1
|
Milferstaedt SWL, Joest M, Bohlender LL, Hoernstein SNW, Özdemir B, Decker EL, van der Does C, Reski R. Differential GTP-dependent in-vitro polymerization of recombinant Physcomitrella FtsZ proteins. Sci Rep 2025; 15:3095. [PMID: 39856123 PMCID: PMC11760385 DOI: 10.1038/s41598-024-85077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Bacterial cell division and plant chloroplast division require selfassembling Filamentous temperature-sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities with eukaryotic tubulin. In the moss Physcomitrella, the morphology of the FtsZ polymer networks varies between the different FtsZ isoforms. The underlying mechanism and foundation of the distinct networks is unknown. Here, we investigated the interaction of Physcomitrella FtsZ2-1 with FtsZ1 isoforms via co-immunoprecipitation and mass spectrometry, and found protein-protein interaction in vivo. We tagged FtsZ1-2 and FtsZ2-1 with different fluorophores and expressed both in E. coli, which led to the formation of defined structures within the cells and to an influence on bacterial cell division and morphology. Furthermore, we have optimized the purification protocols for FtsZ1-2 and FtsZ2-1 expressed in E. coli and characterized their GTPase activity and polymerization in vitro. Both FtsZ isoforms showed GTPase activity. Stoichiometric mixing of both proteins led to a significantly increased GTPase activity, indicating a synergistic interaction between them. In light scattering assays, we observed GTP-dependent assembly of FtsZ1-2 and of FtsZ2-1 in a protein concentration dependent manner. Stoichiometric mixing of both proteins resulted in significantly faster polymerization, again indicating a synergistic interaction between them. Under the same conditions used for GTPase and light scattering assays both FtsZ isoforms formed filaments in a GTP-dependent manner as visualized by transmission electron microscopy (TEM). Taken together, our results reveal that Physcomitrella FtsZ1-2 and FtsZ2-1 are functionally different, can synergistically interact in vivo and in vitro, and differ in their properties from FtsZ proteins from bacteria, archaea and vascular plants.
Collapse
Affiliation(s)
- Stella W L Milferstaedt
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Marie Joest
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany
| | - Lennard L Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Buğra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- , Euro-BioImaging Bio-Hub, EMBL, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Chris van der Does
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestr. 18, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Fujiwara MT, Yoshioka Y, Kazama Y, Hirano T, Niwa Y, Moriyama T, Sato N, Abe T, Yoshida S, Itoh RD. Principles of amyloplast replication in the ovule integuments of Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:137-152. [PMID: 38829834 PMCID: PMC11376375 DOI: 10.1093/plphys/kiae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
Plastids in vascular plants have various differentiated forms, among which amyloplasts are crucial for starch storage and plant productivity. Despite the vast knowledge of the binary-fission mode of chloroplast division, our understanding of the replication of non-photosynthetic plastids, including amyloplasts, remains limited. Recent studies have suggested the involvement of stromules (stroma-filled tubules) in plastid replication when the division apparatus is faulty. However, details of the underlying mechanism(s) and their relevance to normal processes have yet to be elucidated. Here, we developed a live analysis system for studying amyloplast replication using Arabidopsis (Arabidopsis thaliana) ovule integuments. We showed the full sequence of amyloplast development and demonstrated that wild-type amyloplasts adopt three modes of replication, binary fission, multiple fission, and stromule-mediated fission, via multi-way placement of the FtsZ ring. The minE mutant, with severely inhibited chloroplast division, showed marked heterogeneity in amyloplast size, caused by size-dependent but wild-type modes of plastid fission. The dynamic properties of stromules distinguish the wild-type and minE phenotypes. In minE cells, extended stromules from giant amyloplasts acquired stability, allowing FtsZ ring assembly and constriction, as well as the growth of starch grains therein. Despite hyper-stromule formation, amyloplasts did not proliferate in the ftsZ null mutant. These data clarify the differences between amyloplast and chloroplast replication and demonstrate that the structural plasticity of amyloplasts underlies the multiplicity of their replication processes. Furthermore, this study shows that stromules can generate daughter plastids via the assembly of the FtsZ ring.
Collapse
Affiliation(s)
- Makoto T Fujiwara
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
- Department of Biology, Graduate School of Science and Technology, Sophia University, Kioicho, Chiyoda 102-8554, Japan
- College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Yasushi Yoshioka
- Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| | - Yusuke Kazama
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Tomonari Hirano
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Yasuo Niwa
- Laboratory of Plant Cell Technology, University of Shizuoka, Yada, Shizuoka 422-8526, Japan
| | - Takashi Moriyama
- College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Naoki Sato
- College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Tomoko Abe
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Shigeo Yoshida
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
3
|
An J, Wang L, Hong C, Gao H. Evolution and Functional Differentiation of the C-terminal Motifs of FtsZs During Plant Evolution. Mol Biol Evol 2024; 41:msae145. [PMID: 39004892 DOI: 10.1093/molbev/msae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
Filamentous temperature-sensitive Z (FtsZ) is a tubulin-like GTPase that is highly conserved in bacteria and plants. It polymerizes into a ring at the division site of bacteria and chloroplasts and serves as the scaffold protein of the division complex. While a single FtsZ is present in bacteria and cyanobacteria, there are two subfamilies, FtsZ1 and FtsZ2 in the green lineage, and FtsZA and FtsZB in red algae. In Arabidopsis thaliana, the C-terminal motifs of AtFtsZ1 (Z1C) and AtFtsZ2-1 (Z2C) display distinct functions in the regulation of chloroplast division. Z1C exhibits weak membrane-binding activity, whereas Z2C engages in the interaction with the membrane protein AtARC6. Here, we provide evidence revealing the distinct traits of the C-terminal motifs of FtsZ1 and FtsZ2 throughout the plant evolutionary process. In a range of plant species, the C-terminal motifs of FtsZ1 exhibit diverse membrane-binding properties critical for regulating chloroplast division. In chlorophytes, the C-terminal motifs of FtsZ1 and FtsZ2 exhibit both membrane-binding and protein interaction functions, which are similar to those of cyanobacterial FtsZ and red algal FtsZA. During the transition from algae to land plants, the functions of the C-terminal motifs of FtsZ1 and FtsZ2 exhibit differentiation. FtsZ1 lost the function of interacting with ARC6 in land plants, and the membrane-binding activity of FtsZ2 was lost in ferns. Our findings reveal the functional differentiation of the C-terminal motifs of FtsZs during plant evolution, which is critical for chloroplast division.
Collapse
Affiliation(s)
- Jinjie An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lulu Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Conghao Hong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Wang L, Zeng F, Jiao Y, Zhou Q, An J, Gao H. Immunofluorescence staining of chloroplast proteins with frozen sections of plant tissues. PLANT CELL REPORTS 2024; 43:168. [PMID: 38864883 DOI: 10.1007/s00299-024-03255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
KEY MESSAGE Immunofluorescence staining with frozen sections of plant tissues and a nest tube is convenient and effective, and broadens the applicability of immunofluorescence staining. Immunofluorescence staining is an indispensable and extensively employed technique for determining the subcellular localization of chloroplast division proteins. At present, it is difficult to effectively observe the localization of target proteins in leaves that are hard, or very thin, or have epidermal hair or glands with the current immunofluorescence staining methods. Moreover, signals of target proteins were predominantly detected in mesophyll cells, not the cells of other types. Thus, the method of immunofluorescence staining was further explored for improvement in this study. The plant tissue was embedded with 50% PEG4000 at -60℃, which was then cut into sections by a cryomacrotome. The sections were immediately immersed in fixation solution. Then, the sample was transferred into a special nested plastic tube, which facilitated the fixation and immunofluorescence staining procedures. The use of frozen sections in this method enabled a short processing time and reduced material requirements. By optimizing the thickness of the sections, a large proportion of the cells could be well stained. With this method, we observed the localization of a chloroplast division protein FtsZ1 in the wild-type Arabidopsis and various chloroplast division mutants. Meanwhile, the localization of FtsZ1 was also observed not only in mesophyll cells, but also in guard cells and epidermal cells in a lot of other plant species, including many species with hard leaf tissues. This method is not only easy to use, but also expands the scope of applicability for immunofluorescence staining.
Collapse
Affiliation(s)
- Lulu Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration and State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Fang Zeng
- National Engineering Research Center of Tree Breeding and Ecological Restoration and State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yongjuan Jiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration and State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration and State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jinjie An
- National Engineering Research Center of Tree Breeding and Ecological Restoration and State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration and State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Cheng W, Hong C, Zeng F, Liu N, Gao H. Sequence variations affect the 5' splice site selection of plant introns. PLANT PHYSIOLOGY 2023; 193:1281-1296. [PMID: 37394939 DOI: 10.1093/plphys/kiad375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 07/04/2023]
Abstract
Introns are noncoding sequences spliced out of pre-mRNAs by the spliceosome to produce mature mRNAs. The 5' ends of introns mostly begin with GU and have a conserved sequence motif of AG/GUAAGU that could base-pair with the core sequence of U1 snRNA of the spliceosome. Intriguingly, ∼ 1% of introns in various eukaryotic species begin with GC. This occurrence could cause misannotation of genes; however, the underlying splicing mechanism is unclear. We analyzed the sequences around the intron 5' splice site (ss) in Arabidopsis (Arabidopsis thaliana) and found sequences at the GC intron ss are much more stringent than those of GT introns. Mutational analysis at various positions of the intron 5' ss revealed that although mutations impair base pairing, different mutations at the same site can have different effects, suggesting that steric hindrance also affects splicing. Moreover, mutations of 5' ss often activate a hidden ss nearby. Our data suggest that the 5' ss is selected via a competition between the major ss and the nearby minor ss. This work not only provides insights into the splicing mechanism of intron 5' ss but also improves the accuracy of gene annotation and the study of the evolution of intron 5' ss.
Collapse
Affiliation(s)
- Wenzhen Cheng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Conghao Hong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Fang Zeng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Nan Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Wang L, Chen Y, Niu D, Tang M, An J, Xue S, Liu X, Gao H. Improvements for Tissue-Chopping-Based Immunofluorescence Staining Method of Chloroplast Proteins. PLANTS (BASEL, SWITZERLAND) 2023; 12:841. [PMID: 36840189 PMCID: PMC9963192 DOI: 10.3390/plants12040841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/18/2023]
Abstract
Immunofluorescence staining is a very common method for the subcellular localization study of proteins. A tissue-chopping-based immunofluorescence staining method for chloroplast proteins overcomes the restriction of plant cell wall, makes the operation simpler, and uses less experimental materials. Here we provide some improvements for this method. We found that the stained tissues can be directly observed with a confocal microscope without tissue lysis. Samples maintained at a low temperature (0-4 °C) throughout the process can reduce the intensity of chlorophyll autofluorescence and the background signal. A low temperature is also good for the storage of the sample. Fluorescence signal of the stained samples can be kept for several weeks if they are stored at -20 °C. FtsZ is an essential component of the chloroplast division apparatus. We demonstrated this method with the immunofluorescence staining of FtsZ1 in wildtype Arabidopsis and some chloroplast division mutants. We also successfully tested this method by the immunofluorescence staining of FtsZ1 in many other plants, including woody plants. With these procedures, the performance of tissue-chopping-based immunofluorescence staining method are further improved.
Collapse
Affiliation(s)
- Lulu Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yajuan Chen
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Di Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mingdong Tang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinjie An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shanshan Xue
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaomin Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Wang L, Tang M, Huang W, An J, Liu X, Gao H. A Tissue-Chopping Based Immunofluorescence Staining Method for Chloroplast Proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:910569. [PMID: 35665184 PMCID: PMC9161302 DOI: 10.3389/fpls.2022.910569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Immunofluorescence staining is an important method for detecting the localization of proteins in the cell. It is also frequently used in the localization study of chloroplast-division proteins. Although this method has been improved before by using protoplasts, it still has some limitations. Now we developed a new method to make it much easier. We just broke the plant leaf tissue with a serrated blade, stained the samples directly, and simply lysed the tissue into separatable cells. The localization of the target protein can then be observed with a clear view. Since this method directly uses broken leaf pieces, it is very fast. It can also be applied to the plants in which protoplasts are difficult to prepare. We first used this method to observe the localization of a chloroplast division protein FtsZ1 in the wild-type Arabidopsis. A ring was clearly seen in the middle of chloroplasts. In addition, we used this method to analyze the localization of FtsZ1 in arc3 and pdv2 mutants, as well as in dozens of other species, including some woody plants. This new immunofluorescence staining method is not only easy to use, but also has a wide applicability in various plants.
Collapse
Affiliation(s)
- Lulu Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mingdong Tang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenwen Huang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jinjie An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaomin Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Liu X, An J, Wang L, Sun Q, An C, Wu B, Hong C, Wang X, Dong S, Guo J, Feng Y, Gao H. A novel amphiphilic motif at the C-terminus of FtsZ1 facilitates chloroplast division. THE PLANT CELL 2022; 34:419-432. [PMID: 34755875 PMCID: PMC8773991 DOI: 10.1093/plcell/koab272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/29/2021] [Indexed: 06/11/2023]
Abstract
In bacteria and chloroplasts, the GTPase filamentous temperature-sensitive Z (FtsZ) is essential for division and polymerizes to form rings that mark the division site. Plants contain two FtsZ subfamilies (FtsZ1 and FtsZ2) with different assembly dynamics. FtsZ1 lacks the C-terminal domain of a typical FtsZ protein. Here, we show that the conserved short motif FtsZ1Carboxyl-terminus (Z1C) (consisting of the amino acids RRLFF) with weak membrane-binding activity is present at the C-terminus of FtsZ1 in angiosperms. For a polymer-forming protein such as FtsZ, this activity is strong enough for membrane tethering. Arabidopsis thaliana plants with mutated Z1C motifs contained heterogeneously sized chloroplasts and parallel FtsZ rings or long FtsZ filaments, suggesting that the Z1C motif plays an important role in regulating FtsZ ring dynamics. Our findings uncover a type of amphiphilic beta-strand motif with weak membrane-binding activity and point to the importance of this motif for the dynamic regulation of protein complex formation.
Collapse
Affiliation(s)
- Xiaomin Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jinjie An
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lulu Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qingqing Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Chuanjing An
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bibo Wu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Conghao Hong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoya Wang
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Suwei Dong
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junhua Guo
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Feng
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | |
Collapse
|
9
|
Porter KJ, Cao L, Chen Y, TerBush AD, Chen C, Erickson HP, Osteryoung KW. The Arabidopsis thaliana chloroplast division protein FtsZ1 counterbalances FtsZ2 filament stability in vitro. J Biol Chem 2021; 296:100627. [PMID: 33812992 PMCID: PMC8142252 DOI: 10.1016/j.jbc.2021.100627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial cell and chloroplast division are driven by a contractile “Z ring” composed of the tubulin-like cytoskeletal GTPase FtsZ. Unlike bacterial Z rings, which consist of a single FtsZ, the chloroplast Z ring in plants is composed of two FtsZ proteins, FtsZ1 and FtsZ2. Both are required for chloroplast division in vivo, but their biochemical relationship is poorly understood. We used GTPase assays, light scattering, transmission electron microscopy, and sedimentation assays to investigate the assembly behavior of purified Arabidopsis thaliana (At) FtsZ1 and AtFtsZ2 both individually and together. Both proteins exhibited GTPase activity. AtFtsZ2 assembled relatively quickly, forming protofilament bundles that were exceptionally stable, as indicated by their sustained assembly and slow disassembly. AtFtsZ1 did not form detectable protofilaments on its own. When mixed with AtFtsZ2, AtFtsZ1 reduced the extent and rate of AtFtsZ2 assembly, consistent with its previously demonstrated ability to promote protofilament subunit turnover in living cells. Mixing the two FtsZ proteins did not increase the overall GTPase activity, indicating that the effect of AtFtsZ1 on AtFtsZ2 assembly was not due to a stimulation of GTPase activity. However, the GTPase activity of AtFtsZ1 was required to reduce AtFtsZ2 assembly. Truncated forms of AtFtsZ1 and AtFtsZ2 consisting of only their conserved core regions largely recapitulated the behaviors of the full-length proteins. Our in vitro findings provide evidence that FtsZ1 counterbalances the stability of FtsZ2 filaments in the regulation of chloroplast Z-ring dynamics and suggest that restraining FtsZ2 self-assembly is a critical function of FtsZ1 in chloroplasts.
Collapse
Affiliation(s)
- Katie J Porter
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lingyan Cao
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Yaodong Chen
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Allan D TerBush
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Cheng Chen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Harold P Erickson
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | | |
Collapse
|
10
|
Asgharzadeh P, Birkhold AI, Trivedi Z, Özdemir B, Reski R, Röhrle O. A NanoFE simulation-based surrogate machine learning model to predict mechanical functionality of protein networks from live confocal imaging. Comput Struct Biotechnol J 2020; 18:2774-2788. [PMID: 33101614 PMCID: PMC7559262 DOI: 10.1016/j.csbj.2020.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Sub-cellular mechanics plays a crucial role in a variety of biological functions and dysfunctions. Due to the strong structure-function relationship in cytoskeletal protein networks, light can be shed on their mechanical functionality by investigating their structures. Here, we present a data-driven approach employing a combination of confocal live imaging of fluorescent tagged protein networks, in silico mechanical experiments and machine learning to investigate this relationship. Our designed image processing and nanoFE mechanical simulation framework resolves the structure and mechanical behaviour of cytoskeletal networks and the developed gradient boosting surrogate models linking network structure to its functionality. In this study, for the first time, we perform mechanical simulations of Filamentous Temperature Sensitive Z (FtsZ) complex protein networks with realistic network geometry depicting its skeletal functionality inside organelles (here, chloroplasts) of the moss Physcomitrella patens. Training on synthetically produced simulation data enables predicting the mechanical characteristics of FtsZ network purely based on its structural features (R2⩾0.93), therefore allowing to extract structural principles enabling specific mechanical traits of FtsZ, such as load bearing and resistance to buckling failure in case of large network deformation.
Collapse
Affiliation(s)
- Pouyan Asgharzadeh
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| | - Annette I Birkhold
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| | - Zubin Trivedi
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Bugra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, Freiburg, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| |
Collapse
|
11
|
Yoshida Y, Mogi Y. How do plastids and mitochondria divide? Microscopy (Oxf) 2019; 68:45-56. [PMID: 30476140 DOI: 10.1093/jmicro/dfy132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Plastids and mitochondria are thought to have originated from free-living cyanobacterial and alpha-proteobacterial ancestors, respectively, via endosymbiosis. Their evolutionary origins dictate that these organelles do not multiply de novo but through the division of pre-existing plastids and mitochondria. Over the past three decades, studies have shown that plastid and mitochondrial division are performed by contractile ring-shaped structures, broadly termed the plastid and mitochondrial-division machineries. Interestingly, the division machineries are hybrid forms of the bacterial cell division system and eukaryotic membrane fission system. The structure and function of the plastid and mitochondrial-division machineries are similar to each other, implying that the division machineries evolved in parallel since their establishment in primitive eukaryotes. Compared with our knowledge of their structures, our understanding of the mechanical details of how these division machineries function is still quite limited. Here, we review and compare the structural frameworks of the plastid and mitochondrial-division machineries in both lower and higher eukaryotes. Then, we highlight fundamental issues that need to be resolved to reveal the underlying mechanisms of plastid and mitochondrial division. Finally, we highlight related studies that point to an exciting future for the field.
Collapse
Affiliation(s)
- Yamato Yoshida
- Department of Science, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Yuko Mogi
- Department of Science, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| |
Collapse
|
12
|
Sung MW, Shaik R, TerBush AD, Osteryoung KW, Vitha S, Holzenburg A. The chloroplast division protein ARC6 acts to inhibit disassembly of GDP-bound FtsZ2. J Biol Chem 2018; 293:10692-10706. [PMID: 29769312 DOI: 10.1074/jbc.ra117.000999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/14/2018] [Indexed: 01/12/2023] Open
Abstract
Chloroplasts host photosynthesis and fulfill other metabolic functions that are essential to plant life. They have to divide by binary fission to maintain their numbers throughout cycles of cell division. Chloroplast division is achieved by a complex ring-shaped division machinery located on both the inner (stromal) and the outer (cytosolic) side of the chloroplast envelope. The inner division ring (termed the Z ring) is formed by the assembly of tubulin-like FtsZ1 and FtsZ2 proteins. ARC6 is a key chloroplast division protein that interacts with the Z ring. ARC6 spans the inner envelope membrane, is known to stabilize or maintain the Z ring, and anchors the Z ring to the inner membrane through interaction with FtsZ2. The underlying mechanism of Z ring stabilization is not well-understood. Here, biochemical and structural characterization of ARC6 was conducted using light scattering, sedimentation, and light and transmission EM. The recombinant protein was purified as a dimer. The results indicated that a truncated form of ARC6 (tARC6), representing the stromal portion of ARC6, affects FtsZ2 assembly without forming higher-order structures and exerts its effect via FtsZ2 dynamics. tARC6 prevented GDP-induced FtsZ2 disassembly and caused a significant net increase in FtsZ2 assembly when GDP was present. Single particle analysis and 3D reconstruction were performed to elucidate the structural basis of ARC6 activity. Together, the data reveal that a dimeric form of tARC6 binds to FtsZ2 filaments and does not increase FtsZ polymerization rates but rather inhibits GDP-associated FtsZ2 disassembly.
Collapse
Affiliation(s)
- Min Woo Sung
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Rahamthulla Shaik
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Allan D TerBush
- the Biochemistry and Molecular Biology Graduate Program and.,Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | | | - Stanislav Vitha
- the Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843, and
| | - Andreas Holzenburg
- From the Department of Biology, Texas A&M University, College Station, Texas 77843.,the Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843, and.,the Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Brownsville-Edinburg-Harlingen, Texas 78550
| |
Collapse
|
13
|
Geng MT, Min Y, Yao Y, Chen X, Fan J, Yuan S, Wang L, Sun C, Zhang F, Shang L, Wang YL, Li RM, Fu SP, Duan RJ, Liu J, Hu XW, Guo JC. Isolation and Characterization of Ftsz Genes in Cassava. Genes (Basel) 2017; 8:genes8120391. [PMID: 29244730 PMCID: PMC5748709 DOI: 10.3390/genes8120391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022] Open
Abstract
The filamenting temperature-sensitive Z proteins (FtsZs) play an important role in plastid division. In this study, three FtsZ genes were isolated from the cassava genome, and named MeFtsZ1, MeFtsZ2-1, and MeFtsZ2-2, respectively. Based on phylogeny, the MeFtsZs were classified into two groups (FtsZ1 and FtsZ2). MeFtsZ1 with a putative signal peptide at N-terminal, has six exons, and is classed to FtsZ1 clade. MeFtsZ2-1 and MeFtsZ2-2 without a putative signal peptide, have seven exons, and are classed to FtsZ2 clade. Subcellular localization found that all the three MeFtsZs could locate in chloroplasts and form a ring in chloroplastids. Structure analysis found that all MeFtsZ proteins contain a conserved guanosine triphosphatase (GTPase) domain in favor of generate contractile force for cassava plastid division. The expression profiles of MeFtsZ genes by quantitative reverse transcription-PCR (qRT-PCR) analysis in photosynthetic and non-photosynthetic tissues found that all of the MeFtsZ genes had higher expression levels in photosynthetic tissues, especially in younger leaves, and lower expression levels in the non-photosynthetic tissues. During cassava storage root development, the expressions of MeFtsZ2-1 and MeFtsZ2-2 were comparatively higher than MeFtsZ1. The transformed Arabidopsis of MeFtsZ2-1 and MeFtsZ2-2 contained abnormally shape, fewer number, and larger volume chloroplasts. Phytohormones were involved in regulating the expressions of MeFtsZ genes. Therefore, we deduced that all of the MeFtsZs play an important role in chloroplast division, and that MeFtsZ2 (2-1, 2-2) might be involved in amyloplast division and regulated by phytohormones during cassava storage root development.
Collapse
Affiliation(s)
- Meng-Ting Geng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yi Min
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yuan Yao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xia Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Jie Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Shuai Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Lei Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chong Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Fan Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Lu Shang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yun-Lin Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Rui-Mei Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shao-Ping Fu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Rui-Jun Duan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jiao Liu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xin-Wen Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Jian-Chun Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
14
|
Abstract
FtsZ, a homolog of tubulin, is found in almost all bacteria and archaea where it has a primary role in cytokinesis. Evidence for structural homology between FtsZ and tubulin came from their crystal structures and identification of the GTP box. Tubulin and FtsZ constitute a distinct family of GTPases and show striking similarities in many of their polymerization properties. The differences between them, more so, the complexities of microtubule dynamic behavior in comparison to that of FtsZ, indicate that the evolution to tubulin is attributable to the incorporation of the complex functionalities in higher organisms. FtsZ and microtubules function as polymers in cell division but their roles differ in the division process. The structural and partial functional homology has made the study of their dynamic properties more interesting. In this review, we focus on the application of the information derived from studies on FtsZ dynamics to study microtubule dynamics and vice versa. The structural and functional aspects that led to the establishment of the homology between the two proteins are explained to emphasize the network of FtsZ and microtubule studies and how they are connected.
Collapse
Affiliation(s)
- Rachana Rao Battaje
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Mumbai, India
| | - Dulal Panda
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
15
|
ARC6-mediated Z ring-like structure formation of prokaryote-descended chloroplast FtsZ in Escherichia coli. Sci Rep 2017; 7:3492. [PMID: 28615720 PMCID: PMC5471200 DOI: 10.1038/s41598-017-03698-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/04/2017] [Indexed: 12/04/2022] Open
Abstract
Plant chloroplasts proliferate through binary fission, and the stromal-side molecules that are involved in chloroplast division are bacterial derivatives. As in bacteria, the prokaryotic tubulin homolog FtsZ assembles into a ring-like structure (Z ring) at mid-chloroplast, and this process is followed by constriction. However, the properties of chloroplast FtsZs remain unclarified. Here, we employed Escherichia coli as a novel heterologous system for expressing chloroplast FtsZs and their regulatory components. Fluorescently labelled Arabidopsis FtsZ2 efficiently assembled into long filaments in E. coli cells, and artificial membrane tethering conferred FtsZ2 filaments with the ability to form Z ring-like structures resembling the bacterial Z ring. A negative regulator of chloroplast FtsZ assembly, ARC3, retained its inhibitory effects on FtsZ2 filamentation and Z ring-like structure formation in E. coli cells. Thus, we provide a novel heterologous system by using bacterial cells to study the regulation of the chloroplast divisome. Furthermore, we demonstrated that the FtsZ2-interacting protein ARC6, which is a potential candidate for Z ring tethering to the chloroplast inner envelope membrane, genuinely targeted FtsZ2 to the membrane components and supported its morphological shift from linear filaments to Z ring-like structures in a manner dependent on the C-terminal ARC6-interacting domain of FtsZ2.
Collapse
|
16
|
Johnson CB, Shaik R, Abdallah R, Vitha S, Holzenburg A. FtsZ1/FtsZ2 Turnover in Chloroplasts and the Role of ARC3. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:313-23. [PMID: 25731613 DOI: 10.1017/s1431927615000082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chloroplast division requires filamentation temperature-sensitive Z (FtsZ), a tubulin-like GTPase of cyanobacterial endosymbiotic origin. Plants and algae possess two distinct FtsZ protein families, FtsZ1 and FtsZ2 that co-assemble into a ring (Z-ring) at the division site. Z-ring assembly and disassembly and division site positioning is controlled by both positive and negative factors via their specific interactions with FtsZ1 and FtsZ2. Here we present the in planta analysis of Arabidopsis FtsZ1 and FtsZ2 turnover in the context of a native chloroplast division machinery. Fluorescence recovery after photobleaching analysis was conducted using fluorescently tagged FtsZ at wild-type (WT)-like levels. Rapid photobleaching, low signal-to-noise ratio, and phototropic movements of chloroplasts were overcome by (i) using progressive intervals in time-lapse imaging, (ii) analyzing epidermal rather than stromal chloroplasts, and (iii) employing image stack alignment during postprocessing. In plants of WT background, fluorescence recovery half-times averaged 117 and 325 s for FtsZ1 and FtsZ2, respectively. In plants lacking ARC3, the key negative regulator of FtsZ assembly, the turnover was threefold slower. The findings are discussed in the context of previous results conducted in a heterologous system.
Collapse
Affiliation(s)
- Carol B Johnson
- 1Microscopy & Imaging Center,Texas A&M University,College Station,TX 77843-2257,USA
| | - Rahamthulla Shaik
- 2Department of Biology,Texas A&M University,College Station,TX 77843-3258,USA
| | - Rehab Abdallah
- 2Department of Biology,Texas A&M University,College Station,TX 77843-3258,USA
| | - Stanislav Vitha
- 1Microscopy & Imaging Center,Texas A&M University,College Station,TX 77843-2257,USA
| | - Andreas Holzenburg
- 1Microscopy & Imaging Center,Texas A&M University,College Station,TX 77843-2257,USA
| |
Collapse
|
17
|
Further Evaluation of the Localization and Functionality of Hemagglutinin Epitope- and Fluorescent Protein-Tagged AtMinD1 inArabidopsis thaliana. Biosci Biotechnol Biochem 2014; 73:1693-7. [DOI: 10.1271/bbb.90309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Miyagishima SY, Nakamura M, Uzuka A, Era A. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division. FRONTIERS IN PLANT SCIENCE 2014; 5:459. [PMID: 25309558 PMCID: PMC4164004 DOI: 10.3389/fpls.2014.00459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/26/2014] [Indexed: 05/08/2023]
Abstract
The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP) 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, non-photosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG) layer, divide without DRP5B. Certain parasitic eukaryotes possess non-photosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how non-photosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and non-photosynthetic plastid division.
Collapse
Affiliation(s)
- Shin-ya Miyagishima
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI)Mishima, Japan
- Japan Science and Technology Agency, CRESTKawaguchi, Japan
- *Correspondence: Shin-ya Miyagishima, Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan e-mail:
| | - Mami Nakamura
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI)Mishima, Japan
| | - Akihiro Uzuka
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI)Mishima, Japan
| | - Atsuko Era
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Japan Science and Technology Agency, CRESTKawaguchi, Japan
| |
Collapse
|
19
|
Abstract
Plastid division is fundamental to the biology of plant cells. Division by binary fission entails the coordinated assembly and constriction of four concentric rings, two internal and two external to the organelle. The internal FtsZ ring and external dynamin-like ARC5/DRP5B ring are connected across the two envelopes by the membrane proteins ARC6, PARC6, PDV1, and PDV2. Assembly-stimulated GTPase activity drives constriction of the FtsZ and ARC5/DRP5B rings, which together with the plastid-dividing rings pull and squeeze the envelope membranes until the two daughter plastids are formed, with the final separation requiring additional proteins. The positioning of the division machinery is controlled by the chloroplast Min system, which confines FtsZ-ring formation to the plastid midpoint. The dynamic morphology of plastids, especially nongreen plastids, is also considered here, particularly in relation to the production of stromules and plastid-derived vesicles and their possible roles in cellular communication and plastid functionality.
Collapse
|
20
|
Hymus GJ, Cai S, Kohl EA, Holtan HE, Marion CM, Tiwari S, Maszle DR, Lundgren MR, Hong MC, Channa N, Loida P, Thompson R, Taylor JP, Rice E, Repetti PP, Ratcliffe OJ, Reuber TL, Creelman RA. Application of HB17, an Arabidopsis class II homeodomain-leucine zipper transcription factor, to regulate chloroplast number and photosynthetic capacity. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4479-90. [PMID: 24006420 PMCID: PMC3808327 DOI: 10.1093/jxb/ert261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription factors are proposed as suitable targets for the control of traits such as yield or food quality in plants. This study reports the results of a functional genomics research effort that identified ATHB17, a transcription factor from the homeodomain-leucine zipper class II family, as a novel target for the enhancement of photosynthetic capacity. It was shown that ATHB17 is expressed natively in the root quiescent centre (QC) from Arabidopsis embryos and seedlings. Analysis of the functional composition of genes differentially expressed in the QC from a knockout mutant (athb17-1) compared with its wild-type sibling revealed the over-representation of genes involved in auxin stimulus, embryo development, axis polarity specification, and plastid-related processes. While no other phenotypes were observed in athb17-1 plants, overexpression of ATHB17 produced a number of phenotypes in Arabidopsis including enhanced chlorophyll content. Image analysis of isolated mesophyll cells of 35S::ATHB17 lines revealed an increase in the number of chloroplasts per unit cell size, which is probably due to an increase in the number of proplastids per meristematic cell. Leaf physiological measurements provided evidence of improved photosynthetic capacity in 35S::ATHB17 lines on a per unit leaf area basis. Estimates of the capacity for ribulose-1,5-bisphosphate-saturated and -limited photosynthesis were significantly higher in 35S::ATHB17 lines.
Collapse
Affiliation(s)
- Graham J. Hymus
- Mendel Biotechnology, 3935 Point Eden Way, Hayward, CA 94545, USA
| | - Suqin Cai
- Mendel Biotechnology, 3935 Point Eden Way, Hayward, CA 94545, USA
| | - Elizabeth A. Kohl
- Mendel Biotechnology, 3935 Point Eden Way, Hayward, CA 94545, USA
- * Present address: Artic Distribution LLC, Lipan, TX 76462, USA
| | - Hans E. Holtan
- Mendel Biotechnology, 3935 Point Eden Way, Hayward, CA 94545, USA
| | | | - Shiv Tiwari
- Mendel Biotechnology, 3935 Point Eden Way, Hayward, CA 94545, USA
- Present address: Dupont-Pioneer Hi-Bred International, Hayward, CA 94546, USA
| | - Don R. Maszle
- Mendel Biotechnology, 3935 Point Eden Way, Hayward, CA 94545, USA
| | - Marjorie R. Lundgren
- Mendel Biotechnology, 3935 Point Eden Way, Hayward, CA 94545, USA
- Present address: Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Melissa C. Hong
- Mendel Biotechnology, 3935 Point Eden Way, Hayward, CA 94545, USA
| | - Namitha Channa
- Mendel Biotechnology, 3935 Point Eden Way, Hayward, CA 94545, USA
- Present address: Snapwiz, Fremont, CA 94568, USA
| | - Paul Loida
- Monsanto Company, 700 Chesterfield Parkway North, Chesterfield, MO 63017, USA
| | - Rebecca Thompson
- Monsanto Company, 700 Chesterfield Parkway North, Chesterfield, MO 63017, USA
| | - J. Philip Taylor
- Monsanto Company, 700 Chesterfield Parkway North, Chesterfield, MO 63017, USA
| | - Elena Rice
- Monsanto Company, 700 Chesterfield Parkway North, Chesterfield, MO 63017, USA
| | - Peter P. Repetti
- Mendel Biotechnology, 3935 Point Eden Way, Hayward, CA 94545, USA
| | | | - T. Lynne Reuber
- Mendel Biotechnology, 3935 Point Eden Way, Hayward, CA 94545, USA
| | - Robert A. Creelman
- Mendel Biotechnology, 3935 Point Eden Way, Hayward, CA 94545, USA
- To whom correspondence should be addressed.
| |
Collapse
|
21
|
TerBush AD, Yoshida Y, Osteryoung KW. FtsZ in chloroplast division: structure, function and evolution. Curr Opin Cell Biol 2013; 25:461-70. [DOI: 10.1016/j.ceb.2013.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/06/2013] [Accepted: 04/23/2013] [Indexed: 11/30/2022]
|
22
|
Johnson CB, Tang LK, Smith AG, Ravichandran A, Luo Z, Vitha S, Holzenburg A. Single particle tracking analysis of the chloroplast division protein FtsZ anchoring to the inner envelope membrane. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:507-512. [PMID: 23578755 DOI: 10.1017/s143192761300038x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Replication of chloroplast in plant cells is an essential process that requires co-assembly of the tubulin-like plastid division proteins FtsZ1 and FtsZ2 at mid-chloroplast to form a ring structure called the Z-ring. The Z-ring is stabilized via its interaction with the transmembrane protein ARC6 on the inner envelope membrane of chloroplasts. Plants lacking ARC6 are defective in plastid division and contain only one or two enlarged chloroplasts per cell with abnormal localization of FtsZ: instead of a single Z-ring, many short FtsZ filaments are distributed throughout the chloroplast. ARC6 is thought to be the anchoring point for FtsZ assemblies. To investigate the role of ARC6 in FtsZ anchoring, the mobility of green fluorescent protein-tagged FtsZ assemblies was assessed by single particle tracking in mutant plants lacking the ARC6 protein. Mean square displacement analysis showed that the mobility of FtsZ assemblies is to a large extent characterized by anomalous diffusion behavior (indicative of intermittent binding) and restricted diffusion suggesting that besides ARC6-mediated anchoring, an additional FtsZ-anchoring mechanism is present in chloroplasts.
Collapse
Affiliation(s)
- Carol B Johnson
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Hudson D, Guevara DR, Hand AJ, Xu Z, Hao L, Chen X, Zhu T, Bi YM, Rothstein SJ. Rice cytokinin GATA transcription Factor1 regulates chloroplast development and plant architecture. PLANT PHYSIOLOGY 2013; 162:132-44. [PMID: 23548780 PMCID: PMC3641198 DOI: 10.1104/pp.113.217265] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/29/2013] [Indexed: 05/18/2023]
Abstract
Chloroplast biogenesis has been well documented in higher plants, yet the complex methods used to regulate chloroplast activity under fluctuating environmental conditions are not well understood. In rice (Oryza sativa), the CYTOKININ-RESPONSIVE GATA TRANSCRIPTION FACTOR1 (Cga1) shows increased expression following light, nitrogen, and cytokinin treatments, while darkness and gibberellin reduce expression. Strong overexpression of Cga1 produces dark green, semidwarf plants with reduced tillering, whereas RNA interference knockdown results in reduced chlorophyll and increased tillering. Coexpression, microarray, and real-time expression analyses demonstrate a correlation between Cga1 expression and the expression of important nucleus-encoded, chloroplast-localized genes. Constitutive Cga1 overexpression increases both chloroplast biogenesis and starch production but also results in delayed senescence and reduced grain filling. Growing the transgenic lines under different nitrogen regimes indicates potential agricultural applications for Cga1, including manipulation of biomass, chlorophyll/chloroplast content, and harvest index. These results indicate a conserved mechanism by which Cga1 regulates chloroplast development in higher plants.
Collapse
Affiliation(s)
- Darryl Hudson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (D.H., D.R.G., A.J.H., Z.X., L.H., Y.-M.B., S.J.R.); and
- Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (X.C., T.Z.)
| | - David R. Guevara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (D.H., D.R.G., A.J.H., Z.X., L.H., Y.-M.B., S.J.R.); and
- Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (X.C., T.Z.)
| | - Andrew J. Hand
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (D.H., D.R.G., A.J.H., Z.X., L.H., Y.-M.B., S.J.R.); and
- Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (X.C., T.Z.)
| | - Zhenhua Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (D.H., D.R.G., A.J.H., Z.X., L.H., Y.-M.B., S.J.R.); and
- Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (X.C., T.Z.)
| | - Lixin Hao
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (D.H., D.R.G., A.J.H., Z.X., L.H., Y.-M.B., S.J.R.); and
- Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (X.C., T.Z.)
| | - Xi Chen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (D.H., D.R.G., A.J.H., Z.X., L.H., Y.-M.B., S.J.R.); and
- Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (X.C., T.Z.)
| | - Tong Zhu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (D.H., D.R.G., A.J.H., Z.X., L.H., Y.-M.B., S.J.R.); and
- Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (X.C., T.Z.)
| | - Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (D.H., D.R.G., A.J.H., Z.X., L.H., Y.-M.B., S.J.R.); and
- Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (X.C., T.Z.)
| | | |
Collapse
|
24
|
Basak I, Møller SG. Emerging facets of plastid division regulation. PLANTA 2013; 237:389-98. [PMID: 22965912 DOI: 10.1007/s00425-012-1743-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/19/2012] [Indexed: 05/08/2023]
Abstract
Plastids are complex organelles that are integrated into the plant host cell where they differentiate and divide in tune with plant differentiation and development. In line with their prokaryotic origin, plastid division involves both evolutionary conserved proteins and proteins of eukaryotic origin where the host has acquired control over the process. The plastid division apparatus is spatially separated between the stromal and the cytosolic space but where clear coordination mechanisms exist between the two machineries. Our knowledge of the plastid division process has increased dramatically during the past decade and recent findings have not only shed light on plastid division enzymology and the formation of plastid division complexes but also on the integration of the division process into a multicellular context. This review summarises our current knowledge of plastid division with an emphasis on biochemical features, the functional assembly of protein complexes and regulatory features of the overall process.
Collapse
Affiliation(s)
- Indranil Basak
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, NY 11439, USA
| | | |
Collapse
|
25
|
Michaillat L, Mayer A. Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 2013; 8:e54160. [PMID: 23383298 PMCID: PMC3562189 DOI: 10.1371/journal.pone.0054160] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022] Open
Abstract
The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property.
Collapse
Affiliation(s)
- Lydie Michaillat
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
- * E-mail:
| |
Collapse
|
26
|
TerBush AD, Osteryoung KW. Distinct functions of chloroplast FtsZ1 and FtsZ2 in Z-ring structure and remodeling. J Cell Biol 2012; 199:623-37. [PMID: 23128242 PMCID: PMC3494859 DOI: 10.1083/jcb.201205114] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/12/2012] [Indexed: 12/19/2022] Open
Abstract
FtsZ, a cytoskeletal GTPase, forms a contractile ring for cell division in bacteria and chloroplast division in plants. Whereas bacterial Z rings are composed of a single FtsZ, those in chloroplasts contain two distinct FtsZ proteins, FtsZ1 and FtsZ2, whose functional relationship is poorly understood. We expressed fluorescently tagged FtsZ1 and FtsZ2 in fission yeast to investigate their intrinsic assembly and dynamic properties. FtsZ1 and FtsZ2 formed filaments with differing morphologies when expressed separately. FRAP showed that FtsZ2 filaments were less dynamic than FtsZ1 filaments and that GTPase activity was essential for FtsZ2 filament turnover but may not be solely responsible for FtsZ1 turnover. When coexpressed, the proteins colocalized, consistent with coassembly, but exhibited an FtsZ2-like morphology. However, FtsZ1 increased FtsZ2 exchange into coassembled filaments. Our findings suggest that FtsZ2 is the primary determinant of chloroplast Z-ring structure, whereas FtsZ1 facilitates Z-ring remodeling. We also demonstrate that ARC3, a regulator of chloroplast Z-ring positioning, functions as an FtsZ1 assembly inhibitor.
Collapse
Affiliation(s)
- Allan D. TerBush
- Biochemistry and Molecular Biology Graduate Program and Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Katherine W. Osteryoung
- Biochemistry and Molecular Biology Graduate Program and Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
27
|
Structure, regulation, and evolution of the plastid division machinery. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 291:115-53. [PMID: 22017975 DOI: 10.1016/b978-0-12-386035-4.00004-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plastids have evolved from a cyanobacterial endosymbiont, and their continuity is maintained by the plastid division and segregation which is regulated by the eukaryotic host cell. Plastids divide by constriction of the inner- and outer-envelope membranes. Recent studies revealed that this constriction is performed by a large protein and glucan complex at the division site that spans the two envelope membranes. The division complex has retained certain components of the cyanobacterial division complex along with components developed by the host cell. Based on the information on the division complex at the molecular level, we are beginning to understand how the division complex has evolved and how it is assembled, constricted, and regulated in the host cell. This chapter reviews the current understanding of the plastid division machinery and some of the questions that will be addressed in the near future.
Collapse
|
28
|
Michaillat L, Baars TL, Mayer A. Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1. Mol Biol Cell 2012; 23:881-95. [PMID: 22238359 PMCID: PMC3290646 DOI: 10.1091/mbc.e11-08-0703] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The size and copy number of an organelle depend on an equilibrium of membrane fusion and fission. In vitro reconstitution of yeast vacuole fission and fusion shows that TORC1 selectively stimulates fission but does not change fusion activity. This explains the morphological transitions of yeast vacuoles in response to nutrient availability. Size and copy number of organelles are influenced by an equilibrium of membrane fusion and fission. We studied this equilibrium on vacuoles—the lysosomes of yeast. Vacuole fusion can readily be reconstituted and quantified in vitro, but it had not been possible to study fission of the organelle in a similar way. Here we present a cell-free system that reconstitutes fragmentation of purified yeast vacuoles (lysosomes) into smaller vesicles. Fragmentation in vitro reproduces physiological aspects. It requires the dynamin-like GTPase Vps1p, V-ATPase pump activity, cytosolic proteins, and ATP and GTP hydrolysis. We used the in vitro system to show that the vacuole-associated TOR complex 1 (TORC1) stimulates vacuole fragmentation but not the opposing reaction of vacuole fusion. Under nutrient restriction, TORC1 is inactivated, and the continuing fusion activity then dominates the fusion/fission equilibrium, decreasing the copy number and increasing the volume of the vacuolar compartment. This result can explain why nutrient restriction not only induces autophagy and a massive buildup of vacuolar/lysosomal hydrolases, but also leads to a concomitant increase in volume of the vacuolar compartment by coalescence of the organelles into a single large compartment.
Collapse
Affiliation(s)
- Lydie Michaillat
- Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland
| | | | | |
Collapse
|
29
|
Cho YH, Kim GD, Yoo SD. Giant chloroplast development in ethylene response1-1 is caused by a second mutation in ACCUMULATION AND REPLICATION OF CHLOROPLAST3 in Arabidopsis. Mol Cells 2012; 33:99-103. [PMID: 22228186 PMCID: PMC3887742 DOI: 10.1007/s10059-012-2245-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022] Open
Abstract
The higher plants of today array a large number of small chloroplasts in their photosynthetic cells. This array of small chloroplasts results from organelle division via prokaryotic binary fission in a eukaryotic plant cell environment. Functional abnormalities of the tightly coordinated biochemical event of chloroplast division lead to abnormal chloroplast development in plants. Here, we described an abnormal chloroplast phenotype in an ethylene insensitive ethylene response1-1 (etr1-1) of Arabidopsis thaliana. Extensive transgenic and genetic analyses revealed that this organelle abnormality was not linked to etr1-1 or ethylene signaling, but linked to a second mutation in ACCUMULATION AND REPLICATION3 (ARC3), which was further verified by genetic complementation analysis. Despite the normal expression of other plastid division-related genes, the loss of ARC3 caused the enlargement of chloroplasts as well as the diminution of a photosynthetic protein Rubisco in etr1-1. Our study has suggested that the increased size of the abnormal chloroplasts may not be able to fully compensate for the loss of a greater array of small chloroplasts in higher plants.
Collapse
Affiliation(s)
| | - Geun-Don Kim
- Department of Biological Science, SungKyunKwan University, Suwon 440-746,
Korea
| | - Sang-Dong Yoo
- Department of Biological Science, SungKyunKwan University, Suwon 440-746,
Korea
| |
Collapse
|
30
|
Smith AG, Johnson CB, Vitha S, Holzenburg A. Oligomerization of plant FtsZ1 and FtsZ2 plastid division proteins. Arch Biochem Biophys 2011; 513:94-101. [PMID: 21781955 DOI: 10.1016/j.abb.2011.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/22/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022]
Abstract
FtsZ was identified in bacteria as the first protein to localize mid-cell prior to division and homologs have been found in many plant species. Bacterial studies demonstrated that FtsZ forms a ring structure that is dynamically exchanged with a soluble pool of FtsZ. Our previous work established that Arabidopsis FtsZ1 and FtsZ2-1 are capable of in vitro self-assembly into two distinct filament types, termed type-I and type-II and noted the presence of filament precursor molecules which prompted this investigation. Using a combination of electron microscopy, gel chromatography and native PAGE revealed that (i) prior to FtsZ assembly initiation the pool consists solely of dimers and (ii) during assembly of the Arabidopsis FtsZ type-II filaments the most common intermediate between the dimer and filament state is a tetramer. Three-dimensional reconstructions of the observed dimer and tetramer suggest these oligomeric forms may represent consecutive steps in type-II filament assembly and a mechanism is proposed, which is expanded to include FtsZ assembly into type-I filaments. Finally, the results permit a discussion of the oligomeric nature of the soluble pool in plants.
Collapse
Affiliation(s)
- Aaron G Smith
- Microscopy and Imaging Center, Texas A&M University, College Station, TX 77843-2257, USA
| | | | | | | |
Collapse
|
31
|
Miyagishima SY. Mechanism of plastid division: from a bacterium to an organelle. PLANT PHYSIOLOGY 2011; 155:1533-44. [PMID: 21311032 PMCID: PMC3091088 DOI: 10.1104/pp.110.170688] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/02/2011] [Indexed: 05/20/2023]
Affiliation(s)
- Shin-ya Miyagishima
- Center for Frontier Research, National Institute of Genetics, Shizuoka 411-8540, Japan.
| |
Collapse
|
32
|
Karamoko M, El-Kafafi ES, Mandaron P, Lerbs-Mache S, Falconet D. Multiple FtsZ2 isoforms involved in chloroplast division and biogenesis are developmentally associated with thylakoid membranes in Arabidopsis. FEBS Lett 2011; 585:1203-8. [PMID: 21439281 DOI: 10.1016/j.febslet.2011.03.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/11/2011] [Accepted: 03/18/2011] [Indexed: 11/17/2022]
Abstract
Seed plants and algae have two distinct FtsZ protein families, FtsZ1 and FtsZ2, involved in plastid division. Distinctively, seed plants and mosses contain two FtsZ2 family members (FtsZ2-1 and FtsZ2-2) thus raising the question of the role of these FtsZ2 paralogs in plants. We show that both FtsZ2 paralogs, in addition to being present in the stroma, are associated with the thylakoid membranes and that association is developmentally regulated. We also show that several FtsZ2-1 isoforms are present with distinct intra-plastidial localization. Mutant analyses show that FtsZ2-1 is essential for chloroplast division and that FtsZ2-2 plays a specific role in chloroplast morphology and internal organisation in addition to participating in chloroplast partition.
Collapse
Affiliation(s)
- Mohamed Karamoko
- Laboratoire de Physiologie Cellulaire Végétale, CNRS-(UMR5168)/INRA-(UMR1200)/UJF-Grenoble 1/CEA-iRTSV, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA-Grenoble, 17 Rue des Martyrs, F-38054 Grenoble, France
| | | | | | | | | |
Collapse
|
33
|
Olson BJSC, Wang Q, Osteryoung KW. GTP-dependent heteropolymer formation and bundling of chloroplast FtsZ1 and FtsZ2. J Biol Chem 2010; 285:20634-43. [PMID: 20421292 DOI: 10.1074/jbc.m110.122614] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria and chloroplasts require the ring-forming cytoskeletal protein FtsZ for division. Although bacteria accomplish division with a single FtsZ, plant chloroplasts require two FtsZ types for division, FtsZ1 and FtsZ2. These proteins colocalize to a mid-plastid Z ring, but their biochemical relationship is poorly understood. We investigated the in vitro behavior of recombinant FtsZ1 and FtsZ2 separately and together. Both proteins bind and hydrolyze GTP, although GTPase activities are low compared with the activity of Escherichia coli FtsZ. Each protein undergoes GTP-dependent assembly into thin protofilaments in the presence of calcium as a stabilizing agent, similar to bacterial FtsZ. In contrast, when mixed without calcium, FtsZ1 and FtsZ2 exhibit slightly elevated GTPase activity and coassembly into extensively bundled protofilaments. Coassembly is enhanced by FtsZ1, suggesting that it promotes lateral interactions between protofilaments. Experiments with GTPase-deficient mutants reveal that FtsZ1 and FtsZ2 form heteropolymers. Maximum coassembly occurs in reactions containing equimolar FtsZ1 and FtsZ2, but significant coassembly occurs at other stoichiometries. The FtsZ1:FtsZ2 ratio in coassembled structures mirrors their input ratio, suggesting plasticity in protofilament and/or bundle composition. This behavior contrasts with that of alpha- and beta-tubulin and the bacterial tubulin-like proteins BtubA and BtubB, which coassemble in a strict 1:1 stoichiometry. Our findings raise the possibility that plasticity in FtsZ filament composition and heteropolymerization-induced bundling could have been a driving force for the coevolution of FtsZ1 and FtsZ2 in the green lineage, perhaps arising from an enhanced capacity for the regulation of Z ring composition and activity in vivo.
Collapse
Affiliation(s)
- Bradley J S C Olson
- Biochemistry and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
34
|
Nishikawa T, Kajitani H, Sato M, Mogi Y, Moriyama Y, Kawano S. Isolation of chloroplast FtsZ and AtpC, and analysis of protein targeting into the complex chloroplast of the haptophyte Pavlova pinguis. CYTOLOGIA 2010. [DOI: 10.1508/cytologia.75.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Toshikazu Nishikawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Hiroyuki Kajitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Mayuko Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Yuko Mogi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Yohsuke Moriyama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
35
|
Abstract
Since its endosymbiotic beginning, the chloroplast has become fully integrated into the biology of the host eukaryotic cell. The exchange of genetic information from the chloroplast to the nucleus has resulted in considerable co-ordination in the activities of these two organelles during all stages of plant development. Here, we give an overview of the mechanisms of light perception and the subsequent regulation of nuclear gene expression in the model plant Arabidopsis thaliana, and we cover the main events that take place when proplastids differentiate into chloroplasts. We also consider recent findings regarding signalling networks between the chloroplast and the nucleus during seedling development, and how these signals are modulated by light. In addition, we discuss the mechanisms through which chloroplasts develop in different cell types, namely cotyledons and the dimorphic chloroplasts of the C(4) plant maize. Finally, we discuss recent data that suggest the specific regulation of the light-dependent phases of photosynthesis, providing a means to optimize photosynthesis to varying light regimes.
Collapse
Affiliation(s)
- Mark T Waters
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
36
|
Zhang M, Hu Y, Jia J, Gao H, He Y. A plant MinD homologue rescues Escherichia coli HL1 mutant (DeltaMinDE) in the absence of MinE. BMC Microbiol 2009; 9:101. [PMID: 19457228 PMCID: PMC2691406 DOI: 10.1186/1471-2180-9-101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 05/20/2009] [Indexed: 12/05/2022] Open
Abstract
Background In E. coli, the Min operon (MinCDE) plays a key role in determining the site of cell division. MinE oscillates from the middle to one pole or another to drive the MinCD complex to the end of the cell. The MinCD complex prevents FtsZ ring formation and the subsequent cell division at cell ends. In Arabidopsis thaliana, a homologue of MinD has been shown to be involved in the positioning of chloroplast division site. Results To learn whether the MinD homologue in plants is functional in bacteria, AtMinD was expressed in E. coli. Surprisingly, AtMinD can rescue the minicell phenotype of E. coli HL1 mutant (ΔMinDE) in the absence of EcMinE. This rescue requires EcMinC. AtMinD was localized to puncta at the poles of E. coli cells and puncta in chloroplasts without oscillation. AtMinD expressed in the HL1 mutant can cause a punctate localization pattern of GFP-EcMinC at cell ends. Yeast two hybrid and BiFC analysis showed that AtMinD can interact with EcMinC. Conclusion Similar to the MinD in Bacillus subtilis, AtMinD is localized to the polar region in E. coli and interacts with EcMinC to confine EcFtsZ polymerization and cell division at the midpoint of the cell.
Collapse
Affiliation(s)
- Min Zhang
- College of Life Science, Capital Normal University, Beijing 100037, PR China.
| | | | | | | | | |
Collapse
|
37
|
Sato M, Mogi Y, Nishikawa T, Miyamura S, Nagumo T, Kawano S. The dynamic surface of dividing cyanelles and ultrastructure of the region directly below the surface in Cyanophora paradoxa. PLANTA 2009; 229:781-91. [PMID: 19096871 DOI: 10.1007/s00425-008-0872-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 11/26/2008] [Indexed: 05/23/2023]
Abstract
The cyanelles of glaucocystophytes are probably the most primitive of known extant plastids and the closest to cyanobacteria. Their kidney shape and FtsZ arc during the early stage of division define cyanelle division. In order to deepen and expand earlier results (Planta 227:177-187, 2007), cells of Cyanophora paradoxa were fixed with two different chemical and two different freeze-fixation methods. In addition, cyanelles from C. paradoxa were isolated to observe the surface structure of dividing cyanelles using field emission scanning electron microscopy (FE-SEM). A shallow furrow started on one side of the division plane. The furrow subsequently extended, covering the entire division circle, and then invaginated deeply, becoming clearly visible. The typical FtsZ arc was 2.3-3.4 microm long. This length matches that of the cleavage furrow observed using FE-SEM. The cyanelle cleavage furrows are from one-fourth to one-half of the circumference of the division plane. The shallow furrow that appears on the cyanelle outer surface effectively changes the division plane. Using freeze-fixation methods, the electron-dense stroma and peptidoglycan could be distinguished. In addition, an electron-dense belt structure (the cyanelle ring) was observed inside the leading edge at the cyanelle division plane. The FtsZ arc is located at the division plane ahead of the cyanelle ring. Immunogold-TEM localization shows that FtsZ is located interiorly of the cyanelle ring. The lack of an outer PD ring, together with the arch-shaped furrow, suggests that the mechanical force of the initial (arch shaped) septum furrow constriction comes from inside the cyanelle.
Collapse
Affiliation(s)
- Mayuko Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bldg. FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Yang Y, Glynn JM, Olson BJSC, Schmitz AJ, Osteryoung KW. Plastid division: across time and space. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:577-84. [PMID: 18990608 DOI: 10.1016/j.pbi.2008.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 09/27/2008] [Accepted: 10/03/2008] [Indexed: 05/24/2023]
Abstract
Plastid division is executed by the coordinated action of at least two molecular machineries--an internal machinery situated on the stromal side of the inner envelope membrane that was contributed by the cyanobacterial endosymbiont from which plastids evolved, and an external machinery situated on the cytosolic side of the outer envelope membrane that was contributed by the host. Here we review progress in defining the components of the plastid division complex and understanding the mechanisms of envelope constriction and division-site placement in plants. We also highlight recent work identifying the first molecular linkage between the internal and external division machineries, shedding light on how their mid-plastid positioning is coordinated across the envelope membranes. Little is known about the mechanisms that regulate plastid division in plant cells, but recent studies have begun to hint at potential mechanisms.
Collapse
Affiliation(s)
- Yue Yang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
39
|
Hanson MR, Sattarzadeh A. Dynamic morphology of plastids and stromules in angiosperm plants. PLANT, CELL & ENVIRONMENT 2008; 31:646-57. [PMID: 18088332 DOI: 10.1111/j.1365-3040.2007.01768.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Labelling of plastids with fluorescent proteins has revealed the diversity of their sizes and shapes in different tissues of vascular plants. Stromules, stroma-filled tubules comprising thin extensions of the stroma surrounded by the double envelope membrane, have been observed to emanate from all major types of plastid, though less common on chloroplasts. In some tissue types, stromules are highly dynamic, forming, shrinking, attaching, releasing and fragmenting. Stromule formation is negatively affected by treatment of tissue with cytoskeletal inhibitors. Plastids can be connected by stromules, through which green fluorescent protein (GFP) and fluorescently tagged chloroplast protein complexes have been observed to flow. Within the highly viscous stroma, proteins traffic by diffusion as well as by an active process of directional travel, whose mechanism is unknown. In addition to exchanging materials between plastids, stromules may also serve to increase the surface area of the envelope for import and export, reduce diffusion distance between plastids and other organelles for exchange of materials, and anchor the plastid onto attachment points for proper positioning with the plant cell. Future studies should reveal how these functions may affect plants in adapting to the challenges of a changing environment.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA.
| | | |
Collapse
|
40
|
El-Kafafi ES, Karamoko M, Pignot-Paintrand I, Grunwald D, Mandaron P, Lerbs-Mache S, Falconet D. Developmentally regulated association of plastid division protein FtsZ1 with thylakoid membranes in Arabidopsis thaliana. Biochem J 2008; 409:87-94. [PMID: 17725544 DOI: 10.1042/bj20070543] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FtsZ is a key protein involved in bacterial and organellar division. Bacteria have only one ftsZ gene, while chlorophytes (higher plants and green alga) have two distinct FtsZ gene families, named FtsZ1 and FtsZ2. This raises the question of why chloroplasts in these organisms need distinct FtsZ proteins to divide. In order to unravel new functions associated with FtsZ proteins, we have identified and characterized an Arabidopsis thaliana FtsZ1 loss-of-function mutant. ftsZ1-knockout mutants are impeded in chloroplast division, and division is restored when FtsZ1 is expressed at a low level. FtsZ1-overexpressing plants show a drastic inhibition of chloroplast division. Chloroplast morphology is altered in ftsZ1, with chloroplasts having abnormalities in the thylakoid membrane network. Overexpression of FtsZ1 also induced defects in thylakoid organization with an increased network of twisting thylakoids and larger grana. We show that FtsZ1, in addition to being present in the stroma, is tightly associated with the thylakoid fraction. This association is developmentally regulated since FtsZ1 is found in the thylakoid fraction of young developing plant leaves but not in mature and old plant leaves. Our results suggest that plastid division protein FtsZ1 may have a function during leaf development in thylakoid organization, thus highlighting new functions for green plastid FtsZ.
Collapse
Affiliation(s)
- El-Sayed El-Kafafi
- Laboratoire Plastes et Différenciation Cellulaire, Université Joseph Fourier and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Kuroiwa T, Misumi O, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Kuroiwa H. Vesicle, mitochondrial, and plastid division machineries with emphasis on dynamin and electron-dense rings. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:97-152. [PMID: 19081542 DOI: 10.1016/s1937-6448(08)01203-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The original eukaryotic cells contained at least one set of double-membrane-bounded organelles (cell nucleus and mitochondria) and single-membrane-bounded organelles [endoplasmic reticulum, Golgi apparatus, lysosomes (vacuoles), and microbodies (peroxisomes)]. An increase in the number of organelles accompanied the evolution of these cells into Amoebozoa and Opisthokonta. Furthermore, the basic cells, containing mitochondria, engulfed photosynthetic Cyanobacteria, which were converted to plastids, and the cells thereby evolved into cells characteristic of the Bikonta. How did basic single- and double-membrane-bounded organelles originate from bacteria-like cells during early eukaryotic evolution? To answer this question, the important roles of the GTPase dynamin- and electron-dense rings in the promotion of diverse cellular activities in eukaryotes, including endocytosis, vesicular transport, mitochondrial division, and plastid division, must be considered. In this review, vesicle division, mitochondrial division, and plastid division machineries, including the dynamin- and electron-dense rings, and their roles in the origin and biogenesis of organelles in eukaryote cells are summarized.
Collapse
Affiliation(s)
- T Kuroiwa
- Research Information Center of Extremophile, Rikkyo (St Paul's) University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Maple J, Mateo* A, Møller SG. Plastid Division Regulation and Interactions with the Environment. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
43
|
Yoshida Y, Nishida K, Kuroiwa T, Kawano S. Novel Dynamics of FtsZ Ring Before Plastid Abscission. CYTOLOGIA 2008. [DOI: 10.1508/cytologia.73.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yamato Yoshida
- Department of Integrated Biosciences, Graduate school of Frontier Sciences, University of Tokyo
- Laboratory of Cell Biology, Department of Life Science, College of Science, Research Information Center for Extremophile, Rikkyo (St. Paul's) University
| | - Keiji Nishida
- Laboratory of Cell Biology, Department of Life Science, College of Science, Research Information Center for Extremophile, Rikkyo (St. Paul's) University
| | - Tsuneyoshi Kuroiwa
- Laboratory of Cell Biology, Department of Life Science, College of Science, Research Information Center for Extremophile, Rikkyo (St. Paul's) University
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate school of Frontier Sciences, University of Tokyo
| |
Collapse
|
44
|
Sato M, Nishikawa T, Kajitani H, Kawano S. Conserved relationship between FtsZ and peptidoglycan in the cyanelles of Cyanophora paradoxa similar to that in bacterial cell division. PLANTA 2007; 227:177-87. [PMID: 17704941 DOI: 10.1007/s00425-007-0605-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 07/27/2007] [Indexed: 05/11/2023]
Abstract
Cyanelles of the biflagellate protist Cyanophora paradoxa have retained the peptidoglycan layer, which is critical for division, as indicated by the inhibitory effects of beta-lactam antibiotics. An FtsZ ring is formed at the division site during cyanelle division. We used immunofluorescence microscopy to observe the process of FtsZ ring formation, which is expected to lead cyanelle division, and demonstrated that an FtsZ arc and a split FtsZ ring emerge during the early and late stages of cyanelle division, respectively. We used an anti-FtsZ antibody to observe cyanelle FtsZ rings. We observed bright, ring-shaped fluorescence of FtsZ in cyanelles. Cyanelles were kidney-shaped shortly after division. Fluorescence indicated that FtsZ did not surround the division plane at an early stage of division, but rather formed an FtsZ arc localized at the constriction site. The constriction spread around the cyanelle, which gradually became dumbbell shaped. After the envelope's invagination, the ring split parallel to the cyanelle division plane without disappearing. Treatment of C. paradoxa cells with ampicillin, a beta-lactam antibiotic, resulted in spherical cyanelles with an FtsZ arc or ring on the division plane. Transmission electron microscopy of the ampicillin-treated cyanelle envelope membrane revealed that the surface was not smooth. Thus, the inhibition of peptidoglycan synthesis by ampicillin causes the inhibition of septum formation and a marked delay in constriction development. The formation of the FtsZ arc and FtsZ ring is the earliest sign of cyanelle division, followed by constriction and septum formation.
Collapse
Affiliation(s)
- Mayuko Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bldg FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan.
| | | | | | | |
Collapse
|
45
|
Melis A. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). PLANTA 2007; 226:1075-86. [PMID: 17721788 DOI: 10.1007/s00425-007-0609-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 07/27/2007] [Indexed: 05/16/2023]
Abstract
Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.
Collapse
Affiliation(s)
- Anastasios Melis
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
46
|
Yoder DW, Kadirjan-Kalbach D, Olson BJSC, Miyagishima SY, Deblasio SL, Hangarter RP, Osteryoung KW. Effects of mutations in Arabidopsis FtsZ1 on plastid division, FtsZ ring formation and positioning, and FtsZ filament morphology in vivo. PLANT & CELL PHYSIOLOGY 2007; 48:775-91. [PMID: 17468127 DOI: 10.1093/pcp/pcm049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In plants, chloroplast division FtsZ proteins have diverged into two families, FtsZ1 and FtsZ2. FtsZ1 is more divergent from its bacterial counterparts and lacks a C-terminal motif conserved in most other FtsZs. To begin investigating FtsZ1 structure-function relationships, we first identified a T-DNA insertion mutation in the single FtsZ1 gene in Arabidopsis thaliana, AtFtsZ1-1. Homozygotes null for FtsZ1, though impaired in chloroplast division, could be isolated and set seed normally, indicating that FtsZ1 is not essential for viability. We then mapped five additional atftsZ1-1 alleles onto an FtsZ1 structural model and characterized chloroplast morphologies, FtsZ protein levels and FtsZ filament morphologies in young and mature leaves of the corresponding mutants. atftsZ1-1(G267R), atftsZ1-1(R298Q) and atftsZ1-1(Delta404-433) exhibit reduced FtsZ1 accumulation but wild-type FtsZ2 levels. The semi-dominant atftsZ1-1(G267R) mutation caused the most severe phenotype, altering a conserved residue in the predicted T7 loop. atftsZ1-1(G267R) protein accumulates normally in young leaves but is not detected in rings or filaments. atftsZ1-1(R298Q) has midplastid FtsZ1-containing rings in young leaves, indicating that R298 is not critical for ring formation or positioning despite its conservation. atftsZ1-1(D159N) and atftsZ1-1(G366A) both have overly long, sometimes spiral-like FtsZ filaments, suggesting that FtsZ dynamics are altered in these mutants. However, atftsZ1-1(D159N) exhibits loss of proper midplastid FtsZ positioning while atftsZ1-1(G366A) does not. Finally, truncation of the FtsZ1 C-terminus in atftsZ1-1(Delta404-433) impairs chloroplast division somewhat but does not prevent midplastid Z ring formation. These alleles will facilitate understanding of how the in vitro biochemical properties of FtsZ1 are related to its in vivo function.
Collapse
Affiliation(s)
- David W Yoder
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Maple J, Møller SG. Plastid division coordination across a double-membraned structure. FEBS Lett 2007; 581:2162-7. [PMID: 17350001 DOI: 10.1016/j.febslet.2007.02.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Revised: 02/19/2007] [Accepted: 02/26/2007] [Indexed: 11/16/2022]
Abstract
Chloroplasts still retain components of the bacterial cell division machinery and research over the past decade has led to an understanding of how these stromal division proteins assemble and function as a complex chloroplast division machinery. However, during evolution plant chloroplasts have acquired a number of cytosolic division proteins, indicating that unlike the cyanobacterial ancestors of plastids, chloroplast division in higher plants require a second division machinery located on the chloroplast outer envelope membrane. Here we review the current understanding of the stromal and cytosolic plastid division machineries and speculate how two protein machineries coordinate their activities across a double-membraned structure.
Collapse
Affiliation(s)
- Jodi Maple
- Centre for Organelle Research, Department of Mathematics and Natural Sciences, University of Stavanger, N-4036 Stavanger, Norway
| | | |
Collapse
|
48
|
Horner HT, Healy RA, Ren G, Fritz D, Klyne A, Seames C, Thornburg RW. Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. AMERICAN JOURNAL OF BOTANY 2007; 94:12-24. [PMID: 21642203 DOI: 10.3732/ajb.94.1.12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tobacco floral nectaries undergo changes in form and function. As nectaries change from green to orange, a new pigment is expressed. Analysis demonstrated that it is β-carotene. Plastids undergo dramatic changes. Early in nectary development, they divide and by stage 9 (S9) they are engorged with starch. About S9, nectaries shift from quiescent anabolism to active catabolism resulting in starch breakdown and production of nectar sugars. Starch is replaced by osmiophilic bodies, which contain needle-like carotenoid crystals. Between S9 and S12, amyloplasts are converted to chromoplasts. Changes in carotenoids and ascorbate were assayed and are expressed at low levels early in development; however, following S9 metabolic shift, syntheses of β-carotene and ascorbate greatly increase in advance of expression of nectar redox cycle. Transcript analysis for carotenoid and ascorbate biosynthetic pathways showed that these genes are significantly expressed at S6, prior to the S9 metabolic shift. Thus, formation of antioxidants β-carotene and ascorbate after the metabolic shift is independent of transcriptional regulation. We propose that biosynthesis of these antioxidants is governed by availability of substrate molecules that arise from starch breakdown. These processes and events may be amenable to molecular manipulation to provide a better system for insect attraction, cross pollination, and hybridization.
Collapse
Affiliation(s)
- H T Horner
- Department of Genetics, Development and Cell Biology & Microscopy and NanoImaging Facility, Iowa State University, Ames, Iowa 50011-1020 USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Lohse S, Hause B, Hause G, Fester T. FtsZ characterization and immunolocalization in the two phases of plastid reorganization in arbuscular mycorrhizal roots of Medicago truncatula. PLANT & CELL PHYSIOLOGY 2006; 47:1124-34. [PMID: 16854943 DOI: 10.1093/pcp/pcj083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We have analyzed plastid proliferation in root cortical cells of Medicago truncatula colonized by arbuscular mycorrhizal (AM) fungi by concomitantly labeling fungal structures, root plastids, a protein involved in plastid division (FtsZ1) and a protein involved in the biosynthesis of AM-specific apocarotenoids. Antibodies directed against FtsZ1 have been generated after heterologous expression of the respective gene from M. truncatula and characterization of the gene product. Analysis of enzymatic activity and assembly experiments showed similar properties of this protein when compared with the bacterial proteins. Immunocytological experiments allowed two phases of fungal and plastid development to be clearly differentiated and plastid division to be monitored during these phases. In the early phase of arbuscule development, lens-shaped plastids, intermingled with the arbuscular branches, divide frequently. Arbuscule degradation, in contrast, is characterized by large, tubular plastids, decorated by a considerable number of FtsZ division rings.
Collapse
Affiliation(s)
- Swanhild Lohse
- Leibniz Institute of Plant Biochemistry, Department of Secondary Metabolism, Weinberg 3, D-06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|
50
|
Tavva VS, Collins GB, Dinkins RD. Targeted overexpression of the Escherichia coli MinC protein in higher plants results in abnormal chloroplasts. PLANT CELL REPORTS 2006; 25:341-8. [PMID: 16341725 DOI: 10.1007/s00299-005-0086-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 10/17/2005] [Accepted: 10/26/2005] [Indexed: 05/05/2023]
Abstract
Higher plant chloroplast division involves some of the same types of proteins that are required in prokaryotic cell division. These include two of the three Min proteins, MinD and MinE, encoded by the min operon in bacteria. Noticeably absent from annotated sequences from higher plants is a MinC homologue. A higher plant functional MinC homologue that would interfere with FtsZ polymerization, has yet to be identified. We sought to determine whether expression of the bacterial MinC in higher plants could affect chloroplast division. The Escherichia coli minC (EcMinC) gene was isolated and inserted behind the Arabidopsis thaliana RbcS transit peptide sequence for chloroplast targeting. This TP-EcMinC gene driven by the CaMV 35S(2) constitutive promoter was then transformed into tobacco (Nicotiana tabacum L.). Abnormally large chloroplasts were observed in the transgenic plants suggesting that overexpression of the E. coli MinC perturbed higher plant chloroplast division.
Collapse
Affiliation(s)
- Venkata S Tavva
- Department of Plant and Soil Sciences, University of Kentucky, 1405 Veterans Road, Lexington, KY 40546-0312, USA
| | | | | |
Collapse
|