) and 85% specificity (95% CI: 0.6396 - 0.9476) for patients with PIRD compared to controls. Conclusion By integrating CD4+ T cell phenotyping and total burden of autoantibodies, this approach provides additional tools for the diagnosis of PIRD lacking clinical diagnostic criteria.
Collapse
Affiliation(s)
- Emily M. Harris
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Chamseddine
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Anne Chu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Northeastern University, Boston, MA
| | - Leetah Senkpeil
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew Nikiciuk
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Northeastern University, Boston, MA
| | - Aleksandra Bourdine
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Logan Magin
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amer Al-Musa
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Woods
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sarife Saker
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Christina S.K. Yee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan W. Nelson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Pui Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Olha Halyabar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca C. Hale
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Megan Day-Lewis
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan A. Nguyen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Megan Elkins
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Toshiro K. Ohsumi
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Craig D. Platt
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachael F. Grace
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Brenna LaBere
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Current affiliation: Division of Allergy and Immunology, Phoenix Children’s Hospital, Phoenix, AZ 85016
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Zhukova JV, Lopatnikova JA, Alshevskaya AA, Sennikov SV. Molecular mechanisms of regulation of IL-1 and its receptors. Cytokine Growth Factor Rev 2024; 80:59-71. [PMID: 39414547 DOI: 10.1016/j.cytogfr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Interleukin 1 (IL-1) is a pro-inflammatory cytokine that plays a key role in the development and regulation of nonspecific defense and specific immunity. However, its regulatory influence extends beyond inflammation and impacts a range of immune and non-immune processes. The involvement of IL-1 in numerous biological processes, including modulation of inflammation, necessitates strict regulation at multiple levels. This review focuses on these regulatory processes and discusses their underlying mechanisms. IL-1 activity is controlled at various levels, including receptor binding, gene transcription, expression as inactive proforms, and regulated post-translational processing and secretion. Regulation at the level of the receptor expression - alternative splicing, tissue-specific isoforms, and gene polymorphism - is also crucial to IL-1 functional activity. Understanding these regulatory features of IL-1 will not only continue to shape future research directions but will also highlight promising therapeutic strategies to modulate the biological effects of IL-1.
Collapse
Affiliation(s)
- J V Zhukova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - J A Lopatnikova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - A A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - S V Sennikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| |
Collapse
|
4
|
Lamas A, Faria R, Marinho A, Vasconcelos C. The mosaic of systemic lupus erythematosus: From autoimmunity to autoinflammation and immunodeficiency and back. Autoimmun Rev 2024; 23:103675. [PMID: 39481623 DOI: 10.1016/j.autrev.2024.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
The concept of an "immunological continuum model," introduced by McGonagle and McDermott in 2006, redefines the traditional dichotomy between autoimmunity and autoinflammation, proposing a spectrum where innate and adaptive immune dysregulation can co-occur, reflecting a more nuanced understanding of immune disorders. Systemic lupus erythematosus (SLE) exemplifies the complexity of this continuum, often displaying manifestations of autoimmunity, autoinflammation, and immunodeficiency. The interplay between genetic, epigenetic, hormonal, psychological, and environmental factors contributes to its distinctive immunopathological signatures. Historically recognized as a systemic disease with diverse clinical manifestations, SLE is primarily a polygenic autoimmune condition but can, however, present in monogenic forms. Examining SLE through the lens of the immunological continuum model allows for emphasis on the contributions of both innate and adaptive immunity. SLE and primary immunodeficiencies share genetic susceptibilities and clinical manifestations. Additionally, autoinflammatory mechanisms, such as inflammasome activation and interferonopathies, can play a role in SLE pathogenesis, illustrating the disease's position at the crossroads of immune dysregulation. Recognizing the diverse clinical expressions of SLE and its mimickers is critical for accurate diagnosis and targeted therapy. In conclusion, the immunological continuum model provides a comprehensive framework for understanding SLE, acknowledging its multifaceted nature and guiding future research and clinical practice toward more effective and individualized treatments. After the Mosaic of Autoimmunity, it is now the time to focus and attempt to solve the intricate mosaic of SLE.
Collapse
Affiliation(s)
- António Lamas
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal.
| | - Raquel Faria
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - António Marinho
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Carlos Vasconcelos
- Unidade de Imunologia Clínica - Unidade Local de Saúde de Santo António, Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| |
Collapse
|
5
|
Wang Z, Pu N, Zhao W, Chen X, Zhang Y, Sun Y, Bo X. RNA sequencing reveals dynamic expression of genes related to innate immune responses in canine small intestinal epithelial cells induced by Echinococcus granulosus protoscoleces. Front Vet Sci 2024; 11:1503995. [PMID: 39679172 PMCID: PMC11638162 DOI: 10.3389/fvets.2024.1503995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Background Dogs are definitive hosts of Echinococcus granulosus, with the small intestine being the only site of parasitic infections. However, the immunomodulatory processes that occur during interactions between E. granulosus and its definitive host remain unclear. Therefore, this study aimed to evaluate gene transcription patterns in canine small intestinal epithelial cells (CIECs) following stimulation by E. granulosus protoscoleces (PSCs). Particularly, this study investigated the roles of pattern recognition receptors (PRRs), involved in recognizing pathogen-associated molecular patterns (PAMPs) and mediating the host innate immune response to the tapeworm E. granulosus. Methods RNA sequencing (RNA-seq) was used to examine gene transcription patterns in CIECs following stimulation with PSCs for 12 and 24 h. The potential roles of differentially expressed (DE) genes were inferred through Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results RNA-seq analysis identified 78,206,492-90,548,214 clean reads in 12 RNA samples. This included six samples stimulated with PSCs for 12 h (PSC1_12h-PSC3_12h) and 24 h (PSC1_24h-PSC3_24h) and six corresponding control samples (PBS1_12h-PBS3_12h and PBS1_24h-PBS3_24h). In the PSC_12h vs. PBS_12h and PSC_24h vs. PBS_24h groups, 3,520 (2,359 upregulated and 1,161 downregulated) and 3,287 (1765 upregulated and 1,522 downregulated) DEgenes were identified, respectively. The expression of 45 PRRs genes was upregulated in the PSC_12h and PSC_24h groups compared to those in the control groups, including 4 Toll-like receptors (TLRs), 4C-type lectin receptors (CLRs), 3 NOD-like receptors (NLRs), 17 G protein-coupled receptors (GPCRs), 4 scavenger receptors (SRs), and 13 leucine-rich repeat-containing proteins (LRRCs). GO enrichment and KEGG analyses revealed that these DEgenes were mainly involved in the regulation of host immune response processes and molecules. These included antigen processing and presentation, Th17, PI3K-Akt, Th1, and Th2 cell differentiation, neutrophil extracellular trap formation, NOD- and Toll-like receptors, TNF, intestinal immune network for IgA production and IL-17 signaling pathway. Furthermore, the identified DEgenes were involved in the regulation of signaling molecules and interaction (e.g., cell adhesion molecules and ECM-receptor interaction). Conclusion These preliminary findings provide novel perspectives on the host innate immune response to E. granulosus PSC stimulation, with a focus on the involvement of E. granulosus-specific PRRs in host defense mechanisms against infection.
Collapse
Affiliation(s)
- Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Na Pu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenqing Zhao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Xuke Chen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yan Sun
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
6
|
He X, Liu P, Luo Y, Fu X, Yang T. STATs, promising targets for the treatment of autoimmune and inflammatory diseases. Eur J Med Chem 2024; 277:116783. [PMID: 39180944 DOI: 10.1016/j.ejmech.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Cytokines play a crucial role in the pathophysiology of autoimmune and inflammatory diseases, with over 50 cytokines undergoing signal transduction through the Signal Transducers and Activators of Transcription (STAT) signaling pathway. Recent studies have solidly confirmed the pivotal role of STATs in autoimmune and inflammatory diseases. Therefore, this review provides a detailed summary of the immunological functions of STATs, focusing on exploring their mechanisms in various autoimmune and inflammatory diseases. Additionally, with the rapid advancement of structural biology in the field of drug discovery, many STAT inhibitors have been identified using structure-based drug design strategies. In this review, we also examine the structures of STAT proteins and compile the latest research on STAT inhibitors currently being tested in animal models and clinical trials for the treatment of immunological diseases, which emphasizes the feasibility of STATs as promising therapeutic targets and provides insights into the design of the next generation of STAT inhibitors.
Collapse
Affiliation(s)
- Xinlian He
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Zhang D, Sun D. Current progress in CAR-based therapy for kidney disease. Front Immunol 2024; 15:1408718. [PMID: 39234257 PMCID: PMC11372788 DOI: 10.3389/fimmu.2024.1408718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Despite significant breakthroughs in the understanding of immunological and pathophysiological features for immune-mediated kidney diseases, a proportion of patients exhibit poor responses to current therapies or have been categorized as refractory renal disease. Engineered T cells have emerged as a focal point of interest as a potential treatment strategy for kidney diseases. By genetically modifying T cells and arming them with chimeric antigen receptors (CARs), effectively targeting autoreactive immune cells, such as B cells or antibody-secreting plasma cells, has become feasible. The emergence of CAR T-cell therapy has shown promising potential in directing effector and regulatory T cells (Tregs) to the site of autoimmunity, paving the way for effective migration, proliferation, and execution of suppressive functions. Genetically modified T-cells equipped with artificial receptors have become a novel approach for alleviating autoimmune manifestations and reducing autoinflammatory events in the context of kidney diseases. Here, we review the latest developments in basic, translational, and clinical studies of CAR-based therapies for immune-mediated kidney diseases, highlighting their potential as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
- Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Xu H, Zhang X, Wang X, Li B, Yu H, Quan Y, Jiang Y, You Y, Wang Y, Wen M, Liu J, Wang M, Zhang B, Li Y, Zhang X, Lu Q, Yu CY, Cao X. Cellular spermine targets JAK signaling to restrain cytokine-mediated autoimmunity. Immunity 2024; 57:1796-1811.e8. [PMID: 38908373 DOI: 10.1016/j.immuni.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/06/2023] [Accepted: 05/30/2024] [Indexed: 06/24/2024]
Abstract
Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-β-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling. Spermine directly bound to the FERM and SH2 domains of JAK1 to impair JAK1-cytokine receptor interaction, thus broadly suppressing JAK1 phosphorylation triggered by cytokines IFN-I, IFN-II, interleukin (IL)-2, and IL-6. Peripheral blood mononuclear cells (PBMCs) from individuals with SLE showing decreased spermine concentrations exhibited enhanced IFN-I and lupus gene signatures. Spermine treatment attenuated autoimmune pathogenesis in SLE and psoriasis mice and reduced IFN-I signaling in monocytes from individuals with SLE. We synthesized a spermine derivative (spermine derivative 1 [SD1]) and showed that it had a potent immunosuppressive function. Our findings reveal spermine as a metabolic checkpoint for cellular homeostasis and a potential immunosuppressive molecule for controlling autoimmune disease.
Collapse
Affiliation(s)
- Henan Xu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Frontiers Research Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiao Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xin Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Bo Li
- Frontiers Research Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hang Yu
- Institute of Materia Medical, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yuan Quan
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yan Jiang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuling You
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yan Wang
- Institute of Materia Medical, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Mingyue Wen
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Juan Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, Beijing 100730, China
| | - Bo Zhang
- Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yixian Li
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, Beijing 100730, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chu-Yi Yu
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Frontiers Research Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China; National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China.
| |
Collapse
|
9
|
Aevermann BD, Di Domizio J, Olah P, Saidoune F, Armstrong JM, Bachelez H, Barker J, Haniffa M, Julia V, Juul K, Krishnaswamy JK, Litman T, Parsons I, Sarin KY, Schmuth M, Sierra M, Simpson M, Homey B, Griffiths CEM, Scheuermann RH, Gilliet M. Cross-Comparison of Inflammatory Skin Disease Transcriptomics Identifies PTEN as a Pathogenic Disease Classifier in Cutaneous Lupus Erythematosus. J Invest Dermatol 2024; 144:252-262.e4. [PMID: 37598867 DOI: 10.1016/j.jid.2023.06.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/22/2023]
Abstract
Tissue transcriptomics is used to uncover molecular dysregulations underlying diseases. However, the majority of transcriptomics studies focus on single diseases with limited relevance for understanding the molecular relationship between diseases or for identifying disease-specific markers. In this study, we used a normalization approach to compare gene expression across nine inflammatory skin diseases. The normalized datasets were found to retain differential expression signals that allowed unsupervised disease clustering and identification of disease-specific gene signatures. Using the NS-Forest algorithm, we identified a minimal set of biomarkers and validated their use as diagnostic disease classifier. Among them, PTEN was identified as being a specific marker for cutaneous lupus erythematosus and found to be strongly expressed by lesional keratinocytes in association with pathogenic type I IFNs. In fact, PTEN facilitated the expression of IFN-β and IFN-κ in keratinocytes by promoting activation and nuclear translocation of IRF3. Thus, cross-comparison of tissue transcriptomics is a valid strategy to establish a molecular disease classification and to identify pathogenic disease biomarkers.
Collapse
Affiliation(s)
- Brian D Aevermann
- J. Craig Venter Institute, La Jolla, California, USA; Chan Zuckerberg Initiative, Redwood City, California, USA
| | - Jeremy Di Domizio
- Department of Dermatology, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Peter Olah
- Department of Dermatology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Fanny Saidoune
- Department of Dermatology, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | - Hervé Bachelez
- Department of Dermatology, Paris Diderot University, Paris, France
| | - Jonathan Barker
- St John's Institute of Dermatology, Faculty of Life Sciences & Medicine, Kings College London, London, United Kingdom
| | - Muzlifah Haniffa
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, United Kingdom
| | | | | | | | | | - Ian Parsons
- Celgene International Sarl, Boudry, Switzerland
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University Medical Center, Palo Alto, California, USA
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | | | - Michael Simpson
- Department of Genomic Medicine, King's College London, London, United Kingdom
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christopher E M Griffiths
- Section of Dermatology, Department of Medicine, University of Manchester, Manchester, United Kingdom
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, California, USA; Department of Pathology, University of California San Diego School of Medicine, La Jolla, California, USA; La Jolla Institute for Immunology, La Jolla, California, USA
| | - Michel Gilliet
- Department of Dermatology, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Huang P, Sun R, Xu C, Jiang Z, Zuo M, Li Y, Liu R, Gong P, Han Y, Fang J, Li P, Shao C, Shi Y. Glucocorticoid activates STAT3 and NF-κB synergistically with inflammatory cytokines to enhance the anti-inflammatory factor TSG6 expression in mesenchymal stem/stromal cells. Cell Death Dis 2024; 15:70. [PMID: 38238297 PMCID: PMC10796730 DOI: 10.1038/s41419-024-06430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
Glucocorticoid (GC) is essential for maintaining immune homeostasis. While GC is known to regulate the expression of genes related to inflammation in immune cells, the effects of GC, especially in the presence of inflammation, on non-immune cells remain largely unexplored. In particular, the impact of GC on inflammatory cytokine-induced immune modulatory responses of tissue stromal cells is unknown, though it has been widely used to modulate tissue injuries. Here we found that GC could enhance the expression of TSG6, a vital tissue repair effector molecule, in IFNγ and TNFα treated human umbilical cord (UC)-MSCs. NF-κB activation was found to be required for GC-augmented TSG6 upregulation. STAT3, but not STAT1, was also found to be required for the TSG6 upregulation in MSCs exposed to IFNγ, TNFα and GC. Moreover, the phosphorylation (activation) of STAT3 was attenuated when NF-κB was knocked down. Importantly, human UC-MSCs pretreated with a cocktail containing GC, IFNγ, and TNFα could significantly enhance the therapeutic effect of human UC-MSCs in an acute lung injury mouse model, as reflected by reduced infiltration of immune cells and down-regulation of iNOS in macrophages in the lung. Together, the findings reveal a novel link between GR, NF-κB and STAT3 in regulating the immunomodulatory and regenerative properties of MSCs, providing novel information for the understanding and treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Peiqing Huang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Rongrong Sun
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Chenchang Xu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Zixuan Jiang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Muqiu Zuo
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Yinghong Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Pixia Gong
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Yuyi Han
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Peishan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China.
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China.
| |
Collapse
|
11
|
Zhang H, Chen Y, Jiang X, Gu Q, Yao J, Wang X, Wu J. Unveiling the landscape of cytokine research in glioma immunotherapy: a scientometrics analysis. Front Pharmacol 2024; 14:1333124. [PMID: 38259287 PMCID: PMC10800575 DOI: 10.3389/fphar.2023.1333124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Cytokines modulate the glioma tumor microenvironment, influencing occurrence, progression, and treatment response. Strategic cytokine application may improve glioma immunotherapy outcomes. Gliomas remain refractory to standard therapeutic modalities, but immunotherapy shows promise given the integral immunomodulatory roles of cytokines. However, systematic evaluation of cytokine glioma immunotherapy research is absent. Bibliometric mapping of the research landscape, recognition of impactful contributions, and elucidation of evolutive trajectories and hot topics has yet to occur, potentially guiding future efforts. Here, we analyzed the structure, evolution, trends, and hotspots of the cytokine glioma immunotherapy research field, subsequently focusing on avenues for future investigation. Methods: This investigation conducted comprehensive bibliometric analyses on a corpus of 1529 English-language publications, from 1 January 2000, to 4 October 2023, extracted from the Web of Science database. The study employed tools including Microsoft Excel, Origin, VOSviewer, CiteSpace, and the Bibliometrix R package, to systematically assess trends in publication, contributions from various countries, institutions, authors, and journals, as well as to examine literature co-citation and keyword distributions within the domain of cytokines for glioma immunotherapy. The application of these methodologies facilitated a detailed exploration of the hotspots, the underlying knowledge structure, and the developments in the field of cytokines for glioma immunotherapy. Results: This bibliometric analysis revealed an exponential growth in annual publications, with the United States, China, and Germany as top contributors. Reviews constituted 17% and research articles 83% of total publications. Analysis of keywords like "interleukin-13," "TGF-beta," and "dendritic cells" indicated progression from foundational cytokine therapies to sophisticated understanding of the tumor microenvironment and immune dynamics. Key research avenues encompassed the tumor microenvironment, epidermal growth factor receptor, clinical trials, and interleukin pathways. This comprehensive quantitative mapping of the glioma immunotherapy cytokine literature provides valuable insights to advance future research and therapeutic development. Conclusion: This study has identified remaining knowledge gaps regarding the role of cytokines in glioma immunotherapy. Future research will likely focus on the tumor microenvironment, cancer vaccines, epidermal growth factor receptor, and interleukin-13 receptor alpha 2. Glioma immunotherapy development will continue through investigations into resistance mechanisms, microglia and macrophage biology, and interactions within the complex tumor microenvironment.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Chen
- Gamma Knife Center, Department of Oncology, Department of Neurological Surgery, Tianjin Huanhu Hospital, Tianjin Medical University, Tianjin, China
| | - Xinzhan Jiang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Qiang Gu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahao Yao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefeng Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianghua Wu
- School of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong, China
| |
Collapse
|
12
|
Wang B, Zheng Z, Chen L, Zhang W, He Y, Wu B, Ji R. Transcriptomics reveals key regulatory pathways and genes associated with skin diseases induced by face paint usage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164374. [PMID: 37236445 DOI: 10.1016/j.scitotenv.2023.164374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The use of face paint cosmetics can cause skin diseases in opera performers due to the presence of heavy metals and other toxic ingredients in the cosmetics. However, the underlying molecular mechanism for these diseases remains unknown. Here we examined the transcriptome gene profile of human skin keratinocytes exposed to artificial sweat extracts of face paints, and identified the key regulatory pathways and genes, using RNA sequencing technique. Bioinformatics analyses suggested that the face paint exposure induced the differentially expression of 1531 genes and enriched inflammation-relevant TNF and IL-17 signaling pathways after just 4 h of exposure. Inflammation-relevant genes CREB3L3, FOS, FOSB, JUN, TNF, and NFKBIA were identified as the potential regulatory genes, and SOCS3 capable to prevent inflammation-induced carcinogenesis as the hub-bottleneck gene. Long-term exposure (24 h) could exacerbate inflammation, accompanied by interference in cellular metabolism pathways, and the potential regulatory genes (ATP1A1, ATP1B1, ATP1B2, FXYD2, IL6, and TNF) and hub-bottleneck genes (JUNB and TNFAIP3) were all related to inflammation induction and other adverse responses. We proposed that the exposure to face paint might cause the inflammatory factors TNF and IL-17, which are encoded by the genes TNF and IL17, to bind to receptors and activate TNF and IL-17 signaling pathways, leading to the expression of cell proliferation factors (CREB and AP-1) and proinflammatory mediators including transcription factors (FOS, JUN, and JUNB), inflammatory factors (TNF-α and IL6), and intracellular signaling factors (TNFAIP3). This finally resulted in cell inflammation, apoptosis, and other skin diseases. TNF was identified as the key regulator and connector in all the enriched signaling pathways. Our study provides the first insights into the cytotoxicity mechanism of face paints to skin cells and highlights the need for stricter regulations in face paint safety.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhaohao Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
13
|
Al-Sharif M, Abdo M, Shabrawy OE, El-Naga EMA, Fericean L, Banatean-Dunea I, Ateya A. Investigating Polymorphisms and Expression Profile of Immune, Antioxidant, and Erythritol-Related Genes for Limiting Postparturient Endometritis in Holstein Cattle. Vet Sci 2023; 10:370. [PMID: 37368756 DOI: 10.3390/vetsci10060370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This study looked at genetic polymorphisms and transcript levels of immune, antioxidant, and erythritol-related markers for postparturient endometritis prediction and tracking in Holstein dairy cows. One hundred and thirty female dairy cows (65 endometritis affected and 65 apparently healthy) were used. Nucleotide sequence variations between healthy and endometritis-affected cows were revealed using PCR-DNA sequencing for immune (TLR4, TLR7, TNF-α, IL10, NCF4, and LITAF), antioxidant (ATOX1, GST, and OXSR1), and erythritol-related (TKT, RPIA, and AMPD1) genes. Chi-square investigation exposed a noteworthy variance amongst cow groups with and without endometritis in likelihood of dispersal of all distinguished nucleotide variants (p < 0.05). The IL10, ATOX1, and GST genes were expressed at substantially lower levels in endometritis-affected cows. Gene expression levels were considerably higher in endometritis-affected cows than in resistant ones for the genes TLR4, TLR7, TNF-α, NCF4, LITAF, OXSR1, TKT, RPIA, and AMPD1. The sort of marker and vulnerability or resistance to endometritis had a significant impact on the transcript levels of the studied indicators. The outcomes might confirm the importance of nucleotide variants along with gene expression patterns as markers of postparturient endometritis susceptibility/resistance and provide a workable control plan for Holstein dairy cows.
Collapse
Affiliation(s)
- Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Omnia El Shabrawy
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menofia University, Menofia 32951, Egypt
| | - Eman M Abu El-Naga
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
14
|
Zhu X, Ma D, Yang B, An Q, Zhao J, Gao X, Zhang L. Research progress of engineered mesenchymal stem cells and their derived exosomes and their application in autoimmune/inflammatory diseases. Stem Cell Res Ther 2023; 14:71. [PMID: 37038221 PMCID: PMC10088151 DOI: 10.1186/s13287-023-03295-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Autoimmune/inflammatory diseases affect many people and are an important cause of global incidence and mortality. Mesenchymal stem cells (MSCs) have low immunogenicity, immune regulation, multidifferentiation and other biological characteristics, play an important role in tissue repair and immune regulation and are widely used in the research and treatment of autoimmune/inflammatory diseases. In addition, MSCs can secrete extracellular vesicles with lipid bilayer structures under resting or activated conditions, including exosomes, microparticles and apoptotic bodies. Among them, exosomes, as the most important component of extracellular vesicles, can function as parent MSCs. Although MSCs and their exosomes have the characteristics of immune regulation and homing, engineering these cells or vesicles through various technical means, such as genetic engineering, surface modification and tissue engineering, can further improve their homing and other congenital characteristics, make them specifically target specific tissues or organs, and improve their therapeutic effect. This article reviews the advanced technology of engineering MSCs or MSC-derived exosomes and its application in some autoimmune/inflammatory diseases by searching the literature published in recent years at home and abroad.
Collapse
Affiliation(s)
- Xueqing Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
15
|
Zou HX, Hu T, Zhao JY, Qiu BQ, Zou CC, Xu QR, Liu JC, Lai SQ, Huang H. Exploring Dysregulated Ferroptosis-Related Genes in Septic Myocardial Injury Based on Human Heart Transcriptomes: Evidence and New Insights. J Inflamm Res 2023; 16:995-1015. [PMID: 36923465 PMCID: PMC10010745 DOI: 10.2147/jir.s400107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Sepsis is currently a common condition in emergency and intensive care units, and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Cardiac dysfunction caused by septic myocardial injury (SMI) is associated with adverse prognosis and has significant economic and human costs. The pathophysiological mechanisms underlying SMI have long been a subject of interest. Recent studies have identified ferroptosis, a form of programmed cell death associated with iron accumulation and lipid peroxidation, as a pathological factor in the development of SMI. However, the current understanding of how ferroptosis functions and regulates in SMI remains limited, particularly in the absence of direct evidence from human heart. Methods We performed a sequential comprehensive bioinformatics analysis of human sepsis cardiac transcriptome data obtained through the GEO database. The lipopolysaccharide-induced mouse SMI model was used to validate the ferroptosis features and transcriptional expression of key genes. Results We identified widespread dysregulation of ferroptosis-related genes (FRGs) in SMI based on the human septic heart transcriptomes, deeply explored the underlying biological mechanisms and crosstalks, followed by the identification of key functional modules and hub genes through the construction of protein-protein interaction network. Eight key FRGs that regulate ferroptosis in SMI, including HIF1A, MAPK3, NOX4, PPARA, PTEN, RELA, STAT3 and TP53, were identified, as well as the ferroptosis features. All the key FRGs showed excellent diagnostic capability for SMI, part of them was associated with the prognosis of sepsis patients and the immune infiltration in the septic hearts, and potential ferroptosis-modulating drugs for SMI were predicted based on key FRGs. Conclusion This study provides human septic heart transcriptome-based evidence and brings new insights into the role of ferroptosis in SMI, which is significant for expanding the understanding of the pathobiological mechanisms of SMI and exploring promising diagnostic and therapeutic targets for SMI.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Tie Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Jia-Yi Zhao
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Experimental Program, Huan Kui College, Nanchang University, Nanchang, People’s Republic of China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Chen-Chao Zou
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Qi-Rong Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
16
|
Pereira MS, Kriegel MA. Evolving concepts of host-pathobiont interactions in autoimmunity. Curr Opin Immunol 2023; 80:102265. [PMID: 36444784 DOI: 10.1016/j.coi.2022.102265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022]
Abstract
Autoimmune diseases are complex, multifactorial diseases with a polygenic trait and diverse environmental factors that contribute to triggering and exacerbating each disorder. The human microbiome is increasingly implicated in the multistep pathogenesis of autoimmune diseases. We summarize here the latest developments in the field of how the microbiota interacts with the host on a cellular and molecular level. We review how pathobionts evolve within the gut of autoimmune-prone hosts to translocate to secondary lymphoid tissues. On mucosal sites and in non-gut tissues, pathobionts trigger autoimmune pathways through various mechanisms, including cross-reactivity with autoantigens and secretion of metabolites that alter immune functions. A better understanding of these mechanisms will hasten the development of unconventional therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Márcia S Pereira
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Martin A Kriegel
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany; Section of Rheumatology and Clinical Immunology, Department of Internal Medicine D, University Hospital Münster, 48149 Münster, Germany; Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
17
|
Liang XZ, Liu XC, Li S, Wen MT, Chen YR, Luo D, Xu B, Li NH, Li G. IRF8 and its related molecules as potential diagnostic biomarkers or therapeutic candidates and immune cell infiltration characteristics in steroid-induced osteonecrosis of the femoral head. J Orthop Surg Res 2023; 18:27. [PMID: 36627660 PMCID: PMC9832881 DOI: 10.1186/s13018-022-03381-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 11/02/2022] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Steroid-induced osteonecrosis of the femoral head (SONFH) was a refractory orthopedic hip joint disease in the young and middle-aged people, but the pathogenesis of SONFH remained unclear. We aimed to identify the potential genes and screen potential therapeutic compounds for SONFH. METHODS The microarray was obtained for blood tissue from the GEO database, and then it identifies differentially expressed genes (DEGs). The DEGs were analyzed to obtain the differences in immune cell infiltration. The gene functional enrichment analysis of SONFH was analyzed. The PPI of DEGs was identified through the STRING database, and the cluster modules and hub genes were ascertained using MCODE and CytoHubba, and the ROC curve of hub genes was analyzed, and the tissues distribution of hub genes was understood by the HPA, Bgee and BioGPS databases. The hub genes and target miRNAs and corresponding upstream lncRNAs were predicted by TargetScan, miRDB and ENCORI database. Subsequently, we used CMap, DGIdb and L1000FWD databases to identify several potential therapeutic molecular compounds for SONFH. Finally, the AutoDockTools Vina, PyMOL and Discovery Studio were employed for molecular docking analyses between compounds and hub genes. RESULTS The microarray dataset GSE123568 was obtained related to SONFH. There were 372 DEGs including 197 upregulated genes and 175 downregulated genes by adjusted P value < 0.01 and |log2FC|> 1. Several significant GSEA enrichment analysis and biological processes and KEGG pathway associated with SONFH were identified, which were significantly related to cytoskeleton organization, nucleobase-containing compound catabolic process, NOD-like receptor signaling pathway, MAPK signaling pathway, FoxO signaling pathway, neutrophil-mediated immunity, neutrophil degranulation and neutrophil activation involved in immune response. Activated T cells CD4 memory, B cells naïve, B cells memory, T cells CD8 and T cells gamma delta might be involved in the occurrence and development of SONFH. Three cluster modules were identified in the PPI network, and eleven hub genes including FPR2, LILRB2, MNDA, CCR1, IRF8, TYROBP, TLR1, HCK, TLR8, TLR2 and CCR2 were identified by Cytohubba, which were differed in bone marrow, adipose tissue and blood, and which had good diagnostic performance in SONFH. We identified IRF8 and 10 target miRNAs that was utilized including Targetsan, miRDB and ENCORI databases and 8 corresponding upstream lncRNAs that was revealed by ENCORI database. IRF8 was detected with consistent expression by qRT-PCR. Based on the CMap, DGIdb and L1000FWD databases, the 11 small molecular compounds that were most strongly therapeutic correlated with SONFH were estradiol, genistein, domperidone, lovastatin, myricetin, fenbufen, rosiglitazone, sirolimus, phenformin, vorinostat and vinblastine. All of 11 small molecules had good binding affinity with the IRF8 in molecular docking. CONCLUSION The occurrence of SONFH was associated with a "multi-target" and "multi-pathway" pattern, especially related to immunity, and IRF8 and its noncoding RNA were closely related to the development of SONFH. The CMap, DGIdb and L1000FWD databases could be effectively used in a systematic manner to predict potential drugs for the prevention and treatment of SONFH. However, additional clinical and experimental research is warranted.
Collapse
Affiliation(s)
- Xue-Zhen Liang
- Orthopaedic Microsurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan City, 250014 Shandong Province China
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong China
| | - Xiao-Chen Liu
- Orthopaedic Microsurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan City, 250014 Shandong Province China
| | - Song Li
- Library, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong China
| | - Ming-Tao Wen
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong China
| | - Yan-Rong Chen
- Orthopaedic Microsurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan City, 250014 Shandong Province China
| | - Di Luo
- Orthopaedic Microsurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan City, 250014 Shandong Province China
| | - Bo Xu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong China
| | - Nian-Hu Li
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong China
- Spinal Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan City, 250014 Shandong Province China
| | - Gang Li
- Orthopaedic Microsurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan City, 250014 Shandong Province China
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong China
| |
Collapse
|
18
|
Riedel JH, Robben L, Paust HJ, Zhao Y, Asada N, Song N, Peters A, Kaffke A, Borchers A, Tiegs G, Seifert L, Tomas NM, Hoxha E, Wenzel UO, Huber TB, Wiech T, Turner JE, Krebs CF, Panzer U. Glucocorticoids target the CXCL9/CXCL10-CXCR3 axis and confer protection against immune-mediated kidney injury. JCI Insight 2023; 8:160251. [PMID: 36355429 PMCID: PMC9870076 DOI: 10.1172/jci.insight.160251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Glucocorticoids remain a cornerstone of therapeutic regimes for autoimmune and chronic inflammatory diseases - for example, in different forms of crescentic glomerulonephritis - because of their rapid antiinflammatory effects, low cost, and wide availability. Despite their routine use for decades, the underlying cellular mechanisms by which steroids exert their therapeutic effects need to be fully elucidated. Here, we demonstrate that high-dose steroid treatment rapidly reduced the number of proinflammatory CXCR3+CD4+ T cells in the kidney by combining high-dimensional single-cell and morphological analyses of kidney biopsies from patients with antineutrophil cytoplasmic antibody-associated (ANCA-associated) crescentic glomerulonephritis. Using an experimental model of crescentic glomerulonephritis, we show that the steroid-induced decrease in renal CD4+ T cells is a consequence of reduced T cell recruitment, which is associated with an ameliorated disease course. Mechanistic in vivo and in vitro studies revealed that steroids act directly on renal tissue cells, such as tubular epithelial cells, but not on T cells, which resulted in an abolished renal expression of CXCL9 and CXCL10 as well as in the prevention of CXCR3+CD4+ T cell recruitment to the inflamed kidneys. Thus, we identified the CXCL9/CXCL10-CXCR3 axis as a previously unrecognized cellular and molecular target of glucocorticoids providing protection from immune-mediated pathology.
Collapse
Affiliation(s)
- Jan-Hendrik Riedel
- Division of Translational Immunology, III. Department of Medicine and,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Robben
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Yu Zhao
- Division of Translational Immunology, III. Department of Medicine and,Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), Hamburg, Germany
| | - Nariaki Asada
- Division of Translational Immunology, III. Department of Medicine and
| | - Ning Song
- Division of Translational Immunology, III. Department of Medicine and
| | - Anett Peters
- Division of Translational Immunology, III. Department of Medicine and
| | - Anna Kaffke
- Division of Translational Immunology, III. Department of Medicine and
| | - Alina Borchers
- Division of Translational Immunology, III. Department of Medicine and
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology,,Institute of Pathology, Section of Nephropathology, and
| | - Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M. Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Section of Nephropathology, and
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich O. Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- Division of Translational Immunology, III. Department of Medicine and,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Division of Translational Immunology, III. Department of Medicine and,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Deschler K, Rademacher J, Lacher SM, Huth A, Utzt M, Krebs S, Blum H, Haibel H, Proft F, Protopopov M, Rodriguez VR, Beltrán E, Poddubnyy D, Dornmair K. Antigen-specific immune reactions by expanded CD8 + T cell clones from HLA-B*27-positive patients with spondyloarthritis. J Autoimmun 2022; 133:102901. [PMID: 36115212 DOI: 10.1016/j.jaut.2022.102901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Spondyloarthritis (SpA) is a chronic inflammatory disease that is tightly linked to HLA-B*27 but the pathophysiological basis of this link is still unknown. It is discussed whether either the instability of HLA-B*27 molecules triggers predominantly innate immune reactions or yet unknown antigenic peptides presented by HLA-B*27 induce adaptive autoimmune reactions by CD8+ T cells. To analyze the pathogenesis of SpA, we here investigated the T cell receptor (TCR) usage and whole transcriptomes of CD8+ single cells from synovial fluid of HLA-B*27-positive SpA patients and HLA-B*27-negative controls. In HLA-B*27-positive patients, we confirmed preferential expression of several TCR β-chain families, found even more restricted usage of particular TCR α-chains, assigned matching TCR αβ-chain pairs with homologous CDR3-sequences, and detected identical TCR-chains in different patients. Gene expression analyses by single cell mRNAseq revealed that genes specific for the tissue resident memory phenotype, exhaustion, and apoptosis were particularly highly expressed in expanded clonotypes from HLA-B*27-positive SpA patients. Together, several independent lines of evidence argue in favor of an (auto)antigenic peptide related pathogenesis.
Collapse
Affiliation(s)
- Katharina Deschler
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Judith Rademacher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Sonja M Lacher
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Alina Huth
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Markus Utzt
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU Munich, Germany
| | - Hildrun Haibel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Fabian Proft
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Mikhail Protopopov
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Valeria Rios Rodriguez
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Denis Poddubnyy
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany; Epidemiology unit, German Rheumatism Research Centre, Berlin, Germany.
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
20
|
Ha MK, Bartholomeus E, Van Os L, Dandelooy J, Leysen J, Aerts O, Siozopoulou V, De Smet E, Gielen J, Guerti K, De Maeseneer M, Herregods N, Lechkar B, Wittoek R, Geens E, Claes L, Zaqout M, Dewals W, Lemay A, Tuerlinckx D, Weynants D, Vanlede K, van Berlaer G, Raes M, Verhelst H, Boiy T, Van Damme P, Jansen AC, Meuwissen M, Sabato V, Van Camp G, Suls A, Werff ten Bosch JVD, Dehoorne J, Joos R, Laukens K, Meysman P, Ogunjimi B. Blood transcriptomics to facilitate diagnosis and stratification in pediatric rheumatic diseases - a proof of concept study. Pediatr Rheumatol Online J 2022; 20:91. [PMID: 36253751 PMCID: PMC9575227 DOI: 10.1186/s12969-022-00747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/24/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Transcriptome profiling of blood cells is an efficient tool to study the gene expression signatures of rheumatic diseases. This study aims to improve the early diagnosis of pediatric rheumatic diseases by investigating patients' blood gene expression and applying machine learning on the transcriptome data to develop predictive models. METHODS RNA sequencing was performed on whole blood collected from children with rheumatic diseases. Random Forest classification models were developed based on the transcriptome data of 48 rheumatic patients, 46 children with viral infection, and 35 controls to classify different disease groups. The performance of these classifiers was evaluated by leave-one-out cross-validation. Analyses of differentially expressed genes (DEG), gene ontology (GO), and interferon-stimulated gene (ISG) score were also conducted. RESULTS Our first classifier could differentiate pediatric rheumatic patients from controls and infection cases with high area-under-the-curve (AUC) values (AUC = 0.8 ± 0.1 and 0.7 ± 0.1, respectively). Three other classifiers could distinguish chronic recurrent multifocal osteomyelitis (CRMO), juvenile idiopathic arthritis (JIA), and interferonopathies (IFN) from control and infection cases with AUC ≥ 0.8. DEG and GO analyses reveal that the pathophysiology of CRMO, IFN, and JIA involves innate immune responses including myeloid leukocyte and granulocyte activation, neutrophil activation and degranulation. IFN is specifically mediated by antibacterial and antifungal defense responses, CRMO by cellular response to cytokine, and JIA by cellular response to chemical stimulus. IFN patients particularly had the highest mean ISG score among all disease groups. CONCLUSION Our data show that blood transcriptomics combined with machine learning is a promising diagnostic tool for pediatric rheumatic diseases and may assist physicians in making data-driven and patient-specific decisions in clinical practice.
Collapse
Affiliation(s)
- My Kieu Ha
- Center for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium. .,Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium. .,Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium.
| | - Esther Bartholomeus
- grid.5284.b0000 0001 0790 3681Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium ,grid.411414.50000 0004 0626 3418Center of Medical Genetics, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - Luc Van Os
- grid.411414.50000 0004 0626 3418Ophthalmology Department, Antwerp University Hospital, Edegem, Belgium
| | - Julie Dandelooy
- grid.411414.50000 0004 0626 3418Dermatology Department, Antwerp University Hospital, Edegem, Belgium
| | - Julie Leysen
- grid.411414.50000 0004 0626 3418Dermatology Department, Antwerp University Hospital, Edegem, Belgium ,grid.5284.b0000 0001 0790 3681Department of Translational Research in Immunology and Inflammation, University of Antwerp, Wilrijk, Belgium
| | - Olivier Aerts
- grid.411414.50000 0004 0626 3418Dermatology Department, Antwerp University Hospital, Edegem, Belgium ,grid.5284.b0000 0001 0790 3681Department of Translational Research in Immunology and Inflammation, University of Antwerp, Wilrijk, Belgium
| | - Vasiliki Siozopoulou
- grid.411414.50000 0004 0626 3418Pathology Department, Antwerp University Hospital, Edegem, Belgium
| | - Eline De Smet
- grid.411414.50000 0004 0626 3418Radiology Department, Antwerp University Hospital, Edegem, Belgium
| | - Jan Gielen
- grid.411414.50000 0004 0626 3418Radiology Department, Antwerp University Hospital, Edegem, Belgium ,grid.5284.b0000 0001 0790 3681Department of Molecular – Morphology – Microscopy, University of Antwerp, Wilrijk, Belgium
| | - Khadija Guerti
- grid.411414.50000 0004 0626 3418Clinical Biology Department, Antwerp University Hospital, Edegem, Belgium
| | | | - Nele Herregods
- grid.410566.00000 0004 0626 3303Radiology Department, Ghent University Hospital, Ghent, Belgium
| | - Bouchra Lechkar
- grid.411414.50000 0004 0626 3418Department of Immunology, Allergology, and Rheumatology, Antwerp University Hospital, Edegem, Belgium
| | - Ruth Wittoek
- grid.410566.00000 0004 0626 3303Rheumatology Department, Ghent University Hospital, Ghent, Belgium ,grid.411414.50000 0004 0626 3418Rheumatology Department, Antwerp Hospital Network, Antwerp, Belgium
| | - Elke Geens
- grid.411414.50000 0004 0626 3418Rheumatology Department, Antwerp Hospital Network, Antwerp, Belgium
| | - Laura Claes
- grid.411414.50000 0004 0626 3418Pediatric Neurology Unit, Antwerp University Hospital, Edegem, Belgium
| | - Mahmoud Zaqout
- grid.411414.50000 0004 0626 3418Pediatric Cardiology Department, Antwerp University Hospital, Edegem, Belgium ,grid.411414.50000 0004 0626 3418Pediatric Cardiology Department, Antwerp Hospital Network, Antwerp, Belgium
| | - Wendy Dewals
- grid.411414.50000 0004 0626 3418Pediatric Cardiology Department, Antwerp University Hospital, Edegem, Belgium
| | - Annelies Lemay
- Department of Pediatrics, Turnhout General Hospital, Turnhout, Belgium
| | - David Tuerlinckx
- grid.7942.80000 0001 2294 713XDepartment of Pediatrics, Catholic University of Louvain, Louvain-la-Neuve, Belgium ,grid.6520.10000 0001 2242 8479Department of Pediatrics, Namur University Hospital Center, Site Dinant, Dinant, Belgium
| | - David Weynants
- grid.6520.10000 0001 2242 8479Department of Pediatrics, Namur University Hospital Center, Site Sainte-Elisabeth, Namur, Belgium
| | - Koen Vanlede
- Department of Pediatrics, Nikolaas General Hospital, Sint-Niklaas, Belgium
| | - Gerlant van Berlaer
- Department of Emergency Medicine/Pediatric Care, Brussels University Hospital, Jette, Belgium
| | - Marc Raes
- grid.414977.80000 0004 0578 1096Department of Pediatrics, Jessa Hospital, Hasselt, Belgium
| | - Helene Verhelst
- grid.410566.00000 0004 0626 3303Department of Pediatric Neurology, Ghent University Hospital, Ghent, Belgium
| | - Tine Boiy
- grid.411414.50000 0004 0626 3418Department of Pediatric Rheumatology, Antwerp University Hospital, Edegem, Belgium
| | - Pierre Van Damme
- grid.5284.b0000 0001 0790 3681Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Center for the Evaluation of Vaccine, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Anna C. Jansen
- grid.411414.50000 0004 0626 3418Pediatric Neurology Unit, Antwerp University Hospital, Edegem, Belgium
| | - Marije Meuwissen
- grid.5284.b0000 0001 0790 3681Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Vito Sabato
- grid.411414.50000 0004 0626 3418Department of Immunology, Allergology, and Rheumatology, Antwerp University Hospital, Edegem, Belgium ,Antwerp Center for Pediatric Rheumatology and Autoinflammatory Diseases, Antwerp, Belgium
| | - Guy Van Camp
- grid.411414.50000 0004 0626 3418Center of Medical Genetics, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - Arvid Suls
- grid.5284.b0000 0001 0790 3681Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
| | | | - Joke Dehoorne
- grid.410566.00000 0004 0626 3303Department of Pediatric Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Rik Joos
- grid.411414.50000 0004 0626 3418Rheumatology Department, Antwerp Hospital Network, Antwerp, Belgium ,grid.411414.50000 0004 0626 3418Department of Pediatric Rheumatology, Antwerp University Hospital, Edegem, Belgium ,Antwerp Center for Pediatric Rheumatology and Autoinflammatory Diseases, Antwerp, Belgium ,grid.410566.00000 0004 0626 3303Department of Pediatric Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Kris Laukens
- grid.5284.b0000 0001 0790 3681Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681ADREM Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Biomedical Informatics Research Network Antwerp, University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- grid.5284.b0000 0001 0790 3681Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681ADREM Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Biomedical Informatics Research Network Antwerp, University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Center for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium. .,Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium. .,Rheumatology Department, Antwerp Hospital Network, Antwerp, Belgium. .,Department of Pediatric Rheumatology, Antwerp University Hospital, Edegem, Belgium. .,Antwerp Center for Pediatric Rheumatology and Autoinflammatory Diseases, Antwerp, Belgium. .,Department of Pediatric Rheumatology, Brussels University Hospital, Jette, Belgium.
| |
Collapse
|
21
|
Zhao SS, Tao DL, Chen JM, Wu JP, Yang X, Song JK, Zhu XQ, Zhao GH. RNA sequencing reveals dynamic expression of lncRNAs and mRNAs in caprine endometrial epithelial cells induced by Neospora caninum infection. Parasit Vectors 2022; 15:297. [PMID: 35999576 PMCID: PMC9398501 DOI: 10.1186/s13071-022-05405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background The effective transmission mode of Neospora caninum, with infection leading to reproductive failure in ruminants, is vertical transmission. The uterus is an important reproductive organ that forms the maternal–fetal interface. Neospora caninum can successfully invade and proliferate in the uterus, but the molecular mechanisms underlying epithelial-pathogen interactions remain unclear. Accumulating evidence suggests that host long noncoding RNAs (lncRNAs) play important roles in cellular molecular regulatory networks, with reports that these RNA molecules are closely related to the pathogenesis of apicomplexan parasites. However, the expression profiles of host lncRNAs during N. caninum infection has not been reported. Methods RNA sequencing (RNA-seq) analysis was used to investigate the expression profiles of messenger RNAs (mRNAs) and lncRNAs in caprine endometrial epithelial cells (EECs) infected with N. caninum for 24 h (TZ_24h) and 48 h (TZ_48 h), and the potential functions of differentially expressed (DE) lncRNAs were predicted by using Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of their mRNA targets. Results RNA-seq analysis identified 1280.15 M clean reads in 12 RNA samples, including six samples infected with N. caninum for 24 h (TZ1_24h-TZ3_24h) and 48 h (TZ1_48h-TZ3_48h), and six corresponding control samples (C1_24h-C3_24h and C1_48h-C3_48h). Within the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, there were 934 (665 upregulated and 269 downregulated), 1238 (785 upregulated and 453 downregulated) and 489 (252 upregulated and 237 downregulated) DEmRNAs, respectively. GO enrichment and KEGG analysis revealed that these DEmRNAs were mainly involved in the regulation of host immune response (e.g. TNF signaling pathway, MAPK signaling pathway, transforming growth factor beta signaling pathway, AMPK signaling pathway, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway), signaling molecules and interaction (e.g. cytokine-cytokine receptor interaction, cell adhesion molecules and ECM-receptor interaction). A total of 88 (59 upregulated and 29 downregulated), 129 (80 upregulated and 49 downregulated) and 32 (20 upregulated and 12 downregulated) DElncRNAs were found within the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, respectively. Functional prediction indicated that these DElncRNAs would be involved in signal transduction (e.g. MAPK signaling pathway, PPAR signaling pathway, ErbB signaling pathway, calcium signaling pathway), neural transmission (e.g. GABAergic synapse, serotonergic synapse, cholinergic synapse), metabolism processes (e.g. glycosphingolipid biosynthesis-lacto and neolacto series, glycosaminoglycan biosynthesis-heparan sulfate/heparin) and signaling molecules and interaction (e.g. cytokine-cytokine receptor interaction, cell adhesion molecules and ECM-receptor interaction). Conclusions This is the first investigation of global gene expression profiles of lncRNAs during N. caninum infection. The results provide valuable information for further studies of the roles of lncRNAs during N. caninum infection. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05405-5.
Collapse
Affiliation(s)
- Shan-Shan Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - De-Liang Tao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Ming Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiang-Ping Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun-Ke Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China. .,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
22
|
Zou HX, Qiu BQ, Zhang ZY, Hu T, Wan L, Liu JC, Huang H, Lai SQ. Dysregulated autophagy-related genes in septic cardiomyopathy: Comprehensive bioinformatics analysis based on the human transcriptomes and experimental validation. Front Cardiovasc Med 2022; 9:923066. [PMID: 35983185 PMCID: PMC9378994 DOI: 10.3389/fcvm.2022.923066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Septic cardiomyopathy (SCM) is severe organ dysfunction caused by sepsis that is associated with poor prognosis, and its pathobiological mechanisms remain unclear. Autophagy is a biological process that has recently been focused on SCM, yet the current understanding of the role of dysregulated autophagy in the pathogenesis of SCM remains limited and uncertain. Exploring the molecular mechanisms of disease based on the transcriptomes of human pathological samples may bring the closest insights. In this study, we analyzed the differential expression of autophagy-related genes in SCM based on the transcriptomes of human septic hearts, and further explored their potential crosstalk and functional pathways. Key functional module and hub genes were identified by constructing a protein–protein interaction network. Eight key genes (CCL2, MYC, TP53, SOD2, HIF1A, CTNNB1, CAT, and ADIPOQ) that regulate autophagy in SCM were identified after validation in a lipopolysaccharide (LPS)-induced H9c2 cardiomyoblast injury model, as well as the autophagic characteristic features. Furthermore, we found that key genes were associated with abnormal immune infiltration in septic hearts and have the potential to serve as biomarkers. Finally, we predicted drugs that may play a protective role in SCM by regulating autophagy based on our results. Our study provides evidence and new insights into the role of autophagy in SCM based on human septic heart transcriptomes, which would be of great benefit to reveal the molecular pathological mechanisms and explore the diagnostic and therapeutic targets for SCM.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ze-Yu Zhang
- Institute of Nanchang University Trauma Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tie Hu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Huang Huang,
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Song-Qing Lai,
| |
Collapse
|
23
|
Dahlgren MW, Plumb AW, Niss K, Lahl K, Brunak S, Johansson-Lindbom B. Type I Interferons Promote Germinal Centers Through B Cell Intrinsic Signaling and Dendritic Cell Dependent Th1 and Tfh Cell Lineages. Front Immunol 2022; 13:932388. [PMID: 35911733 PMCID: PMC9326081 DOI: 10.3389/fimmu.2022.932388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Type I interferons (IFNs) are essential for antiviral immunity, appear to represent a key component of mRNA vaccine-adjuvanticity, and correlate with severity of systemic autoimmune disease. Relevant to all, type I IFNs can enhance germinal center (GC) B cell responses but underlying signaling pathways are incompletely understood. Here, we demonstrate that a succinct type I IFN response promotes GC formation and associated IgG subclass distribution primarily through signaling in cDCs and B cells. Type I IFN signaling in cDCs, distinct from cDC1, stimulates development of separable Tfh and Th1 cell subsets. However, Th cell-derived IFN-γ induces T-bet expression and IgG2c isotype switching in B cells prior to this bifurcation and has no evident effects once GCs and bona fide Tfh cells developed. This pathway acts in synergy with early B cell-intrinsic type I IFN signaling, which reinforces T-bet expression in B cells and leads to a selective amplification of the IgG2c+ GC B cell response. Despite the strong Th1 polarizing effect of type I IFNs, the Tfh cell subset develops into IL-4 producing cells that control the overall magnitude of the GCs and promote generation of IgG1+ GC B cells. Thus, type I IFNs act on B cells and cDCs to drive GC formation and to coordinate IgG subclass distribution through divergent Th1 and Tfh cell-dependent pathways.
Collapse
Affiliation(s)
| | - Adam W. Plumb
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kristoffer Niss
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Katharina Lahl
- Immunology Section, Lund University, Lund, Sweden
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Søren Brunak
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Bengt Johansson-Lindbom
- Immunology Section, Lund University, Lund, Sweden
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- *Correspondence: Bengt Johansson-Lindbom,
| |
Collapse
|
24
|
Casu A, Grippo PJ, Wasserfall C, Sun Z, Linsley PS, Hamerman JA, Fife BT, Lacy-Hulbert A, Toledo FGS, Hart PA, Papachristou GI, Bellin MD, Yadav D, Laughlin MR, Goodarzi MO, Speake C. Evaluating the Immunopathogenesis of Diabetes After Acute Pancreatitis in the Diabetes RElated to Acute Pancreatitis and Its Mechanisms Study: From the Type 1 Diabetes in Acute Pancreatitis Consortium. Pancreas 2022; 51:580-585. [PMID: 36206462 PMCID: PMC9555855 DOI: 10.1097/mpa.0000000000002076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ABSTRACT The association between acute pancreatitis (AP) and diabetes mellitus (DM) has long been established, with the initial descriptions of AP patients presenting with DM after a bout of AP published in the 1940s and 50s. However, the potential mechanisms involved, particularly those components related to the immune system, have not been well defined. The Diabetes RElated to Acute pancreatitis and its Mechanisms (DREAM) study is a multicenter clinical study designed to understand the frequency and phenotype of DM developing after AP. This article describes one objective of the DREAM study: to determine the immunologic mechanisms of DM after AP, including the contribution of β-cell autoimmunity. This component of the study will assess the presence of islet autoimmunity, as well as the magnitude and kinetics of the innate and adaptive immune response at enrollment and during longitudinal follow-up after 1 or more episodes of AP. Finally, DREAM will evaluate the relationship between immune features, DM development, and pancreatitis etiology and severity.
Collapse
Affiliation(s)
- Anna Casu
- From the Translational Research Institute, AdventHealth Orlando, Orlando, FL
| | - Paul J Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois-Chicago, Chicago, IL
| | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peter S Linsley
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Jessica A Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Adam Lacy-Hulbert
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Georgios I Papachristou
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | | | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Maren R Laughlin
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Cate Speake
- Diabetes Clinical Research Program, Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| |
Collapse
|
25
|
Genetic association and single-cell transcriptome analyses reveal distinct features connecting autoimmunity with cancers. iScience 2022; 25:104631. [PMID: 35800769 PMCID: PMC9254016 DOI: 10.1016/j.isci.2022.104631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/08/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Autoimmune diseases (ADs) are at a significantly higher risk of cancers with unclear mechanism. By searching GWAS catalog database and Medline, susceptible genes for five common ADs, including systemic lupus erythematosus (SLE), rheumatoid arthritis, Sjögren syndrome, systemic sclerosis, and idiopathic inflammatory myopathies, were collected and then were overlapped with cancer driver genes. Single-cell transcriptome analysis was performed in the comparation between SLE and related cancer. We identified 45 carcinogenic autoimmune disease risk (CAD) genes, which were mainly enriched in T cell signaling pathway and B cell signaling pathway. Integrated single-cell analysis revealed immune cell signaling was significantly downregulated in renal cancer compared with SLE, while stemness signature was significantly enriched in both renal cancer or lymphoma and SLE in specific subpopulations. Drugs targeting CAD genes were shared between ADs and cancer. Our study highlights the common and specific features between ADs and related cancers, and sheds light on a new discovery of treatments.
Collapse
|
26
|
Unal U, Comertpay B, Demirtas TY, Gov E. Drug repurposing for rheumatoid arthritis: Identification of new drug candidates via bioinformatics and text mining analysis. Autoimmunity 2022; 55:147-156. [PMID: 35048767 DOI: 10.1080/08916934.2022.2027922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that results in the destruction of tissue by attacks on the patient by his or her own immune system. Current treatment strategies are not sufficient to overcome RA. In the present study, various transcriptomic data from synovial fluids, synovial fluid-derived macrophages, and blood samples from patients with RA were analysed using bioinformatics approaches to identify tissue-specific repurposing drug candidates for RA. Differentially expressed genes (DEGs) were identified by integrating datasets for each tissue and comparing diseased to healthy samples. Tissue-specific protein-protein interaction (PPI) networks were generated and topologically prominent proteins were selected. Transcription-regulating biomolecules for each tissue type were determined from protein-DNA interaction data. Common DEGs and reporter biomolecules were used to identify drug candidates for repurposing using the hypergeometric test. As a result of bioinformatic analyses, 19 drugs were identified as repurposing candidates for RA, and text mining analyses supported our findings. We hypothesize that the FDA-approved drugs momelotinib, ibrutinib, and sodium butyrate may be promising candidates for RA. In addition, CHEMBL306380, Compound 19a (CHEMBL3116050), ME-344, XL-019, TG100801, JNJ-26483327, and NV-128 were identified as novel repurposing candidates for the treatment of RA. Preclinical and further validation of these drugs may provide new treatment options for RA.
Collapse
Affiliation(s)
- Ulku Unal
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Betul Comertpay
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Talip Yasir Demirtas
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Esra Gov
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| |
Collapse
|
27
|
Chung H, Green PHR, Wang TC, Kong XF. Interferon-Driven Immune Dysregulation in Down Syndrome: A Review of the Evidence. J Inflamm Res 2021; 14:5187-5200. [PMID: 34675597 PMCID: PMC8504936 DOI: 10.2147/jir.s280953] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/22/2021] [Indexed: 01/15/2023] Open
Abstract
Down syndrome (DS) is a unique genetic disease caused by the presence of an extra copy of chromosome 21, which carries four of the six interferon receptor (IFN-R) genes on its long arm. Recent studies reporting higher levels of interferon-stimulated gene (ISG) expression in primary immune cells studied ex vivo have suggested that the additional copies of the IFN-R genes in DS result in mild interferonopathy. In this review, we analyze the potential clinical and immunological impacts of this interferonopathy in DS. We performed a literature review to explore the epidemiology and risks of celiac disease, type 1 diabetes, thyroid dysfunction, mucocutaneous manifestations, infectious diseases (including COVID-19), and Alzheimer’s disease in individuals with DS relative to the general population with or without iatrogenic exposure to interferons. We analyzed immunophenotyping data and the current experimental evidence concerning IFN-R expression, constitutive JAK-STAT activation, and ISG overexpression in DS. Despite the lack of direct evidence that implicating this mild interferonopathy directly in illnesses in individuals with DS, we highlight the challenges ahead and directions that could be taken to determine more clearly the biological impact of interferonopathy on various immune-related conditions in DS.
Collapse
Affiliation(s)
- Howard Chung
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/Queens (Queens Hospital Center), Jamaica, NY, 11432, USA
| | - Peter H R Green
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Celiac Disease Center, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Xiao-Fei Kong
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Celiac Disease Center, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| |
Collapse
|
28
|
Gallucci S, Meka S, Gamero AM. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 2021; 146:155633. [PMID: 34340046 PMCID: PMC8475157 DOI: 10.1016/j.cyto.2021.155633] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFNs), mostly IFNα and IFNβ, and the type I IFN Signature are important in the pathogenesis of Systemic Lupus Erythematosus (SLE), an autoimmune chronic condition linked to inflammation. Both IFNα and IFNβ trigger a signaling cascade that, through the activation of JAK1, TYK2, STAT1 and STAT2, initiates gene transcription of IFN stimulated genes (ISGs). Noteworthy, other STAT family members and IFN Responsive Factors (IRFs) can also contribute to the activation of the IFN response. Aberrant type I IFN signaling, therefore, can exacerbate SLE by deregulated homeostasis leading to unnecessary persistence of the biological effects of type I IFNs. The etiopathogenesis of SLE is partially known and considered multifactorial. Family-based and genome wide association studies (GWAS) have identified genetic and transcriptional abnormalities in key molecules directly involved in the type I IFN signaling pathway, namely TYK2, STAT1 and STAT4, and IRF5. Gain-of-function mutations that heighten IFNα/β production, which in turn maintains type I IFN signaling, are found in other pathologies like the interferonopathies. However, the distinctive characteristics have yet to be determined. Signaling molecules activated in response to type I IFNs are upregulated in immune cell subsets and affected tissues of SLE patients. Moreover, Type I IFNs induce chromatin remodeling leading to a state permissive to transcription, and SLE patients have increased global and gene-specific epigenetic modifications, such as hypomethylation of DNA and histone acetylation. Epigenome wide association studies (EWAS) highlight important differences between SLE patients and healthy controls in Interferon Stimulated Genes (ISGs). The combination of environmental and genetic factors may stimulate type I IFN signaling transiently and produce long-lasting detrimental effects through epigenetic alterations. Substantial evidence for the pathogenic role of type I IFNs in SLE advocates the clinical use of neutralizing anti-type I IFN receptor antibodies as a therapeutic strategy, with clinical studies already showing promising results. Current and future clinical trials will determine whether drugs targeting molecules of the type I IFN signaling pathway, like non-selective JAK inhibitors or specific TYK2 inhibitors, may benefit people living with lupus.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| | - Sowmya Meka
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
29
|
Caielli S, Cardenas J, de Jesus AA, Baisch J, Walters L, Blanck JP, Balasubramanian P, Stagnar C, Ohouo M, Hong S, Nassi L, Stewart K, Fuller J, Gu J, Banchereau JF, Wright T, Goldbach-Mansky R, Pascual V. Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE. Cell 2021; 184:4464-4479.e19. [PMID: 34384544 PMCID: PMC8380737 DOI: 10.1016/j.cell.2021.07.021] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Emerging evidence supports that mitochondrial dysfunction contributes to systemic lupus erythematosus (SLE) pathogenesis. Here we show that programmed mitochondrial removal, a hallmark of mammalian erythropoiesis, is defective in SLE. Specifically, we demonstrate that during human erythroid cell maturation, a hypoxia-inducible factor (HIF)-mediated metabolic switch is responsible for the activation of the ubiquitin-proteasome system (UPS), which precedes and is necessary for the autophagic removal of mitochondria. A defect in this pathway leads to accumulation of red blood cells (RBCs) carrying mitochondria (Mito+ RBCs) in SLE patients and in correlation with disease activity. Antibody-mediated internalization of Mito+ RBCs induces type I interferon (IFN) production through activation of cGAS in macrophages. Accordingly, SLE patients carrying both Mito+ RBCs and opsonizing antibodies display the highest levels of blood IFN-stimulated gene (ISG) signatures, a distinctive feature of SLE.
Collapse
Affiliation(s)
- Simone Caielli
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | | | - Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jeanine Baisch
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Preetha Balasubramanian
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Cristy Stagnar
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Marina Ohouo
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Seunghee Hong
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lorien Nassi
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katie Stewart
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julie Fuller
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinghua Gu
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Tracey Wright
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Virginia Pascual
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Abstract
Skewing of type I interferon (IFN) production and responses is a hallmark of systemic lupus erythematosus (SLE). Genetic and environmental contributions to IFN production lead to aberrant innate and adaptive immune activation even before clinical development of disease. Basic and translational research in this arena continues to identify contributions of IFNs to disease pathogenesis, and several promising therapeutic options for targeting of type I IFNs and their signaling pathways are in development for treatment of SLE patients.
Collapse
Affiliation(s)
- Sirisha Sirobhushanam
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - Stephanie Lazar
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA; Department of Dermatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA.
| |
Collapse
|
31
|
Kanemasa H, Ishimura M, Eguchi K, Tanaka T, Nanishi E, Shiraishi A, Goto M, Motomura Y, Ohga S. The immunoregulatory function of peripheral blood CD71 + erythroid cells in systemic-onset juvenile idiopathic arthritis. Sci Rep 2021; 11:14396. [PMID: 34257378 PMCID: PMC8277864 DOI: 10.1038/s41598-021-93831-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
CD71+ erythroid cells (CECs) are recognized to have an immunoregulatory function via direct cell-cell interaction and soluble mediators. Circulating CECs appear in newborns or patients with hemolytic and cardiopulmonary disorders. To assess the biological role of CECs in systemic inflammation, we studied the gene expression and function in systemic-onset juvenile idiopathic arthritis (SoJIA). Peripheral blood mononuclear cells of SoJIA patients expressed upregulated erythropoiesis-related genes. It represented the largest expansion of CECs during active phase SoJIA among other inflammatory diseases. Despite the opposing roles of erythropoietin and hepcidin in erythropoiesis, both serum levels were in concert with the amounts of SoJIA-driven CECs. Circulating CECs counts in inflammatory diseases were positively correlated with the levels of C-reactive protein, IL-6, IL-18, or soluble TNF receptors. Co-culture with active SoJIA-driven CECs suppressed secretions of IL-1β, IL-6, and IL-8 from healthy donor monocytes. The top upregulated gene in SoJIA-driven CECs was ARG2 compared with CECs from cord blood controls, although cytokine production from monocytes was suppressed by co-culture, even with an arginase inhibitor. CECs are driven to the periphery during the acute phase of SoJIA at higher levels than other inflammatory diseases. Circulating CECs may control excessive inflammation via the immunoregulatory pathways, partly involving arginase-2.
Collapse
Affiliation(s)
- Hikaru Kanemasa
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masataka Ishimura
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Katsuhide Eguchi
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tamami Tanaka
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Etsuro Nanishi
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Shiraishi
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Motohiro Goto
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshitomo Motomura
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
32
|
Bergamaschi L, Mescia F, Turner L, Hanson AL, Kotagiri P, Dunmore BJ, Ruffieux H, De Sa A, Huhn O, Morgan MD, Gerber PP, Wills MR, Baker S, Calero-Nieto FJ, Doffinger R, Dougan G, Elmer A, Goodfellow IG, Gupta RK, Hosmillo M, Hunter K, Kingston N, Lehner PJ, Matheson NJ, Nicholson JK, Petrunkina AM, Richardson S, Saunders C, Thaventhiran JED, Toonen EJM, Weekes MP, Göttgens B, Toshner M, Hess C, Bradley JR, Lyons PA, Smith KGC. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity 2021; 54:1257-1275.e8. [PMID: 34051148 PMCID: PMC8125900 DOI: 10.1016/j.immuni.2021.05.010] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/13/2021] [Accepted: 05/11/2021] [Indexed: 02/02/2023]
Abstract
The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.
Collapse
Affiliation(s)
- Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Aimee L Hanson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Prasanti Kotagiri
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Benjamin J Dunmore
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Hélène Ruffieux
- MRC Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| | - Aloka De Sa
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Oisín Huhn
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Michael D Morgan
- Cancer Research UK - Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Mark R Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Fernando J Calero-Nieto
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Anne Elmer
- Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Kelvin Hunter
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Nathalie Kingston
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; NHS Blood and Transplant, Cambridge, UK
| | - Jeremy K Nicholson
- The Australian National Phenome Centre, Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, Western Australia WA 6150, Australia
| | - Anna M Petrunkina
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Sylvia Richardson
- MRC Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| | - Caroline Saunders
- Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - James E D Thaventhiran
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; MRC Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QR, UK
| | - Erik J M Toonen
- R&D Department, Hycult Biotech, 5405 PD Uden, the Netherlands
| | - Michael P Weekes
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Mark Toshner
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Christoph Hess
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Department of Biomedicine, University and University Hospital Basel, 4031 Basel, Switzerland; Botnar Research Centre for Child Health (BRCCH) University Basel & ETH Zurich, 4058 Basel, Switzerland
| | - John R Bradley
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
33
|
Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov 2021; 20:179-199. [PMID: 33324003 PMCID: PMC7737718 DOI: 10.1038/s41573-020-00092-2] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/30/2023]
Abstract
In the past 15 years, B cells have been rediscovered to be not merely bystanders but rather active participants in autoimmune aetiology. This has been fuelled in part by the clinical success of B cell depletion therapies (BCDTs). Originally conceived as a method of eliminating cancerous B cells, BCDTs such as those targeting CD20, CD19 and BAFF are now used to treat autoimmune diseases, including systemic lupus erythematosus and multiple sclerosis. The use of BCDTs in autoimmune disease has led to some surprises. For example, although antibody-secreting plasma cells are thought to have a negative pathogenic role in autoimmune disease, BCDT, even when it controls the disease, has limited impact on these cells and on antibody levels. In this Review, we update our understanding of B cell biology, review the results of clinical trials using BCDT in autoimmune indications, discuss hypotheses for the mechanism of action of BCDT and speculate on evolving strategies for targeting B cells beyond depletion.
Collapse
Affiliation(s)
- Dennis S W Lee
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
34
|
Cheng Y, Yang C, Tan Z, He Z. Changes of Intestinal Oxidative Stress, Inflammation, and Gene Expression in Neonatal Diarrhoea Kids. Front Vet Sci 2021; 8:598691. [PMID: 33614759 PMCID: PMC7890263 DOI: 10.3389/fvets.2021.598691] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 02/05/2023] Open
Abstract
Diarrhea and disorders in young goats are serious threats to the animals' health, influencing the profitability of the goat industry. There is a need to better understand the potential biomarkers that can reflect the mortality and morbidity in neonatal diarrhea goats. Ten pairs of twin kid goats from the same does (one healthy and the other diagnosed as diarrhea) with the same age under 14 days after birth were used in this study. Since gastrointestinal infection is probably the first ailment in neonatal goats, we aimed to investigate the changes in oxidative stress, inflammation, and gene expression in the gastrointestinal tract of neonatal diarrhea goats based on an epidemiological perspective. The results showed the activity of glutathione peroxidase (GSH-Px) was less (P < 0.05) in the jejunum in neonatal diarrhea goats compared with control goats. However, the malondialdehyde (MDA) activities in the jejunum and ileum were higher (P < 0.05) in neonatal diarrhea goats. There was no significant difference in the super-oxide dismutase (SOD) and catalase (CAT) activity observed between the two groups (P > 0.05). For the concentrations of intestinal interleukin-2 (IL2) and interleukin-6 (IL6), only the IL-2 in ileum of neonatal diarrhea goats was higher than that from healthy control goats. The transcriptomic analysis of the jejunum showed a total of 364 differential expression genes (DEGs) identified in neonatal diarrhea goats compared with control goats. The Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of up-regulated DEGs was mainly related to the ECM–receptor interaction and axon guidance, and the down-regulated DEGs mainly related to the Arachidonic acid metabolism, complement and coagulation cascades, and alpha-Linolenic acid metabolism. Real-time PCR results showed that the expression of most toll-like receptor-4-(TLR4) pathway-related genes and intestinal barrier function-related genes were similar in the two groups. These results suggest that neonatal diarrhea goats experienced a higher intestinal oxidative stress compared with control goats. Thus, it is possible that the antioxidant capacity of young ruminants acts as an indicator of health status and the measurements of oxidation stress may be useful as diagnostic biomarkers, reflecting the mortality and morbidity in neonatal diarrhea goats.
Collapse
Affiliation(s)
- Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, China
| | - ZhiLiang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - ZhiXiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Avdeeva AS, Tchetina EV, Cherkasova MV, Markova GA, Artyuhov AS, Dashinimaev EB, Nasonov EL. The expression of interferon-stimulated genes (interferon “signature”) in patients with rheumatoid arthritis (Preliminary results). ACTA ACUST UNITED AC 2021. [DOI: 10.47360/1995-4484-2020-673-677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | | | | | - A. S. Artyuhov
- Research Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University
| | - E. B. Dashinimaev
- Research Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University; Koltzov Institute of Developmental Biology of Russian Academy of Sciences
| | - E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University (Sechenovskiy University)
| |
Collapse
|
36
|
González-Serna D, Villanueva-Martin G, Acosta-Herrera M, Márquez A, Martín J. Approaching Shared Pathophysiology in Immune-Mediated Diseases through Functional Genomics. Genes (Basel) 2020; 11:E1482. [PMID: 33317201 PMCID: PMC7762979 DOI: 10.3390/genes11121482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Immune-mediated diseases (IMDs) are complex pathologies that are strongly influenced by environmental and genetic factors. Associations between genetic loci and susceptibility to these diseases have been widely studied, and hundreds of risk variants have emerged during the last two decades, with researchers observing a shared genetic pattern among them. Nevertheless, the pathological mechanism behind these associations remains a challenge that has just started to be understood thanks to functional genomic approaches. Transcriptomics, regulatory elements, chromatin interactome, as well as the experimental characterization of genomic findings, constitute key elements in the emerging understandings of how genetics affects the etiopathogenesis of IMDs. In this review, we will focus on the latest advances in the field of functional genomics, centering our attention on systemic rheumatic IMDs.
Collapse
Affiliation(s)
- David González-Serna
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain; (D.G.-S.); (G.V.-M.); (M.A.-H.); (A.M.)
| | - Gonzalo Villanueva-Martin
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain; (D.G.-S.); (G.V.-M.); (M.A.-H.); (A.M.)
| | - Marialbert Acosta-Herrera
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain; (D.G.-S.); (G.V.-M.); (M.A.-H.); (A.M.)
| | - Ana Márquez
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain; (D.G.-S.); (G.V.-M.); (M.A.-H.); (A.M.)
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria ibs.GRANADA, 18016 Granada, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain; (D.G.-S.); (G.V.-M.); (M.A.-H.); (A.M.)
| |
Collapse
|
37
|
Rinchai D, Altman MC, Konza O, Hässler S, Martina F, Toufiq M, Garand M, Kabeer BSA, Palucka K, Mejias A, Ramilo O, Bedognetti D, Mariotti‐Ferrandiz E, Klatzmann D, Chaussabel D. Definition of erythroid cell-positive blood transcriptome phenotypes associated with severe respiratory syncytial virus infection. Clin Transl Med 2020; 10:e244. [PMID: 33377660 PMCID: PMC7733317 DOI: 10.1002/ctm2.244] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022] Open
Abstract
Biomarkers to assess the risk of developing severe respiratory syncytial virus (RSV) infection are needed. We conducted a meta-analysis of 490 unique profiles from six public RSV blood transcriptome datasets. A repertoire of 382 well-characterized transcriptional modules was used to define dominant host responses to RSV infection. The consolidated RSV cohort was stratified according to four traits: "interferon response" (IFN), "neutrophil-driven inflammation" (Infl), "cell cycle" (CC), and "erythrocytes" (Ery). We identified eight prevalent blood transcriptome phenotypes, of which three Ery+ phenotypes comprised higher proportions of patients requiring intensive care. This finding confirms on a larger scale data from one of our earlier reports describing an association between an erythrocyte signature and RSV disease severity. Further contextual interpretation made it possible to associate this signature with immunosuppressive states (late stage cancer, pharmacological immunosuppression), and with a population of fetal glycophorin A+ erythroid precursors. Furthermore, we posit that this erythrocyte cell signature may be linked to a population of immunosuppressive erythroid cells previously described in the literature, and that overabundance of this cell population in RSV patients may underlie progression to severe disease. These findings outline potential priority areas for biomarker development and investigations into the immune biology of RSV infection. The approach that we developed and employed here should also permit to delineate prevalent blood transcriptome phenotypes in other settings.
Collapse
Affiliation(s)
| | - Matthew C. Altman
- Benaroya Research InstituteSeattleWashington
- University of WashingtonSeattleWashington
| | - Oceane Konza
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (i2B)AP‐HP, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Signe Hässler
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (i2B)AP‐HP, Hôpital Pitié‐SalpêtrièreParisFrance
- Immunology‐Immunopathology‐Immunotherapy (i3)Sorbonne UniversitéINSERMParisFrance
| | - Federica Martina
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (i2B)AP‐HP, Hôpital Pitié‐SalpêtrièreParisFrance
| | | | | | | | | | - Asuncion Mejias
- Division of Infectious DiseasesNationwide Children's HospitalColumbusOhio
| | - Octavio Ramilo
- Division of Infectious DiseasesNationwide Children's HospitalColumbusOhio
| | - Davide Bedognetti
- Sidra MedicineDohaQatar
- Department of Internal Medicine and Medical SpecialtiesUniversity of GenoaGenoaItaly
| | | | - David Klatzmann
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (i2B)AP‐HP, Hôpital Pitié‐SalpêtrièreParisFrance
- Immunology‐Immunopathology‐Immunotherapy (i3)Sorbonne UniversitéINSERMParisFrance
| | | |
Collapse
|
38
|
Sirpilla O, Bauss J, Gupta R, Underwood A, Qutob D, Freeland T, Bupp C, Carcillo J, Hartog N, Rajasekaran S, Prokop JW. SARS-CoV-2-Encoded Proteome and Human Genetics: From Interaction-Based to Ribosomal Biology Impact on Disease and Risk Processes. J Proteome Res 2020; 19:4275-4290. [PMID: 32686937 PMCID: PMC7418564 DOI: 10.1021/acs.jproteome.0c00421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 (COVID-19) has infected millions of people worldwide, with lethality in hundreds of thousands. The rapid publication of information, both regarding the clinical course and the viral biology, has yielded incredible knowledge of the virus. In this review, we address the insights gained for the SARS-CoV-2 proteome, which we have integrated into the Viral Integrated Structural Evolution Dynamic Database, a publicly available resource. Integrating evolutionary, structural, and interaction data with human proteins, we present how the SARS-CoV-2 proteome interacts with human disorders and risk factors ranging from cytokine storm, hyperferritinemic septic, coagulopathic, cardiac, immune, and rare disease-based genetics. The most noteworthy human genetic potential of SARS-CoV-2 is that of the nucleocapsid protein, where it is known to contribute to the inhibition of the biological process known as nonsense-mediated decay. This inhibition has the potential to not only regulate about 10% of all biological transcripts through altered ribosomal biology but also associate with viral-induced genetics, where suppressed human variants are activated to drive dominant, negative outcomes within cells. As we understand more of the dynamic and complex biological pathways that the proteome of SARS-CoV-2 utilizes for entry into cells, for replication, and for release from human cells, we can understand more risk factors for severe/lethal outcomes in patients and novel pharmaceutical interventions that may mitigate future pandemics.
Collapse
Affiliation(s)
- Olivia Sirpilla
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Jacob Bauss
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
| | - Ruchir Gupta
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Adam Underwood
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Dinah Qutob
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Tom Freeland
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Caleb Bupp
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Spectrum Health Medical
Genetics, Grand Rapids, Michigan 49503,
United States
| | - Joseph Carcillo
- Department of Critical Care Medicine
and Pediatrics, Children’s Hospital of Pittsburgh,
University of Pittsburgh School of
Medicine, Pittsburgh, Pennsylvania 15421,
United States
| | - Nicholas Hartog
- Allergy & Immunology,
Spectrum Health, Grand Rapids, Michigan 49503,
United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Pediatric Intensive Care
Unit, Helen DeVos Children’s Hospital,
Grand Rapids, Michigan 49503, United States
- Office of Research,
Spectrum Health, Grand Rapids, Michigan 49503,
United States
| | - Jeremy W. Prokop
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| |
Collapse
|
39
|
Tang Y, Zha L, Zeng X, Yu Z. Identification of Biomarkers Related to Systemic Sclerosis With or Without Pulmonary Hypertension Using Co-expression Analysis. J Comput Biol 2020; 27:1519-1531. [PMID: 32298610 DOI: 10.1089/cmb.2019.0492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disease with multiple system involvement, and pulmonary complications, including pulmonary hypertension (PH), are leading causes of death. This study aimed to develop early biomarkers to distinguish SSc with or without PH from normal population using bioinformatics approaches. The gene expression profile GSE22356, which contains 10 SSc samples with PH, 10 SSc samples without PH, and 10 normal samples, was obtained from the Gene Expression Omnibus database. First, we constructed co-expression networks and identified critical gene modules using the weighted gene co-expression network analysis. Then, functional enrichment analysis of significant modules was performed. Finally, the "real" hub gene was screened out by intramodule analysis and protein-protein interaction networks, and the receiver operating characteristic analysis was conducted. A total of 5046 genes were screened out to construct co-expression networks, and 18 modules were identified. Of these modules, the turquoise module had a strong correlation with SSc only, whereas the midnightblue module showed an obvious positive correlation with SSc with PH. Functional enrichment analysis indicated that the turquoise module was mainly enriched in transcription of DNA template and its regulation and protein ubiquitination and involved in apoptosis and pyrimidine metabolism pathway. The midnightblue module was significantly associated with inflammatory and immune response and pathways in Staphylococcus aureus infection and Chagas disease. The "real" hub genes in the turquoise module were WDR36, POLR1B, and SRSF1, and those in midnightblue were TLR2 and TNFAIP6.
Collapse
Affiliation(s)
- Yiyang Tang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiaofang Zeng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
40
|
Guthridge JM, Lu R, Tran LTH, Arriens C, Aberle T, Kamp S, Munroe ME, Dominguez N, Gross T, DeJager W, Macwana SR, Bourn RL, Apel S, Thanou A, Chen H, Chakravarty EF, Merrill JT, James JA. Adults with systemic lupus exhibit distinct molecular phenotypes in a cross-sectional study. EClinicalMedicine 2020; 20:100291. [PMID: 32154507 PMCID: PMC7058913 DOI: 10.1016/j.eclinm.2020.100291] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/28/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The clinical and pathologic diversity of systemic lupus erythematosus (SLE) hinders diagnosis, management, and treatment development. This study addresses heterogeneity in SLE through comprehensive molecular phenotyping and machine learning clustering. METHODS Adult SLE patients (n = 198) provided plasma, serum, and RNA. Disease activity was scored by modified SELENA-SLEDAI. Twenty-nine co-expression module scores were calculated from microarray gene-expression data. Plasma soluble mediators (n = 23) and autoantibodies (n = 13) were assessed by multiplex bead-based assays and ELISAs. Patient clusters were identified by machine learning combining K-means clustering and random forest analysis of co-expression module scores and soluble mediators. FINDINGS SLEDAI scores correlated with interferon, plasma cell, and select cell cycle modules, and with circulating IFN-α, IP10, and IL-1α levels. Co-expression modules and soluble mediators differentiated seven clusters of SLE patients with unique molecular phenotypes. Inflammation and interferon modules were elevated in Clusters 1 (moderately) and 4 (strongly), with decreased T cell modules in Cluster 4. Monocyte, neutrophil, plasmablast, B cell, and T cell modules distinguished the remaining clusters. Active clinical features were similar across clusters. Clinical SLEDAI trended highest in Clusters 3 and 4, though Cluster 3 lacked strong interferon and inflammation signatures. Renal activity was more frequent in Cluster 4, and rare in Clusters 2, 5, and 7. Serology findings were lowest in Clusters 2 and 5. Musculoskeletal and mucocutaneous activity were common in all clusters. INTERPRETATION Molecular profiles distinguish SLE subsets that are not apparent from clinical information. Prospective longitudinal studies of these profiles may help improve prognostic evaluation, clinical trial design, and precision medicine approaches. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
- Joel M. Guthridge
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rufei Lu
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ly Thi-Hai Tran
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Cristina Arriens
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Teresa Aberle
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Stan Kamp
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Melissa E. Munroe
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Nicolas Dominguez
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Timothy Gross
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Wade DeJager
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Susan R. Macwana
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Rebecka L. Bourn
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Stephen Apel
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Aikaterini Thanou
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Hua Chen
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Eliza F. Chakravarty
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Joan T. Merrill
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Judith A. James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
41
|
Moritz CP, Paul S, Stoevesandt O, Tholance Y, Camdessanché JP, Antoine JC. Autoantigenomics: Holistic characterization of autoantigen repertoires for a better understanding of autoimmune diseases. Autoimmun Rev 2020; 19:102450. [PMID: 31838165 DOI: 10.1016/j.autrev.2019.102450] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
|
42
|
Kessel C, Hedrich CM, Foell D. Innately Adaptive or Truly Autoimmune: Is There Something Unique About Systemic Juvenile Idiopathic Arthritis? Arthritis Rheumatol 2020; 72:210-219. [PMID: 31524322 DOI: 10.1002/art.41107] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Abstract
Systemic juvenile idiopathic arthritis (JIA) is a form of arthritis in childhood that is initially dominated by innate immunity-driven systemic inflammation and is thus considered a polygenic autoinflammatory disease. However, systemic JIA can progress toward an adaptive immunity-driven afebrile arthritis. Based on this observation of biphasic disease progression, a "window of opportunity" for optimal, individualized and target-directed treatment has been proposed. This hypothesis requires testing, and in this review we summarize current evidence regarding molecular factors that may contribute to the progression from an initially predominantly autoinflammatory disease phenotype to autoimmune arthritis. We consider the involvement of innately adaptive γδ T cells and natural killer T cells that express γδ or αβ T cell receptors but cannot be classified as either purely innate or adaptive cells, versus classic B and T lymphocytes in this continuum. Finally, we discuss our understanding of how and why some primarily autoinflammatory conditions can progress toward autoimmune-mediated disorders over the disease course while others do not and how this knowledge may be used to offer individualized treatment.
Collapse
|
43
|
Xu J, Chen J, Li W, Lian W, Huang J, Lai B, Li L, Huang Z. Additive Therapeutic Effects of Mesenchymal Stem Cells and IL-37 for Systemic Lupus Erythematosus. J Am Soc Nephrol 2020; 31:54-65. [PMID: 31604808 PMCID: PMC6935004 DOI: 10.1681/asn.2019050545] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although mesenchymal stem cells (MSCs) might offer a promising strategy for treating SLE, their immunoregulatory plasticity makes their therapeutic effects unpredictable. Whether overexpressing IL-37, an IL-1 family member with immunosuppressive activity, might enhance the therapeutic effects of these cells for SLE is unknown. METHODS We genetically modified MSCs to overexpress IL-37 and assessed their effects on immune suppression in vitro. We also evaluated the effects of such cells versus effects of various controls after transplanting them into MRL/lpr mice (model of SLE). RESULTS Stem cell characteristics did not appear altered in MSCs overexpressing IL-37. These cells had enhanced immunosuppression in vitro in terms of inhibiting splenocyte proliferation, reducing proinflammatory factors (IL-1β, TNF-α, IL-17, and IL-6), and suppressing autoantibodies (anti-dsDNA and anti-ANA). Compared with animals receiving control MSCs or IL-37 treatment alone, MRL/lpr mice transplanted with IL-37-overexpressing cells displayed improved survival and reduced signs of SLE (indicated by urine protein levels, spleen weight, and renal pathologic scores); they also had significantly lower expression of proinflammatory factors, lower total antibody levels in serum and urine, lower autoantibody production, and showed reduced T cell numbers in the serum and kidney. Expression of IL-37 by MSCs can maintain higher serum levels of IL-37, and MSCs had prolonged survival after transplantation, perhaps through IL-37 suppressing the inflammatory microenvironment. CONCLUSIONS Mutually reinforcing interaction between MSCs and IL-37 appears to underlie their additive therapeutic effects. Genetic modification to overexpress IL-37 might offer a way to enhance the stability and effectiveness of MSCs in treating SLE.
Collapse
Affiliation(s)
- Jianyong Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease and
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| | - Jieting Chen
- Department of Obstetrics, People's Hospital of Baoan, Shenzhen, P.R. China; and
| | - Wenlei Li
- Department of Obstetrics, Women and Children Health Institute of Futian, Shenzhen, P.R. China
| | - Wei Lian
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| | - Jieyong Huang
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| | - Baoyu Lai
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| | - Lingyun Li
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| | - Zhong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease and
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
44
|
Barrat FJ, Crow MK, Ivashkiv LB. Interferon target-gene expression and epigenomic signatures in health and disease. Nat Immunol 2019; 20:1574-1583. [PMID: 31745335 PMCID: PMC7024546 DOI: 10.1038/s41590-019-0466-2] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Multiple type I interferons and interferon-γ (IFN-γ) are expressed under physiological conditions and are increased by stress and infections, and in autoinflammatory and autoimmune diseases. Interferons activate the Jak-STAT signaling pathway and induce overlapping patterns of expression, called 'interferon signatures', of canonical interferon-stimulated genes (ISGs) encoding molecules important for antiviral responses, antigen presentation, autoimmunity and inflammation. It has now become clear that interferons also induce an 'interferon epigenomic signature' by activating latent enhancers and 'bookmarking' chromatin, thus reprogramming cell responses to environmental cues. The interferon epigenomic signature affects ISGs and other gene sets, including canonical targets of the transcription factor NF-κB that encode inflammatory molecules, and is involved in the priming of immune cells, tolerance and the training of innate immune memory. Here we review the mechanisms through which interferon signatures and interferon epigenomic signatures are generated, as well as the expression and functional consequences of these signatures in homeostasis and autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis.
Collapse
Affiliation(s)
- Franck J Barrat
- Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Mary K Crow
- Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lionel B Ivashkiv
- Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
45
|
Wang TY, Wang YF, Zhang Y, Shen JJ, Guo M, Yang J, Lau YL, Yang W. Identification of Regulatory Modules That Stratify Lupus Disease Mechanism through Integrating Multi-Omics Data. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:318-329. [PMID: 31877408 PMCID: PMC6938958 DOI: 10.1016/j.omtn.2019.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 11/05/2022]
Abstract
Although recent advances in genetic studies have shed light on systemic lupus erythematosus (SLE), its detailed mechanisms remain elusive. In this study, using datasets on SLE transcriptomic profiles, we identified 750 differentially expressed genes (DEGs) in T and B lymphocytes and peripheral blood cells. Using transcription factor (TF) binding data derived from chromatin immunoprecipitation sequencing (ChIP-seq) experiments from the Encyclopedia of DNA Elements (ENCODE) project, we inferred networks of co-regulated genes (NcRGs) based on binding profiles of the upregulated DEGs by significantly enriched TFs. Modularization analysis of NcRGs identified co-regulatory modules among the DEGs and master TFs vital for each module. Remarkably, the co-regulatory modules stratified the common SLE interferon (IFN) signature and revealed SLE pathogenesis pathways, including the complement cascade, cell cycle regulation, NETosis, and epigenetic regulation. By integrative analyses of disease-associated genes (DAGs), DEGs, and enriched TFs, as well as proteins interacting with them, we identified a hierarchical regulatory cascade with TFs regulated by DAGs, which in turn regulates gene expression. Integrative analysis of multi-omics data provided valuable molecular insights into the molecular mechanisms of SLE.
Collapse
Affiliation(s)
- Ting-You Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yong-Fei Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yan Zhang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jiangshan Jane Shen
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China; Lupus Research Institute, Affiliated Hospital of Jining Medical University, Jining, China
| | - Mengbiao Guo
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jing Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
46
|
Wessels I, Rink L. Micronutrients in autoimmune diseases: possible therapeutic benefits of zinc and vitamin D. J Nutr Biochem 2019; 77:108240. [PMID: 31841960 DOI: 10.1016/j.jnutbio.2019.108240] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
A functional immune system is essential for healthy life. This is achieved by the coordinate activation and interaction of different immune cells. One should be aware that activation of the immune response is as important as its deactivation when the pathogens are cleared, as otherwise host tissue can be damaged up to life-threatening levels. Autoimmune diseases (AID) represent a phenomenon of immune cells attacking host cells and tissue. Five to eight percent of the world's population are currently affected by 80-100 AID. In recent years, the incidence has been constantly increasing, reaching alarmingly high numbers particularly for type 1 diabetes mellitus, Crohn's disease, rheumatoid arthritis, Sjogren's syndrome and multiple sclerosis. This indicates a higher societal burden of AID for the future. This article provides an overview of general concepts of triggers and underlying mechanisms leading to self-destruction. Lately, several original concepts of disease etiology were revised, and there is a variety of hypotheses on triggers, underlying mechanisms and preventive actions. This article concentrates on the importance of nutrition, especially zinc and vitamin D, for balancing the immune function. Homespun nutritional remedies seem to reenter today's therapeutic strategies. Current treatment approaches are largely symptomatic or suppress the immune system. However, recent studies reveal significant benefits of nutrition-related therapeutic approaches including prevention and treatment of established disease, which offer a cost-efficient and trigger-unspecific alternative addressing balancing rather than suppression of the immune system. Zinc and vitamin D are currently the best studied and most promising candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
47
|
Nasonov EL, Avdeeva AS. IMMUNOINFLAMMATORY RHEUMATIC DISEASES ASSOCIATED WITH TYPE I INTERFERON: NEW EVIDENCE. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/1995-4484-2019-452-461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Immunoinflammatory rheumatic diseases (IIRDs) are a large group of pathological conditions with impaired immunological tolerance to autogenous tissues, leading to inflammation and irreversible organ damage. The review discusses current ideas on the role of type I interferons in the immunopathogenesis of IIRDs, primarily systemic lupus erythematosus, and new possibilities for personalized therapy.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology;
I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | |
Collapse
|
48
|
Nasonov EL. [New directions of pharmacotherapy of immune - inflammatory rheumatic diseases]. TERAPEVT ARKH 2019; 91:98-107. [PMID: 32598760 DOI: 10.26442/00403660.2019.08.000406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 01/25/2023]
Abstract
Deciphering immunopathogenesis, expanding the scope of diagnostics and developing new methods for treating human autoimmune diseases are among the priority areas of XXI century medicine. Particularly widely autoimmune pathology is presented in immunoinflammatory rheumatic diseases (IIRD), such as rheumatoid arthritis, systemic lupus erythematosus, systemic scleroderma, systemic vasculitis associated with the synthesis of antineutrophilic cytoplasmic antibodies, Sjogren's syndrome, idiopathic inflammatory myopathies and other other types of others. Deciphering the pathogenesis mechanisms of IIRD created the prerequisites for improving pharmacotherapy, which in the future should lead to a dramatic improvement in the prognosis for these diseases. The review discusses new approaches to IIRD pharmacotherapy associated with the inhibition of tumor necrosis factor-α, interleukin-6 (IL-6), IL-1β, IL-17, IL-23, and the prospects for using Janus kinase inhibitors, depending on the prevailing pathogenesis mechanisms - autoimmunity or autoinflammation.
Collapse
Affiliation(s)
- E L Nasonov
- Nasonova Research Institute of Rheumatology.,Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
49
|
Skendros P, Papagoras C, Mitroulis I, Ritis K. Autoinflammation: Lessons from the study of familial Mediterranean fever. J Autoimmun 2019; 104:102305. [PMID: 31337526 DOI: 10.1016/j.jaut.2019.102305] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 07/14/2019] [Indexed: 12/16/2022]
Abstract
Autoinflammatory disorders represent a heterogeneous group of systemic inflammatory diseases caused by genetic or acquired defects in key components of the innate immunity. Familial Mediterranean fever (FMF) is the most common among the other clinical phenotypes of the rare hereditary periodic fevers (HPFs) syndromes. FMF is associated with mutations in the MEFV gene encoding pyrin and is characterized by recurrent, often stress-provoked attacks of fever and serositis, but sometimes also by chronic subclinical inflammation. FMF is prevalent in Greece and other countries of the eastern Mediterranean region. Over the last 17 years, our group has focused on FMF as a model suitable for the research on innate immunity and particularly the role of neutrophils. Therefore, the study of Greek patients with FMF has yielded lessons across several levels: the epidemiology of the disease in Greece, the spectrum of its clinical manifestations and potential overlaps with other idiopathic inflammatory conditions, the demonstration of its rather complex and heterogeneous genetic background and the suggestion of a novel mechanism involved in the crosstalk between environmental stress and inflammation. Mechanistically, during FMF attack, neutrophils release chromatin structures called neutrophil extracellular traps (NETs), which are decorated with bioactive IL-1β. REDD1 (regulated in development and DNA damage responses 1), that encodes a stress-related mTOR repressor, has been found to be the most significantly upregulated gene in neutrophils during disease attacks. Upon adrenergic stress, REDD1-induced autophagy triggers a pyrin-driven IL-1β maturation, and the release of IL-1β-bearing NETs. Consequently, not only the mode of action of IL-1β-targeting therapies is explained, but also new treatment prospects emerge with the evaluation of old or the design of new drugs targeting autophagy-induced NETosis. Information gained from FMF studies may subsequently be applied in more complex but still relevant inflammatory conditions, such as adult-onset Still's disease, gout, ulcerative colitis and Behçet's disease.
Collapse
Affiliation(s)
- Panagiotis Skendros
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Charalampos Papagoras
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Ritis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
50
|
Gonzalez-Quintial R, Mayeux JM, Kono DH, Theofilopoulos AN, Pollard KM, Baccala R. Silica exposure and chronic virus infection synergistically promote lupus-like systemic autoimmunity in mice with low genetic predisposition. Clin Immunol 2019; 205:75-82. [PMID: 31175964 DOI: 10.1016/j.clim.2019.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Considerable evidence indicates that autoimmune disease expression depends on both genetic and environmental factors. Among potential environmental triggers, occupational airway exposure to crystalline silica and virus infections have been linked to lupus and other autoimmune diseases in both humans and mouse models. Here, we hypothesized that combined silica and virus exposures synergize and induce autoimmune manifestations more effectively than single exposure to either of these factors, particularly in individuals with low genetic predisposition. Accordingly, infection with the model murine pathogen lymphocytic choriomenigitis virus (LCMV) in early life, followed by airway exposure to crystalline silica in adult life, induced lupus-like autoantibodies to several nuclear self-antigens including chromatin, RNP and Sm, concurrent with kidney lesions, in non-autoimmune C57BL/6 (B6) mice. In contrast, given individually, LCMV or silica were largely ineffectual in this strain. These results support a multihit model of autoimmunity, where exposure to different environmental factors acting on distinct immunostimulatory pathways complements limited genetic predisposition and increases the risk of autoimmunity above a critical threshold.
Collapse
Affiliation(s)
| | - Jessica M Mayeux
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Dwight H Kono
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Kenneth M Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Roberto Baccala
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|