1
|
Bogacz I, Szilagyi E, Makita H, Simon PS, Zhang M, Doyle MD, Chatterjee K, Kretzschmar M, Chernev P, Croy N, Cheah MH, Dasgupta M, Nangca I, Fransson T, Bhowmick A, Brewster AS, Sauter NK, Owada S, Tono K, Zerdane S, Oggenfuss A, Babich D, Sander M, Mankowsky R, Lemke HT, Gee LB, Sato T, Kroll T, Messinger J, Alonso-Mori R, Bergmann U, Sokaras D, Yachandra VK, Kern J, Yano J. X-ray Absorption Spectroscopy of Dilute Metalloenzymes at X-ray Free-Electron Lasers in a Shot-by-Shot Mode. J Phys Chem Lett 2025; 16:3778-3787. [PMID: 40193717 PMCID: PMC12010424 DOI: 10.1021/acs.jpclett.5c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
X-ray absorption spectroscopy (XAS) of 3d transition metals provides important electronic structure information for many fields. However, X-ray-induced radiation damage under physiological temperature has prevented using this method to study dilute aqueous systems, such as metalloenzymes, as the catalytic reaction proceeds. Here we present a new approach to enable operando XAS of dilute biological samples and demonstrate its feasibility with K-edge XAS spectra from the Mn cluster in photosystem II and the Fe-S centers in photosystem I. This approach combines highly efficient sample delivery strategies and a robust signal normalization method with high-transmission Bragg diffraction-based spectrometers at X-ray free-electron lasers (XFELs) in a damage-free, shot-by-shot mode. These photon-out spectrometers have been optimized for discriminating the metal Mn/Fe Kα fluorescence signals from the overwhelming scattering background present on currently available detectors for XFELs that lack suitable energy discrimination. We quantify the enhanced performance metrics of the spectrometer and discuss its potential applications for acquiring time-resolved XAS spectra of biological samples during their reactions at XFELs.
Collapse
Affiliation(s)
- Isabel Bogacz
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Erzsi Szilagyi
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Physics, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Hiroki Makita
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Philipp S. Simon
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Miao Zhang
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Margaret D. Doyle
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kuntal Chatterjee
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Moritz Kretzschmar
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Biology, Humboldt-Universität
zu Berlin, D 10099 Berlin, Germany
| | - Petko Chernev
- Molecular
Biomimetics, Department of Chemistry - Ångström, Molecular
Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Nicholas Croy
- Molecular
Biomimetics, Department of Chemistry - Ångström, Molecular
Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Mun-Hon Cheah
- Molecular
Biomimetics, Department of Chemistry - Ångström, Molecular
Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Medhanjali Dasgupta
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Isabela Nangca
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas Fransson
- Department
of Theoretical Chemistry and Biology, KTH
Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Asmit Bhowmick
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aaron S. Brewster
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicholas K. Sauter
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shigeki Owada
- Japan Synchrotron
Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN
SPring-8 Center, 1-1-1
Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron
Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN
SPring-8 Center, 1-1-1
Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Serhane Zerdane
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | | | - Danylo Babich
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Mathias Sander
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Roman Mankowsky
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Henrik T. Lemke
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Leland B. Gee
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Takahiro Sato
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Thomas Kroll
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Johannes Messinger
- Molecular
Biomimetics, Department of Chemistry - Ångström, Molecular
Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
- Department
of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | - Roberto Alonso-Mori
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Uwe Bergmann
- Department
of Physics, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Dimosthenis Sokaras
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Vittal K. Yachandra
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jan Kern
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Feng Y, Li Z, Yang Y, Shen L, Li X, Liu X, Zhang X, Zhang J, Ren F, Wang Y, Liu C, Han G, Wang X, Kuang T, Shen JR, Wang W. Structures of PSI-FCPI from Thalassiosira pseudonana grown under high light provide evidence for convergent evolution and light-adaptive strategies in diatom FCPIs. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:949-966. [PMID: 39670505 DOI: 10.1111/jipb.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Diatoms rely on fucoxanthin chlorophyll a/c-binding proteins (FCPs) for light harvesting and energy quenching under marine environments. Here we report two cryo-electron microscopic structures of photosystem I (PSI) with either 13 or five fucoxanthin chlorophyll a/c-binding protein Is (FCPIs) at 2.78 and 3.20 Å resolutions from Thalassiosira pseudonana grown under high light (HL) conditions. Among them, five FCPIs are stably associated with the PSI core, these include Lhcr3, RedCAP, Lhcq8, Lhcf10, and FCP3. The eight additional Lhcr-type FCPIs are loosely associated with the PSI core and detached under the present purification conditions. The pigments of this centric diatom showed a higher proportion of chlorophylls a, diadinoxanthins, and diatoxanthins; some of the chlorophyll as and diadinoxanthins occupy the locations of fucoxanthins found in the huge PSI-FCPI from another centric diatom Chaetoceros gracilis grown under low-light conditions. These additional chlorophyll as may form more energy transfer pathways and additional diadinoxanthins may form more energy dissipation sites relying on the diadinoxanthin-diatoxanthin cycle. These results reveal the assembly mechanism of FCPIs and corresponding light-adaptive strategies of T. pseudonana PSI-FCPI, as well as the convergent evolution of the diatom PSI-FCPI structures.
Collapse
Affiliation(s)
- Yue Feng
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenhua Li
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Lili Shen
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyi Li
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xueyang Liu
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Zhang
- Department of Chemistry and Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Jinyang Zhang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Ren
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Liu
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Guangye Han
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xuchu Wang
- Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jian-Ren Shen
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Research Institute for Interdisciplinary Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Wenda Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| |
Collapse
|
3
|
Du M, Zeng F, Wang Y, Li Y, Chen G, Jiang J, Wang Q. Assembly and Functionality of 2D Protein Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416485. [PMID: 40089855 PMCID: PMC12005781 DOI: 10.1002/advs.202416485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Indexed: 03/17/2025]
Abstract
Among the unique classes of 2D nanomaterials, 2D protein arrays garner increasing attention due to their remarkable structural stability, exceptional physiochemical properties, and tunable electronic and mechanical attributes. The interest in mimicking and surpassing the precise architecture and advanced functionality of natural protein systems drives the field of 2D protein assembly toward the development of sophisticated functional materials. Recent advancements deepen the understanding of the fundamental principles governing 2D protein self-assembly, accelerating the creation of novel functional biomaterials. These developments encompass biological, chemical, and templated strategies, facilitating the self-organization of proteins into highly ordered and intricate 2D patterns. Consequently, these 2D protein arrays create new opportunities for integrating diverse components, from small molecules to nanoparticles, thereby enhancing the performance and versatility of materials in various applications. This review comprehensively assesses the current state of 2D protein nanotechnology, highlighting the latest methodologies for directing protein assembly into precise 2D architectures. The transformative potential of 2D protein assemblies in designing next-generation biomaterials, particularly in areas such as biomedicine, catalysis, photosystems, and membrane filtration is also emphasized.
Collapse
Affiliation(s)
- Mingming Du
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Fanmeng Zeng
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - YueFei Wang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Ying Li
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Guangcun Chen
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jiang Jiang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
4
|
Sohail SH, Sohoni S, Ting PC, Fantz LR, Abdulhadi SM, MacGregor-Chatwin C, Hitchcock A, Hunter CN, Engel GS, Massey SC. Functional Connectivity of Red Chlorophylls in Cyanobacterial Photosystem I Revealed by Fluence-Dependent Transient Absorption. J Phys Chem B 2025; 129:3191-3197. [PMID: 40100810 PMCID: PMC11956136 DOI: 10.1021/acs.jpcb.5c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 03/20/2025]
Abstract
External stressors modulate the oligomerization state of photosystem I (PSI) in cyanobacteria. The number of red chlorophylls (Chls), pigments lower in energy than the P700 reaction center, depends on the oligomerization state of PSI. Here, we use ultrafast transient absorption spectroscopy to interrogate the effective connectivity of the red Chls in excitonic energy pathways in trimeric PSI in native thylakoid membranes of the model cyanobacterium Synechocystis sp. PCC 6803, including emergent dynamics, as red Chls increase in number and proximity. Fluence-dependent dynamics indicate singlet-singlet annihilation within energetically connected red Chl sites in the PSI antenna but not within bulk Chl sites on the picosecond time scale. These data support picosecond energy transfer between energetically connected red Chl sites as the physical basis of singlet-singlet annihilation. The time scale of this energy transfer is faster than predicted by Förster resonance energy transfer calculations, raising questions about the physical mechanism of the process. Our results indicate distinct strategies to steer excitations through the PSI antenna; the red Chls present a shallow reservoir that direct excitations away from P700, extending the time to trapping by the reaction center.
Collapse
Affiliation(s)
- Sara H. Sohail
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Laboratory
of Chemical Physics, National Institute
of Diabetes, and Digestive, and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
- Department
of Chemistry and Biochemistry, Swarthmore
College, Swarthmore, Pennsylvania 19081, United States
| | - Siddhartha Sohoni
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Po-Chieh Ting
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lexi R. Fantz
- Department
of Chemistry and Biochemistry, Southwestern
University, Georgetown, Texas 78626, United States
| | - Sami M. Abdulhadi
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | | | - Andrew Hitchcock
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - C. Neil Hunter
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Gregory S. Engel
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sara C. Massey
- Department
of Chemistry and Biochemistry, Southwestern
University, Georgetown, Texas 78626, United States
| |
Collapse
|
5
|
Williams AM, Jackson PJ, Theg SM, Bricker TM, Hunter CN, Liu H. From cytoplasm to lumen-mapping the free pools of protein subunits of three photosynthetic complexes using quantitative mass spectrometry. FEBS Lett 2025. [PMID: 40077900 DOI: 10.1002/1873-3468.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
The phycobilisome (PBS) captures light energy and transfers it to photosystem I (PSI) and photosystem II (PSII). Which and how many copies of protein subunits in PBSs, PSI, and PSII remain unbound in thylakoids are unknown. Here, quantitative mass spectrometry (QMS) was used to quantify substantial pools of free extrinsic subunits of PSII and PSI. Interestingly, the membrane intrinsic PsaL is 3-fold higher than PsaA/B. This scenario complements the static structures of these complexes as revealed by X-ray crystallography and cryo-EM. The ratios of ApcG and photoprotective OCP over PBS indicate a pool of extra ApcG. The 2.5 ratio of CpcG-PBS over CpcL-PBS improves our understanding of these light-harvesting complexes involved in energy capture and photoprotection in cyanobacteria. Impact statement Our study presents the first quantitative inquiry of the free pools of proteins associated with the three major photosynthetic complexes in Synechocystis 6803. This study increases our understanding of the unbound thylakoid proteome, guiding future research into the functions of these proteins, which will facilitate efforts to enhance photosynthetic efficiency.
Collapse
Affiliation(s)
| | - Philip J Jackson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, UK
| | - Steven M Theg
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Terry M Bricker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - C Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, UK
| | - Haijun Liu
- Department of Biology, Saint Louis University, MO, USA
| |
Collapse
|
6
|
Jacquet M, Izzo M, Wróbel P, Strawski M, Trotta M, Jurczakowski R, Kargul J. Space-confined mediation of electron transfer for efficient biomolecular solar conversion. MATERIALS HORIZONS 2025; 12:1558-1567. [PMID: 39641770 DOI: 10.1039/d4mh01266f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Solar-converting nanosystems using self-renewing biomaterial resources carry great potential for developing sustainable technologies to ameliorate climate change and minimize reliance on fossil fuels. By mimicking natural photosynthesis, diverse proof-of-concept biosolar systems have been used to produce green electricity, fuels and chemicals. Efforts so far have focused on optimizing light harvesting, biocatalyst loading and electron transfer (ET), however, the long-term performance of best-performing systems remains a major challenge due to the intensive use of diffusive, toxic mediators. To overcome this limitation, we developed a rationally designed nanosystem based on the entrapment of non-toxic mediator, ferrocene dimethanol (Fc), localized at the abiotic-biotic molecular interface that efficiently promoted ET between electrode surface and two photosynthetic proteins: cytochrome c and photosystem I. We demonstrate that space-confined Fc mediators (1 nM) are as effective in terms of ET kinetics as a 500 000-fold higher concentration of freely-diffusive Fc. The Fc-confined biophotocathodes showed a milestone photocurrent density of 14 μA cm-2 under oxic conditions compared to analogous planar (2D) biophotoelectrodes, with a photoconductive biolayer stable for over 5 months. The space-confined ET mediation reported in this work opens a new avenue for efficiently interfacing biomachineries, providing a benchmark design advancement in the quest for viable biohybrid technologies.
Collapse
Affiliation(s)
- Margot Jacquet
- Solar Fuels Laboratory, Centre of New Technology, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Miriam Izzo
- Solar Fuels Laboratory, Centre of New Technology, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Piotr Wróbel
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Marcin Strawski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Massimo Trotta
- Institute for Physical Chemical Processes, National Research Council, E. Orabona 4, 70125 Bari, Italy
| | - Rafał Jurczakowski
- Electrochemistry of New Materials, Centre of Biological and Chemical Sciences, Faculty of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Joanna Kargul
- Solar Fuels Laboratory, Centre of New Technology, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| |
Collapse
|
7
|
Meng F, Ma M, Li S, Liang P, Liang Y, Shi H, Huang S, Su H, Deng Y, Akram MA, Shen X, Feng R, Zhan X, Ma F. Genome-wide identification of light-harvesting chlorophyll a/b-binding (LHC) gene family in tomato and functional analysis of SlLhcb1.11 and SlELIP1 under cold stress. Genomics 2025; 117:111022. [PMID: 40021098 DOI: 10.1016/j.ygeno.2025.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Light-harvesting chlorophyll a/b-binding (LHC) proteins, as the antenna complex, collect and transfer light energy to the reaction centers of PSII. They are crucial for abiotic stress responses, especially in the photoprotection under cold stress. However, members of the LHC gene family in tomato (Solanum lycopersicum L.) have not yet been identified. In this study, a total of 39 SlLHC proteins containing the chlorophyll a/b binding domain or light-harvesting-like domain were identified, and classified into four subfamilies: Lhc, Lil, PsbS, and FCII. Further qRT-PCR analysis showed SlLhcb1.11 was inhibited and SlELIP1 was induced at low temperature (4 °C). Subsequently, the result of VIGS experiment showed that silencing SlLhcb1.11 or SlELIP1 genes resulted in lighter leaf color, reduced chlorophyll content, compromised photosynthesis, and decreased cold tolerance in tomato plants. These findings offer novel insights into the structure and function of SlLHC genes, thereby contributing to genetic resources for the development of cold-tolerant tomato germplasm.
Collapse
Affiliation(s)
- Fanyi Meng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Mengqiu Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Shanshan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Pan Liang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Yunfei Liang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Hongyan Shi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Shudi Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Huai Su
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Yilin Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Muhammad Asif Akram
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Xiaoxia Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Ru Feng
- Ulanqab Agricultural Technology and Popularization Center, Ulanqab, Inner Mongolia Autonomous Region 012000, China
| | - Xiangqiang Zhan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, Shanxi 712100, China.
| | - Fang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, Shanxi 712100, China.
| |
Collapse
|
8
|
Wang M, Yu X, Zhao J, Tian Z, Chen B, Li Q, Zhang D, Zhang F, Zhang L, Guo X. Overexpression of SikPsaF can increase the biomass of Broussonetia papyrifera by improving its photosynthetic efficiency and cold tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112380. [PMID: 39756483 DOI: 10.1016/j.plantsci.2024.112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Photosynthesis is essential for the accumulation of organic compounds in plant leaves. Study of photosynthesis in the leaves of Broussonetia papyrifera is crucial for enhancing its biomass production, growth, and development. Here, we cloned the SikPsaF gene associated with photosynthesis from Saussurea involucrata and constructed a vector that was introduced into B. papyrifera to generate a transgenic strain. We then assessed various photosynthesis-related parameters in the transgenic plants and examined the function of this gene and its expression patterns under cold stress. The results showed that SikPsaF was localized to chloroplasts. Its expression was induced by light, and its expression was higher in the leaves than in other tissues. Furthermore, SikPsaF expression increased significantly under cold stress. The biomass of transgenic lines was greater than that of wild-type plants. Overexpression of this gene led to increases in the chlorophyll content and photosynthetic indices, which mitigated cell membrane damage and reduced reactive oxygen species (ROS) accumulation. SikPsaF overexpression also helped maintain high antioxidant enzyme activity and a high content of osmoregulatory substances during stress; the increased enzyme activities were due to up-regulated gene expression. Overexpression of SikPsaF has a major effect on growth and development by enhancing photosynthetic efficiency, improving yield, conferring cold resistance, and reducing damage to the cell membrane and ROS accumulation at low temperatures. In summary, our findings indicate that these transgenic plants have enhanced photosynthetic efficiency and resilience against biotic stresses.
Collapse
Affiliation(s)
- Mei Wang
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| | - Xiangxue Yu
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| | - Jingyi Zhao
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| | - Zhijia Tian
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| | - Bo Chen
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| | - Qian Li
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| | | | - Fanfan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, PR China.
| | - Li Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, PR China.
| | - Xinyong Guo
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| |
Collapse
|
9
|
Ariga K. Layer-by-Layer Nanoarchitectonics: A Method for Everything in Layered Structures. MATERIALS (BASEL, SWITZERLAND) 2025; 18:654. [PMID: 39942320 PMCID: PMC11820121 DOI: 10.3390/ma18030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related research efforts, research into creating functional materials through the formation of thin layers on surfaces, molecular membranes, and multilayer structures of these materials have a lot of implications. Layered structures are especially important as a key part of nanoarchitectonics. The diversity of the components and materials used in layer-by-layer (LbL) assemblies is a notable feature. Examples of LbL assemblies introduced in this review article include quantum dots, nanoparticles, nanocrystals, nanowires, nanotubes, g-C3N4, graphene oxide, MXene, nanosheets, zeolites, nanoporous materials, sol-gel materials, layered double hydroxides, metal-organic frameworks, covalent organic frameworks, conducting polymers, dyes, DNAs, polysaccharides, nanocelluloses, peptides, proteins, lipid bilayers, photosystems, viruses, living cells, and tissues. These examples of LbL assembly show how useful and versatile it is. Finally, this review will consider future challenges in layer-by-layer nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
10
|
Gu J, Ip JCH, Chan SSW, Li J, Lam VTT, Leung KMY, Lam PKS, Leung PTY, Yan M. Effects of temperature on physiology, transcription, and toxin production of the harmful benthic dinoflagellate Gambierdiscus belizeanus. MARINE POLLUTION BULLETIN 2025; 211:117377. [PMID: 39644624 DOI: 10.1016/j.marpolbul.2024.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Benthic dinoflagellates constitute a group of microalgae that inhabit the ocean floor, adhering to substrates such as coral, seagrasses, and sand. Certain species within this group have the potential to produce toxins. Ocean warming could increase the occurrence of harmful benthic dinoflagellate blooms, which pose a significant threat to coastal ecosystems in tropical and subtropical regions. However, the impact of water temperatures on the growth and toxicity of these harmful algal species remains uncertain. In this study, we investigated the physiological and transcriptional responses, as well as toxin production, of Gambierdiscus belizeanus, a common dinoflagellate responsible for increasing ciguatera risk, when exposed to temperatures ranging from 18 °C to 28 °C. Based on 70-day growth curves, G. belizeanus grew fastest at 26 °C, with a maximum specific growth rate of 0.088 ± 0.018 div·d-1. At stationary phase of algal cultures, the photosynthetic efficiency (Fv/Fm) of algal cells at 26 °C was the highest (0.56 ± 0.02) among all treatments; significant decreases in pigment contents, including chlorophyll a, chlorophyll c, and carotenoids, were observed in algal cells exposed to 18 °C. However, during the exponential phase, only algal cultures exposed to 22 °C exhibited significantly lower levels of chlorophyll a and photosynthetic efficiency. The levels of algal toxins (44-methylgambierone and gambierone) in the 18 °C and 22 °C groups were significantly higher than those in groups exposed to higher temperatures (26 °C and 28 °C). Transcriptomic analysis showed that improved growth and photosynthesis at higher temperatures (26 °C and 28 °C) corresponded with the increased activity of crucial genes in carbon metabolism and photosynthesis. These genes, essential for energy and growth, could potentially facilitate the spread of G. belizeanus blooms. Lower temperatures led to molecular adaptations in G. belizeanus, such as modulated cell cycle genes and suppressed photosynthesis, explaining the physiological changes observed. Furthermore, the activation of toxin production-related genes under lower temperatures suggests a potential risk to ecosystems due to bioaccumulation of toxins. This study elucidates the distinct cellular and molecular responses of harmful dinoflagellates to variations in seawater temperature. These findings enhance our understanding of the emerging threats that toxin-producing benthic dinoflagellates pose to coastal ecosystems. This concern is especially significant as ocean warming has enabled some benthic toxic dinoflagellates to extend their range into higher-latitude regions.
Collapse
Affiliation(s)
- Jiarui Gu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jack Chi-Ho Ip
- Science Unit, Lingnan University, 999077, Hong Kong, China
| | - Sharon S W Chan
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Jing Li
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Veronica T T Lam
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China; Department of Science, School of Science and Technology, Hong Kong Metropolitan University, 999077, Hong Kong, China
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| | - Meng Yan
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
11
|
Ramakers LAI, Harbinson J, Wientjes E, van Amerongen H. Unravelling the different components of nonphotochemical quenching using a novel analytical pipeline. THE NEW PHYTOLOGIST 2025; 245:625-636. [PMID: 39545639 DOI: 10.1111/nph.20271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Photoprotection in plants includes processes collectively known as nonphotochemical quenching (NPQ), which quench excess excitation-energy in photosystem II. NPQ is triggered by acidification of the thylakoid lumen, which leads to PsbS-protein protonation and violaxanthin de-epoxidase activation, resulting in zeaxanthin accumulation. Despite extensive study, questions persist about the mechanisms of NPQ. We have set up a novel analytical pipeline to disentangle NPQ induction curves measured at many light intensities into a limited number of different kinetic components. To validate the method, we applied it to Chl-fluorescence measurements, which utilised the saturating-pulse methodology, on wild-type (wt) and zeaxanthin-lacking (npq1) Arabidopsis thaliana plants. NPQ induction curves in wt and npq1 can be explained by four components ( α , β , γ and δ ). The fastest two ( β and γ ) correlate with pH difference formed across the thylakoid membrane in wt and npq1. In wt, the slower component ( α ) appears to be due to the formation of zeaxanthin-related quenching whilst for npq1, this component is 'replaced' by a slower component ( δ ), which reflects a photoinhibition-like process that appears in the absence of zeaxanthin-induced quenching. Expanding this approach will allow the effects of mutations and other abiotic-stress factors to be directly probed by changes in these underlying components.
Collapse
Affiliation(s)
- Lennart A I Ramakers
- Laboratory of Biophysics, Wageningen University, 6708WE, Wageningen, the Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708WE, Wageningen, the Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, 6708WE, Wageningen, the Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, 6708WE, Wageningen, the Netherlands
- MicroSpectroscopy Research Facility, Wageningen University, 6708WE, Wageningen, the Netherlands
| |
Collapse
|
12
|
Allgöwer F, Pöverlein MC, Rutherford AW, Kaila VRI. Mechanism of proton release during water oxidation in Photosystem II. Proc Natl Acad Sci U S A 2024; 121:e2413396121. [PMID: 39700151 DOI: 10.1073/pnas.2413396121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Photosystem II (PSII) catalyzes light-driven water oxidation that releases dioxygen into our atmosphere and provides the electrons needed for the synthesis of biomass. The catalysis occurs in the oxygen-evolving oxo-manganese-calcium (Mn4O5Ca) cluster that drives the oxidation and deprotonation of substrate water molecules leading to the O2 formation. However, despite recent advances, the mechanism of these reactions remains unclear and much debated. Here, we show that the light-driven Tyr161D1 (Yz) oxidation adjacent to the Mn4O5Ca cluster, decreases the barrier for proton transfer from the putative substrate water molecule (W3/Wx) to Glu310D2, accessible to the luminal bulk. By combining hybrid quantum/classical (QM/MM) free energy calculations with atomistic molecular dynamics simulations, we probe the energetics of the proton transfer along the Cl1 pathway. We demonstrate that the proton transfer occurs via water molecules and a cluster of conserved carboxylates, driven by redox-triggered electric fields directed along the pathway. Glu65D1 establishes a local molecular gate that controls the proton transfer to the luminal bulk, while Glu312D2 acts as a local proton storage site. The identified gating region could be important in preventing backflow of protons to the Mn4O5Ca cluster. The structural changes, derived here based on the dark-state PSII structure, strongly support recent time-resolved X-ray free electron laser data of the S3 → S4 transition (Bhowmick et al. Nature 617, 2023) and reveal the mechanistic basis underlying deprotonation of the substrate water molecules. Our findings provide insight into the water oxidation mechanism of PSII and show how the interplay between redox-triggered electric fields, ion-pairs, and hydration effects control proton transport reactions.
Collapse
Affiliation(s)
- Friederike Allgöwer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Maximilian C Pöverlein
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - A William Rutherford
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
13
|
He FY, Zhao LS, Qu XX, Li K, Guo JP, Zhao F, Wang N, Qin BY, Chen XL, Gao J, Liu LN, Zhang YZ. Structural insights into the assembly and energy transfer of haptophyte photosystem I-light-harvesting supercomplex. Proc Natl Acad Sci U S A 2024; 121:e2413678121. [PMID: 39642204 PMCID: PMC11648859 DOI: 10.1073/pnas.2413678121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024] Open
Abstract
Haptophyta represents a major taxonomic group, with plastids derived from the primary plastids of red algae. Here, we elucidated the cryoelectron microscopy structure of the photosystem I-light-harvesting complex I (PSI-LHCI) supercomplex from the haptophyte Isochrysis galbana. The PSI core comprises 12 subunits, which have evolved differently from red algae and cryptophytes by losing the PsaO subunit while incorporating the PsaK subunit, which is absent in diatoms and dinoflagellates. The PSI core is encircled by 22 fucoxanthin-chlorophyll a/c-binding light-harvesting antenna proteins (iFCPIs) that form a trilayered antenna arrangement. Moreover, a pigment-binding subunit, LiFP, which has not been identified in any other previously characterized PSI-LHCI supercomplexes, was determined in I. galbana PSI-iFCPI, presumably facilitating the interactions and energy transfer between peripheral iFCPIs and the PSI core. Calculation of excitation energy transfer rates by computational simulations revealed that the intricate pigment network formed within PSI-iFCPI ensures efficient transfer of excitation energy. Overall, our study provides a solid structural foundation for understanding the light-harvesting and energy transfer mechanisms in haptophyte PSI-iFCPI and provides insights into the evolution and structural variations of red-lineage PSI-LHCIs.
Collapse
Affiliation(s)
- Fei-Yu He
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Long-Sheng Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Xin-Xiao Qu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Kang Li
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Jian-Ping Guo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan430070, China
| | - Fang Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Ning Wang
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
| | - Bing-Yue Qin
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan430070, China
| | - Lu-Ning Liu
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| |
Collapse
|
14
|
Chen Y, Yuan L, Chen J, Gao A, Hu J, Wang H, Zhang X. Response and adaptation of Chlorella pyrenoidosa to 6PPD: Physiological and genetic mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136122. [PMID: 39405714 DOI: 10.1016/j.jhazmat.2024.136122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
The extensive contamination of the tire antidegradant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) in aquatic environments have raised concerns about its potential threats to aquatic organisms. Here, the responses of green algae Chlorella pyrenoidosa (C. pyrenoidosa) to 6PPD exposure were investigated for the first time. The growth of C. pyrenoidosa experienced three sequential phases, including inhibition, recovery and stimulation. Physiological and transcriptome analysis suggested that the growth inhibition was associated with the suppressed nitrogen assimilation and amino acid biosynthesis pathways, among which nitrate transporter (NRT) 2.1 was a key target of 6PPD. Molecular docking revealed the steadily binding of 6PPD to the substrate entry region of NRT 2.1 via hydrogen bonds and π - cation interaction, blocking the acquisition of extracellular inorganic nitrogen. Along with the removal of 6PPD through abiotic processes and biodegradation, an adaptive metabolic shift in cells not only facilitated growth recovery but also triggered a compensatory stimulation phase. With regard to microalgal adaptation, upregulated DNA replication and repair pathways served to maintain the integrity of the genetic information, enhanced photosynthesis cascades and central carbon metabolism improved carbon flux and energy conversion to microalgal biomass, recovered amino acid biosynthesis produced essential proteins for multiple metabolisms. The results provide new insights into microalgal molecular responses to 6PPD exposure, facilitating a better understanding of ecological consequences of 6PPD in the environment.
Collapse
Affiliation(s)
- Yue Chen
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Lei Yuan
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jinyuan Chen
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Ang Gao
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Haiying Wang
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, China.
| | - Xin Zhang
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, China.
| |
Collapse
|
15
|
Sellés J, Alric J, Rutherford AW, Davis GA, Viola S. In vivo ElectroChromic Shift measurements of photosynthetic activity in far-red absorbing cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149502. [PMID: 39127329 DOI: 10.1016/j.bbabio.2024.149502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Some cyanobacteria can do photosynthesis using not only visible but also far-red light that is unused by most other oxygenic photoautotrophs because of its lower energy content. These species have a modified photosynthetic apparatus containing red-shifted pigments. The incorporation of red-shifted pigments decreases the photochemical efficiency of photosystem I and, especially, photosystem II, and it might affect the distribution of excitation energy between the two photosystems with possible consequences on the activity of the entire electron transport chain. To investigate the in vivo effects on photosynthetic activity of these pigment changes, we present here the adaptation of a spectroscopic method, based on a physical phenomenon called ElectroChromic Shift (ECS), to the far-red absorbing cyanobacteria Acaryochloris marina and Chroococcidiopsis thermalis PCC7203. ECS measures the electric field component of the trans-thylakoid proton motive force generated by photosynthetic electron transfer. We show that ECS can be used in these cyanobacteria to investigate in vivo the stoichiometry of photosystem I and photosystem II and their absorption cross-section, as well as the overall efficiency of light energy conversion into electron transport. Our results indicate that both species use visible and far-red light with similar efficiency, despite significant differences in their light absorption characteristics. ECS thus represents a new non-invasive tool to study the performance of naturally occurring far-red photosynthesis.
Collapse
Affiliation(s)
- Julien Sellés
- Institute of Physico-Chemical Biology - UMR7141, Paris, France
| | - Jean Alric
- Institute of Biosciences and Biotechnologies of Aix-Marseille - UMR7265, Saint-Paul-Lez-Durance, France
| | | | - Geoffry A Davis
- Department of Life Sciences, Imperial College, London, UK; Biology Department, Ludwig-Maximilians University, Munich, Germany
| | - Stefania Viola
- Institute of Biosciences and Biotechnologies of Aix-Marseille - UMR7265, Saint-Paul-Lez-Durance, France.
| |
Collapse
|
16
|
Kodru S, Nellaepalli S, Ozawa SI, Satoh C, Kuroda H, Tanaka R, Guan K, Kobayashi M, Tran P, McCarthy S, Wakao S, Niyogi KK, Takahashi Y. Geranylgeranylated-chlorophyll-protein complexes in lhl3 mutant of the green alga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1577-1590. [PMID: 39405462 DOI: 10.1111/tpj.17071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 11/19/2024]
Abstract
Chlorophylls a and b (Chl a and b) are involved in light harvesting, photochemical reactions, and electron transfer reactions in plants and green algae. The core complexes of the photosystems (PSI and PSII) associate with Chl a, while the peripheral antenna complexes (LHCI and LHCII) bind Chls a and b. One of the final steps of Chl biosynthesis is the conversion of geranylgeranylated Chls (ChlsGG) to phytylated Chls by geranylgeranyl reductase (GGR). Here, we isolated and characterized a pale green mutant of the green alga Chlamydomonas reinhardtii that was very photosensitive and was unable to grow photoautotrophically. This mutant has a 16-bp deletion in the LHL3 gene, which resulted in the loss of LHL3 and GGR and accumulated only ChlsGG. The lhl3 mutant cells grown in the dark accumulated PSII and PSI proteins at 25-50% of WT levels, lacked PSII activity, and retained a decreased PSI activity. The PSII and PSI proteins were depleted to trace amounts in the mutant cells grown in light. In contrast, the accumulation of LHCI and LHCII was unaffected except for LHCA3. Our results suggest that the replacement of Chls with ChlsGG strongly affects the structural and functional integrity of PSII and PSI complexes but their associating LHC complexes to a lesser extent. Affinity purification of HA-tagged LHL3 confirmed the formation of a stable LHL3-GGR complex, which is vital for GGR stability. The LHL3-GGR complex contained a small amount of PSI complex assembly factors, suggesting a putative coupling between Chl synthesis and PSI complex assembly.
Collapse
Affiliation(s)
- Sireesha Kodru
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- JST-CREST, Tokyo, Japan
| | - Sreedhar Nellaepalli
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- JST-CREST, Tokyo, Japan
| | - Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- JST-CREST, Tokyo, Japan
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Chihiro Satoh
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- JST-CREST, Tokyo, Japan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- JST-CREST, Tokyo, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Katharine Guan
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
| | - Marilyn Kobayashi
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, 94720, USA
| | - Phoi Tran
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
| | - Sarah McCarthy
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
| | - Setsuko Wakao
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, California, 94720, USA
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- JST-CREST, Tokyo, Japan
| |
Collapse
|
17
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
18
|
Eckardt NA, Allahverdiyeva Y, Alvarez CE, Büchel C, Burlacot A, Cardona T, Chaloner E, Engel BD, Grossman AR, Harris D, Herrmann N, Hodges M, Kern J, Kim TD, Maurino VG, Mullineaux CW, Mustila H, Nikkanen L, Schlau-Cohen G, Tronconi MA, Wietrzynski W, Yachandra VK, Yano J. Lighting the way: Compelling open questions in photosynthesis research. THE PLANT CELL 2024; 36:3914-3943. [PMID: 39038210 PMCID: PMC11449116 DOI: 10.1093/plcell/koae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.
Collapse
Affiliation(s)
| | - Yagut Allahverdiyeva
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Adrien Burlacot
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tanai Cardona
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Emma Chaloner
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Benjamin D Engel
- Biozentrum, University of Basel, Sptialstrasse 41, 4056 Basel, Switzerland
| | - Arthur R Grossman
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nicolas Herrmann
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tom Dongmin Kim
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Henna Mustila
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lauri Nikkanen
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Gabriela Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | | | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
19
|
Zeng H, Yi K, Yang S, Jiang Y, Mao P, Yu Y, Feng Y, Dong Y, Dou L, Li M. Photosynthetic performance of glumes of oat spikelets is more stable for grain-filling stage under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108890. [PMID: 38950462 DOI: 10.1016/j.plaphy.2024.108890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Drought stress affects plant photosynthesis, leading to a reduction in the quality and yield of crop production. Non-foliar organs play a complementary role in photosynthesis during plant growth and development and are important sources of energy. However, there are limited studies on the performance of non-foliar organs under drought stress. The photosynthetic-responsive differences of oat spikelet organs (glumes, lemmas and paleas) and flag leaves to drought stress during the grain-filling stage were examined. Under drought stress, photosynthetic performance of glume is more stable. Intercellular CO2 concentration (Ci), chlorophyll b, maximum photochemical efficiency of photosystem II. (Fv/Fm), and electron transport rate (ETR) were significantly higher in the glume compared to the flag leaf. The transcriptome data revealed that stable expression of the RCCR gene under drought stress was the main reason for maintaining higher chlorophyll content in the glume. Additionally, no differential expression genes (DEGs) related to Photosystem Ⅰ (PSI) reaction centers were found, and drought stress primarily affects the Photosystem II (PSII) reaction center. In spikelets, the CP43 and CP47 subunits of PSII and the AtpB subunit of ATP synthase were increased on the thylakoid membrane, contributing to photosynthetic stabilisation of spikelets as a means of supplementing the limited photosynthesis of the leaves under drought stress. The results enhanced understanding of the photosynthetic performance of oat spikelet during the grain-filling stage, and also provided an important basis on improving the photosynthetic capacity of non-foliar organs for the selection and breeding new oat varieties with high yield and better drought resistance.
Collapse
Affiliation(s)
- Hanguo Zeng
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 1000101, China
| | - Kun Yi
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 1000101, China
| | - Shuangfeng Yang
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 1000101, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Peisheng Mao
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 1000101, China
| | - Yang Yu
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 1000101, China
| | - Yuan Feng
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 1000101, China
| | - Yongxiang Dong
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 1000101, China
| | - Liru Dou
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 1000101, China
| | - Manli Li
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 1000101, China.
| |
Collapse
|
20
|
Jiang Z, Wei Z, Zhang J, Zheng C, Zhu H, Zhai H, He S, Gao S, Zhao N, Zhang H, Liu Q. Source-sink synergy is the key unlocking sweet potato starch yield potential. Nat Commun 2024; 15:7260. [PMID: 39179563 PMCID: PMC11343742 DOI: 10.1038/s41467-024-51727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Sweet potato starch is in high demand globally for food and industry. However, starch content is negatively correlated with fresh yield. It is urgent to uncover the genetic basis and molecular mechanisms underlying the starch yield of sweet potato. Here we systematically explore source-sink synergy-mediated sweet potato starch yield formation: the production, loading, and transport of photosynthates in leaves, as well as their unloading and allocation in storage roots, lead to starch content divergence between sweet potato varieties. Moreover, we find that six haplotypes of IbPMA1 encoding a plasma membrane H+-ATPase are significantly linked with starch accumulation. Overexpression of IbPMA1 in sweet potato results in significantly increased starch and sucrose contents, while its knockdown exhibits an opposing effect. Furthermore, a basic helix-loop-helix (bHLH) transcription factor IbbHLH49 directly targets IbPMA1 and activates its transcription. Overexpression of IbbHLH49 notably improves source-sink synergy-mediated fresh yield and starch accumulation in sweet potato. Both IbbHLH49 and IbPMA1 substantially influence sugar transport and starch biosynthesis in source and sink tissues. These findings expand our understanding of starch yield formation and provide strategies and candidate genes for high starch breeding in root and tuber crops.
Collapse
Affiliation(s)
- Zhicheng Jiang
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zihao Wei
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Jun Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Chenxing Zheng
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China.
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
21
|
Kim SH, Bae S, Sung YW, Hwang YS. Effects of particle size on toxicity, bioaccumulation, and translocation of zinc oxide nanoparticles to bok choy (Brassica chinensis L.) in garden soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116519. [PMID: 38833977 DOI: 10.1016/j.ecoenv.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
The indiscriminate use of zinc oxide nanoparticles (ZnO NPs) in daily life can lead to their release into soil environment. These ZnO NPs can be taken up by crops and translocated to their edible part, potentially causing risks to the ecosystem and human health. In this study, we conducted pot experiments to determine phytotoxicity, bioaccumulation and translocation depending on the size (10 - 30 nm, 80 - 200 nm and 300 nm diameter) and concentration (0, 100, 500 and 1000 mg Zn/kg) of ZnO NPs and Zn ion (Zn2+) in bok choy, a leafy green vegetable crop. After 14 days of exposure, our results showed that large-sized ZnO NPs (i.e., 300 nm) at the highest concentration exhibited greater phytotoxicity, including obstruction of leaf and root weight (42.5 % and 33.8 %, respectively) and reduction of chlorophyll a and b content (50.2 % and 85.2 %, respectively), as well as changes in the activities of oxidative stress responses compared to those of small-sized ZnO NPs, although their translocation ability was relatively lower than that of smaller ones. The translocation factor (TF) values decreased as the size of ZnO NPs increased, with TF values of 0.68 for 10 - 30 nm, 0.55 for 80 - 200 nm, and 0.27 for 300 nm ZnO NPs, all at the highest exposure concentration. Both the results of micro X-ray fluorescence (μ-XRF) spectrometer and bio-transmission electron microscopy (bio-TEM) showed that the Zn elements were mainly localized at the edges of leaves exposed to small-sized ZnO NPs. However, the Zn elements upon exposure to large-sized ZnO NP were primarily observed in the primary veins of leaves in the μ-XRF data, indicating a limitation in their ability to translocate from roots to leaves. This study not only advances our comprehension of the environmental impact of nanotechnology but also holds considerable implications for the future of sustainable agriculture and food safety.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, Republic of Korea; Department of Southern Area Crop Science, National Institute of Crop Science, Miryang, Republic of Korea
| | - Sujin Bae
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Yu Sik Hwang
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, Republic of Korea.
| |
Collapse
|
22
|
Song X, Zhao W, Cui S, Su X, Yu J, Guo L, Song K. Deciphering the dual role of persistent luminescence materials: Toxicity and photoreception effects on rice development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174542. [PMID: 38977096 DOI: 10.1016/j.scitotenv.2024.174542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Studies on the toxicity of micro- and nanomaterials in plants have primarily focused on their intrinsic effects. However, there is often oversight when considering the potential perceptual responses that plants may exhibit in response to these materials. In this investigation, we assessed the impact of three commercially available persistent luminescence materials (PLMs) that emit red, green, or blue light under various environmental conditions. We subjected rice (Oryza sativa L.), a short-day plant, to nine distinct treatments, including exposure to particles in isolation, their nocturnal afterglow, or a combination of both. We thoroughly examined rice seedling morphology, photosynthesis patterns, metabolite dynamics, and flowering gene expression to determine the biological responses of plants to these particles. These findings demonstrated that PLMs stably interact with rice, and their emitted afterglow precisely matches the perceptual bandwidth of rice photoreceptors. Notably, the nocturnal afterglow from the red and blue PLMs enhanced the vegetative growth of rice seedlings while inhibiting their reproductive development. The blue PLMs exhibited the most pronounced positive effects, while the red PLMs exhibited inhibitory effects. When exposed to a combination of red and blue PLMs, rice displays enhanced growth and development. The observed alterations in the expression patterns of genes responsible for flowering supported these effects. We concluded that PLMs influence rice growth and development due to their inherent properties and intermittent illumination during dark periods. Both factors collectively shape rice growth and development.
Collapse
Affiliation(s)
- Xiangwei Song
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Wei Zhao
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Shuyuan Cui
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Xiaomeng Su
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Jingbo Yu
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun, 130032, China; Research Institute for Scientific and Technological Innovation, Changchun Normal University.
| |
Collapse
|
23
|
Wang J, Watson JL, Lisanza SL. Protein Design Using Structure-Prediction Networks: AlphaFold and RoseTTAFold as Protein Structure Foundation Models. Cold Spring Harb Perspect Biol 2024; 16:a041472. [PMID: 38438190 PMCID: PMC11216169 DOI: 10.1101/cshperspect.a041472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Designing proteins with tailored structures and functions is a long-standing goal in bioengineering. Recently, deep learning advances have enabled protein structure prediction at near-experimental accuracy, which has catalyzed progress in protein design as well. We review recent studies that use structure-prediction neural networks to design proteins, via approaches such as activation maximization, inpainting, or denoising diffusion. These methods have led to major improvements over previous methods in wet-lab success rates for designing protein binders, metalloproteins, enzymes, and oligomeric assemblies. These results show that structure-prediction models are a powerful foundation for developing protein-design tools and suggest that continued improvement of their accuracy and generality will be key to unlocking the full potential of protein design.
Collapse
Affiliation(s)
- Jue Wang
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, Washington 98195, USA
- DeepMind, London EC4A 3BF, United Kingdom
| | - Joseph L Watson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Sidney L Lisanza
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
24
|
Liu J, Yang KR, Long Z, Armstrong WH, Brudvig GW, Batista VS. Water Ligands Regulate the Redox Leveling Mechanism of the Oxygen-Evolving Complex of the Photosystem II. J Am Chem Soc 2024; 146:15986-15999. [PMID: 38833517 DOI: 10.1021/jacs.4c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Understanding how water ligands regulate the conformational changes and functionality of the oxygen-evolving complex (OEC) in photosystem II (PSII) throughout the catalytic cycle of oxygen evolution remains a highly intriguing and unresolved challenge. In this study, we investigate the effect of water insertion (WI) on the redox state of the OEC by using the molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) hybrid methods. We find that water binding significantly reduces the free energy change for proton-coupled electron transfer (PCET) from Mn to YZ•, underscoring the important regulatory role of water binding, which is essential for enabling the OEC redox-leveling mechanism along the catalytic cycle. We propose a water binding mechanism in which WI is thermodynamically favored by the closed-cubane form of the OEC, with water delivery mediated by Ca2+ ligand exchange. Isomerization from the closed- to open-cubane conformation at three post-WI states highlights the importance of the location of the MnIII center in the OEC and the orientation of its Jahn-Teller axis to conformational changes of the OEC, which might be critical for the formation of the O-O bond. These findings reveal a complex interplay between conformational changes in the OEC and the ligand environment during the activation of the OEC by YZ•. Analogous regulatory effects due to water ligand binding are expected to be important for a wide range of catalysts activated by redox state transitions in aqueous environments.
Collapse
Affiliation(s)
- Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ke R Yang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuoran Long
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - William H Armstrong
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
25
|
Kusy D, Song H, Rząca A, Banasiewicz M, Barboza CA, Kim D, Gryko DT. Efficient Electron Transfer Driven by Excited-State Structural Relaxation in Corrole-Perylenedimiide Dyad. J Phys Chem Lett 2024; 15:5231-5238. [PMID: 38718187 PMCID: PMC11103693 DOI: 10.1021/acs.jpclett.4c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
A sterically encumbered trans-A2B-corrole possessing a perylenediimide (PDI) scaffold in close proximity to the macrocycle has been synthesized via a straightforward route. Electronic communication as probed via steady-state absorption or cyclic voltammetry is weak in the ground state, in spite of the corrole ring and PDI being bridged by an o-phenylene unit. The TDDFT excited-state geometry optimization suggests after excitation the interchromophoric distance is markedly reduced, thus enhancing the through-space electronic coupling between the corrole and the PDI. This is corroborated by the strong deviation of the emission spectrum originating from both PDI and corrole in the dyad. Selective excitation of both donor and acceptor units triggers efficient sub-picosecond electron transfer and hole transfer, respectively, followed by fast charge recombination. In comparison to previously studied corrole-PDI dyads, both charge separation and charge recombination occur faster, because of the structural relaxation in the excited state.
Collapse
Affiliation(s)
- Damian Kusy
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Hongwei Song
- Spectroscopy
Laboratory for Functional π-Electronic Systems and Department
of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Antoni Rząca
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of
Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw, Poland
| | - Marzena Banasiewicz
- Institute
of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Cristina A. Barboza
- Institute
of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
- Institute
of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dongho Kim
- Spectroscopy
Laboratory for Functional π-Electronic Systems and Department
of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Daniel T. Gryko
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
26
|
Dai GZ, Song WY, Xu HF, Tu M, Yu C, Li ZK, Shang JL, Jin CL, Ding CS, Zuo LZ, Liu YR, Yan WW, Zang SS, Liu K, Zhang Z, Bock R, Qiu BS. Hypothetical chloroplast reading frame 51 encodes a photosystem I assembly factor in cyanobacteria. THE PLANT CELL 2024; 36:1844-1867. [PMID: 38146915 PMCID: PMC11062458 DOI: 10.1093/plcell/koad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/29/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Hypothetical chloroplast open reading frames (ycfs) are putative genes in the plastid genomes of photosynthetic eukaryotes. Many ycfs are also conserved in the genomes of cyanobacteria, the presumptive ancestors of present-day chloroplasts. The functions of many ycfs are still unknown. Here, we generated knock-out mutants for ycf51 (sll1702) in the cyanobacterium Synechocystis sp. PCC 6803. The mutants showed reduced photoautotrophic growth due to impaired electron transport between photosystem II (PSII) and PSI. This phenotype results from greatly reduced PSI content in the ycf51 mutant. The ycf51 disruption had little effect on the transcription of genes encoding photosynthetic complex components and the stabilization of the PSI complex. In vitro and in vivo analyses demonstrated that Ycf51 cooperates with PSI assembly factor Ycf3 to mediate PSI assembly. Furthermore, Ycf51 interacts with the PSI subunit PsaC. Together with its specific localization in the thylakoid membrane and the stromal exposure of its hydrophilic region, our data suggest that Ycf51 is involved in PSI complex assembly. Ycf51 is conserved in all sequenced cyanobacteria, including the earliest branching cyanobacteria of the Gloeobacter genus, and is also present in the plastid genomes of glaucophytes. However, Ycf51 has been lost from other photosynthetic eukaryotic lineages. Thus, Ycf51 is a PSI assembly factor that has been functionally replaced during the evolution of oxygenic photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Wei-Yu Song
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Miao Tu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chen Yu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Zheng-Ke Li
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Jin-Long Shang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chun-Lei Jin
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chao-Shun Ding
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ling-Zi Zuo
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yan-Ru Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Wei-Wei Yan
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Sha-Sha Zang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ke Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Zheng Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ralph Bock
- Department III, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| |
Collapse
|
27
|
Luo L, Martin AP, Tandoh EK, Chistoserdov A, Slipchenko LV, Savikhin S, Xu W. Impact of Peripheral Hydrogen Bond on Electronic Properties of the Primary Acceptor Chlorophyll in the Reaction Center of Photosystem I. Int J Mol Sci 2024; 25:4815. [PMID: 38732034 PMCID: PMC11084960 DOI: 10.3390/ijms25094815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Photosystem I (PS I) is a photosynthetic pigment-protein complex that absorbs light and uses the absorbed energy to initiate electron transfer. Electron transfer has been shown to occur concurrently along two (A- and B-) branches of reaction center (RC) cofactors. The electron transfer chain originates from a special pair of chlorophyll a molecules (P700), followed by two chlorophylls and one phylloquinone in each branch (denoted as A-1, A0, A1, respectively), converging in a single iron-sulfur complex Fx. While there is a consensus that the ultimate electron donor-acceptor pair is P700+A0-, the involvement of A-1 in electron transfer, as well as the mechanism of the very first step in the charge separation sequence, has been under debate. To resolve this question, multiple groups have targeted electron transfer cofactors by site-directed mutations. In this work, the peripheral hydrogen bonds to keto groups of A0 chlorophylls have been disrupted by mutagenesis. Four mutants were generated: PsaA-Y692F; PsaB-Y667F; PsaB-Y667A; and a double mutant PsaA-Y692F/PsaB-Y667F. Contrary to expectations, but in agreement with density functional theory modeling, the removal of the hydrogen bond by Tyr → Phe substitution was found to have a negligible effect on redox potentials and optical absorption spectra of respective chlorophylls. In contrast, Tyr → Ala substitution was shown to have a fatal effect on the PS I function. It is thus inferred that PsaA-Y692 and PsaB-Y667 residues have primarily structural significance, and their ability to coordinate respective chlorophylls in electron transfer via hydrogen bond plays a minor role.
Collapse
Affiliation(s)
- Lujun Luo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; (L.L.)
| | - Antoine P. Martin
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA
| | - Elijah K. Tandoh
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; (L.L.)
| | - Andrei Chistoserdov
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | | | - Sergei Savikhin
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; (L.L.)
| |
Collapse
|
28
|
Bai A, Zhao T, Li Y, Zhang F, Wang H, Shah SHA, Gong L, Liu T, Wang Y, Hou X, Li Y. QTL mapping and candidate gene analysis reveal two major loci regulating green leaf color in non-heading Chinese cabbage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:105. [PMID: 38622387 DOI: 10.1007/s00122-024-04608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
KEY MESSAGE Two major-effect QTL GlcA07.1 and GlcA09.1 for green leaf color were fine mapped into 170.25 kb and 191.41 kb intervals on chromosomes A07 and A09, respectively, and were validated by transcriptome analysis. Non-heading Chinese cabbage (NHCC) is a leafy vegetable with a wide range of green colors. Understanding the genetic mechanism behind broad spectrum of green may facilitate the breeding of high-quality NHCC. Here, we used F2 and F7:8 recombination inbred line (RIL) population from a cross between Wutacai (dark-green) and Erqing (lime-green) to undertake the genetic analysis and quantitative trait locus (QTL) mapping in NHCC. The genetic investigation of the F2 population revealed that the variation of green leaf color was controlled by two recessive genes. Six pigments associated with green leaf color, including total chlorophyll, chlorophyll a, chlorophyll b, total carotenoids, lutein, and carotene were quantified and applied for QTL mapping in the RIL population. A total of 7 QTL were detected across the whole genome. Among them, two major-effect QTL were mapped on chromosomes A07 (GlcA07.1) and A09 (GlcA09.1) corresponding to two QTL identified in the F2 population. The QTL GlcA07.1 and GlcA09.1 were further fine mapped into 170.25 kb and 191.41 kb genomic regions, respectively. By comparing gene expression level and gene annotation, BraC07g023810 and BraC07g023970 were proposed as the best candidates for GlcA07.1, while BraC09g052220 and BraC09g052270 were suggested for GlcA09.1. Two InDel molecular markers (GlcA07.1-BcGUN4 and GlcA09.1-BcSG1) associated with BraC07gA023810 and BraC09g052220 were developed and could effectively identify leaf color in natural NHCC accessions, suggesting their potential for marker-assisted leaf color selection in NHCC breeding.
Collapse
Affiliation(s)
- Aimei Bai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Tianzi Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Feixue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Huzhou Academy of Agricultural Sciences, Huzhou, 313000, Zhejiang Province, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Sayyed Hamad Ahmad Shah
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Li Gong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yuhui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
29
|
Zhao LS, Wang N, Li K, Li CY, Guo JP, He FY, Liu GM, Chen XL, Gao J, Liu LN, Zhang YZ. Architecture of symbiotic dinoflagellate photosystem I-light-harvesting supercomplex in Symbiodinium. Nat Commun 2024; 15:2392. [PMID: 38493166 PMCID: PMC10944487 DOI: 10.1038/s41467-024-46791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Symbiodinium are the photosynthetic endosymbionts for corals and play a vital role in supplying their coral hosts with photosynthetic products, forming the nutritional foundation for high-yield coral reef ecosystems. Here, we determine the cryo-electron microscopy structure of Symbiodinium photosystem I (PSI) supercomplex with a PSI core composed of 13 subunits including 2 previously unidentified subunits, PsaT and PsaU, as well as 13 peridinin-Chl a/c-binding light-harvesting antenna proteins (AcpPCIs). The PSI-AcpPCI supercomplex exhibits distinctive structural features compared to their red lineage counterparts, including extended termini of PsaD/E/I/J/L/M/R and AcpPCI-1/3/5/7/8/11 subunits, conformational changes in the surface loops of PsaA and PsaB subunits, facilitating the association between the PSI core and peripheral antennae. Structural analysis and computational calculation of excitation energy transfer rates unravel specific pigment networks in Symbiodinium PSI-AcpPCI for efficient excitation energy transfer. Overall, this study provides a structural basis for deciphering the mechanisms governing light harvesting and energy transfer in Symbiodinium PSI-AcpPCI supercomplexes adapted to their symbiotic ecosystem, as well as insights into the evolutionary diversity of PSI-LHCI among various photosynthetic organisms.
Collapse
Affiliation(s)
- Long-Sheng Zhao
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237, China
| | - Ning Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Kang Li
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237, China
| | - Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237, China
| | - Jian-Ping Guo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei-Yu He
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Gui-Ming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
30
|
Tikhonov AN. The cytochrome b 6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts. PHOTOSYNTHESIS RESEARCH 2024; 159:203-227. [PMID: 37369875 DOI: 10.1007/s11120-023-01034-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
In oxygenic photosynthetic systems, the cytochrome b6f (Cytb6f) complex (plastoquinol:plastocyanin oxidoreductase) is a heart of the hub that provides connectivity between photosystems (PS) II and I. In this review, the structure and function of the Cytb6f complex are briefly outlined, being focused on the mechanisms of a bifurcated (two-electron) oxidation of plastoquinol (PQH2). In plant chloroplasts, under a wide range of experimental conditions (pH and temperature), a diffusion of PQH2 from PSII to the Cytb6f does not limit the intersystem electron transport. The overall rate of PQH2 turnover is determined mainly by the first step of the bifurcated oxidation of PQH2 at the catalytic site Qo, i.e., the reaction of electron transfer from PQH2 to the Fe2S2 cluster of the high-potential Rieske iron-sulfur protein (ISP). This point has been supported by the quantum chemical analysis of PQH2 oxidation within the framework of a model system including the Fe2S2 cluster of the ISP and surrounding amino acids, the low-potential heme b6L, Glu78 and 2,3,5-trimethylbenzoquinol (the tail-less analog of PQH2). Other structure-function relationships and mechanisms of electron transport regulation of oxygenic photosynthesis associated with the Cytb6f complex are briefly outlined: pH-dependent control of the intersystem electron transport and the regulatory balance between the operation of linear and cyclic electron transfer chains.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119991.
| |
Collapse
|
31
|
Hong YH, Nilajakar M, Lee YM, Nam W, Fukuzumi S. Artificial Photosynthesis for Regioselective Reduction of NAD(P) + to NAD(P)H Using Water as an Electron and Proton Source. J Am Chem Soc 2024; 146:5152-5161. [PMID: 38350862 DOI: 10.1021/jacs.3c10369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
In photosynthesis, four electrons and four protons taken from water in photosystem II (PSII) are used to reduce NAD(P)+ to produce NAD(P)H in photosystem I (PSI), which is the most important reductant to reduce CO2. Despite extensive efforts to mimic photosynthesis, artificial photosynthesis to produce NAD(P)H using water electron and proton sources has yet to be achieved. Herein, we report the photocatalytic reduction of NAD(P)+ to NAD(P)H and its analogues in a molecular model of PSI, which is combined with water oxidation in a molecular model of PSII. Photoirradiation of a toluene/trifluoroethanol (TFE)/borate buffer aqueous solution of hydroquinone derivatives (X-QH2), 9-mesityl-10-methylacridinium ion, cobaloxime, and NAD(P)+ (PSI model) resulted in the quantitative and regioselective formation of NAD(P)H and p-benzoquinone derivatives (X-Q). X-Q was reduced to X-QH2, accompanied by the oxidation of water to dioxygen under the photoirradiation of a toluene/TFE/borate buffer aqueous solution of [(N4Py)FeII]2+ (PSII model). The PSI and PSII models were combined using two glass membranes and two liquid membranes to produce NAD(P)H using water as an electron and proton source with the turnover number (TON) of 54. To the best of our knowledge, this is the first time to achieve the stoichiometry of photosynthesis, photocatalytic reduction of NAD(P)+ by water to produce NAD(P)H and O2.
Collapse
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Department of Chemistry, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
32
|
Yin L, Xu L, Shi K, Chen W, Zhang Y, Wang J, An J, He H, Yang S, Ni L, Li S. Physiology, microcystin production, and transcriptomic responses of Microcystis aeruginosa exposed to calcium and magnesium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169786. [PMID: 38181954 DOI: 10.1016/j.scitotenv.2023.169786] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Calcium ions (Ca2+) and magnesium ions (Mg2+) are pivotal in the community composition and stability of harmful cyanobacteria, yet the physiological and molecular responses remains poorly understood. This study aims to explore these responses in the high microcystin producer Microcystis aeruginosa (M. aeruginosa). Results indicate that the growth of M. aeruginosa is inhibited by Ca2+/Mg2+ exposure (0.5-10 mM), while Fv/Fm photosynthetic parameters and extracellular microcystin-leucine-arginine (MC-LR) concentrations increase. Additionally, MC-LR release is significantly elevated under exposure to Ca2+/Mg2+, posing potential aquatic environmental risks. Transcriptomic analysis reveals downregulation of genes related to cell architecture, membrane transport, and metabolism, while the genes linked to photosynthesis electron transmission and heavy metal-responsive transcriptional regulators are upregulated to adapt to environmental changes. Further analysis reveals that Ca2+ and Mg2+ primarily impact sulfur metabolism and transport of amino acids and mineral within cells. These findings provide insights into M. aeruginosa cells responses to Ca2+ and Mg2+ exposure.
Collapse
Affiliation(s)
- Li Yin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Lin Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Kaipian Shi
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Weiyu Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Juan Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Junfeng An
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, School of Environment, Hohai University, Nanjing 210098, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
33
|
Nabhan MA, Cordova-Huaman AV, Cliffel DE, Jennings GK. Interfacing poly( p-anisidine) with photosystem I for the fabrication of photoactive composite films. NANOSCALE ADVANCES 2024; 6:620-629. [PMID: 38235093 PMCID: PMC10790974 DOI: 10.1039/d3na00977g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Photosystem I (PSI) is an intrinsically photoactive multi-subunit protein that is found in higher order photosynthetic organisms. PSI is a promising candidate for renewable biohybrid energy applications due to its abundance in nature and its high quantum yield. To utilize PSI's light-responsive properties and to overcome its innate electrically insulating nature, the protein can be paired with a biologically compatible conducting polymer that carries charge at appropriate energy levels, allowing excited PSI electrons to travel within a composite network upon light excitation. Here, a substituted aniline, 4-methoxy-aniline (para-anisidine), is chemically oxidized to synthesize poly(p-anisidine) (PPA) and is interfaced with PSI for the fabrication of PSI-PPA composite films by drop casting. The resulting PPA polymer is characterized in terms of its structure, composition, thermal decomposition, spectroscopic response, morphology, and conductivity. Combining PPA with PSI yields composite films that exhibit photocurrent densities on the order of several μA cm-2 when tested with appropriate mediators in a 3-electrode setup. The composite films also display increased photocurrent output when compared to single-component films of the protein or PPA alone to reveal a synergistic combination of the film components. Tuning film thickness and PSI loading within the PSI-PPA films yields optimal photocurrents for the described system, with ∼2 wt% PSI and intermediate film thicknesses generating the highest photocurrents. More broadly, dilute PSI concentrations show significant importance in achieving high photocurrents in PSI-polymer films.
Collapse
Affiliation(s)
- Marc A Nabhan
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville Tennessee 37235-1604 USA
| | - Allison V Cordova-Huaman
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville Tennessee 37235-1604 USA
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - G Kane Jennings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville Tennessee 37235-1604 USA
| |
Collapse
|
34
|
Chen XW, Chen H, Zhao HL, Li DW, Ou LJ. Triazine herbicide reduced the toxicity of the harmful dinoflagellate Karenia mikimotoi by impairing its photosynthetic systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115740. [PMID: 38042131 DOI: 10.1016/j.ecoenv.2023.115740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This study aimed to examine this relationship by conducting a comprehensive physiological and 4D label-free quantitative proteomic analysis on the harmful dinoflagellate Karenia mikimotoi in the presence of the triazine herbicide dipropetryn. The findings demonstrated a significant decrease in photosynthetic activity and pigment content, as well as reduced levels of unsaturated fatty acids, reactive oxygen species (ROS), and hemolytic toxins in K. mikimotoi when exposed to dipropetryn. The proteomic analysis revealed a down-regulation in proteins associated with photosynthesis, ROS response, and energy metabolism, such as fatty acid biosynthesis, chlorophyll metabolism, and nitrogen metabolism. In contrast, an up-regulation of proteins related to energy-producing processes, such as fatty acid β-oxidation, glycolysis, and the tricarboxylic acid cycle, was observed. This study demonstrated that dipropetryn disrupts the photosynthetic systems of K. mikimotoi, resulting in a notable decrease in algal toxin production. These findings provide valuable insights into the underlying mechanisms of toxin production in toxigenic microalgae and explore the potential effect of herbicide pollution on harmful algal blooms in coastal environments.
Collapse
Affiliation(s)
- Xiang-Wu Chen
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Heng Chen
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Hai-Ling Zhao
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Da-Wei Li
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China.
| | - Lin-Jian Ou
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
35
|
Huang H, Zou H, Lin H, Dai Y, Lin J. Molecular insights into the mechanisms of a leaf color mutant in Anoectochilus roxburghii by gene mapping and transcriptome profiling based on PacBio Sequel II. Sci Rep 2023; 13:22751. [PMID: 38123722 PMCID: PMC10733416 DOI: 10.1038/s41598-023-50352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Plants with partial or complete loss of chlorophylls and other pigments are frequently occurring in nature but not commonly found. In the present study, we characterize a leaf color mutant 'arly01' with an albino stripe in the middle of the leaf, which is an uncommon ornamental trait in Anoectochilus roxburghii. The albino "mutant" middle portion and green "normal" leaf parts were observed by transmission electron microscopy (TEM), and their pigment contents were determined. The mutant portion exhibited underdevelopment of plastids and had reduced chlorophyll and other pigment (carotenoid, anthocyanin, and flavonoid) content compared to the normal portion. Meanwhile, comparative transcript analysis and metabolic pathways mapping showed that a total of 599 differentially expressed genes were mapped to 78 KEGG pathways, most of which were down-regulated in the mutant portion. The five most affected metabolic pathways were determined to be oxidative phosphorylation, photosynthesis system, carbon fixation & starch and sucrose metabolism, porphyrin and chlorophyll metabolism, and flavonoid biosynthesis. Our findings suggested that the mutant 'arly01' was a partial albinism of A. roxburghii, characterized by the underdevelopment of chloroplasts, low contents of photosynthetic and other color pigments, and a number of down-regulated genes and metabolites. With the emergence of ornamental A. roxburghii in southern China, 'arly01' could become a popular cultivar due to its unique aesthetics.
Collapse
Affiliation(s)
- Huiming Huang
- Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, 1499 Jiulong Avenue, Zhangzhou, 363005, Fujian, China
| | - Hui Zou
- Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, 1499 Jiulong Avenue, Zhangzhou, 363005, Fujian, China
| | - Hongting Lin
- Zhangzhou Fourth Municipal Hospital of Fujian Province, 41 Baiyun Village, Zhangzhou, 363100, Fujian, China
| | - Yimin Dai
- Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, 1499 Jiulong Avenue, Zhangzhou, 363005, Fujian, China
| | - Jiangbo Lin
- Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, 1499 Jiulong Avenue, Zhangzhou, 363005, Fujian, China.
| |
Collapse
|
36
|
Wu J, Chen S, Wang C, Lin W, Huang C, Fan C, Han D, Lu D, Xu X, Sui S, Zhang L. Regulatory dynamics of the higher-plant PSI-LHCI supercomplex during state transitions. MOLECULAR PLANT 2023; 16:1937-1950. [PMID: 37936349 DOI: 10.1016/j.molp.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023]
Abstract
State transition is a fundamental light acclimation mechanism of photosynthetic organisms in response to the environmental light conditions. This process rebalances the excitation energy between photosystem I (PSI) and photosystem II through regulated reversible binding of the light-harvesting complex II (LHCII) to PSI. However, the structural reorganization of PSI-LHCI, the dynamic binding of LHCII, and the regulatory mechanisms underlying state transitions are less understood in higher plants. In this study, using cryoelectron microscopy we resolved the structures of PSI-LHCI in both state 1 (PSI-LHCI-ST1) and state 2 (PSI-LHCI-LHCII-ST2) from Arabidopsis thaliana. Combined genetic and functional analyses revealed novel contacts between Lhcb1 and PsaK that further enhanced the binding of the LHCII trimer to the PSI core with the known interactions between phosphorylated Lhcb2 and the PsaL/PsaH/PsaO subunits. Specifically, PsaO was absent in the PSI-LHCI-ST1 supercomplex but present in the PSI-LHCI-LHCII-ST2 supercomplex, in which the PsaL/PsaK/PsaA subunits undergo several conformational changes to strengthen the binding of PsaO in ST2. Furthermore, the PSI-LHCI module adopts a more compact configuration with shorter Mg-to-Mg distances between the chlorophylls, which may enhance the energy transfer efficiency from the peripheral antenna to the PSI core in ST2. Collectively, our work provides novel structural and functional insights into the mechanisms of light acclimation during state transitions in higher plants.
Collapse
Affiliation(s)
- Jianghao Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Shuaijiabin Chen
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China; State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Weijun Lin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chao Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Chengxu Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Dexian Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - SenFang Sui
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China; State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China.
| |
Collapse
|
37
|
Nelson N. Coupling and Slips in Photosynthetic Reactions-From Femtoseconds to Eons. PLANTS (BASEL, SWITZERLAND) 2023; 12:3878. [PMID: 38005774 PMCID: PMC10674687 DOI: 10.3390/plants12223878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Photosynthesis stands as a unique biological phenomenon that can be comprehensively explored across a wide spectrum, from femtoseconds to eons. Across each timespan, a delicate interplay exists between coupling and inherent deviations that are essential for sustaining the overall efficiency of the system. Both quantum mechanics and thermodynamics act as guiding principles for the diverse processes occurring from femtoseconds to eons. Processes such as excitation energy transfer and the accumulation of oxygen in the atmosphere, along with the proliferation of organic matter on the Earth's surface, are all governed by the coupling-slip principle. This article will delve into select time points along this expansive scale. It will highlight the interconnections between photosynthesis, the global population, disorder, and the issue of global warming.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
38
|
Golub M, Pieper J. Recent Progress in Solution Structure Studies of Photosynthetic Proteins Using Small-Angle Scattering Methods. Molecules 2023; 28:7414. [PMID: 37959833 PMCID: PMC10650700 DOI: 10.3390/molecules28217414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Utilized for gaining structural insights, small-angle neutron and X-ray scattering techniques (SANS and SAXS, respectively) enable an examination of biomolecules, including photosynthetic pigment-protein complexes, in solution at physiological temperatures. These methods can be seen as instrumental bridges between the high-resolution structural information achieved by crystallography or cryo-electron microscopy and functional explorations conducted in a solution state. The review starts with a comprehensive overview about the fundamental principles and applications of SANS and SAXS, with a particular focus on the recent advancements permitting to enhance the efficiency of these techniques in photosynthesis research. Among the recent developments discussed are: (i) the advent of novel modeling tools whereby a direct connection between SANS and SAXS data and high-resolution structures is created; (ii) the employment of selective deuteration, which is utilized to enhance spatial selectivity and contrast matching; (iii) the potential symbioses with molecular dynamics simulations; and (iv) the amalgamations with functional studies that are conducted to unearth structure-function relationships. Finally, reference is made to time-resolved SANS/SAXS experiments, which enable the monitoring of large-scale structural transformations of proteins in a real-time framework.
Collapse
Affiliation(s)
| | - Jörg Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwald Str. 1, 50411 Tartu, Estonia;
| |
Collapse
|
39
|
Pavlou A, Mokvist F, Styring S, Mamedov F. Far-red photosynthesis: Two charge separation pathways exist in plant Photosystem II reaction center. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148994. [PMID: 37355002 DOI: 10.1016/j.bbabio.2023.148994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
An alternative charge separation pathway in Photosystem II under the far-red light was proposed by us on the basis of electron transfer properties at 295 K and 5 K. Here we extend these studies to the temperature range of 77-295 K with help of electron paramagnetic resonance spectroscopy. Induction of the S2 state multiline signal, oxidation of Cytochrome b559 and ChlorophyllZ was studied in Photosystem II membrane preparations from spinach after application of a laser flashes in visible (532 nm) or far-red (730-750 nm) spectral regions. Temperature dependence of the S2 state signal induction after single flash at 730-750 nm (Tinhibition ~ 240 K) was found to be different than that at 532 nm (Tinhibition ~ 157 K). No contaminant oxidation of the secondary electron donors cytochrome b559 or chlorophyllZ was observed. Photoaccumulation experiments with extensive flashing at 77 K showed similar results, with no or very little induction of the secondary electron donors. Thus, the partition ratio defined as (yield of YZ/CaMn4O5-cluster oxidation):(yield of Cytb559/ChlZ/CarD2 oxidation) was found to be 0.4 at under visible light and 1.7 at under far-red light at 77 K. Our data indicate that different products of charge separation after far-red light exists in the wide temperature range which further support the model of the different primary photochemistry in Photosystem II with localization of hole on the ChlD1 molecule.
Collapse
Affiliation(s)
- Andrea Pavlou
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Fredrik Mokvist
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
| |
Collapse
|
40
|
Agarwala N, Hastings G. Time-resolved FTIR difference spectroscopy for the study of photosystem I with high potential naphthoquinones incorporated into the A 1 binding site 2: Identification of neutral state quinone bands. PHOTOSYNTHESIS RESEARCH 2023; 158:1-11. [PMID: 37477846 DOI: 10.1007/s11120-023-01036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
Time-resolved step-scan FTIR difference spectroscopy at 77 K has been used to study photosystem I (PSI) from Synechocystis sp. PCC 6803 with four high-potential, 1,4-naphthoquinones (NQs) incorporated into the A1 binding site. The incorporated quinones are 2-chloro-NQ (2ClNQ), 2-bromo-NQ (2BrNQ), 2,3-dichloro-NQ (Cl2NQ), and 2,3-dibromo-NQ (Br2NQ). For completeness 2-methyl-NQ (2MNQ) was also incorporated and studied. Previously, PSI with the same quinones incorporated were studied in the, so-called, anion spectral region between 1550 and 1400 cm-1 (Agarwala et al. in Biochim Biophys Acta 1864(1):148918, 2023). Here we focus on spectra in the previously unexplored 1400-1200 cm-1 spectral region. In this region several bands are identified and assigned to the neutral state of the incorporated quinones. This is important as identification of neutral state quinone bands in the regular 1700-1600 cm-1 region has proven difficult in the past. For neutral PhQ in PSI a broad, intense band appears at ~ 1300 cm-1. For the symmetric di-substituted NQs (Cl2NQ/Br2NQ) a single intense neutral state band is found at ~ 1280/1269 cm-1, respectively. For both mono-substituted NQs, 2ClNQ and 2BrNQ, however, two neutral state bands are observed at ~ 1280 and ~ 1250 cm-1, respectively. These observations from time-resolved spectra agree well with conclusions drawn from absorption spectra of the NQs in THF, which are also presented here. Density functional theory based vibrational frequency calculations were undertaken allowing an identification of the normal modes associated with the neutral state quinone bands.
Collapse
Affiliation(s)
- Neva Agarwala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
41
|
Dörpholz H, Subramanian S, Zouni A, Lisdat F. Photoelectrochemistry of a photosystem I - Ferredoxin construct on ITO electrodes. Bioelectrochemistry 2023; 153:108459. [PMID: 37263168 DOI: 10.1016/j.bioelechem.2023.108459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
In this study, photobioelectrodes based on a ferredoxin-modified photosystem I (PSI-Fd) from Thermosynechococcus vestitus have been prepared and characterized regarding the direct electron transfer between PSI-Fd and the electrode. The modified PSI with the covalently linked ferredoxin (Fd) on its stromal side has been immobilized on indium-tin-oxide (ITO) electrodes with a 3-dimensional inverse-opal structure. Compared to native PSI, a lower photocurrent and a lower onset potential of the cathodic photocurrent have been observed. This can be mainly attributed to a different adsorption behavior of the PSI-Fd-construct onto the 3D ITO. However, the overall behavior is rather similar to PSI. First experiments have been performed for applying this PSI-Fd photobioelectrode for enzyme-driven NADPH generation. By coupling the electrode system with ferredoxin-NADP+-reductase (FNR), first hints for the usage of photoelectrons for biosynthesis have been collected by verifying NADPH generation.
Collapse
Affiliation(s)
- H Dörpholz
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany.
| | - S Subramanian
- Biophysics of Photosynthesis, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - A Zouni
- Biophysics of Photosynthesis, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - F Lisdat
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany.
| |
Collapse
|
42
|
Tikhonov AN. Electron Transport in Chloroplasts: Regulation and Alternative Pathways of Electron Transfer. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1438-1454. [PMID: 38105016 DOI: 10.1134/s0006297923100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 12/19/2023]
Abstract
This work represents an overview of electron transport regulation in chloroplasts as considered in the context of structure-function organization of photosynthetic apparatus in plants. Main focus of the article is on bifurcated oxidation of plastoquinol by the cytochrome b6f complex, which represents the rate-limiting step of electron transfer between photosystems II and I. Electron transport along the chains of non-cyclic, cyclic, and pseudocyclic electron flow, their relationships to generation of the trans-thylakoid difference in electrochemical potentials of protons in chloroplasts, and pH-dependent mechanisms of regulation of the cytochrome b6f complex are considered. Redox reactions with participation of molecular oxygen and ascorbate, alternative mediators of electron transport in chloroplasts, have also been discussed.
Collapse
|
43
|
Xie ZL, Gupta N, Niklas J, Poluektov OG, Lynch VM, Glusac KD, Mulfort KL. Photochemical charge accumulation in a heteroleptic copper(i)-anthraquinone molecular dyad via proton-coupled electron transfer. Chem Sci 2023; 14:10219-10235. [PMID: 37772110 PMCID: PMC10529959 DOI: 10.1039/d3sc03428c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Developing efficient photocatalysts that perform multi electron redox reactions is critical to achieving solar energy conversion. One can reach this goal by developing systems which mimic natural photosynthesis and exploit strategies such as proton-coupled electron transfer (PCET) to achieve photochemical charge accumulation. We report herein a heteroleptic Cu(i)bis(phenanthroline) complex, Cu-AnQ, featuring a fused phenazine-anthraquinone moiety that photochemically accumulates two electrons in the anthraquinone unit via PCET. Full spectroscopic and electrochemical analyses allowed us to identify the reduced species and revealed that up to three electrons can be accumulated in the phenazine-anthraquinone ring system under electrochemical conditions. Continuous photolysis of Cu-AnQ in the presence of sacrificial electron donor produced doubly reduced monoprotonated photoproduct confirmed unambiguously by X-ray crystallography. Formation of this photoproduct indicates that a PCET process occurred during illumination and two electrons were accumulated in the system. The role of the heteroleptic Cu(i)bis(phenanthroline) moiety participating in the photochemical charge accumulation as a light absorber was evidenced by comparing the photolysis of Cu-AnQ and the free AnQ ligand with less reductive triethylamine as a sacrificial electron donor, in which photogenerated doubly reduced species was observed with Cu-AnQ, but not with the free ligand. The thermodynamic properties of Cu-AnQ were examined by DFT which mapped the probable reaction pathway for photochemical charge accumulation and the capacity for solar energy stored in the process. This study presents a unique system built on earth-abundant transition metal complex to store electrons, and tune the storage of solar energy by the degree of protonation of the electron acceptor.
Collapse
Affiliation(s)
- Zhu-Lin Xie
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Nikita Gupta
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Jens Niklas
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Oleg G Poluektov
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | | | - Ksenija D Glusac
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| |
Collapse
|
44
|
Dumont R, Dowdell J, Song J, Li J, Wang S, Kang W, Li B. Control of charge transport in electronically active systems towards integrated biomolecular circuits (IbC). J Mater Chem B 2023; 11:8302-8314. [PMID: 37464922 DOI: 10.1039/d3tb00701d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The miniaturization of traditional silicon-based electronics will soon reach its limitation as quantum tunneling and heat become serious problems at the several-nanometer scale. Crafting integrated circuits via self-assembly of electronically active molecules using a "bottom-up" paradigm provides a potential solution to these technological challenges. In particular, integrated biomolecular circuits (IbC) offer promising advantages to achieve this goal, as nature offers countless examples of functionalities entailed by self-assembly and examples of controlling charge transport at the molecular level within the self-assembled structures. To this end, the review summarizes the progress in understanding how charge transport is regulated in biosystems and the key redox-active amino acids that enable the charge transport. In addition, charge transport mechanisms at different length scales are also reviewed, offering key insights for controlling charge transport in IbC in the future.
Collapse
Affiliation(s)
- Ryan Dumont
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Juwaan Dowdell
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jisoo Song
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jiani Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Suwan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Wei Kang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Bo Li
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| |
Collapse
|
45
|
Sun H, Shang H, Pan X, Li M. Structural insights into the assembly and energy transfer of the Lhcb9-dependent photosystem I from moss Physcomitrium patens. NATURE PLANTS 2023; 9:1347-1358. [PMID: 37474782 DOI: 10.1038/s41477-023-01463-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
In plants and green algae, light-harvesting complexes I and II (LHCI and LHCII) constitute the antennae of photosystem I (PSI), thus effectively increasing the cross-section of the PSI core. The moss Physcomitrium patens (P. patens) represents a well-studied primary land-dwelling photosynthetic autotroph branching from the common ancestor of green algae and land plants at the early stage of evolution. P. patens possesses at least three types of PSI with different antenna sizes. The largest PSI form (PpPSI-L) exhibits a unique organization found neither in flowering plants nor in algae. Its formation is mediated by the P. patens-specific LHC protein, Lhcb9. While previous studies have revealed the overall architecture of PpPSI-L, its assembly details and the relationship between different PpPSI types remain unclear. Here we report the high-resolution structure of PpPSI-L. We identified 14 PSI core subunits, one Lhcb9, one phosphorylated LHCII trimer and eight LHCI monomers arranged as two belts. Our structural analysis established the essential role of Lhcb9 and the phosphorylated LHCII in stabilizing the complex. In addition, our results suggest that PpPSI switches between different types, which share identical modules. This feature may contribute to the dynamic adjustment of the light-harvesting capability of PSI under different light conditions.
Collapse
Affiliation(s)
- Haiyu Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Shang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China
| | - Xiaowei Pan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
46
|
Fadeeva M, Klaiman D, Caspy I, Nelson N. Structure of Chlorella ohadii Photosystem II Reveals Protective Mechanisms against Environmental Stress. Cells 2023; 12:1971. [PMID: 37566050 PMCID: PMC10416949 DOI: 10.3390/cells12151971] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
Green alga Chlorella ohadii is known for its ability to carry out photosynthesis under harsh conditions. Using cryogenic electron microscopy (cryoEM), we obtained a high-resolution structure of PSII at 2.72 Å. This structure revealed 64 subunits, which encompassed 386 chlorophylls, 86 carotenoids, four plastoquinones, and several structural lipids. At the luminal side of PSII, a unique subunit arrangement was observed to protect the oxygen-evolving complex. This arrangement involved PsbO (OEE1), PsbP (OEE2), PsbB, and PsbU (a homolog of plant OEE3). PsbU interacted with PsbO, PsbC, and PsbP, thereby stabilizing the shield of the oxygen-evolving complex. Significant changes were also observed at the stromal electron acceptor side. PsbY, identified as a transmembrane helix, was situated alongside PsbF and PsbE, which enclosed cytochrome b559. Supported by the adjacent C-terminal helix of Psb10, these four transmembrane helices formed a bundle that shielded cytochrome b559 from the surrounding solvent. Moreover, the bulk of Psb10 formed a protective cap, which safeguarded the quinone site and likely contributed to the stacking of PSII complexes. Based on our findings, we propose a protective mechanism that prevents QB (plastoquinone B) from becoming fully reduced. This mechanism offers insights into the regulation of electron transfer within PSII.
Collapse
Affiliation(s)
| | | | | | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (M.F.); (D.K.); (I.C.)
| |
Collapse
|
47
|
Yogadasan N, Doxey AC, Chuong SDX. A Machine Learning Framework Identifies Plastid-Encoded Proteins Harboring C3 and C4 Distinguishing Sequence Information. Genome Biol Evol 2023; 15:evad129. [PMID: 37462292 PMCID: PMC10368328 DOI: 10.1093/gbe/evad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
C4 photosynthesis is known to have at least 61 independent origins across plant lineages making it one of the most notable examples of convergent evolution. Of the >60 independent origins, a predicted 22-24 origins, encompassing greater than 50% of all known C4 species, exist within the Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae (PACMAD) clade of the Poaceae family. This clade is therefore primed with species ideal for the study of genomic changes associated with the acquisition of the C4 photosynthetic trait. In this study, we take advantage of the growing availability of sequenced plastid genomes and employ a machine learning (ML) approach to screen for plastid genes harboring C3 and C4 distinguishing information in PACMAD species. We demonstrate that certain plastid-encoded protein sequences possess distinguishing and informative sequence information that allows them to train accurate ML C3/C4 classification models. Our RbcL-trained model, for example, informs a C3/C4 classifier with greater than 99% accuracy. Accurate prediction of photosynthetic type from individual sequences suggests biologically relevant, and potentially differing roles of these sequence products in C3 versus C4 metabolism. With this ML framework, we have identified several key sequences and sites that are most predictive of C3/C4 status, including RbcL, subunits of the NAD(P)H dehydrogenase complex, and specific residues within, further highlighting their potential significance in the evolution and/or maintenance of C4 photosynthetic machinery. This general approach can be applied to uncover intricate associations between other similar genotype-phenotype relationships.
Collapse
Affiliation(s)
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Simon D X Chuong
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
48
|
Sinambela N, Jacobi R, Hernández-Castillo D, Hofmeister E, Hagmeyer N, Dietzek-Ivanšić B, González L, Pannwitz A. Alignment and photooxidation dynamics of a perylene diimide chromophore in lipid bilayers. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2023; 8:842-852. [PMID: 37404447 PMCID: PMC10317050 DOI: 10.1039/d2me00243d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 07/06/2023]
Abstract
We present a method of enabling photochemical reactions in water by using biomimetic, water-soluble liposomes and a specifically functionalized perylene diimide chromophore. Linking two flexible saturated C4-alkyl chains with terminal positively charged trimethylammonium groups to the rigid perylene diimide core yielded [1]2+ allowing for its co-assembly at the lipid bilayer interface of DOPG liposomes (DOPG = 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) with a preferred orientation and in close proximity to the water interface. According to molecular dynamics simulations the chromophore aligns preferably parallel to the membrane surface which is supported by confocal microscopy. Irradiation experiments with visible light and in the presence of a negatively charged, water-soluble oxidant were slower in the DOPG-membrane than under acetonitrile-water reaction conditions. The generated radical species was characterized by EPR spectroscopy in an acetonitrile-water mixture and associated to the DOPG-membrane. Time-resolved emission studies revealed a static quenching process for the initial electron transfer from photoexcited [1]2+ to the water soluble oxidant. The findings presented in this study yield design principles for the functionalization of lipid bilayer membranes which will be relevant for the molecular engineering of artificial cellular organelles and nano-reactors based on biomimetic vesicles and membranes.
Collapse
Affiliation(s)
- Novitasari Sinambela
- Institute of Inorganic Chemistry I, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Richard Jacobi
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 17 1090 Vienna Austria
- Doctoral School in Chemistry (DoSChem), University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - David Hernández-Castillo
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 17 1090 Vienna Austria
- Doctoral School in Chemistry (DoSChem), University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Elisabeth Hofmeister
- Leibniz Institute of Photonic Technology (IPHT), Research Department Functional Interfaces Albert-Einstein-Straβe 9 Jena 07745 Germany
| | - Nina Hagmeyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena Helmholtzweg 4 Jena 07743 Germany
- Leibniz Institute of Photonic Technology (IPHT), Research Department Functional Interfaces Albert-Einstein-Straβe 9 Jena 07745 Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena Helmholtzweg 4 Jena 07743 Germany
- Leibniz Institute of Photonic Technology (IPHT), Research Department Functional Interfaces Albert-Einstein-Straβe 9 Jena 07745 Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 17 1090 Vienna Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna Währinger Straße 17 1090 Vienna Austria
| | - Andrea Pannwitz
- Institute of Inorganic Chemistry I, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
49
|
Wang YQ, Ye JJ, Yang HZ, Li D, Li XX, Wang YK, Zheng XQ, Ye JH, Li QS, Liang YR, Lu JL. Shading-Dependent Greening Process of the Leaves in the Light-Sensitive Albino Tea Plant 'Huangjinya': Possible Involvement of the Light-Harvesting Complex II Subunit of Photosystem II in the Phenotypic Characteristic. Int J Mol Sci 2023; 24:10314. [PMID: 37373460 DOI: 10.3390/ijms241210314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The light-sensitive albino tea plant can produce pale-yellow shoots with high levels of amino acids which are suitable to process high-quality tea. In order to understand the mechanism of the albino phenotype formation, the changes in the physio-chemical characteristics, chloroplast ultrastructure, chlorophyll-binding proteins, and the relevant gene expression were comprehensively investigated in the leaves of the light-sensitive albino cultivar 'Huangjinya' ('HJY') during short-term shading treatment. In the content of photosynthetic pigments, the ultrastructure of the chloroplast, and parameters of the photosynthesis in the leaves of 'HJY' could be gradually normalized along with the extension of the shading time, resulting in the leaf color transformed from pale yellow to green. BN-PAGE and SDS-PAGE revealed that function restoration of the photosynthetic apparatus was attributed to the proper formation of the pigment-protein complexes on the thylakoid membrane that benefited from the increased levels of the LHCII subunits in the shaded leaves of 'HJY', indicating the low level of LHCII subunits, especially the lack of the Lhcb1 might be responsible for the albino phenotype of the 'HJY' under natural light condition. The deficiency of the Lhcb1 was mainly subject to the strongly suppressed expression of the Lhcb1.x which might be modulated by the chloroplast retrograde signaling pathway GUN1 (GENOMES UNCOUPLED 1)-PTM (PHD type transcription factor with transmembrane domains)-ABI4 (ABSCISIC ACID INSENSITIVE 4).
Collapse
Affiliation(s)
- Ying-Qi Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jing-Jing Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yong-Kang Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Qing-Sheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
50
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. THE PLANT CELL 2023; 35:1671-1707. [PMID: 36747354 PMCID: PMC10226581 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|