1
|
Ali S, Suris A, Huang Y, Zhou Y. Modulating ion channels with nanobodies. Synth Syst Biotechnol 2025; 10:593-599. [PMID: 40103710 PMCID: PMC11916719 DOI: 10.1016/j.synbio.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Ion channels play instrumental roles in regulating membrane potential and cross-membrane signal transduction, thus making them attractive targets for understanding various physiological processes and associated diseases. Gaining a deeper understanding of their structural and functional properties has significant implications for developing therapeutic interventions. In recent years, nanobodies, single-domain antibody fragments derived from camelids, have emerged as powerful tools in ion channel and synthetic biology research. Their small size, high specificity, and ability to recognize difficult-to-reach epitopes offer advantages over conventional antibodies and biologics. Furthermore, their resemblance to the variable region of human IgG family III reduces immunogenicity concerns. Nanobodies have introduced new opportunities for exploring ion channel structure-function relationships and offer a promising alternative to conventional drugs, which often face challenges such as off-target effects and toxicity. This review highlights recent progress in applying nanobodies to interrogate and modulate ion channel activity, with an emphasis on their potential to overcome current technical and therapeutic limitations.
Collapse
Affiliation(s)
- Sher Ali
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Ashley Suris
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
2
|
Rapún J, Pérez-Martín S, Cámara-Checa A, San José G, Núñez-Fernández R, Crespo-García T, Hoban A, Rubio-Alarcón M, Martínez-Blanco E, Tamargo J, Díez-Guerra FJ, López B, Gómez R, González A, Delpón E, Caballero R. Two concurrent mechanisms are responsible for the I Na increase produced by dapagliflozin and empagliflozin in healthy and heart failure cardiomyocytes. Biomed Pharmacother 2025; 186:117984. [PMID: 40101587 DOI: 10.1016/j.biopha.2025.117984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Dapagliflozin and empagliflozin exert many cardiovascular protective actions in heart failure (HF) patients. HF-induced electrical remodelling decreases the expression of Nav1.5 channels (encoded by SCN5A) that generate the cardiac Na+ current (INa) impairing excitability and promoting arrhythmias. We aimed to mechanistically decipher the peak INa increase produced by dapagliflozin and empagliflozin in healthy and HF cardiomyocytes. We recorded macroscopic and single-channel currents and action potentials (AP) using the patch-clamp technique and generated a mouse model of HF with reduced ejection fraction by transverse aortic constriction (TAC). Single-channel recordings showed that dapagliflozin and empagliflozin (1 μM) increased the open probability (Po) of Nav1.5 channels by augmenting channel re-openings and the number of traces with openings and by doubling the open time constant, respectively. Both drugs increased SCN5A mRNA levels and the membrane expression of Nav1.5 channels. Empagliflozin also enhanced the cytoplasmic mobility of Nav1.5 channels. Molecular modelling and site-directed mutagenesis analysis demonstrated that both drugs bind to a previously unknown site at the Nav1.5 DIII-DIV fenestration. Dapagliflozin and empagliflozin hyperpolarized the resting membrane potential and increased the action potential amplitude in human cardiomyocytes derived from induced pluripotent stem cells. Importantly, in TAC cardiomyocytes dapagliflozin and empagliflozin restored the HF-reduced peak INa to control levels. Dapagliflozin and empagliflozin bind to a novel site within cardiac Nav1.5 increasing INa by augmenting the Po and the membrane expression of the channels. We hypothesized that this unique effects could be of interest for the treatment of arrhythmias associated with decreased Nav1.5 channel expression.
Collapse
Affiliation(s)
- Josu Rapún
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Sara Pérez-Martín
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Gorka San José
- CIBERCV, Instituto de Salud Carlos III, Spain; Program of Cardiovascular Disease, CIMA Universidad de Navarra and IdiSNA, Pamplona 31008, Spain
| | - Roberto Núñez-Fernández
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Teresa Crespo-García
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Adam Hoban
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - Elena Martínez-Blanco
- Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| | - F Javier Díez-Guerra
- Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Begoña López
- CIBERCV, Instituto de Salud Carlos III, Spain; Program of Cardiovascular Disease, CIMA Universidad de Navarra and IdiSNA, Pamplona 31008, Spain
| | - Ricardo Gómez
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain
| | - Arantxa González
- CIBERCV, Instituto de Salud Carlos III, Spain; Program of Cardiovascular Disease, CIMA Universidad de Navarra and IdiSNA, Pamplona 31008, Spain; Department of Pathology, Anatomy and Physiology, Universidad de Navarra, Pamplona 31009, Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain.
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid 28040, Spain; CIBERCV, Instituto de Salud Carlos III, Spain
| |
Collapse
|
3
|
Chen Q. Regulation of Yeast Cytokinesis by Calcium. J Fungi (Basel) 2025; 11:278. [PMID: 40278099 PMCID: PMC12028594 DOI: 10.3390/jof11040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/26/2025] Open
Abstract
The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast Schizosaccharomyces pombe has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis.
Collapse
Affiliation(s)
- Qian Chen
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| |
Collapse
|
4
|
Zeng X, Sun L, Xie H, Gong S, Lu C, Xu Z, Guan H, Han B, Wang W, Zhang Z, Zhou J, Wang S, Chen Y, Xiao W. Lactobacillus johnsonii Generates Cyclo(pro-trp) and Promotes Intestinal Ca 2+ Absorption to Alleviate CKD-SHPT. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414678. [PMID: 39887665 PMCID: PMC12021065 DOI: 10.1002/advs.202414678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Patients with chronic kidney disease (CKD) are at a high risk of developing secondary hyperparathyroidism (SHPT), which may cause organ dysfunction and increase patient mortality. The main clinical interventions for CKD-SHPT involve calcium supplements to boost absorption, but ineffective for some patients, and the reasons remain unclear. Here, CKD mice are divided into high and low groups based on intact parathyroid hormone (iPTH) levels. The high group exhibits significant changes in gut microbes, including a decrease in Lactobacillus, an increase in parathyroid hyperplasia, and a decrease in intestinal calcium. Fecal microbiota transplantation and L. johnsonii colonization indicate a link between gut microbes and CKD-SHPT. Clinically, higher L. johnsonii levels are correlated with milder hyperparathyroidism CKD-SHPT. The receiver operating characteristic (ROC) curve for L. johnsonii abundance and surgical risk is 0.81, with the calibration curve confirming predictive accuracy, and decision curve analysis revealing good clinical applicability. In vivo and in vitro experiments show that cyclo(pro-trp) enhance calcium inflow and lower iPTH levels in intestinal epithelial cells via a calcium-sensing receptor and transient receptor potential vanilloid 4 pathways. This study identified the crucial role of L. johnsonii in CKD-SHPT, unveiling a new mechanism for calcium imbalance and offering novel strategies for SHPT treatment and drug development.
Collapse
Affiliation(s)
- Xiong Zeng
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Lihua Sun
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Huichao Xie
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Shenhai Gong
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhou510515China
| | - Caibao Lu
- Department of NephrologyXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Zhongwei Xu
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Haidi Guan
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Ben Han
- Department of NutritionXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Wei Wang
- Department of NutritionXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Zhengmin Zhang
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jieying Zhou
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Shuai Wang
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Yihui Chen
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Weidong Xiao
- Department of General SurgeryXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| |
Collapse
|
5
|
Dong M, Maturana AD. Effects of aging on calcium channels in skeletal muscle. Front Mol Biosci 2025; 12:1558456. [PMID: 40177518 PMCID: PMC11961898 DOI: 10.3389/fmolb.2025.1558456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
In skeletal muscle, calcium is not only essential to stimulate and sustain their contractions but also for muscle embryogenesis, regeneration, energy production in mitochondria, and fusion. Different ion channels contribute to achieving the various functions of calcium in skeletal muscles. Muscle contraction is initiated by releasing calcium from the sarcoplasmic reticulum through the ryanodine receptor channels gated mechanically by four dihydropyridine receptors of T-tubules. The calcium influx through store-operated calcium channels sustains the contraction and stimulates muscle regeneration. Mitochondrial calcium uniporter allows the calcium entry into mitochondria to stimulate oxidative phosphorylation. Aging alters the expression and activity of these different calcium channels, resulting in a reduction of skeletal muscle force generation and regeneration capacity. Regular physical training and bioactive molecules from nutrients can prevent the effects of aging on calcium channels. This review focuses on the current knowledge of the effects of aging on skeletal muscles' calcium channels.
Collapse
Affiliation(s)
| | - Andrés Daniel Maturana
- Department of Applied Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Peng S, Chen M, Wu M, Liu Z, Tang D, Zhou X. Elucidating the roles of voltage sensors in Na V1.9 activation and inactivation through a spider toxin. Biochim Biophys Acta Gen Subj 2025; 1869:130762. [PMID: 39800272 DOI: 10.1016/j.bbagen.2025.130762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The gating process of voltage-gated sodium (NaV) channels is extraordinary intrinsic and involves numerous factors, such as voltage-sensing domain (VSD), the N-terminus and C-terminus, and the auxiliary subunits. To date, the gating mechanism of NaV channel has not been clearly elucidated. NaV1.9 has garnered significant attention due to its slow gating kinetics. Due to the challenges of NaV1.9 heterologous expression, research on its gating mechanism is relatively limited. Whether there are any differences in the functions of the four VSDs in NaV1.9 compared to those in other subtypes remains an open question. Here, we employed the established chimera method to transplant the S3b-S4 motif from the VSDIV of the toxin-sensitive donor channel (NaV1.9) into the receptor channel (NaV1.9/1.8 DIV S3b-S4 chimera). This modification imparted animal toxin sensitivity to the other three VSDs. Our results demonstrate that all four VSDs of NaV1.9 are involved in channel opening, VSDIII and VSDIV are primarily involved in regulating fast inactivation, and VSDII also regulates the steady-state inactivation of channels. These findings provide a new insight into the gating mechanism of NaV1.9.
Collapse
Affiliation(s)
- Shuijiao Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Hunan Provincial Center for Disease Control and Prevention, Hunan Provincial Key Laboratory of Microbial Molecular Biology, Changsha 410000, Hunan, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China
| | - Meijing Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China
| | - Dongfang Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425199, Hunan, China.
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
7
|
Gündüz MG, Dengiz C, Denzinger K, Huang S, Lee JT, Nafie JW, Armstrong DW, Wolber G, Zamponi GW. Biginelli dihydropyrimidines and their acetylated derivatives as L-/T-type calcium channel blockers: Synthesis, enantioseparation, and molecular modeling studies. Arch Pharm (Weinheim) 2025; 358:e2400584. [PMID: 40128864 PMCID: PMC11933517 DOI: 10.1002/ardp.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025]
Abstract
Biginelli dihydropyrimidines (DHPMs) are considered superior over 1,4-dihydropyridines (DHPs) in terms of both light and metabolic stabilities. Nevertheless, DHPs dominate the market as the most prescribed calcium channel blockers with strong therapeutic potential in managing cardiovascular ailments. To overcome the restrictions that complicate the formulation and postadministration of DHPs, employing bioisosteric replacement by exchanging the DHP ring with DHPM appears as a logical approach for the improved formulations of new calcium channel blockers. In this study, we obtained DHPM derivatives via Biginelli synthesis and acetylated their N-3 position by heating them in acetic anhydride (GD1-GD12). We also incorporated the DHPM scaffold into a condensed ring system (GD13 and GD14). These DHPMs were evaluated for their ability to block both L- (Cav1.2) and T- (Cav3.2) type calcium channels. Compounds carrying acetyl moiety on the N-3 position of the DHPM scaffold appeared to be more effective inhibitors of both channels. Retesting GD4 enantiomers, separated using high-performance liquid chromatography (HPLC) on a chiral stationary phase, revealed that the (R)-isomer predominantly contributes to the outstanding inhibitory activity of GD4 on calcium channels. Molecular modeling studies, including docking, molecular dynamics simulations, and dynophore analysis, provided insights into the binding mechanism of DHPMs to Cav1.2 and Cav3.2, for the first time.
Collapse
Affiliation(s)
- Miyase Gözde Gündüz
- Department of Pharmaceutical Chemistry, Faculty of PharmacyHacettepe University, SıhhiyeAnkaraTurkey
| | - Cagatay Dengiz
- Department of ChemistryMiddle East Technical UniversityAnkaraTurkey
| | - Katrin Denzinger
- Molecular Design Group, Department of Pharmaceutical and Medicinal Chemistry, Institute of PharmacyFreie Universität BerlinBerlinGermany
| | - Sun Huang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryCanada
| | | | | | - Daniel W. Armstrong
- Department of Chemistry & BiochemistryUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Gerhard Wolber
- Molecular Design Group, Department of Pharmaceutical and Medicinal Chemistry, Institute of PharmacyFreie Universität BerlinBerlinGermany
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryCanada
| |
Collapse
|
8
|
Dowsell RS, Gold MG. A signal transduction blind spot: the function of adenylyl cyclase transmembrane domains. FEBS J 2025. [PMID: 39940106 DOI: 10.1111/febs.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Signal transduction of external primary signals into intracellular elevations of the second messenger cyclic AMP is an ancient and universal regulatory mechanism in biology. In mammals, 9 of the 10 adenylyl cyclases (ACs) share a common topology that includes a large transmembrane (TM) domain assembled from two clusters of six helices. This domain accounts for ~ 35% of the coding sequence but, remarkably, its function is still an open question. In this viewpoint, we consider how the first primary AC sequences spurred ideas for the purpose of AC TM domains, including voltage-sensing and transporter functions. In the original conceptions of second messenger signalling, ACs were put forward as potential receptors, and we discuss emerging evidence in support of this function. We also consider growing evidence that cyclase TM helical bundles help to organise multiprotein signalling complexes by engaging in interactions with other membrane-embedded proteins. Cyclase TM regions are more diverse between isoforms than the catalytic domain-we conclude by considering how this might be exploited in therapeutic strategies targeting specific cyclase isoforms.
Collapse
Affiliation(s)
- Ryan S Dowsell
- Department of Neuroscience, Physiology & Pharmacology, University College London, UK
| | - Matthew G Gold
- Department of Neuroscience, Physiology & Pharmacology, University College London, UK
| |
Collapse
|
9
|
Long Z, Meng J, Weddle LR, Videla PE, Menzel JP, Cabral DGA, Liu J, Qiu T, Palasz JM, Bhattacharyya D, Kubiak CP, Batista VS, Lian T. The Impact of Electric Fields on Processes at Electrode Interfaces. Chem Rev 2025; 125:1604-1628. [PMID: 39818737 PMCID: PMC11826898 DOI: 10.1021/acs.chemrev.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025]
Abstract
The application of external electric fields to influence chemical reactions at electrode interfaces has attracted considerable interest in recent years. However, the design of electric fields to achieve highly efficient and selective catalytic systems, akin to the optimized fields found at enzyme active sites, remains a significant challenge. Consequently, there has been substantial effort in probing and understanding the interfacial electric fields at electrode/electrolyte interfaces and their effect on adsorbates. In this review, we examine recent advances in experimental, computational, and theoretical studies of the interfacial electric field, the origin of the vibrational Stark effect of adsorbates on electrode surfaces, and the effects of electric fields on reactions at electrode/electrolyte interfaces. We also discuss recent advances in control of charge transfer and chemical reactions using magnetic fields. Finally, we outline perspectives on key areas for future studies.
Collapse
Affiliation(s)
- Zhuoran Long
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jinhui Meng
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Lydia R. Weddle
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Pablo E. Videla
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jan Paul Menzel
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Delmar G. A. Cabral
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jinchan Liu
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Tianyin Qiu
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Joseph M. Palasz
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | | | - Clifford P. Kubiak
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Victor S. Batista
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Şulea TA, Draga S, Mernea M, Corlan AD, Radu BM, Petrescu AJ, Amuzescu B. Differential Inhibition by Cenobamate of Canonical Human Nav1.5 Ion Channels and Several Point Mutants. Int J Mol Sci 2025; 26:358. [PMID: 39796214 PMCID: PMC11720074 DOI: 10.3390/ijms26010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/21/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABAA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na+ current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.5. The determined apparent IC50 values of 87.6 µM (peak) and 46.5 µM (late current) are within a clinically relevant range of concentrations (the maximal plasma therapeutic effective concentration for a daily dose of 400 mg in humans is 170 µM). In this study, we built a 3D model of the canonical hNav1.5 channel (UniProt Q14524-1) in open conformation using AlphaFold2, embedded it in a DPPC lipid bilayer, corrected the residue protonation state (pH 7.2) with H++, and added 2 Na+ ions in the selectivity filter. By molecular docking, we found the cenobamate binding site in the central cavity. We identified 10-point mutant variants in the binding site region and explored them via docking and MD. Mutants N1462K/Y (rs1064795922, rs199473614) and M1765R (rs752476527) (by docking) and N932S (rs2061582195) (by MD) featured higher predicted affinity than wild-type.
Collapse
Affiliation(s)
- Teodor Asvadur Şulea
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania; (T.A.Ş.); (A.-J.P.)
| | - Sorin Draga
- Biotehnos SA, Gorunului Str. 3-5, 075100 Otopeni, Romania;
- Non-Governmental Research Organization Biologic, 14 Schitului Str., 032044 Bucharest, Romania
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (B.M.R.); (B.A.)
| | - Alexandru Dan Corlan
- Cardiology Research Unit, University and Emergency Hospital of Bucharest, Splaiul Independenței 169, 050098 Bucharest, Romania;
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (B.M.R.); (B.A.)
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania; (T.A.Ş.); (A.-J.P.)
| | - Bogdan Amuzescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (B.M.R.); (B.A.)
| |
Collapse
|
11
|
Szollosi A. Functional Characterization of Ion Channels in Planar Lipid Bilayers. Methods Mol Biol 2025; 2908:141-161. [PMID: 40304908 DOI: 10.1007/978-1-0716-4434-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Ion channels form transmembrane protein pores allowing ion fluxes across biological membranes. Their function is indispensable for normal homeostasis; therefore, channelopathies lead to a large variety of diseases affecting almost all tissues and organs. In the last decades, the structure of hundreds of ion channels has been solved. In the majority of the solved structures the pore is closed, and for most of the protein preparations used in these studies, currently little data is available to support that the purified protein forms a functional ion channel capable of gating. Planar lipid bilayer technique is a powerful tool to address this issue. Purified ion channel protein is incorporated into a membrane bilayer separating two compartments in an experimental chamber. Channel currents are recorded between the two sides. Such setup allows characterization of gating and permeation properties of ion channels unbiased by auxiliary components present in native membranes. The planar lipid bilayer technique is thus discussed herein together with the robust protein expressing BacMam system.
Collapse
Affiliation(s)
- Andras Szollosi
- Semmelweis University, Department of Biochemistry, Budapest, Hungary.
- HUN-REN-SE Ion Channel Research Group, Budapest, Hungary.
- HCEMM-SE Molecular Channelopathies Research Group, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Tian S, Ma C, Zhu Y, Xu Q, Wu J, Qiu Y, Liang T, Ren G, Huang Z, Sun X, Kong L, Wei X, Yu Z, Wang P, Wan H. A light-addressable potentiometric sensor-based extracellular calcium dynamic monitoring and imaging platform for cellular calcium channel drug evaluation. Biosens Bioelectron 2025; 267:116814. [PMID: 39362138 DOI: 10.1016/j.bios.2024.116814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Disruption and dysregulation of cellular calcium channel function can lead to diseases such as ischemic stroke, heart failure, and arrhythmias. Corresponding calcium channel drugs typically require preliminary efficacy evaluations using in vitro models such as cells and simulated tissues before clinical testing. However, traditional detection and evaluation methods often encounter challenges in long-term continuous monitoring and lack calcium specificity. In this study, a dynamic monitoring system based on ion-sensitive membranes for light-addressable potentiometric sensor (LAPS) was developed to meet the demand for monitoring changes in extracellular calcium ion (Ca2+) concentration in live cells. The effects of Ca2+ channel agonists and blockers on 2D and 3D HL-1 cells were investigated, with changes in extracellular Ca2+ concentration reflecting cellular calcium metabolism, facilitating drug evaluation. Additionally, calcium imaging technology with optical addressing capability complemented the LAPS system's ability to perceive 3D cell morphology, enhancing its drug evaluation capabilities. This work provides a novel, label-free, specific, and stable technique for monitoring cellular calcium metabolism. It achieves both continuous monitoring at single points and custom sensing area calcium imaging, holding significant implications for drug screening and disease treatment related to human calcium homeostasis.
Collapse
Affiliation(s)
- Shichao Tian
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chiyu Ma
- Xi'an Institute of Applied Optics, Xi'an, 710065, China.
| | - Yuxuan Zhu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qihui Xu
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology, Xidian University, 710071, China
| | - Jianguo Wu
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Yong Qiu
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Tao Liang
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Guangqing Ren
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuoru Huang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhengyin Yu
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
13
|
Trus M, Atlas D. Non-ionotropic voltage-gated calcium channel signaling. Channels (Austin) 2024; 18:2341077. [PMID: 38601983 PMCID: PMC11017947 DOI: 10.1080/19336950.2024.2341077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.
Collapse
Affiliation(s)
- Michael Trus
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Nguyen PT, Harris BJ, Mateos DL, González AH, Murray AM, Yarov-Yarovoy V. Structural modeling of ion channels using AlphaFold2, RoseTTAFold2, and ESMFold. Channels (Austin) 2024; 18:2325032. [PMID: 38445990 PMCID: PMC10936637 DOI: 10.1080/19336950.2024.2325032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/14/2024] [Indexed: 03/07/2024] Open
Abstract
Ion channels play key roles in human physiology and are important targets in drug discovery. The atomic-scale structures of ion channels provide invaluable insights into a fundamental understanding of the molecular mechanisms of channel gating and modulation. Recent breakthroughs in deep learning-based computational methods, such as AlphaFold, RoseTTAFold, and ESMFold have transformed research in protein structure prediction and design. We review the application of AlphaFold, RoseTTAFold, and ESMFold to structural modeling of ion channels using representative voltage-gated ion channels, including human voltage-gated sodium (NaV) channel - NaV1.8, human voltage-gated calcium (CaV) channel - CaV1.1, and human voltage-gated potassium (KV) channel - KV1.3. We compared AlphaFold, RoseTTAFold, and ESMFold structural models of NaV1.8, CaV1.1, and KV1.3 with corresponding cryo-EM structures to assess details of their similarities and differences. Our findings shed light on the strengths and limitations of the current state-of-the-art deep learning-based computational methods for modeling ion channel structures, offering valuable insights to guide their future applications for ion channel research.
Collapse
Affiliation(s)
- Phuong Tran Nguyen
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA, USA
| | - Brandon John Harris
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA, USA
- Biophysics Graduate Group, University of California School of Medicine, Davis, CA, USA
| | - Diego Lopez Mateos
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA, USA
- Biophysics Graduate Group, University of California School of Medicine, Davis, CA, USA
| | - Adriana Hernández González
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA, USA
- Biophysics Graduate Group, University of California School of Medicine, Davis, CA, USA
| | | | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA, USA
- Department of Anesthesiology and Pain Medicine, University of California School of Medicine, Davis, CA, USA
| |
Collapse
|
15
|
Egunjobi F, Andreazza F, Zhorov BS, Dong K. A unique mechanism of transfluthrin action revealed by mapping its binding sites in the mosquito sodium channel. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 175:104214. [PMID: 39566664 PMCID: PMC11624841 DOI: 10.1016/j.ibmb.2024.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Pyrethroid insecticides exert their toxic action by prolonging the opening of insect voltage-gated sodium channels, resulting in the characteristic tail current during membrane repolarization in voltage clamp experiments. Permethrin (PMT) and deltamethrin (DMT), representative type I and type II pyrethroids, respectively, are predicted to bind to two lipid-exposed pyrethroid receptor sites, PyR1 and PyR2, at the lipid-exposed interfaces of repeats II/III and I/II, respectively. Transfluthrin (TF), a volatile type I pyrethroid and mosquito repellent, has received increased attention in the global combat of vector-borne human diseases. However, the electrophysiological and molecular bases of TF action on insect sodium channels remain unexplored. In this study we discovered that, unlike DMT and PMT, TF barely induces the characteristic tail current of the Aedes aegypti mosquito sodium channel (AaNav1-1) expressed in Xenopus oocytes. Instead, TF induces a unique persistent current. We docked TF into the AlphaFold2 model of AaNav1-1 and found that the tetrafluorophenyl ring of TF binds to alpha helices S5, P1, and S6, but not to the linker helices S4-S5 within either PyR1 or PyR2. In agreement with the model, functional examination of 15 AaNav1-1 mutants demonstrated that substitutions of DMT/PMT-sensing residues in helices S5, P1, and S6, but not in the linker-helices S4-S5, altered channel sensitivity to TF. These results revealed the unique action of TF on channel gating and suggest a distinct subtype of type I pyrethroids with a previously uncharacterized pattern of interactions with residues at the dual pyrethroid receptor sites.
Collapse
Affiliation(s)
| | | | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia; Almazov National Medical Research Centre, Saint Petersburg, 197341, Russia
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
16
|
Rusina E, Simonti M, Duprat F, Cestèle S, Mantegazza M. Voltage-gated sodium channels in genetic epilepsy: up and down of excitability. J Neurochem 2024; 168:3872-3890. [PMID: 37654020 PMCID: PMC11591406 DOI: 10.1111/jnc.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
The past two decades have witnessed a wide range of studies investigating genetic variants of voltage-gated sodium (NaV) channels, which are involved in a broad spectrum of diseases, including several types of epilepsy. We have reviewed here phenotypes and pathological mechanisms of genetic epilepsies caused by variants in NaV α and β subunits, as well as of some relevant interacting proteins (FGF12/FHF1, PRRT2, and Ankyrin-G). Notably, variants of all these genes can induce either gain- or loss-of-function of NaV leading to either neuronal hyperexcitability or hypoexcitability. We present the results of functional studies obtained with different experimental models, highlighting that they should be interpreted considering the features of the experimental system used. These systems are models, but they have allowed us to better understand pathophysiological issues, ameliorate diagnostics, orientate genetic counseling, and select/develop therapies within a precision medicine framework. These studies have also allowed us to gain insights into the physiological roles of different NaV channels and of the cells that express them. Overall, our review shows the progress that has been made, but also the need for further studies on aspects that have not yet been clarified. Finally, we conclude by highlighting some significant themes of general interest that can be gleaned from the results of the work of the last two decades.
Collapse
Affiliation(s)
- Evgeniia Rusina
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Martina Simonti
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Fabrice Duprat
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| | - Sandrine Cestèle
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Massimo Mantegazza
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| |
Collapse
|
17
|
Wu X, Zhi X, Liu K, Jiang H, Zhao X, Li Y. Prevention and control of cardiac arrhythmic by using therapeutic foods: A review. J Cardiovasc Electrophysiol 2024; 35:2460-2471. [PMID: 39363395 DOI: 10.1111/jce.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Arrhythmia occurs as a common heart vascular disease. Functional food is a rich source of natural compounds with significant pharmacological, The aim of this paper is to explore its effect on arrhythmia. METHODS By reviewing the literature and summarising the findings, we described the role of functional foods in the alleviation of cardiac arrhythmias from different perspectives. RESULTS Our study shows that functional foods have anti-arrhythmic effects through modulation of ion channels, oxidative stress, and Calmodulin-dependent protein kinase II. CONCLUSIONS We summarize the mechanism of arrhythmia inhibition by the active ingredients of medicinal diets in this review article, intending to provide research ideas for dietary therapy to regulate arrhythmia.
Collapse
Affiliation(s)
- Xue Wu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Cardiology, The Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiaodong Zhi
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - HuGang Jiang
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
18
|
Liardo E, Pham AT, Ghilardi AF, Zhelay T, Szteyn K, Gandi NL, Ekkati A, Koerner S, Kozak JA, Sun L. Discovery of selective Orai channel blockers bearing an indazole or a pyrazole scaffold. Eur J Med Chem 2024; 278:116805. [PMID: 39232360 DOI: 10.1016/j.ejmech.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The calcium release activated calcium (CRAC) channel is highly expressed in T lymphocytes and plays a critical role in regulating T cell proliferation and functions including activation of the transcription factor nuclear factor of activated T cells (NFAT), cytokine production and cytotoxicity. The CRAC channel consists of the Orai pore subunit and STIM (stromal interacting molecule) endoplasmic reticulum calcium sensor. Loss of CRAC channel mediated calcium signaling has been identified as an underlying cause of severe combined immunodeficiency (SCID), leading to drastically weakened immunity against infections. Gain-of-function mutations in Orai and STIM have been associated with tubular aggregated myopathy (TAM), a skeletal muscle disease. While a number of small molecules have shown activity in inhibiting the CRAC signaling pathway, the usefulness of those tool compounds is limited by their off-target activity against TRPM4 and TRPM7 ion channels, high lipophilicity, and a lack of understanding of their mechanism of action. We report structure-activity relationship (SAR) studies that resulted in the characterization of compound 4k [1-(cyclopropylmethyl)-N-(3-fluoropyridin-4-yl)-1H-indazole-3-carboxamie] as a fast onset, reversible, and selective CRAC channel blocker. 4k fully blocked the CRAC current (IC50: 4.9 μM) and the nuclear translocation of NFAT at 30 and 10 μM, respectively, without affecting the electrophysiological function of TRPM4 and TRPM7 channels. Computational modeling appears to support its direction binding to Orai proteins that form the transmembrane CRACchannel.
Collapse
Affiliation(s)
- Elisa Liardo
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Anh-Tuan Pham
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Amanda F Ghilardi
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Tetyana Zhelay
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Kalina Szteyn
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Naga Lakshmi Gandi
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Anil Ekkati
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Steffi Koerner
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA.
| | - Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
19
|
Burk RJ, Sajeevan J SJ, Salehi R, Koçak Aslan E, Gündüz MG, Armstrong DW. Expanding cyclodextrin use in normal phase and super/subcritical fluid chromatographic modes for the chiral separation of 1,4-dihydropyridines. J Chromatogr A 2024; 1736:465394. [PMID: 39366032 DOI: 10.1016/j.chroma.2024.465394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Cyclodextrin-based stationary phases are important chiral selectors in liquid chromatography. These chiral selectors are most commonly used in the reversed-phase mode because native cyclodextrin assumes a torus conformation with a hydrophobic cavity, facilitating inclusion complexation in aqueous environments. However, the value of native and aliphatic-derivatized cyclodextrins in other modes, such as the normal phase liquid chromatography (NPLC) or super/subcritical fluid chromatography (SFC), remains unexplored. In this work, we report chiral separations of pharmaceutically relevant compounds with the 1,4-dihydropyridine (DHP) scaffold on a 2-hydroxypropyl-β-cyclodextrin (CD-RSP) stationary phase in NPLC and SFC modes. Although CD-RSP is conventionally considered only effective in the reversed-phase mode, we show that these compounds tend to separate better in other modes. This is particularly apparent for analytes with hydrogen-bonding moieties. We propose that the separation mechanism primarily depends on external adsorption rather than inclusion complexation. The negligible impact of a complexation-competitive additive on retention in non-aqueous modes further supports this claim. Additionally, van Deemter analysis demonstrated the efficiency and environmental benefit of using this stationary phase in the SFC mode, further highlighting the promise of aliphatic derivatized cyclodextrin stationary phases for greener separations.
Collapse
Affiliation(s)
- Ryan Jacob Burk
- Department of Chemistry & Biochemistry, University of Texas at Arlington, TX 76019, USA
| | | | - Reza Salehi
- Department of Chemistry & Biochemistry, University of Texas at Arlington, TX 76019, USA
| | - Ebru Koçak Aslan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara 06100, Turkey
| | - Miyase Gözde Gündüz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara 06100, Turkey
| | - Daniel W Armstrong
- Department of Chemistry & Biochemistry, University of Texas at Arlington, TX 76019, USA.
| |
Collapse
|
20
|
del Rivero Morfin PJ, Chavez DS, Jayaraman S, Yang L, Geisler SM, Kochiss AL, Tuluc P, Colecraft HM, Marx SO, Liu XS, Rajadhyaksha AM, Ben-Johny M. A genetically encoded actuator boosts L-type calcium channel function in diverse physiological settings. SCIENCE ADVANCES 2024; 10:eadq3374. [PMID: 39475605 PMCID: PMC11524184 DOI: 10.1126/sciadv.adq3374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
L-type Ca2+ channels (CaV1.2/1.3) convey influx of calcium ions that orchestrate a bevy of biological responses including muscle contraction, neuronal function, and gene transcription. Deficits in CaV1 function play a vital role in cardiac and neurodevelopmental disorders. Here, we develop a genetically encoded enhancer of CaV1.2/1.3 channels (GeeCL) to manipulate Ca2+ entry in distinct physiological settings. We functionalized a nanobody that targets the CaV complex by attaching a minimal effector domain from an endogenous CaV modulator-leucine-rich repeat containing protein 10 (Lrrc10). In cardiomyocytes, GeeCL selectively increased L-type current amplitude. In neurons in vitro and in vivo, GeeCL augmented excitation-transcription (E-T) coupling. In all, GeeCL represents a powerful strategy to boost CaV1.2/1.3 function and lays the groundwork to illuminate insights on neuronal and cardiac physiology and disease.
Collapse
Affiliation(s)
| | - Diego Scala Chavez
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Srinidhi Jayaraman
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Lin Yang
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Stefanie M. Geisler
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Audrey L. Kochiss
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - X. Shawn Liu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Anjali M. Rajadhyaksha
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
21
|
Zhang M, Zhu L, Zhang H, Wang X, Wu G. Pea protein hydrolysate stimulates GLP-1 secretion in NCI-H716 cells via simultaneously activating the sensing receptors CaSR and PepT1. Food Funct 2024; 15:10316-10322. [PMID: 39302035 DOI: 10.1039/d4fo01290a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) plays a crucial role in regulating glucose homeostasis by stimulating insulin secretion and suppressing glucagon release. Our previous study observed that pea protein hydrolysate (PPH) exhibited the function of triggering GLP-1 secretion. However, the underlying mechanisms have not been revealed. Herein, the mechanisms of PPH-stimulated GLP-1 secretion were investigated in NCI-H716 cells. The PPH-induced GLP-1 secretion was reduced (p < 0.05) after adding the sensing receptor antagonists NPS-2143 and 4-AMBA, indicating that activation of both calcium-sensing receptor (CaSR) and peptide-transporter 1 (PepT1) was involved in PPH-triggered GLP-1 release. Moreover, the intracellular Ca2+ level increased by 2.01 times during the PPH-induced GLP-1 secretion. Similarly, the cAMP content also increased by 1.43 times after stimulation by PPH. The RT-qPCR results showed that PPH increased the gene expression of prohormone convertase 1/3 (PCSK-1) by 2.79-fold, which effectively promoted the conversion of proglucagon (GCG) to GLP-1. The specific pathway of PPH-induced GLP-1 secretion may involve both CaSR and PepT1 activation-induced Ca2+ influx and cAMP generation, which effectively enhanced the enzyme activity of prohormone convertase 1/3 (PCSK-1) and ultimately promoted GLP-1 secretion.
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
22
|
Collaço RDC, Van Petegem F, Bosmans F. ω-Grammotoxin-SIA inhibits voltage-gated Na+ channel currents. J Gen Physiol 2024; 156:e202413563. [PMID: 39042091 PMCID: PMC11270453 DOI: 10.1085/jgp.202413563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
ω-Grammotoxin-SIA (GrTX-SIA) was originally isolated from the venom of the Chilean rose tarantula and demonstrated to function as a gating modifier of voltage-gated Ca2+ (CaV) channels. Later experiments revealed that GrTX-SIA could also inhibit voltage-gated K+ (KV) channel currents via a similar mechanism of action that involved binding to a conserved S3-S4 region in the voltage-sensing domains (VSDs). Since voltage-gated Na+ (NaV) channels contain homologous structural motifs, we hypothesized that GrTX-SIA could inhibit members of this ion channel family as well. Here, we show that GrTX-SIA can indeed impede the gating process of multiple NaV channel subtypes with NaV1.6 being the most susceptible target. Moreover, molecular docking of GrTX-SIA onto NaV1.6, supported by a p.E1607K mutation, revealed the voltage sensor in domain IV (VSDIV) as being a primary site of action. The biphasic manner in which current inhibition appeared to occur suggested a second, possibly lower-sensitivity binding locus, which was identified as VSDII by using KV2.1/NaV1.6 chimeric voltage-sensor constructs. Subsequently, the NaV1.6p.E782K/p.E838K (VSDII), NaV1.6p.E1607K (VSDIV), and particularly the combined VSDII/VSDIV mutant lost virtually all susceptibility to GrTX-SIA. Together with existing literature, our data suggest that GrTX-SIA recognizes modules in NaV channel VSDs that are conserved among ion channel families, thereby allowing it to act as a comprehensive ion channel gating modifier peptide.
Collapse
Affiliation(s)
- Rita de Cássia Collaço
- Department of Basic and Applied Medical Sciences, Molecular Physiology and Neurophysics Group, Ghent University, Ghent, Belgium
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Molecular Physiology and Neurophysics Group, Ghent University, Ghent, Belgium
- Faculty of Medicine and Pharmacy, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
23
|
Wang P, Liu Q, Wang X, Sun T, Liu B, Wang B, Li H, Wang C, Sun W, Pan B. Point mutations in the voltage-gated sodium channel gene conferring pyrethroid resistance in China populations of the Dermanyssus gallinae. PEST MANAGEMENT SCIENCE 2024; 80:4950-4958. [PMID: 38828899 DOI: 10.1002/ps.8223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Dermanyssus gallinae, the poultry red mite (PRM), is a worldwide ectoparasite posing significant economic challenges in poultry farming. The extensive use of pyrethroids for PRM control has led to the emergence of pyrethroid resistance. The objective of this study is to detect the pyrethroid resistance and explore its associated point mutations in the voltage-gated sodium channel (VGSC) gene among PRM populations in China. RESULTS Several populations of D. gallinae, namely CJF-1, CJP-2, CJP-3, CSD-4 and CLD-5, displayed varying degrees of resistance to beta-cypermethrin compared to a susceptible field population (CBP-5). Mutations of VGSC gene in populations of PRMs associated with pyrethroid resistance were identified through sequencing its fragments IIS4-IIS5 and IIIS6. The mutations I917V, M918T/L, A924G and L925V were present in multiple populations, while no mutations were found at positions T929, I936, F1534 and F1538. CONCLUSION The present study confirmed the presence of extremely high levels of pyrethroid resistance in PRM populations in China, and for the first time detected four pyrethroid resistance mutations in the VGSC gene. Identifying pyrethroid resistance in the field population of PRM in China can be achieved through screening for VGSC gene mutations as an early detection method. Our findings underscore the importance of implementing chemical PRM control strategies based on resistance evidence, while also considering the management of acaricide resistance in the control of PRMs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Penglong Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xu Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tiancong Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Boxing Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bohan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huan Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuanwen Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Weiwei Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baoliang Pan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Wu P, Tu Y, Cho H, Yu M, Wu Y, Wu S. An unidentified yet notable modification on I Na and I K (DR) caused by ramelteon. FASEB Bioadv 2024; 6:442-453. [PMID: 39372128 PMCID: PMC11452446 DOI: 10.1096/fba.2024-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 10/08/2024] Open
Abstract
Despite advancement in anti-seizure medications, 30% of patients continue to experience recurrent seizures. Previous data indicated the antiepileptic properties of melatonin and its agonists in several animal models. However, the underlying mechanisms of melatonin and its agonists on cellular excitability remain poorly understood. In this study, we demonstrated the electrophysiological changes of two main kinds of ion channels that are responsible for hyperexcitability of neurons after introduction of melatonin agonists- ramelteon (RAM). In Neuro-2a cells, the amplitude of voltage-gated Na+ (I Na) and delayed-rectifier K+ currents (I K (DR)) could be suppressed under RAM. The IC50 values of 8.7 and 2.9 μM, respectively. RAM also diminished the magnitude of window Na+ current (I Na (W)) elicited by short ascending ramp voltage, with unchanged the overall steady-state current-voltage relationship. The decaying time course of I Na during a train of depolarizing pulses arose upon the exposure to RAM. The conditioning train protocol which blocked I Na fitted the recovery time course into two exponential processes and increased the fast and slow time constant of recovery the presence of RAM. In pituitary tumor (GH3) cells, I Na amplitude was also effectively suppressed by the RAM. In addition, GH3-cells exposure to RAM decreased the firing frequency of spontaneous action potentials observed under current-clamp conditions. As a result, the RAM-mediated effect on INa was closely associated with its ability to decrease spontaneous action potentials. Collectively, we found the direct attenuation of I Na and I K (DR) caused by RAM besides the agonistic action on melatonin receptors, which could partially explain its anti-seizure activity.
Collapse
Affiliation(s)
- Po‐Ming Wu
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Yi‐Fang Tu
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Hsin‐Yen Cho
- Department of PhysiologyNational Cheng Kung University Medical CollegeTainanTaiwan
| | - Meng‐Cheng Yu
- Department of PhysiologyNational Cheng Kung University Medical CollegeTainanTaiwan
| | - Yen‐Hsien Wu
- Department of PediatricsKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Sheng‐Nan Wu
- Department of PhysiologyNational Cheng Kung University Medical CollegeTainanTaiwan
- Institute of Basic Medical SciencesNational Cheng Kung University Medical CollegeTainanTaiwan
- Department of Research and Education, An Nan HospitalChina Medical UniversityTainanTaiwan
| |
Collapse
|
25
|
Xiong A, Richmond JE, Kim H. Presynaptic neurons self-tune by inversely coupling neurotransmitter release with the abundance of CaV2 voltage-gated Ca 2+ channels. Proc Natl Acad Sci U S A 2024; 121:e2404969121. [PMID: 39172783 PMCID: PMC11363341 DOI: 10.1073/pnas.2404969121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024] Open
Abstract
The abundance of CaV2 voltage-gated calcium channels is linked to presynaptic homeostatic plasticity (PHP), a process that recalibrates synaptic strength to maintain the stability of neural circuits. However, the molecular and cellular mechanisms governing PHP and CaV2 channels are not completely understood. Here, we uncover a previously not described form of PHP in Caenorhabditis elegans, revealing an inverse regulatory relationship between the efficiency of neurotransmitter release and the abundance of UNC-2/CaV2 channels. Gain-of-function unc-2SL(S240L) mutants, which carry a mutation analogous to the one causing familial hemiplegic migraine type 1 in humans, showed markedly reduced channel abundance despite increased channel functionality. Reducing synaptic release in these unc-2SL(S240L) mutants restored channel levels to those observed in wild-type animals. Conversely, loss-of-function unc-2DA(D726A) mutants, which harbor the D726A mutation in the channel pore, exhibited a marked increase in channel abundance. Enhancing synaptic release in unc-2DA mutants reversed this increase in channel levels. Importantly, this homeostatic regulation of UNC-2 channel levels is accompanied by the structural remodeling of the active zone (AZ); specifically, unc-2DA mutants, which exhibit increased channel abundance, showed parallel increases in select AZ proteins. Finally, our forward genetic screen revealed that WWP-1, a HECT family E3 ubiquitin ligase, is a key homeostatic mediator that removes UNC-2 from synapses. These findings highlight a self-tuning PHP regulating UNC-2/CaV2 channel abundance along with AZ reorganization, ensuring synaptic strength and stability.
Collapse
Affiliation(s)
- Ame Xiong
- Discipline of Cell Biology & Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| | - Janet E. Richmond
- Department of Biological Sciences, University of Illinois, Chicago, IL60607
| | - Hongkyun Kim
- Discipline of Cell Biology & Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| |
Collapse
|
26
|
Catterall WA, Gamal El-Din TM, Wisedchaisri G. The chemistry of electrical signaling in sodium channels from bacteria and beyond. Cell Chem Biol 2024; 31:1405-1421. [PMID: 39151407 DOI: 10.1016/j.chembiol.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Electrical signaling is essential for all fast processes in biology, but its molecular mechanisms have been uncertain. This review article focuses on studies of bacterial sodium channels in order to home in on the essential molecular and chemical mechanisms underlying transmembrane ion conductance and voltage-dependent gating without the overlay of complex protein interactions and regulatory mechanisms in mammalian sodium channels. This minimalist approach has yielded a nearly complete picture of sodium channel function at the atomic level that are mostly conserved in mammalian sodium channels, including sodium selectivity and conductance, voltage sensing and activation, electromechanical coupling to pore opening and closing, slow inactivation, and pathogenic dysfunction in a debilitating channelopathy. Future studies of nature's simplest sodium channels may continue to yield key insights into the fundamental molecular and chemical principles of their function and further elucidate the chemical basis of electrical signaling.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| |
Collapse
|
27
|
Kesdoğan AB, Neureiter A, Gaebler AJ, Kalia AK, Körner J, Lampert A. Analgesic effect of Botulinum toxin in neuropathic pain is sodium channel independent. Neuropharmacology 2024; 253:109967. [PMID: 38657946 DOI: 10.1016/j.neuropharm.2024.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/26/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Botulinum neurotoxin type A BoNT/A is used off-label as a third line therapy for neuropathic pain. However, the mechanism of action remains unclear. In recent years, the role of voltage-gated sodium channels (Nav) in neuropathic pain became evident and it was suggested that block of sodium channels by BoNT/A would contribute to its analgesic effect. We assessed sodium channel function in the presence of BoNT/A in heterologously expressed Nav1.7, Nav1.3, and the neuronal cell line ND7/23 by high throughput automated and manual patch-clamp. We used both the full protein and the isolated catalytic light chain LC/A for acute or long-term extracellular or intracellular exposure. To assess the toxin's effect in a human cellular system, we differentiated induced pluripotent stem cells (iPSC) into sensory neurons from a healthy control and a patient suffering from a hereditary neuropathic pain syndrome (inherited erythromelalgia) carrying the Nav1.7/p.Q875E-mutation and carried out multielectrode-array measurements. Both BoNT/A and the isolated catalytic light chain LC/A showed limited effects in heterologous expression systems and the neuronal cell line ND7/23. Spontaneous activity in iPSC derived sensory neurons remained unaltered upon BoNT/A exposure both in neurons from the healthy control and the mutation carrying patient. BoNT/A may not specifically be beneficial in pain syndromes linked to sodium channel variants. The favorable effects of BoNT/A in neuropathic pain are likely based on mechanisms other than sodium channel blockage and new approaches to understand BoNT/A's therapeutic effects are necessary.
Collapse
Affiliation(s)
- Aylin B Kesdoğan
- Institute of Neurophysiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany; Scientific Center for Neuropathic Pain Research Aachen, SCN(Aachen), RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Anika Neureiter
- Institute of Neurophysiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Arnim J Gaebler
- Institute of Neurophysiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Anil K Kalia
- Institute of Neurophysiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jannis Körner
- Institute of Neurophysiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany; Department of Anesthesiology, Medical Faculty, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany; Department of Intensive and Intermediate Care, Medical Faculty, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany; Scientific Center for Neuropathic Pain Research Aachen, SCN(Aachen), RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Angelika Lampert
- Institute of Neurophysiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany; Scientific Center for Neuropathic Pain Research Aachen, SCN(Aachen), RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
28
|
Yang C, Zhao W, Chen H, Yao Y, Zhang J. Cardiac adverse events associated with lacosamide: a disproportionality analysis of the FAERS database. Sci Rep 2024; 14:16202. [PMID: 39003359 PMCID: PMC11246456 DOI: 10.1038/s41598-024-67209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Lacosamide was the first approved third-generation antiepileptic drug. However, real-world data regarding its adverse cardiac reactions in large samples still need to be completed. We evaluated the cardiac safety profile of lacosamide using the Food and Drug Administration Adverse Event Reporting System (FAERS). We performed disproportionality analysis computing reporting odds ratio (ROR) as a quantitative metric to assess the signal of lacosamide-related cardiac adverse events (AEs) from 2013 Q1 to 2022 Q4. The signal was considered significant when the lower limit of the 95% confidence interval (CI) of the ROR exceeded 1, and ≥ 5 AEs were reported. Serious and nonserious cases were compared by statistical analysis, and signals were further prioritized using a rating scale. A total of 812 cardiac AEs associated with lacosamide were identified, and 92 signals were detected, of which 17 AEs were significantly associated signals. The median time-to-onset (TTO) for moderate priority signals was 10 days, whereas for weak priority signals, it was 54 days. Notably, all cardiac AEs exhibited an early failing pattern, indicating the risk gradually decreasing. Based on the comprehensive analysis of the FAERS database and prioritization of cardiac AE signals, our research enhances the awareness among healthcare professionals regarding cardiac AEs associated with lacosamide.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Pharmacy, The First People's Hospital of Shangqiu, Shangqiu, 476000, China.
| | - Wanqi Zhao
- The University of Manchester, Manchester, M13 9PL, England
| | - Huihui Chen
- Department of Pharmacy, The First People's Hospital of Shangqiu, Shangqiu, 476000, China
| | - Yinhui Yao
- Department of Pharmacy, Chengde Medical University Affiliated Hospital, Chengde, 067000, China
| | - Jingmin Zhang
- Department of Pharmacy, Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
29
|
Zhang S, Ma D, Wang K, Li Y, Yang Z, Li X, Li J, He J, Mei L, Ye Y, Chen Z, Shen J, Hou P, Guo J, Zhang Q, Yang H. A small-molecule activation mechanism that directly opens the KCNQ2 channel. Nat Chem Biol 2024; 20:847-856. [PMID: 38167918 DOI: 10.1038/s41589-023-01515-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Pharmacological activation of voltage-gated ion channels by ligands serves as the basis for therapy and mainly involves a classic gating mechanism that augments the native voltage-dependent open probability. Through structure-based virtual screening, we identified a new scaffold compound, Ebio1, serving as a potent and subtype-selective activator for the voltage-gated potassium channel KCNQ2 and featuring a new activation mechanism. Single-channel patch-clamp, cryogenic-electron microscopy and molecular dynamic simulations, along with chemical derivatives, reveal that Ebio1 engages the KCNQ2 activation by generating an extended channel gate with a larger conductance at the saturating voltage (+50 mV). This mechanism is different from the previously observed activation mechanism of ligands on voltage-gated ion channels. Ebio1 caused S6 helices from residues S303 and F305 to perform a twist-to-open movement, which was sufficient to open the KCNQ2 gate. Overall, our findings provide mechanistic insights into the activation of KCNQ2 channel by Ebio1 and lend support for KCNQ-related drug development.
Collapse
Affiliation(s)
- Shaoying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Demin Ma
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ya Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenni Yang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Li
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junnan Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiangnan He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lianghe Mei
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, China
| | - Yangliang Ye
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, China
| | - Zongsheng Chen
- Department of Neurology, Wuhu Hospital Affiliated to East China Normal University, Wuhu, China
| | - Juwen Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Panpan Hou
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jiangtao Guo
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
30
|
Yu XY, Sun QM, Lu RP, Wei B, Wang XY, Pan LH. Clinical features and genetic analysis of developmental and epileptic encephalopathy caused by biallelic variants of CACNA1B. Heliyon 2024; 10:e32693. [PMID: 39005920 PMCID: PMC11239463 DOI: 10.1016/j.heliyon.2024.e32693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Objective To analyze the clinical features and genetic etiology of a patient with developmental and epileptic encephalopathy. Methods The clinical information and peripheral blood of the patient and their family members were collected before the whole exome sequencing analysis was performed and Sanger sequencing was employed to verify the potential variant. Results The patient presented with epilepsy and cerebral palsy with his parents, brother, and sister being all healthy. Whole exome sequencing analysis revealed that the child carried the paternal c.823del (p. R275Gfs*31) heterozygous variant and the maternal c.2456del (p.V819Gfs*190) heterozygous variant of the CACNA1B gene. Pedigree verification found that the elder brother and amniotic fluid of fetus in womb carried the paternal c.823del heterozygous variant, and the elder sister carried the maternal c.2456del heterozygous variant, which conformed to the law of autosomal recessive inheritance. Neither of these two variants has been reported in the literature and has not been included in the Genomic Mutation Frequency Database (gnomAD); according to the American Academy of Medical Genetics and Genomics Variation Grading Guidelines (ACMG), both variants are classified as pathogenic variants (PVS1+PM2-Supporting + PM3). Conclusion This study reported the first case of a child with neurodevelopmental disorder and epilepsy caused by a new compound heterozygous variant of the CACNA1B gene in China, clarified its genetic etiology, enriched the mutation spectrum and disease spectrum of CACNA1B gene, and provided a basis for prenatal diagnosis of the family.
Collapse
Affiliation(s)
- Xin-you Yu
- Gerneral Hospital of Ningxia Medical University, Yin'chuan, Ningxia, 750004, China
| | - Qing-mei Sun
- Gansu Province Maternal and Child Health Care Hospital, Lan'zhou, Gansu, 730000, China
| | - Rui-ping Lu
- Gerneral Hospital of Ningxia Medical University, Yin'chuan, Ningxia, 750004, China
| | - Bo Wei
- Gerneral Hospital of Ningxia Medical University, Yin'chuan, Ningxia, 750004, China
| | - Xiao-yan Wang
- Gerneral Hospital of Ningxia Medical University, Yin'chuan, Ningxia, 750004, China
| | - Li-hua Pan
- Gerneral Hospital of Ningxia Medical University, Yin'chuan, Ningxia, 750004, China
| |
Collapse
|
31
|
Harris BJ, Nguyen PT, Zhou G, Wulff H, DiMaio F, Yarov-Yarovoy V. Toward high-resolution modeling of small molecule-ion channel interactions. Front Pharmacol 2024; 15:1411428. [PMID: 38919257 PMCID: PMC11196768 DOI: 10.3389/fphar.2024.1411428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024] Open
Abstract
Ion channels are critical drug targets for a range of pathologies, such as epilepsy, pain, itch, autoimmunity, and cardiac arrhythmias. To develop effective and safe therapeutics, it is necessary to design small molecules with high potency and selectivity for specific ion channel subtypes. There has been increasing implementation of structure-guided drug design for the development of small molecules targeting ion channels. We evaluated the performance of two RosettaLigand docking methods, RosettaLigand and GALigandDock, on the structures of known ligand-cation channel complexes. Ligands were docked to voltage-gated sodium (NaV), voltage-gated calcium (CaV), and transient receptor potential vanilloid (TRPV) channel families. For each test case, RosettaLigand and GALigandDock methods frequently sampled a ligand-binding pose within a root mean square deviation (RMSD) of 1-2 Å relative to the experimental ligand coordinates. However, RosettaLigand and GALigandDock scoring functions cannot consistently identify experimental ligand coordinates as top-scoring models. Our study reveals that the proper scoring criteria for RosettaLigand and GALigandDock modeling of ligand-ion channel complexes should be assessed on a case-by-case basis using sufficient ligand and receptor interface sampling, knowledge about state-specific interactions of the ion channel, and inherent receptor site flexibility that could influence ligand binding.
Collapse
Affiliation(s)
- Brandon J. Harris
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Biophysics Graduate Group, University of California, Davis, Davis, CA, United States
| | - Phuong T. Nguyen
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Guangfeng Zhou
- Department of Biochemistry, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Biophysics Graduate Group, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Huang J, Fan X, Jin X, Lyu C, Guo Q, Liu T, Chen J, Davakan A, Lory P, Yan N. Structural basis for human Ca v3.2 inhibition by selective antagonists. Cell Res 2024; 34:440-450. [PMID: 38605177 PMCID: PMC11143251 DOI: 10.1038/s41422-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
The Cav3.2 subtype of T-type calcium channels has been targeted for developing analgesics and anti-epileptics for its role in pain and epilepsy. Here we present the cryo-EM structures of Cav3.2 alone and in complex with four T-type calcium channel selective antagonists with overall resolutions ranging from 2.8 Å to 3.2 Å. The four compounds display two binding poses. ACT-709478 and TTA-A2 both place their cyclopropylphenyl-containing ends in the central cavity to directly obstruct ion flow, meanwhile extending their polar tails into the IV-I fenestration. TTA-P2 and ML218 project their 3,5-dichlorobenzamide groups into the II-III fenestration and place their hydrophobic tails in the cavity to impede ion permeation. The fenestration-penetrating mode immediately affords an explanation for the state-dependent activities of these antagonists. Structure-guided mutational analysis identifies several key residues that determine the T-type preference of these drugs. The structures also suggest the role of an endogenous lipid in stabilizing drug binding in the central cavity.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA.
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chen Lyu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qinmeng Guo
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tao Liu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiaofeng Chen
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Amaël Davakan
- IGF, Université de Montpellier, CNRS, INSERM, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Philippe Lory
- IGF, Université de Montpellier, CNRS, INSERM, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- Institute of Bio-Architecture and Bio-Interactions, Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong, China.
| |
Collapse
|
33
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
34
|
Schott K, Usher SG, Serra O, Carnevale V, Pless SA, Chua HC. Unplugging lateral fenestrations of NALCN reveals a hidden drug binding site within the pore region. Proc Natl Acad Sci U S A 2024; 121:e2401591121. [PMID: 38787877 PMCID: PMC11145269 DOI: 10.1073/pnas.2401591121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024] Open
Abstract
The sodium (Na+) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (NaVs and CaVs, respectively). Unlike NaVs and CaVs, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145, and Y1436) that block these openings. Structural data suggest that occluded fenestrations underlie the pharmacological resistance of NALCN, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned residues with alanine (AAAA) and compared the effects of NaV, CaV, and NALCN blockers on both wild-type (WT) and AAAA channels. Most compounds behaved in a similar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cavity through distinct fenestrations, implying structural specificity to their modes of access. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug binding site(s) within the pore region. Intrigued by the activity of 2-APB and its analogues, we tested compounds containing the diphenylmethane/amine moiety on WT channels. We identified clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the pharmacological resistance of NALCN, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties.
Collapse
Affiliation(s)
- Katharina Schott
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| | - Samuel George Usher
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| | - Oscar Serra
- Department of Biology, Temple University, Philadelphia, PA19122
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA19122
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA19122
| | - Vincenzo Carnevale
- Department of Biology, Temple University, Philadelphia, PA19122
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA19122
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA19122
| | - Stephan Alexander Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| | - Han Chow Chua
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen2100, Denmark
| |
Collapse
|
35
|
Dubey A, Baxter M, Hendargo KJ, Medrano-Soto A, Saier MH. The Pentameric Ligand-Gated Ion Channel Family: A New Member of the Voltage Gated Ion Channel Superfamily? Int J Mol Sci 2024; 25:5005. [PMID: 38732224 PMCID: PMC11084639 DOI: 10.3390/ijms25095005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
In this report we present seven lines of bioinformatic evidence supporting the conclusion that the Pentameric Ligand-gated Ion Channel (pLIC) Family is a member of the Voltage-gated Ion Channel (VIC) Superfamily. In our approach, we used the Transporter Classification Database (TCDB) as a reference and applied a series of bioinformatic methods to search for similarities between the pLIC family and members of the VIC superfamily. These include: (1) sequence similarity, (2) compatibility of topology and hydropathy profiles, (3) shared domains, (4) conserved motifs, (5) similarity of Hidden Markov Model profiles between families, (6) common 3D structural folds, and (7) clustering analysis of all families. Furthermore, sequence and structural comparisons as well as the identification of a 3-TMS repeat unit in the VIC superfamily suggests that the sixth transmembrane segment evolved into a re-entrant loop. This evidence suggests that the voltage-sensor domain and the channel domain have a common origin. The classification of the pLIC family within the VIC superfamily sheds light onto the topological origins of this family and its evolution, which will facilitate experimental verification and further research into this superfamily by the scientific community.
Collapse
Affiliation(s)
| | | | | | - Arturo Medrano-Soto
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA; (A.D.); (M.B.); (K.J.H.)
| | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA; (A.D.); (M.B.); (K.J.H.)
| |
Collapse
|
36
|
Zou X, Zhang Z, Lu H, Zhao W, Pan L, Chen Y. Functional effects of drugs and toxins interacting with Na V1.4. Front Pharmacol 2024; 15:1378315. [PMID: 38725668 PMCID: PMC11079311 DOI: 10.3389/fphar.2024.1378315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
NaV1.4 is a voltage-gated sodium channel subtype that is predominantly expressed in skeletal muscle cells. It is essential for producing action potentials and stimulating muscle contraction, and mutations in NaV1.4 can cause various muscle disorders. The discovery of the cryo-EM structure of NaV1.4 in complex with β1 has opened new possibilities for designing drugs and toxins that target NaV1.4. In this review, we summarize the current understanding of channelopathies, the binding sites and functions of chemicals including medicine and toxins that interact with NaV1.4. These substances could be considered novel candidate compounds or tools to develop more potent and selective drugs targeting NaV1.4. Therefore, studying NaV1.4 pharmacology is both theoretically and practically meaningful.
Collapse
Affiliation(s)
- Xinyi Zou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zixuan Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Hui Lu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wei Zhao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Lanying Pan
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuan Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
37
|
Chen JL, Kuo CC. Inhibition of resurgent Na + currents by rufinamide. Neuropharmacology 2024; 247:109835. [PMID: 38228283 DOI: 10.1016/j.neuropharm.2024.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
Na+ channels are essential for the genesis of action potentials in most neurons. After opening by membrane depolarization, Na+ channels enter a series of inactivated states (e.g. the fast, intermediate, and slow inactivated states; or If, Ii, and Is). The inactivated Na+ channel may recover via the open state upon membrane repolarization, giving rise to "resurgent" Na+ currents which could be critical for densely repetitive or burst discharges. We incubated CHO-K1 cells transfected with human NaV1.7 cDNA and measured resurgent currents with whole-cell patch recordings. We found Ii is the major inactivated state responsible for the genesis of resurgent currents. Rufinamide, in therapeutic concentrations, could selectively bind to Ii to slow the recovery process and dose-dependently inhibit resurgent currents. The other Na+ channel-inhibiting antiseizure medications (ASM), such as phenytoin and lacosamide (selectively binds to If and Is, separately), fail to show a similar inhibitory effect in clinically relevant concentrations. Resurgent currents are decreased with lengthening of the prepulse, presumably because of redistribution of the channel from Ii to If. Rufinamide could accentuate the decrease to mimic a use-dependent inhibitory effect. The molecular action of slowing of recovery from inactivation by binding to Ii also explains the highly correlative inhibitory effect of rufinamide on both transient and resurgent Na+ currents. The modest but correlative inhibition of both currents may make a novel synergistic effect and thus strong-enough suppression of pathological repetitive and especially burst discharges. Rufinamide may thus have a unique spectrum of therapeutic applications for disorders with excessive neural excitabilities.
Collapse
Affiliation(s)
- Jian-Lin Chen
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
38
|
Acharya M, Singh N, Gupta G, Tambuwala MM, Aljabali AAA, Chellappan DK, Dua K, Goyal R. Vitamin D, Calbindin, and calcium signaling: Unraveling the Alzheimer's connection. Cell Signal 2024; 116:111043. [PMID: 38211841 DOI: 10.1016/j.cellsig.2024.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Calcium is a ubiquitous second messenger that is indispensable in regulating neurotransmission and memory formation. A precise intracellular calcium level is achieved through the concerted action of calcium channels, and calcium exerts its effect by binding to an array of calcium-binding proteins, including calmodulin (CAM), calcium-calmodulin complex-dependent protein kinase-II (CAMK-II), calbindin (CAL), and calcineurin (CAN). Calbindin orchestrates a plethora of signaling events that regulate synaptic transmission and depolarizing signals. Vitamin D, an endogenous fat-soluble metabolite, is synthesized in the skin upon exposure to ultraviolet B radiation. It modulates calcium signaling by increasing the expression of the calcium-sensing receptor (CaSR), stimulating phospholipase C activity, and regulating the expression of calcium channels such as TRPV6. Vitamin D also modulates the activity of calcium-binding proteins, including CAM and calbindin, and increases their expression. Calbindin, a high-affinity calcium-binding protein, is involved in calcium buffering and transport in neurons. It has been shown to inhibit apoptosis and caspase-3 activity stimulated by presenilin 1 and 2 in AD. Whereas CAM, another calcium-binding protein, is implicated in regulating neurotransmitter release and memory formation by phosphorylating CAN, CAMK-II, and other calcium-regulated proteins. CAMK-II and CAN regulate actin-induced spine shape changes, which are further modulated by CAM. Low levels of both calbindin and vitamin D are attributed to the pathology of Alzheimer's disease. Further research on vitamin D via calbindin-CAMK-II signaling may provide newer insights, revealing novel therapeutic targets and strategies for treatment.
Collapse
Affiliation(s)
- Manish Acharya
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, India
| | - Nicky Singh
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, Universities of Nottingham and Lincoln College of Science, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid 21163, Jordan.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Rohit Goyal
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, India.
| |
Collapse
|
39
|
Pérez-Gordones MC, Ramírez-Iglesias JR, Benaim G, Mendoza M. Molecular, immunological, and physiological evidences of a sphingosine-activated plasma membrane Ca 2+-channel in Trypanosoma equiperdum. Parasitol Res 2024; 123:166. [PMID: 38506929 DOI: 10.1007/s00436-024-08188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
The hemoparasite Trypanosoma equiperdum belongs to the Trypanozoon subgenus and includes several species that are pathogenic to animals and humans in tropical and subtropical areas across the world. As with all eukaryotic organisms, Ca2+ is essential for these parasites to perform cellular processes thus ensuring their survival across their life cycle. Despite the established paradigm to study proteins related to Ca2+ homeostasis as potential drug targets, so far little is known about Ca2+ entry into trypanosomes. Therefore, in the present study, the presence of a plasma membrane Ca2+-channel in T. equiperdum (TeCC), activated by sphingosine and inhibited by verapamil, is described. The TeCC was cloned and analyzed using bioinformatic resources, which confirmed the presence of several domains, motifs, and a topology similar to the Ca2+ channels found in higher eukaryotes. Biochemical and confocal microscopy assays using antibodies raised against an internal region of human L-type Ca2+ channels indicate the presence of a protein with similar predicted molar mass to the sequence analyzed, located at the plasma membrane of T. equiperdum. Physiological assays based on Fura-2 signals and Mn2+ quenching performed on whole parasites showed a unidirectional Ca2+ entry, which is activated by sphingosine and blocked by verapamil, with the distinctive feature of insensitivity to nifedipine and Bay K 8644. This suggests a second Ca2+ entry for T. equiperdum, different from the store-operated Ca2+ entry (SOCE) previously described. Moreover, the evidence presented here for the TeCC indicates molecular and pharmacological differences with their mammal counterparts, which deserve further studies to evaluate the potential of this channel as a drug target.
Collapse
Affiliation(s)
- M C Pérez-Gordones
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela.
| | - J R Ramírez-Iglesias
- Group of Emerging Diseases, Epidemiology & Biodiversity, Master School of Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - G Benaim
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - M Mendoza
- Centro de Estudios Biomédicos y Veterinarios, Instituto de Estudios Científicos y Tecnológicos (IDECYT), Universidad Nacional Experimental Simón Rodríguez, Caracas, Venezuela
| |
Collapse
|
40
|
Dai Y, Cheng Y, Ge R, Chen K, Yang L. Exercise-induced adaptation of neurons in the vertebrate locomotor system. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:160-171. [PMID: 37914153 PMCID: PMC10980905 DOI: 10.1016/j.jshs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli. In particular, how these neurons respond to physical exercise has long been an area of active research. Studies of the vertebrate locomotor system's adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise. In this brief review, we highlight recent results and insights from the field with a focus on the following mechanisms: (a) alterations in neuronal excitability during acute exercise; (b) alterations in neuronal excitability after chronic exercise; (c) exercise-induced changes in neuronal membrane properties via modulation of ion channel activity; (d) exercise-enhanced dendritic plasticity; and (e) exercise-induced alterations in neuronal gene expression and protein synthesis. Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.
Collapse
Affiliation(s)
- Yue Dai
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China.
| | - Yi Cheng
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang 330013, China
| | - Ke Chen
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing 100871, China
| | - Liming Yang
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| |
Collapse
|
41
|
Aburahma SK, Rousan LA, Shboul M, Biella F, Lucchiari S, Comi GP, Meola G, Pagliarani S. Case report: Dihydropyridine receptor ( CACNA1S) congenital myopathy, a novel phenotype with early onset periodic paralysis. Front Neurol 2024; 15:1359479. [PMID: 38426167 PMCID: PMC10902085 DOI: 10.3389/fneur.2024.1359479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction CACNA1S related congenital myopathy is an emerging recently described entity. In this report we describe 2 sisters with mutations in the CACNA1S gene and the novel phenotype of congenital myopathy and infantile onset episodic weakness. Clinical description Both sisters had neonatal onset hypotonia, muscle weakness, and delayed walking. Episodic weakness started in infancy and continued thereafter, provoked mostly by cold exposure. Muscle imaging revealed fat replacement of gluteus maximus muscles. Next generation sequencing found the missense p.Cys944Tyr variant and the novel splicing variant c.3526-2A>G in CACNA1S. Minigene assay revealed the splicing variant caused skipping of exon 28 from the transcript, potentially affecting protein folding and/or voltage dependent activation. Conclusion This novel phenotype supports the notion that there are age related differences in the clinical expression of CACNA1S gene mutations. This expands our understanding of mutations located in regions of the CACNA1S outside the highly conserved S4 segment, where most mutations thus far have been identified.
Collapse
Affiliation(s)
- Samah K. Aburahma
- Department of Pediatrics, Jordan University of Science and Technology, Irbid, Jordan
| | - Liqa A. Rousan
- Department of Radiology, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Shboul
- Department of Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Fabio Biella
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Lucchiari
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Serena Pagliarani
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
42
|
Schott K, Usher SG, Serra O, Carnevale V, Pless SA, Chua HC. Unplugging lateral fenestrations of NALCN reveals a hidden drug binding site within the pore module. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536537. [PMID: 38328210 PMCID: PMC10849497 DOI: 10.1101/2023.04.12.536537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The sodium (Na + ) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (Na V s and Ca V s, respectively). Unlike Na V s and Ca V s, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145 and Y1436) that block these openings. Structural data suggest that oc-cluded lateral fenestrations underlie the pharmacological resistance of NALCN to lipophilic compounds, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned resi-dues with alanine (AAAA) and compared the effects of Na V , Ca V and NALCN block-ers on both wild-type (WT) and AAAA channels. Most compounds behaved in a simi-lar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cav-ity through distinct fenestrations, implying structural specificity to their modes of ac-cess. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug bind-ing site(s) within the pore region. Intrigued by the activity of 2-APB and its ana-logues, we tested additional compounds containing the diphenylmethane/amine moiety on WT channels. We identified compounds from existing clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the resistance of NALCN to pharmacological targeting, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties. Significance statement The sodium leak channel (NALCN) is essential for survival: mutations cause life-threatening developmental disorders in humans. However, no treatment is currently available due to the resistance of NALCN to pharmacological targeting. One likely reason is that the lateral fenestrations, a common route for clinically used drugs to enter and block related ion channels, are occluded in NALCN. Using a combination of computational and functional approaches, we unplugged the fenestrations of NALCN which led us to the first molecularly defined drug binding site within the pore region. Besides that, we also identified additional NALCN modulators from existing clinically used therapeutics, thus expanding the pharmacological toolbox for this leak channel.
Collapse
|
43
|
Min Q, Gao Y, Wang Y. Bioelectricity in dental medicine: a narrative review. Biomed Eng Online 2024; 23:3. [PMID: 38172866 PMCID: PMC10765628 DOI: 10.1186/s12938-023-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Bioelectric signals, whether exogenous or endogenous, play crucial roles in the life processes of organisms. Recently, the significance of bioelectricity in the field of dentistry is steadily gaining greater attention. OBJECTIVE This narrative review aims to comprehensively outline the theory, physiological effects, and practical applications of bioelectricity in dental medicine and to offer insights into its potential future direction. It attempts to provide dental clinicians and researchers with an electrophysiological perspective to enhance their clinical practice or fundamental research endeavors. METHODS An online computer search for relevant literature was performed in PubMed, Web of Science and Cochrane Library, with the keywords "bioelectricity, endogenous electric signal, electric stimulation, dental medicine." RESULTS Eventually, 288 documents were included for review. The variance in ion concentration between the interior and exterior of the cell membrane, referred to as transmembrane potential, forms the fundamental basis of bioelectricity. Transmembrane potential has been established as an essential regulator of intercellular communication, mechanotransduction, migration, proliferation, and immune responses. Thus, exogenous electric stimulation can significantly alter cellular action by affecting transmembrane potential. In the field of dental medicine, electric stimulation has proven useful for assessing pulp condition, locating root apices, improving the properties of dental biomaterials, expediting orthodontic tooth movement, facilitating implant osteointegration, addressing maxillofacial malignancies, and managing neuromuscular dysfunction. Furthermore, the reprogramming of bioelectric signals holds promise as a means to guide organism development and intervene in disease processes. Besides, the development of high-throughput electrophysiological tools will be imperative for identifying ion channel targets and precisely modulating bioelectricity in the future. CONCLUSIONS Bioelectricity has found application in various concepts of dental medicine but large-scale, standardized, randomized controlled clinical trials are still necessary in the future. In addition, the precise, repeatable and predictable measurement and modulation methods of bioelectric signal patterns are essential research direction.
Collapse
Affiliation(s)
- Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yao Wang
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, 214000, China.
| |
Collapse
|
44
|
Zhao C, Zhou X, Shi X. The influence of Nav1.9 channels on intestinal hyperpathia and dysmotility. Channels (Austin) 2023; 17:2212350. [PMID: 37186898 DOI: 10.1080/19336950.2023.2212350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The Nav1.9 channel is a voltage-gated sodium channel. It plays a vital role in the generation of pain and the formation of neuronal hyperexcitability after inflammation. It is highly expressed in small diameter neurons of dorsal root ganglions and Dogiel II neurons in enteric nervous system. The small diameter neurons in dorsal root ganglions are the primary sensory neurons of pain conduction. Nav1.9 channels also participate in regulating intestinal motility. Functional enhancements of Nav1.9 channels to a certain extent lead to hyperexcitability of small diameter dorsal root ganglion neurons. The hyperexcitability of the neurons can cause visceral hyperalgesia. Intestinofugal afferent neurons and intrinsic primary afferent neurons in enteric nervous system belong to Dogiel type II neurons. Their excitability can also be regulated by Nav1.9 channels. The hyperexcitability of intestinofugal afferent neurons abnormally activate entero-enteric inhibitory reflexes. The hyperexcitability of intrinsic primary afferent neurons disturb peristaltic waves by abnormally activating peristaltic reflexes. This review discusses the role of Nav1.9 channels in intestinal hyperpathia and dysmotility.
Collapse
Affiliation(s)
- Chenyu Zhao
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
45
|
Shen J, Zhang C, Liu Y, Zhao M, Wang Q, Li P, Liu R, Wai Wong VK, Zhang C, Sun X. L-type calcium ion channel-mediated activation of autophagy in vascular smooth muscle cells via thonningianin A (TA) alleviates vascular calcification in type 2 diabetes mellitus. Eur J Pharmacol 2023; 959:176084. [PMID: 37806540 DOI: 10.1016/j.ejphar.2023.176084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Vascular calcification (VC) is associated with increased morbidity and mortality, especially among people with type 2 diabetes mellitus (T2DM). The pathogenesis of vascular calcification is incompletely understood, and until now, there have been no effective therapeutics for vascular calcification. The L-type calcium ion channel in the cell membrane is vital for Ca2+ influx. The effect of L-type calcium ion channels on autophagy remains to be elucidated. Here, the natural compound thonningianin A (TA) was found to ameliorate vascular calcification in T2DM via the activation of L-type calcium ion channels. The results showed that TA had a concentration-dependent ability to decrease the transcriptional and translational expression of the calcification-related proteins runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2) and osteopontin (OPN) (P < 0.01) via ATG7-dependent autophagy in β-glycerophosphate (β-GP)- and high glucose (HG)-stimulated primary mouse aortic smooth muscle cells (MASMCs) and alleviate aortic vascular calcification in VitD3-stimulated T2DM mice. However, nifedipine, an inhibitor of L-type calcium ion channels, reversed TA-induced autophagy and Ca2+ influx in MASMCs. Molecular docking analysis revealed that TA was located in the hydrophobic pocket of Cav1.2 α1C and was mainly composed of the residues Ile, Phe, Ala and Met, which confirmed the efficacy of TA in targeting the L-type calcium channel of Cav1.2 on the cell membrane. Moreover, in an in vivo model of vascular calcification in T2DM mice, nifedipine reversed the protective effects of TA on aortic calcification and the expression of the calcification-related proteins RUNX2, BMP2 and OPN (P < 0.01). Collectively, the present results reveal that the activation of cell membrane L-type calcium ion channels can induce autophagy and ameliorate vascular calcification in T2DM. Thonningianin A (TA) can target and act as a potent activator of L-type calcium ion channels. Thus, this research revealed a novel mechanism for autophagy induction via L-type calcium ion channels and provided a potential therapeutic for vascular calcification in T2DM.
Collapse
Affiliation(s)
- Jialing Shen
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Department of Vascular Surgery, The First People's Hospital of Yibin, Yibin, 644000, China
| | - Cheng Zhang
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ming Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, PR China
| | - Qianqian Wang
- Medical College, Dalian University, Dalian, 116622, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Runyu Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chunxiang Zhang
- Laboratory of Nucleic Acids in Medicine for National High-level Talents, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Xiaolei Sun
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Department of Interventional Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Laboratory of Nucleic Acids in Medicine for National High-level Talents, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China; Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, China; School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, Faculty of Life Science and Medicine, King's College London, London, SE5 9NU, United Kingdom.
| |
Collapse
|
46
|
Tikhonov DB, Zhorov BS. Mechanisms of dihydropyridine agonists and antagonists in view of cryo-EM structures of calcium and sodium channels. J Gen Physiol 2023; 155:e202313418. [PMID: 37728574 PMCID: PMC10510735 DOI: 10.1085/jgp.202313418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Opposite effects of 1,4-dihydropyridine (DHP) agonists and antagonists on the L-type calcium channels are a challenging problem. Cryo-EM structures visualized DHPs between the pore-lining helices S6III and S6IV in agreement with published mutational data. However, the channel conformations in the presence of DHP agonists and antagonists are virtually the same, and the mechanisms of the ligands' action remain unclear. We docked the DHP agonist S-Bay k 8644 and antagonist R-Bay k 8644 in Cav1.1 channel models with or without π-bulges in helices S6III and S6IV. Cryo-EM structures of the DHP-bound Cav1.1 channel show a π-bulge in helix S6III but not in S6IV. The antagonist's hydrophobic group fits into the hydrophobic pocket formed by residues in S6IV. The agonists' polar NO2 group is too small to fill up the pocket. A water molecule could sterically fit into the void space, but its contacts with isoleucine in helix S6IV (motif INLF) would be unfavorable. In a model with π-bulged S6IV, this isoleucine turns away from the DHP molecule and its position is occupied by the asparagine from the same motif INLF. The asparagine provides favorable contacts for the water molecule at the agonist's NO2 group but unfavorable contacts for the antagonist's methoxy group. In our models, the DHP antagonist stabilizes entirely α-helical S6IV. In contrast, the DHP agonist stabilizes π-bulged helix S6IV whose C-terminal part turned and rearranged the activation-gate region. This would stabilize the open channel. Thus, agonists, but not antagonists, would promote channel opening by stabilizing π-bulged helix S6IV.
Collapse
Affiliation(s)
- Denis B. Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Boris S. Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| |
Collapse
|
47
|
Ma H, Khaled HG, Wang X, Mandelberg NJ, Cohen SM, He X, Tsien RW. Excitation-transcription coupling, neuronal gene expression and synaptic plasticity. Nat Rev Neurosci 2023; 24:672-692. [PMID: 37773070 PMCID: PMC12024187 DOI: 10.1038/s41583-023-00742-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| | - Houda G Khaled
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Xiaohan Wang
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Nataniel J Mandelberg
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Samuel M Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
48
|
Shemarova I. The Dysfunction of Ca 2+ Channels in Hereditary and Chronic Human Heart Diseases and Experimental Animal Models. Int J Mol Sci 2023; 24:15682. [PMID: 37958665 PMCID: PMC10650855 DOI: 10.3390/ijms242115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic heart diseases, such as coronary heart disease, heart failure, secondary arterial hypertension, and dilated and hypertrophic cardiomyopathies, are widespread and have a fairly high incidence of mortality and disability. Most of these diseases are characterized by cardiac arrhythmias, conduction, and contractility disorders. Additionally, interruption of the electrical activity of the heart, the appearance of extensive ectopic foci, and heart failure are all symptoms of a number of severe hereditary diseases. The molecular mechanisms leading to the development of heart diseases are associated with impaired permeability and excitability of cell membranes and are mainly caused by the dysfunction of cardiac Ca2+ channels. Over the past 50 years, more than 100 varieties of ion channels have been found in the cardiovascular cells. The relationship between the activity of these channels and cardiac pathology, as well as the general cellular biological function, has been intensively studied on several cell types and experimental animal models in vivo and in situ. In this review, I discuss the origin of genetic Ca2+ channelopathies of L- and T-type voltage-gated calcium channels in humans and the role of the non-genetic dysfunctions of Ca2+ channels of various types: L-, R-, and T-type voltage-gated calcium channels, RyR2, including Ca2+ permeable nonselective cation hyperpolarization-activated cyclic nucleotide-gated (HCN), and transient receptor potential (TRP) channels, in the development of cardiac pathology in humans, as well as various aspects of promising experimental studies of the dysfunctions of these channels performed on animal models or in vitro.
Collapse
Affiliation(s)
- Irina Shemarova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| |
Collapse
|
49
|
Chang YW, Chen YC, Chen CC. Identification of Novel Targeting Sites of Calcineurin and CaMKII in Human Ca V3.2 T-Type Calcium Channel. Biomedicines 2023; 11:2891. [PMID: 38001892 PMCID: PMC10669385 DOI: 10.3390/biomedicines11112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
The Cav3.2 T-type calcium channel is implicated in various pathological conditions, including cardiac hypertrophy, epilepsy, autism, and chronic pain. Phosphorylation of Cav3.2 by multiple kinases plays a pivotal role in regulating its calcium channel function. The calcium/calmodulin-dependent serine/threonine phosphatase, calcineurin, interacts physically with Cav3.2 and modulates its activity. However, it remains unclear whether calcineurin dephosphorylates Cav3.2, the specific spatial regions on Cav3.2 involved, and the extent of the quantitative impact. In this study, we elucidated the serine/threonine residues on Cav3.2 targeted by calcineurin using quantitative mass spectrometry. We identified six serine residues in the N-terminus, II-III loop, and C-terminus of Cav3.2 that were dephosphorylated by calcineurin. Notably, a higher level of dephosphorylation was observed in the Cav3.2 C-terminus, where calcineurin binds to this channel. Additionally, a previously known CaMKII-phosphorylated site, S1198, was found to be dephosphorylated by calcineurin. Furthermore, we also discovered that a novel CaMKII-phosphorylated site, S2137, underwent dephosphorylation by calcineurin. In CAD cells, a mouse central nervous system cell line, membrane depolarization led to an increase in the phosphorylation of endogenous Cav3.2 at S2137. Mutation of S2137 affected the calcium channel function of Cav3.2. Our findings advance the understanding of Cav3.2 regulation not only through kinase phosphorylation but also via calcineurin phosphatase dephosphorylation.
Collapse
Affiliation(s)
- Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| | | | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
50
|
Huang J, Fan X, Jin X, Teng L, Yan N. Dual-pocket inhibition of Na v channels by the antiepileptic drug lamotrigine. Proc Natl Acad Sci U S A 2023; 120:e2309773120. [PMID: 37782796 PMCID: PMC10576118 DOI: 10.1073/pnas.2309773120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Voltage-gated sodium (Nav) channels govern membrane excitability, thus setting the foundation for various physiological and neuronal processes. Nav channels serve as the primary targets for several classes of widely used and investigational drugs, including local anesthetics, antiepileptic drugs, antiarrhythmics, and analgesics. In this study, we present cryogenic electron microscopy (cryo-EM) structures of human Nav1.7 bound to two clinical drugs, riluzole (RLZ) and lamotrigine (LTG), at resolutions of 2.9 Å and 2.7 Å, respectively. A 3D EM reconstruction of ligand-free Nav1.7 was also obtained at 2.1 Å resolution. RLZ resides in the central cavity of the pore domain and is coordinated by residues from repeats III and IV. Whereas one LTG molecule also binds to the central cavity, the other is found beneath the intracellular gate, known as site BIG. Therefore, LTG, similar to lacosamide and cannabidiol, blocks Nav channels via a dual-pocket mechanism. These structures, complemented with docking and mutational analyses, also explain the structure-activity relationships of the LTG-related linear 6,6 series that have been developed for improved efficacy and subtype specificity on different Nav channels. Our findings reveal the molecular basis for these drugs' mechanism of action and will aid the development of novel antiepileptic and pain-relieving drugs.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Liming Teng
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong Province518107, China
| |
Collapse
|