1
|
Mukherjee P, Bagchi A, Banerjee A, Roy H, Bhattacharya A, Biswas A, Chatterji U. PDE4 inhibitor eliminates breast cancer stem cells via noncanonical activation of mTOR. J Cell Biochem 2022; 123:1980-1996. [PMID: 36063486 DOI: 10.1002/jcb.30325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/25/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022]
Abstract
Ineffective cancer treatment is implicated in metastasis, recurrence, resistance to chemotherapy and radiotherapy, and evasion of immune surveillance. All these failures occur due to the persistence of cancer stem cells (CSCs) even after rigorous therapy, thereby rendering them as essential targets for cancer management. Contrary to the quiescent nature of CSCs, a gene profiler array disclosed that phosphatidylinositol-3-kinase (PI3K), which is known to be crucial for cell proliferation, differentiation, and survival, was significantly upregulated in CSCs. Since PI3K is modulated by cyclic adenosine 3',5' monophosphate (cAMP), analyses of cAMP regulation revealed that breast CSCs expressed increased levels of phosphodiesterase 4 (PDE4) in contrast to normal stem cells. In accordance, the effects of rolipram, a PDE4 inhibitor, were evaluated on PI3K regulators and signaling. The efficacy of rolipram was compared with paclitaxel, an anticancer drug that is ineffective in obliterating breast CSCs. Analyses of downstream signaling components revealed a switch between cell survival and death, in response to rolipram, specifically of the CSCs. Rolipram-mediated downregulation of PDE4A levels in breast CSCs led to an increase in cAMP levels and protein kinase A (PKA) expression. Subsequently, PKA-mediated upregulation of phosphatase and tensin homolog antagonized the PI3K/AKT/mTOR pathway and led to cell cycle arrest. Interestingly, direct yet noncanonical activation of mTOR by PKA, circumventing the influence of PI3K and AKT, temporally shifted the fate of CSCs toward apoptosis. Rolipram in combination with paclitaxel indicated synergistic consequences, which effectively obliterated CSCs within a tumor, thereby suggesting combinatorial therapy as a sustainable and effective strategy to abrogate breast CSCs for better patient prognosis.
Collapse
Affiliation(s)
- Pritha Mukherjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Arka Bagchi
- Molecular Cell Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Ananya Banerjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Himansu Roy
- Department of Surgery, Calcutta Medical College, Kolkata, India
| | | | - Arunima Biswas
- Molecular Cell Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India.,Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| |
Collapse
|
2
|
Xanthine Analogs Suppress Trypanosoma cruzi Infection In Vitro Using PDEs as Targets. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Trypanosoma cruzi (T. cruzi), the causative agent of Chagas disease, has infected 6 million people, putting 70 million people at risk worldwide. Presently, very limited drugs are available, and these have severe side effects. Hence, there is an urgency to delve into other pathways and targets for novel drugs. Trypanosoma cruzi (T. cruzi) expresses a number of different cyclic AMP (cAMP)-specific phosphodiesterases (PDEs). cAMP is one of the key regulators of mammalian cell proliferation and differentiation, and it also plays an important role in T. cruzi growth. Very few studies have demonstrated the important role of cyclic nucleotide-specific PDEs in T. cruzi’s survival. T. cruzi phosphodiesterase C (TcrPDEC) has been proposed as a potential new drug target for treating Chagas disease. In the current study, we screen several analogs of xanthine for potency against trypomastigote and amastigote growth in vitro using three different strains of T. cruzi (Tulahuen, Y and CA-1/CL72). One of the potent analogs, GVK14, has been shown to inhibit all three strains of amastigotes in host cells as well as axenic cultures. In conclusion, xanthine analogs that inhibit T. cruzi PDE may provide novel alternative therapeutic options for Chagas disease.
Collapse
|
3
|
Telpoukhovskaia MA, Liu K, Sayed FA, Etchegaray JI, Xie M, Zhan L, Li Y, Zhou Y, Le D, Bahr BA, Bogyo M, Ding S, Gan L. Discovery of small molecules that normalize the transcriptome and enhance cysteine cathepsin activity in progranulin-deficient microglia. Sci Rep 2020; 10:13688. [PMID: 32792571 PMCID: PMC7426857 DOI: 10.1038/s41598-020-70534-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with frontotemporal dementia (FTD) resulting from granulin (GRN) haploinsufficiency have reduced levels of progranulin and exhibit dysregulation in inflammatory and lysosomal networks. Microglia produce high levels of progranulin, and reduction of progranulin in microglia alone is sufficient to recapitulate inflammation, lysosomal dysfunction, and hyperproliferation in a cell-autonomous manner. Therefore, targeting microglial dysfunction caused by progranulin insufficiency represents a potential therapeutic strategy to manage neurodegeneration in FTD. Limitations of current progranulin-enhancing strategies necessitate the discovery of new targets. To identify compounds that can reverse microglial defects in Grn-deficient mouse microglia, we performed a compound screen coupled with high throughput sequencing to assess key transcriptional changes in inflammatory and lysosomal pathways. Positive hits from this initial screen were then further narrowed down based on their ability to rescue cathepsin activity, a critical biochemical readout of lysosomal capacity. The screen identified nor-binaltorphimine dihydrochloride (nor-BNI) and dibutyryl-cAMP, sodium salt (DB-cAMP) as two phenotypic modulators of progranulin deficiency. In addition, nor-BNI and DB-cAMP also rescued cell cycle abnormalities in progranulin-deficient cells. These data highlight the potential of a transcription-based platform for drug screening, and advance two novel lead compounds for FTD.
Collapse
Affiliation(s)
- Maria A Telpoukhovskaia
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Kai Liu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, USA
| | - Faten A Sayed
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, CA, 94158, USA.,Neuroscience Graduate Program, University of California, San Francisco, CA, 94158, USA
| | | | - Min Xie
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.,Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, USA
| | - Lihong Zhan
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Yaqiao Li
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Yungui Zhou
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - David Le
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina At Pembroke, Pembroke, NC, 28372, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Sheng Ding
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA. .,Department of Neurology, University of California, San Francisco, CA, 94158, USA. .,Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
4
|
Smith SA, Newby AC, Bond M. Ending Restenosis: Inhibition of Vascular Smooth Muscle Cell Proliferation by cAMP. Cells 2019; 8:cells8111447. [PMID: 31744111 PMCID: PMC6912325 DOI: 10.3390/cells8111447] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Increased vascular smooth muscle cell (VSMC) proliferation contributes towards restenosis after angioplasty, vein graft intimal thickening and atherogenesis. The second messenger 3′ 5′ cyclic adenosine monophosphate (cAMP) plays an important role in maintaining VSMC quiescence in healthy vessels and repressing VSMC proliferation during resolution of vascular injury. Although the anti-mitogenic properties of cAMP in VSMC have been recognised for many years, it is only recently that we gained a detailed understanding of the underlying signalling mechanisms. Stimuli that elevate cAMP in VSMC inhibit G1-S phase cell cycle progression by inhibiting expression of cyclins and preventing S-Phase Kinase Associated Protein-2 (Skp2-mediated degradation of cyclin-dependent kinase inhibitors. Early studies implicated inhibition of MAPK signalling, although this does not fully explain the anti-mitogenic effects of cAMP. The cAMP effectors, Protein Kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) act together to inhibit VSMC proliferation by inducing Cyclic-AMP Response Element Binding protein (CREB) activity and inhibiting members of the RhoGTPases, which results in remodelling of the actin cytoskeleton. Cyclic-AMP induced actin remodelling controls proliferation by modulating the activity of Serum Response Factor (SRF) and TEA Domain Transcription Factors (TEAD), which regulate expression of genes required for proliferation. Here we review recent research characterising these mechanisms, highlighting novel drug targets that may allow the anti-mitogenic properties of cAMP to be harnessed therapeutically to limit restenosis.
Collapse
Affiliation(s)
| | | | - Mark Bond
- Correspondence: ; Tel.: +44-117-3423586
| |
Collapse
|
5
|
Chacko JV, Eliceiri KW. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity. Cytometry A 2019; 95:56-69. [PMID: 30296355 PMCID: PMC6329636 DOI: 10.1002/cyto.a.23603] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
Autofluorescence imaging (AFI) has greatly accelerated in the last decade, way past its origins in detecting endogenous signals in biological tissues to identify differences between samples. There are many endogenous fluorescence sources of contrast but the most robust and widely utilized have been those associated with metabolism. The intrinsically fluorescent metabolic cofactors nicotinamide adenine dinucleotide (NAD+ /NADH) and flavin adenine dinucleotide (FAD/FADH2 ) have been utilized in a number of AFI applications including basic research, clinical, and pharmaceutical studies. Fluorescence lifetime imaging microscopy (FLIM) has emerged as one of the more powerful AFI tools for NADH and FAD characterization due to its unique ability to noninvasively detect metabolite bound and free states and quantitate cellular redox ratio. However, despite this widespread biological use, many standardization methods are still needed to extend FLIM-based AFI into a fully robust research and clinical diagnostic tools. FLIM is sensitive to a wide range of factors in the fluorophore microenvironment, and there are a number of analysis variables as well. To this end, there has been an emphasis on developing imaging standards and ways to make the image acquisition and analysis more consistent. However, biological conditions during FLIM-based AFI imaging are rarely considered as key sources of FLIM variability. Here, we present several experimental factors with supporting data of the cellular microenvironment such as confluency, pH, inter-/intracellular heterogeneity, and choice of cell line that need to be considered for accurate quantitative FLIM-based AFI measurement of cellular metabolism. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Jenu V. Chacko
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison WI, USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison WI, USA
- Biomedical Engineering Department, University of Wisconsin at Madison, Madison WI, USA
- Morgridge Institute for Research, Madison WI, USA
| |
Collapse
|
6
|
Feridooni T, Hotchkiss A, Baguma-Nibasheka M, Zhang F, Allen B, Chinni S, Pasumarthi KBS. Effects of β-adrenergic receptor drugs on embryonic ventricular cell proliferation and differentiation and their impact on donor cell transplantation. Am J Physiol Heart Circ Physiol 2017; 312:H919-H931. [PMID: 28283550 DOI: 10.1152/ajpheart.00425.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 02/06/2017] [Accepted: 02/27/2017] [Indexed: 01/26/2023]
Abstract
β-Adrenergic receptors (β-ARs) and catecholamines are present in rodents as early as embryonic day (E)10.5. However, it is not known whether β-AR signaling plays any role in the proliferation and differentiation of ventricular cells in the embryonic heart. Here, we characterized expression profiles of β-AR subtypes and established dose-response curves for the nonselective β-AR agonist isoproterenol (ISO) in the developing mouse ventricular cells. Furthermore, we investigated the effects of ISO on cell cycle activity and differentiation of cultured E11.5 ventricular cells. ISO treatment significantly reduced tritiated thymidine incorporation and cell proliferation rates in both cardiac progenitor cell and cardiomyocyte populations. The ISO-mediated effects on DNA synthesis could be abolished by cotreatment of E11.5 cultures with either metoprolol (a β1-AR antagonist) or ICI-118,551 (a β2-AR antagonist). In contrast, ISO-mediated effects on cell proliferation could be abolished only by metoprolol. Furthermore, ISO treatment significantly increased the percentage of differentiated cardiomyocytes compared with that in control cultures. Additional experiments revealed that β-AR stimulation leads to downregulation of Erk and Akt phosphorylation followed by significant decreases in cyclin D1 and cyclin-dependent kinase 4 levels in E11.5 ventricular cells. Consistent with in vitro results, we found that chronic stimulation of recipient mice with ISO after intracardiac cell transplantation significantly decreased graft size, whereas metoprolol protected grafts from the inhibitory effects of systemic catecholamines. Collectively, these results underscore the effects of β-AR signaling in cardiac development as well as graft expansion after cell transplantation.NEW & NOTEWORTHY β-Adrenergic receptor (β-AR) stimulation can decrease the proliferation of embryonic ventricular cells in vitro and reduce the graft size after intracardiac cell transplantation. In contrast, β1-AR antagonists can abrogate the antiproliferative effects mediated by β-AR stimulation and increase graft size. These results highlight potential interactions between adrenergic drugs and cell transplantation.
Collapse
Affiliation(s)
- Tiam Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Feixiong Zhang
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Brittney Allen
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarita Chinni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
7
|
Voß B, Seifert R, Kaupp UB, Grubmüller H. A Quantitative Model for cAMP Binding to the Binding Domain of MloK1. Biophys J 2016; 111:1668-1678. [PMID: 27760354 PMCID: PMC5073059 DOI: 10.1016/j.bpj.2016.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/03/2016] [Accepted: 09/12/2016] [Indexed: 01/03/2023] Open
Abstract
Ligand-protein binding processes are essential in biological systems. A well-studied system is the binding of cyclic adenosine monophosphate to the cyclic nucleotide binding domain of the bacterial potassium channel MloK1. Strikingly, the measured on-rate for cyclic adenosine monophosphate binding is two orders of magnitude slower than a simple Smoluchowski diffusion model would suggest. To resolve this discrepancy and to characterize the ligand-binding path in structural and energetic terms, we calculated 1100 ligand-binding molecular dynamics trajectories and tested two scenarios: In the first scenario, the ligand transiently binds to the protein surface and then diffuses along the surface into the binding site. In the second scenario, only ligands that reach the protein surface in the vicinity of the binding site proceed into the binding site. Here, a binding funnel, which increasingly confines the translational as well as the rotational degrees of freedom, determines the binding pathways and limits the on-rate. From the simulations, we identified five surface binding states and calculated the rates between these surface binding states, the binding site, and the bulk. We find that the transient binding of the ligands to the surface binding states does not affect the on-rate, such that this effect alone cannot explain the observed low on-rate. Rather, by quantifying the translational and rotational degrees of freedom and by calculating the binding committor, our simulations confirmed the existence of a binding funnel as the main bottleneck. Direct binding via the binding funnel dominates the binding kinetics, and only ∼10% of all ligands proceed via the surface into the binding site. The simulations further predict an on-rate between 15 and 40μs-1(mol/l)-1, which agrees with the measured on-rate.
Collapse
Affiliation(s)
- Béla Voß
- Department for Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - U Benjamin Kaupp
- Department of Sensory Systems, Forschungszentrum Caesar, Bonn, Germany
| | - Helmut Grubmüller
- Department for Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
8
|
Wen J, Luo J, Huang W, Tang J, Zhou H, Zhang W. The Pharmacological and Physiological Role of Multidrug-Resistant Protein 4. J Pharmacol Exp Ther 2015; 354:358-375. [PMID: 26148856 DOI: 10.1124/jpet.115.225656] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is distributed in a variety of tissues and a number of cancers. As a drug transporter, MRP4 is responsible for the pharmacokinetics and pharmacodynamics of numerous drugs, especially antiviral drugs, antitumor drugs, and diuretics. In this regard, the functional role of MRP4 is affected by a number of factors, such as genetic mutations; tissue-specific transcriptional regulations; post-transcriptional regulations, including miRNAs and membrane internalization; and substrate competition. Unlike other C family members, MRP4 is in a pivotal position to transport cellular signaling molecules, through which it is tightly connected to the living activity and physiologic processes of cells and bodies. In the context of several cancers in which MRP4 is overexpressed, MRP4 inhibition shows striking effects against cancer progression and drug resistance. In this review, we describe the role of MRP4 more specifically in both healthy conditions and disease states, with an emphasis on its potential as a drug target.
Collapse
Affiliation(s)
- Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jianquan Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| |
Collapse
|
9
|
Abstract
BACKGROUND The role of cAMP in regulating T cell activation and function has been controversial. cAMP is generally known as an immunosuppressant, but it is also required for generating optimal immune responses. As the effect of cAMP is likely to depend on its cellular context, the current study investigated whether the mechanism of activation of Gαs and adenylyl cyclase influences their effect on T cell receptor (TCR)-stimulated interleukin-2 (IL-2) mRNA levels. METHODS The effect of blocking Gs-coupled receptor (GsPCR)-mediated Gs activation on TCR-stimulated IL-2 mRNA levels in CD4(+) T cells was compared with that of knocking down Gαs expression or inhibiting adenylyl cyclase activity. The effect of knocking down Gαs expression on TCR-stimulated cAMP accumulation was compared with that of blocking GsPCR signaling. RESULTS ZM-241385, an antagonist to the Gs-coupled A2A adenosine receptor (A2AR), enhanced TCR-stimulated IL-2 mRNA levels in primary human CD4(+) T helper cells and in Jurkat T cells. A dominant negative Gαs construct, GαsDN3, also enhanced TCR-stimulated IL-2 mRNA levels. Similar to GsPCR antagonists, GαsDN3 blocked GsPCR-dependent activation of both Gαs and Gβγ. In contrast, Gαs siRNA and 2',5'-dideoxyadenosine (ddA), an adenylyl cyclase inhibitor, decreased TCR-stimulated IL-2 mRNA levels. Gαs siRNA, but not GαsDN3, decreased TCR-stimulated cAMP synthesis. Potentiation of IL-2 mRNA levels by ZM-241385 required at least two days of TCR stimulation, and addition of ddA after three days of TCR stimulation enhanced IL-2 mRNA levels. CONCLUSIONS GsPCRs play an inhibitory role in the regulation of TCR-stimulated IL-2 mRNA levels whereas Gαs and cAMP can play a stimulatory one. Additionally, TCR-dependent activation of Gαs does not appear to involve GsPCRs. These results suggest that the context of Gαs/cAMP activation and the stage of T cell activation and differentiation determine the effect on TCR-stimulated IL-2 mRNA levels.
Collapse
|
10
|
Bou Daou G, Li Y, Anand-Srivastava MB. Enhanced expression of Giα proteins contributes to the hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats via MAP kinase- and PI3 kinase-independent pathways. Can J Physiol Pharmacol 2015; 94:49-58. [PMID: 26524499 DOI: 10.1139/cjpp-2015-0146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit hyperproliferation, enhanced MAP kinase (MAPK) activity, and overexpression of Giα proteins. This study was undertaken to examine whether the overexpression of Giα proteins contributes to the hyperproliferation of VSMC of SHR through MAPK signaling. The hyperproliferation of VSMC from SHR in the absence and presence of angiotensin II was restored towards those in Wistar-Kyoto (WKY) rats levels by pertussis toxin (PT) treatment. In addition, siRNA knockdown of Giα proteins also resulted in the attenuation of hyperproliferation towards control levels. The overexpression of Giα proteins was also inhibited by MAPK and PI3 kinase (PI3K) inhibitors. In addition, the hyperproliferation and enhanced phosphorylation of ERK1/2 and Akt in VSMC from SHR were attenuated towards WKY levels by the inhibitors of MAPK, PI3K, c-Src, and antioxidants, whereas PT was unable to attenuate the enhanced phosphorylation of ERK1/2 and Akt. Furthermore, 8Br-cAMP and forskolin also attenuated the hyperproliferation of VSMC from SHR. These results suggest that the hyperproliferation of VSMC from SHR may be attributed to the enhanced expression of Giα proteins and increased activation of MAPK and PI3 kinase. However, Giα-mediated hyperproliferation may not be mediated through MAPK- and PI3 kinase-dependent pathways and may involve decreased levels of intracellular cAMP.
Collapse
Affiliation(s)
- Grace Bou Daou
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada.,Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Yuan Li
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada.,Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Madhu B Anand-Srivastava
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada.,Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
11
|
Protein kinase a-mediated cell proliferation in brown preadipocytes is independent of Erk1/2, PI3K and mTOR. Exp Cell Res 2014; 328:143-155. [PMID: 25102377 DOI: 10.1016/j.yexcr.2014.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 02/03/2023]
Abstract
The physiological agonist norepinephrine promotes cell proliferation of brown preadipocytes during the process of tissue recruitment. In a primary culture system, cAMP mediates these adrenergic effects. In the present study, we demonstrated that, in contrast to other systems where the mitogenic effect of cAMP requires the synergistic action of (serum) growth factors, especially insulin/IGF, the cAMP effect in brown preadipocytes was independent of serum and insulin. Protein kinase A, rather than Epac, mediated the cAMP mitogenic effect. The Erk 1/2 family of MAPK, the PI3K system and the mTOR complexes were all activated by cAMP, but these activations were not necessary for cAMP-induced cell proliferation; a protein kinase C isoform may be involved in mediating cAMP-activated cell proliferation. We conclude that the generally acknowledged cellular mediators for induction of cell proliferation are not involved in this process in the brown preadipocyte system; this conclusion may be of relevance both for examination of mechanisms for induction of brown adipose tissue recruitment but also for understanding the mechanism behind e.g. certain endocrine neoplasias.
Collapse
|
12
|
Li N, Xi Y, Tinsley HN, Gurpinar E, Gary BD, Zhu B, Li Y, Chen X, Keeton AB, Abadi AH, Moyer MP, Grizzle WE, Chang WC, Clapper ML, Piazza GA. Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling. Mol Cancer Ther 2013; 12:1848-59. [PMID: 23804703 DOI: 10.1158/1535-7163.mct-13-0048] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity for colorectal and other cancers, but toxicity from COX inhibition limits their long-term use for chemoprevention. Previous studies have concluded that the basis for their tumor cell growth inhibitory activity does not require COX inhibition, although the underlying mechanism is poorly understood. Here, we report that the NSAID sulindac sulfide inhibits cyclic guanosine 3',5'-monophosphate phosphodiesterase (cGMP PDE) activity to increase intracellular cGMP levels and activate cGMP-dependent protein kinase (PKG) at concentrations that inhibit proliferation and induce apoptosis of colon tumor cells. Sulindac sulfide did not activate the cGMP/PKG pathway, nor affect proliferation or apoptosis in normal colonocytes. Knockdown of the cGMP-specific PDE5 isozyme by siRNA and PDE5-specific inhibitors tadalafil and sildenafil also selectively inhibited the growth of colon tumor cells that expressed high levels of PDE5 compared with colonocytes. The mechanism by which sulindac sulfide and the cGMP/PKG pathway inhibits colon tumor cell growth involves the transcriptional suppression of β-catenin to inhibit Wnt/β-catenin T-cell factor transcriptional activity, leading to downregulation of cyclin D1 and survivin. These observations suggest that safer and more efficacious sulindac derivatives can be developed for colorectal cancer chemoprevention by targeting PDE5 and possibly other cGMP-degrading isozymes.
Collapse
Affiliation(s)
- Nan Li
- Corresponding Author: Gary A. Piazza, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Suite 3029, Mobile, AL 36604.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gusan S, Anand-Srivastava MB. cAMP attenuates the enhanced expression of Gi proteins and hyperproliferation of vascular smooth muscle cells from SHR: role of ROS and ROS-mediated signaling. Am J Physiol Cell Physiol 2013; 304:C1198-209. [PMID: 23576581 DOI: 10.1152/ajpcell.00269.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that angiotensin II (ANG II)-induced overexpression of inhibitory G proteins (Gi) was attenuated by dibutyryl-cAMP (db-cAMP) in A10 vascular smooth muscle cells (VSMC). Since enhanced levels of endogenous ANG II contributed to the overexpression of Gi protein and hyperproliferation of VSMC from spontaneously hypertensive rats (SHR), the present study was therefore undertaken to examine if cAMP could also attenuate the overexpression of Gi proteins and hyperproliferation of VSMC from SHR and to explore the underlying molecular mechanisms responsible for this response. The enhanced expression of Giα proteins in VSMC from SHR and Nω-nitro-L-arginine methyl ester hypertensive rats was decreased by db-cAMP. In addition, enhanced inhibition of adenylyl cyclase by inhibitory hormones and forskolin-stimulated adenylyl cyclase activity by low concentration of GTPγS in VSMC from SHR was also restored to Wistar-Kyoto (WKY) levels by db-cAMP. Furthermore, db-cAMP also attenuated the hyperproliferation and the increased production of superoxide anion, NAD(P)H oxidase activity, overexpression of Nox1/Nox2/Nox4 and p47phox proteins, increased phosphorylation of PDGF-receptor (R), EGF-R, c-Src, and ERK1/2 to control levels. In addition, the protein kinase A (PKA) inhibitor reversed the effects of db-cAMP on the expression of Nox4 and Giα proteins and hyperproliferation of VSMC from SHR to WKY levels, while stimulation of the exchange protein directly activated by cAMP did not have any effect on these parameters. These results suggest that cAMP via PKA pathway attenuates the overexpression of Gi proteins and hyperproliferation of VSMC from SHR through the inhibition of ROS and ROS-mediated transactivation of EGF-R/PDGF-R and MAPK signaling pathways.
Collapse
Affiliation(s)
- Svetlana Gusan
- Department of Physiology, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
14
|
Perona M, Dagrosa MA, Pagotto R, Casal M, Pignataro OP, Pisarev MA, Juvenal GJ. Protection against radiation-induced damage of 6-propyl-2-thiouracil (PTU) in thyroid cells. Radiat Res 2013; 179:352-60. [PMID: 23398355 DOI: 10.1667/rr2658.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Many epidemiologic studies have shown that the exposure to high external radiation doses increases thyroid neoplastic frequency, especially when given during childhood or adolescence. The use of radioprotective drugs may decrease the damage caused by radiation therapy and therefore could be useful to prevent the development of thyroid tumors. The aim of this study was to investigate the possible application of 6-propyl-2-thiouracil (PTU) as a radioprotector in the thyroid gland. Rat thyroid epithelial cells (FRTL-5) were exposed to different doses of γ irradiation with or without the addition of PTU, methimazole (MMI), reduced glutathione (GSH) and perchlorate (KClO4). Radiation response was analyzed by clonogenic survival assay. Cyclic AMP (cAMP) levels were measured by radioimmunoassay (RIA). Apoptosis was quantified by nuclear cell morphology and caspase 3 activity assays. Intracellular reactive oxygen species (ROS) levels were measured using the fluorescent dye 2',7'-dichlorofluorescein-diacetate. Catalase, superoxide dismutase and glutathione peroxidase activities were also determined. Pretreatment with PTU, MMI and GSH prior to irradiation significantly increased the surviving cell fraction (SF) at 2 Gy (P < 0.05), while no effect was observed with KClO4. An increase in extracellular levels of cAMP was found only in PTU treated cells in a dose and time-dependent manner. Cells incubated with agents that stimulate cAMP (forskolin and dibutyril cAMP) mimicked the effect of PTU on SF. Moreover, pretreatment with the inhibitor of protein kinase A, H-89, abolished the radioprotective effect of PTU. PTU treatment diminished radiation-induced apoptosis and protected cells against radiation-induced ROS elevation and suppression of the antioxidant enzyme's activity. PTU was found to radioprotect normal thyroid cells through cAMP elevation and reduction in both apoptosis and radiation-induced oxidative stress damage.
Collapse
Affiliation(s)
- Marina Perona
- Department of Radiobiology, National Atomic Energy Commission, University of Buenos Aires, Department of Human Biochemistry, School of Medicine, Argentina
| | | | | | | | | | | | | |
Collapse
|
15
|
Cheng YM, Zhu Q, Yao YY, Tang Y, Wang MM, Zou LF. 8-Chloroadenosine 3',5'-monophosphate induces cell cycle arrest and apoptosis in multiple myeloma cells through multiple mechanisms. Oncol Lett 2012; 4:1384-1388. [PMID: 23226809 DOI: 10.3892/ol.2012.905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/24/2012] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate the molecular mechanism of 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP) in the inhibition of the growth and induction of apoptosis of multiple myeloma (MM) cells. Two MM-derived cell lines, RPMI-8226 and U266, were used. Cell viability, apoptosis induction and mitochondrial transmembrane potential were determined and the expression levels of cell cycle regulatory proteins (Cdk2, cyclin E, p27 and c-myc) and p38 mitogen-activated protein kinase (MAPK) protein were detected. Following treatment with 8-Cl-cAMP, the percentage of apoptotic cells increased in a concentration- and time-dependent manner and the mitochondrial transmembrane potential collapsed to reveal typical apoptotic features. Our data further demonstrated that 8-Cl-cAMP induced progressive phosphorylation of p38 MAPK and that the expression levels of p27 proteins in the MM cells were increased whereas those of c-myc were significantly decreased. Notably, the proapoptotic effect of 8-Cl-cAMP was largely prevented by a p38 MAPK inhibitor. Furthermore, knockdown of p27 was able to decrease the 8-Cl-cAMP-induced apoptosis in the MM cells. These results indicate that 8-Cl-cAMP induced p27-dependent cell cycle arrest and apoptosis in the MM cells, which demonstrates the potential of cAMP-modulating agents for use in the treatment of MM.
Collapse
Affiliation(s)
- Yi-Min Cheng
- Department of Hematology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | | | | | | | | | | |
Collapse
|
16
|
Larrayoz IM, Ochoa-Callejero L, García-Sanmartín J, Vicario-Abejón C, Martínez A. Role of adrenomedullin in the growth and differentiation of stem and progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:175-234. [PMID: 22608560 DOI: 10.1016/b978-0-12-394308-8.00005-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells have captured the imagination of the general public by their potential as new therapeutic tools in the fight against degenerative diseases. This potential is based on their capability for self-renewal and at the same time for producing progenitor cells that will eventually provide the building blocks for tissue and organ regeneration. These processes are carefully orchestrated in the organism by means of a series of molecular cues. An emerging molecule which is responsible for some of these physiological responses is adrenomedullin, a 52-amino acid regulatory peptide which increases proliferation and regulates cell fate of stem cells of different origins. Adrenomedullin binds to specific membrane receptors in stem cells and induces several intracellular pathways such as those involving cAMP, Akt, or MAPK. Regulation of adrenomedullin levels may help in directing the growth and differentiation of stem cells for applications (e.g., cell therapy) both in vitro and in vivo.
Collapse
Affiliation(s)
- Ignacio M Larrayoz
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- P Lenormand
- Centre de Biochimie-CNRS UMR 134, Université de Nice, Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
18
|
Ammerman JW, Azam F. Uptake of Cyclic AMP by Natural Populations of Marine Bacteria. Appl Environ Microbiol 2010; 43:869-76. [PMID: 16345995 PMCID: PMC241934 DOI: 10.1128/aem.43.4.869-876.1982] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major objective of this study was to describe the mechanism(s) of cyclic AMP uptake by natural populations of marine bacteria. A second objective was to determine whether this uptake could contribute to the intracellular regulatory pool of cyclic AMP. Using high-specific-activity P-labeled cyclic AMP, we found several high-affinity uptake systems. The highest-affinity system had a half-saturation constant of <10 pM. This system was extremely specific for cyclic nucleotides, particularly cyclic AMP. It appeared to meet the criteria for active transport. Uptake of cyclic AMP over a wide concentration range (up to 2 muM) showed multiphasic kinetics, with half-saturation constants of 1 nM and greater. These lower-affinity systems were much less specific for cyclic nucleotides. Although much of the labeled cyclic AMP taken up by the high-affinity systems was metabolized, some remained as intact cyclic AMP within the cells during 1 h of incubation. This suggests that at least some of the bacteria use cyclic AMP dissolved in seawater to augment their intracellular pools.
Collapse
Affiliation(s)
- J W Ammerman
- Institute of Marine Resources, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093
| | | |
Collapse
|
19
|
Wang XQ, Liu YK, Mao ZG, Qing C, Lu SL, Xu DZ. Isolation, Culture and Characterization of Endothelial Cells from Human Hypertrophic Scar. ACTA ACUST UNITED AC 2009; 15:113-9. [DOI: 10.1080/10623320802125169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Borland G, Smith BO, Yarwood SJ. EPAC proteins transduce diverse cellular actions of cAMP. Br J Pharmacol 2009; 158:70-86. [PMID: 19210747 DOI: 10.1111/j.1476-5381.2008.00087.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has now been over 10 years since efforts to completely understand the signalling actions of cAMP (3'-5'-cyclic adenosine monophosphate) led to the discovery of exchange protein directly activated by cAMP (EPAC) proteins. In the current review we will highlight important advances in the understanding of EPAC structure and function and demonstrate that EPAC proteins mediate multiple actions of cAMP in cells, revealing future targets for pharmaceutical intervention. It has been known for some time that drugs that elevate intracellular cAMP levels have proven therapeutic benefit for diseases ranging from depression to inflammation. The challenge now is to determine which of these positive actions of cAMP involve activation of EPAC-regulated signal transduction pathways. EPACs are specific guanine nucleotide exchange factors for the Ras GTPase homologues, Rap1 and Rap2, which they activate independently of the classical routes for cAMP signalling, cyclic nucleotide-gated ion channels and protein kinase A. Rather, EPAC activation is triggered by internal conformational changes induced by direct interaction with cAMP. Leading from this has been the development of EPAC-specific agonists, which has helped to delineate numerous cellular actions of cAMP that rely on subsequent activation of EPAC. These include regulation of exocytosis and the control of cell adhesion, growth, division and differentiation. Recent work also implicates EPAC in the regulation of anti-inflammatory signalling in the vascular endothelium, namely negative regulation of pro-inflammatory cytokine signalling and positive support of barrier function. Further elucidation of these important signalling mechanisms will no doubt support the development of the next generation of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gillian Borland
- Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
21
|
Rocha AS, Paternot S, Coulonval K, Dumont JE, Soares P, Roger PP. Cyclic AMP inhibits the proliferation of thyroid carcinoma cell lines through regulation of CDK4 phosphorylation. Mol Biol Cell 2008; 19:4814-25. [PMID: 18799615 PMCID: PMC2575166 DOI: 10.1091/mbc.e08-06-0617] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/06/2008] [Accepted: 09/04/2008] [Indexed: 11/11/2022] Open
Abstract
How cyclic AMP (cAMP) could positively or negatively regulate G1 phase progression in different cell types or in cancer cells versus normal differentiated counterparts has remained an intriguing question for decades. At variance with the cAMP-dependent mitogenesis of normal thyroid epithelial cells, we show here that cAMP and cAMP-dependent protein kinase activation inhibit S-phase entry in four thyroid carcinoma cell lines that harbor a permanent activation of the Raf/ERK pathway by different oncogenes. Only in Ret/PTC1-positive TPC-1 cells did cAMP markedly inhibit the Raf/ERK cascade, leading to mTOR pathway inhibition, repression of cyclin D1 and p21 and p27 accumulation. p27 knockdown did not prevent the DNA synthesis inhibition. In the other cells, cAMP little affected these signaling cascades and levels of cyclins D or CDK inhibitors. However, cAMP differentially inhibited the pRb-kinase activity and T172-phosphorylation of CDK4 complexed to cyclin D1 or cyclin D3, whereas CDK-activating kinase activity remained unaffected. At variance with current conceptions, our studies in thyroid carcinoma cell lines and previously in normal thyrocytes identify the activating phosphorylation of CDK4 as a common target of opposite cell cycle regulations by cAMP, irrespective of its impact on classical mitogenic signaling cascades and expression of CDK4 regulatory partners.
Collapse
Affiliation(s)
- Ana Sofia Rocha
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
| | - Sabine Paternot
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
| | - Katia Coulonval
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
| | - Jacques E. Dumont
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
| | - Paula Soares
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
| | - Pierre P. Roger
- *Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium; and
| |
Collapse
|
22
|
Cheadle C, Nesterova M, Watkins T, Barnes KC, Hall JC, Rosen A, Becker KG, Cho-Chung YS. Regulatory subunits of PKA define an axis of cellular proliferation/differentiation in ovarian cancer cells. BMC Med Genomics 2008; 1:43. [PMID: 18822129 PMCID: PMC2577111 DOI: 10.1186/1755-8794-1-43] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 09/26/2008] [Indexed: 11/20/2022] Open
Abstract
Background The regulatory subunit of cAMP-dependent protein kinase (PKA) exists in two isoforms, RI and RII, which distinguish the PKA isozymes, type I (PKA-I) and type II (PKA-II). Evidence obtained from a variety of different experimental approaches has shown that the relative levels of type I and type II PKA in cells can play a major role in determining the balance between cell growth and differentiation. In order to characterize the effect of PKA type I and type II regulatory subunits on gene transcription at a global level, the PKA regulatory subunit genes for RIα and RIIβ were stably transfected into cells of the ovarian cancer cell line (OVCAR8). Results RIα transfected cells exhibit hyper-proliferative growth and RIIβ transfected cells revert to a relatively quiescent state. Profiling by microarray revealed equally profound changes in gene expression between RIα, RIIβ, and parental OVCAR cells. Genes specifically up-regulated in RIα cells were highly enriched for pathways involved in cell growth while genes up-regulated in RIIβ cells were enriched for pathways involved in differentiation. A large group of genes (~3600) was regulated along an axis of proliferation/differentiation between RIα, parental, and RIIβ cells. RIα/wt and RIIβ/wt gene regulation was shown by two separate and distinct gene set analytical methods to be strongly cross-correlated with a generic model of cellular differentiation. Conclusion Overexpression of PKA regulatory subunits in an ovarian cancer cell line dramatically influences the cell phenotype. The proliferation phenotype is strongly correlated with recently identified clinical biomarkers predictive of poor prognosis in ovarian cancer suggesting a possible pivotal role for PKA regulation in disease progression.
Collapse
Affiliation(s)
- Chris Cheadle
- Cellular Biochemistry Section, National Cancer Institute, Bethesda, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Fujiwara Y. Cyclic phosphatidic acid - a unique bioactive phospholipid. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1781:519-24. [PMID: 18554524 PMCID: PMC2572151 DOI: 10.1016/j.bbalip.2008.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 05/06/2008] [Accepted: 05/12/2008] [Indexed: 02/05/2023]
Abstract
Cyclic phosphatidic acid (CPA) is a naturally occurring analog of the growth factor-like phospholipid mediator, lysophosphatidic acid (LPA). The sn-2 hydroxy group of CPA forms a 5-membered ring with the sn-3 phosphate. CPA affects numerous cellular functions, including anti-mitogenic regulation of the cell cycle, induction of stress fiber formation, inhibition of tumor cell invasion and metastasis, and regulation of differentiation and survival of neuronal cells. Interestingly, many of these cellular responses caused by CPA oppose those of LPA despite the activation of apparently overlapping receptor populations. Since the early 1990s, studies on CPA actions gradually developed, and we are now beginning to understand the importance of this lipid. In this review, we focus on the current knowledge about CPA, including enzymatic formation of CPA, unique biological activities and biological targets of CPA, and we also explore metabolically stabilized CPA analogs.
Collapse
Affiliation(s)
- Yuko Fujiwara
- Department of Physiology, The University of Tennessee Health Sciences Center, 894 Union Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
24
|
Hovi T, Allison AC, Raivio K, Vaheri A. Purine metabolism and control of cell proliferation. CIBA FOUNDATION SYMPOSIUM 2008:225-48. [PMID: 204461 DOI: 10.1002/9780470720301.ch14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exposure of normal lymphocytes to phytohaemagglutinin or other lectin mitogens results in increased concentrations of 5-phosphoribosyl-1-pyrophosphate (PP-ribose-P) within minutes. Subsequently, synthesis of purine nucleotides by both the de novo and the salvage pathways is facilitated. This change is prevented by proliferation-inhibiting concentrations of exogenous adenosine. The capacity of lymphocytes to metabolize both adenine and adenosine is increased several-fold by incubation with phytohaemagglutinin but the specific activities of the respective first-step enzymes are not significantly altered. These results suggest that the relatively low quantity of PP-ribose-P available in normal lymphocytes is a major factor limiting the synthesis of purine nucleotides and may be important for the maintenance of the quiescent state. Increased availability of PP-ribose-P may also be associated with proliferative activation of fibroblast-like cells: chick embryo fibroblast cultures released from density-dependent inhibition of growth by insulin, trypsin or serum rapidly increase the rate of adenine incorporation into nucleotides. Chick embryo fibroblasts transformed by Rous sarcoma virus, but not cells infected with the respective non-transforming leukosis virus, show PP-ribose-P concentrations higher than those observed in normal cells.
Collapse
|
25
|
Halpin DMG. ABCD of the phosphodiesterase family: interaction and differential activity in COPD. Int J Chron Obstruct Pulmon Dis 2008; 3:543-61. [PMID: 19281073 PMCID: PMC2650605 DOI: 10.2147/copd.s1761] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphodiesterases (PDEs) are important enzymes that hydrolyze the cyclic nucleotides adenosine 3'5'-cyclic monophosphate (cAMP) and guanosine 3'5'-cyclic monophosphate (cGMP) to their inactive 5' monophosphates. They are highly conserved across species and as well as their role in signal termination, they also have a vital role in intra-cellular localization of cyclic nucleotide signaling and integration of the cyclic nucleotide pathways with other signaling pathways. Because of their pivotal role in intracellular signaling, they are now of considerable interest as therapeutic targets in a wide variety diseases, including COPD where PDE inhibitors may have bronchodilator, anti-inflammatory and pulmonary vasodilator actions. This review examines the diversity and cellular localization of the isoforms of PDE, the known and speculative relevance of this to the treatment of COPD, and the range of PDE inhibitors in development together with a discussion of their possible role in treating COPD.
Collapse
|
26
|
Moolenaar WH, van Corven EJ. Growth factor-like action of lysophosphatidic acid: mitogenic signalling mediated by G proteins. CIBA FOUNDATION SYMPOSIUM 2007; 150:99-106; discussion 106-11. [PMID: 2115427 DOI: 10.1002/9780470513927.ch7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several classes of growth factors can be distinguished that act through different signal transduction pathways. One class is constituted by the peptide growth factors that bind to receptors with ligand-dependent protein tyrosine kinase activity. Another class of mitogens activates a phosphoinositide-specific phospholipase C via a receptor-linked G protein. An intriguing member of this class is lysophosphatidic acid (LPA). LPA mitogenicity is not dependent on other mitogens and is blocked by pertussis toxin. LPA evokes at least three separate signalling cascades: (i) activation of a pertussis toxin-insensitive G protein mediating phosphoinositide hydrolysis; (ii) release of arachidonic acid in a GTP-dependent manner, but independent of prior phosphoinositide hydrolysis; and (iii) activation of a pertussis toxin-sensitive Gi protein mediating inhibition of adenylate cyclase. The peptide bradykinin mimics LPA in inducing responses (i) and (ii), but fails to activate Gi and to stimulate DNA synthesis. Our results suggest that the mitogenic action of LPA occurs through Gi or a related pertussis toxin substrate and that, unexpectedly, the phosphoinositide hydrolysis pathway is neither required nor sufficient, by itself, for mitogenesis.
Collapse
Affiliation(s)
- W H Moolenaar
- Division of Cellular Biochemistry, Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|
27
|
Zhao H, Quilley J, Montrose DC, Rajagopalan S, Guan Q, Smith CJ. Differential effects of phosphodiesterase PDE-3/PDE-4-specific inhibitors on vasoconstriction and cAMP-dependent vasorelaxation following balloon angioplasty. Am J Physiol Heart Circ Physiol 2007; 292:H2973-81. [PMID: 17293498 DOI: 10.1152/ajpheart.00419.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that cAMP and cGMP are important for vasorelaxation, and cyclic nucleotide phosphodiesterases (PDEs) regulate their levels. Balloon angioplasty (BAL) is associated with reduced cAMP and cGMP levels, and inhibition of PDE-3 reduces restenosis. In this study, we found that BAL increased PDE-3 activity, which affected vasoreactivity of rat aortic rings 24-h post-BAL; these were compared with intact (INT) and ex vivo endothelium-denuded rings (RUB) from sham rats. In BAL and RUB rings, vasorelaxant responses to ACh were abolished. The EC(50) for phenylephrine (PE) was 1.8-fold less in RUB than in INT or BAL, whereas the maximal contractile effect of PE was greater in BAL than in INT or RUB. PDE-3 inhibitors reduced the maximal response to PE by >65% in BAL compared with 10-30% in INT and RUB; the reduction of the maximal response to U-46619 was 37% in BAL compared with 8% in INT with no reduction in RUB. PDE-4 inhibitors reduced PE-induced tone by <30% in an endothelium-dependent manner. Vasorelaxant responses to agonists that utilize cAMP were greatly impaired in BAL and RUB rings, and inhibition of PDE-3 enhanced the vasorelaxant responses in BAL or RUB. Inhibition of PDE-4 increased vasorelaxant responses to isoproterenol (ISO) to a much lesser degree. Thus PDE-3 and PDE-4 inhibitors exhibited differential effects on PE-induced tone and vasorelaxant responses to ISO. Inhibition of PDE-3 also produced a greater increase in cAMP in BAL than INT or RUB rings. These results suggest that increased PDE-3 activity after BAL may promote a vasospastic state and that the reduction in cAMP may, possibly, influence vessel remodeling.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Angioplasty, Balloon/adverse effects
- Animals
- Aorta/drug effects
- Aorta/enzymology
- Aorta/injuries
- Aorta/physiopathology
- Carboxylic Acids/pharmacology
- Cilostazol
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 3
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Cyclohexanecarboxylic Acids
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- In Vitro Techniques
- Male
- Milrinone/pharmacology
- Nitriles/pharmacology
- Phosphodiesterase Inhibitors/pharmacology
- Phosphorylation
- Quinolones/pharmacology
- Rats
- Rats, Sprague-Dawley
- Tetrazoles/pharmacology
- Up-Regulation
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Hong Zhao
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Robins RK. Purine Nucleoside 3′,5′-Cyclic Monophosphates as Hormonal Modulators of Cellular Proliferation, Metastases and Lymphocyte Response. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328318208078836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Itkes AV, Severin ES. Regulation of the 2',5'-oligoadenylate system by cyclic adenosine monophosphate-dependent phosphorylation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 59:213-40. [PMID: 3028055 DOI: 10.1002/9780470123058.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Cosentino C, Di Domenico M, Porcellini A, Cuozzo C, De Gregorio G, Santillo MR, Agnese S, Di Stasio R, Feliciello A, Migliaccio A, Avvedimento EV. p85 regulatory subunit of PI3K mediates cAMP-PKA and estrogens biological effects on growth and survival. Oncogene 2006; 26:2095-103. [PMID: 17016431 DOI: 10.1038/sj.onc.1210027] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclic adenosine 3'5' monophosphate (cAMP) and protein kinase A (PKA) cooperate with phosphatidylinositol 3' kinase (PI3K) signals in the control of growth and survival. To determine the molecular mechanism(s) involved, we identified and mutagenized a specific serine (residue 83) in p85alpha(PI3K), which is phosphorylated in vivo and in vitro by PKA. Expression of p85alpha(PI3K) mutants (alanine or aspartic substitutions) significantly altered the biological responses of the cells to cAMP. cAMP protection from anoikis was reduced in cells expressing the alanine version p85alpha(PI3K). These cells did not arrest in G1 in the presence of cAMP, whereas cells expressing the aspartic mutant p85D accumulated in G1 even in the absence of cAMP. S phase was still efficiently inhibited by cAMP in cells expressing both mutants. The binding of PI3K to Ras p21 was greatly reduced in cells expressing p85A in the presence or absence of cAMP. Conversely, expression of the aspartic mutant stimulated robustly the binding of PI3K to p21 Ras in the presence of cAMP. Mutation in the Ser 83 inhibited cAMP, but not PDGF stimulation of PI3K. Conversely, the p85D aspartic mutant amplified cAMP stimulation of PI3K activity. Phosphorylation of Ser 83 by cAMP-PKA in p85alpha(PI3K) was also necessary for estrogen signaling as expression of p85A or p85D mutants inhibited or amplified, respectively, the binding of estrogen receptor to p85alpha and AKT phosphorylation induced by estrogens. The data presented indicate that: (1) phosphorylation of Ser 83 in p85alpha(PI3K) is critical for cAMP-PKA induced G1 arrest and survival in mouse 3T3 fibroblasts; (2) this site is necessary for amplification of estrogen signals by cAMP-PKA and related receptors. Finally, these data suggest a general mechanism of PI3K regulation by cAMP, operating in various cell types and under different conditions.
Collapse
Affiliation(s)
- C Cosentino
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Wu YJ, Bond M, Sala-Newby GB, Newby AC. Altered S-phase kinase-associated protein-2 levels are a major mediator of cyclic nucleotide-induced inhibition of vascular smooth muscle cell proliferation. Circ Res 2006; 98:1141-50. [PMID: 16574903 DOI: 10.1161/01.res.0000219905.16312.28] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclic nucleotides inhibit vascular smooth muscle cell (VSMC) proliferation but the underlying molecular mechanisms are incompletely understood. We studied the role of S-phase kinase-associated protein-2 (Skp2), an F-box protein of SCFSkp2 ubiquitin ligase responsible for polyubiquitylation of and subsequent proteolysis of p27Kip1, a key step leading to cell cycle progression. Skp2 mRNA and protein were upregulated in mitogen-stimulated VSMCs and after balloon injury in rat carotid arteries, where the time course and location of Skp2 expression closely paralleled that of proliferating cell nuclear antigen. Skp2 small interference RNA (siRNA) reduced Skp2 expression, increased p27Kip1 levels, and inhibited VSMC proliferation in vitro. cAMP-elevating agents prominently inhibited VSMC proliferation and Skp2 expression through inhibiting Skp2 transcription as well as decreasing Skp2 protein stability. Consistent with this, activation of protein kinase A, a downstream target of cAMP, was shown to negatively regulate focal adhesion kinase (FAK) phosphorylation and Skp2 expression. Adenovirus-mediated Skp2 expression reversed cAMP-induced p27Kip1 upregulation and rescued cAMP-related S-phase entry inhibition up to 50%. 8-bromo-cGMP also moderately reduced Skp2 and cell proliferation when VSMCs were incubated with low serum concentration. Interestingly, we showed that 8-bromo-cGMP inhibited Skp2 expression also through activation of protein kinase A, not protein kinase G, which conversely enhanced FAKY397 phosphorylation and Skp2 expression. After balloon injury of rat carotid arteries, local forskolin treatment significantly reduced FAKY397 phosphorylation, Skp2 expression, VSMC proliferation, and subsequent neointimal thickening. These data demonstrate for the first time that Skp2 is an important factor in VSMC proliferation and its inhibition by cyclic nucleotides.
Collapse
MESH Headings
- Animals
- Blood
- Bucladesine/pharmacology
- Carotid Artery Injuries/enzymology
- Carotid Artery Injuries/pathology
- Catheterization
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/pharmacology
- Drug Stability
- Male
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Nucleotides, Cyclic/pharmacology
- Rats
- Rats, Sprague-Dawley
- S-Phase Kinase-Associated Proteins/chemistry
- S-Phase Kinase-Associated Proteins/genetics
- S-Phase Kinase-Associated Proteins/metabolism
- Transcription, Genetic/drug effects
- Tunica Intima/pathology
- Up-Regulation
Collapse
Affiliation(s)
- Yih-Jer Wu
- Bristol Heart Institute, University of Bristol, United Kingdom
| | | | | | | |
Collapse
|
33
|
Lerner A, Epstein P. Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies. Biochem J 2006; 393:21-41. [PMID: 16336197 PMCID: PMC1383661 DOI: 10.1042/bj20051368] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cAMP signalling pathway has emerged as a key regulator of haematopoietic cell proliferation, differentiation and apoptosis. In parallel, general understanding of the biology of cyclic nucleotide PDEs (phosphodiesterases) has advanced considerably, revealing the remarkable complexity of this enzyme system that regulates the amplitude, kinetics and location of intracellular cAMP-mediated signalling. The development of therapeutic inhibitors of specific PDE gene families has resulted in a growing appreciation of the potential therapeutic application of PDE inhibitors to the treatment of immune-mediated illnesses and haematopoietic malignancies. This review summarizes the expression and function of PDEs in normal haematopoietic cells and the evidence that family-specific inhibitors will be therapeutically useful in myeloid and lymphoid malignancies.
Collapse
Affiliation(s)
- Adam Lerner
- *Evans Department of Medicine, Section of Hematology and Oncology, Boston Medical Center, Boston, MA 02118, U.S.A
- †Department of Pathology, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Paul M. Epstein
- ‡Department of Pharmacology, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
34
|
Wang W, Jobbagy Z, Bird TH, Eiden MV, Anderson WB. Cell signaling through the protein kinases cAMP-dependent protein kinase, protein kinase Cepsilon, and RAF-1 regulates amphotropic murine leukemia virus envelope protein-induced syncytium formation. J Biol Chem 2005; 280:16772-83. [PMID: 15741175 DOI: 10.1074/jbc.m411537200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amphotropic murine leukemia virus (A-MuLV) utilizes the PiT2 sodium-dependent phosphate transporter as its cell surface receptor to infect mammalian cells. The process of A-MuLV infection requires cleavage of the R peptide from the envelope protein. This occurs within virions thereby rendering them competent to fuse with target cells. Envelope proteins lacking the inhibitory R peptide (e.g. envelope (R-) proteins) induce viral envelope-mediated cell-cell fusion (syncytium). Here we have performed studies to determine if cell signaling through protein kinases is involved in the regulation of PiT2-mediated A-MuLV envelope (R-)-induced syncytium formation. Truncated A-MuLV retroviral envelope protein lacking the inhibitory R peptide (R-) was used to induce viral envelope-mediated cell-cell fusion. Signaling through cyclic AMP to activate PKA was found to inhibit envelope-induced cell-cell fusion, whereas treatment of cells with PKA inhibitors H89, KT5720, and PKA Catalpha siRNA all enhanced this cell fusion process. It was noted that activation of PKC, as well as overexpression of PKCepsilon, up-regulated A-MuLV envelope protein-induced cell-cell fusion, whereas exposure to PKC inhibitors and expression of a kinase-inactive dominant-negative mutant of PKCepsilon (K437R) inhibited syncytium formation. v-ras transformed NIH3T3 cells were highly susceptible to A-MuLV envelope-induced cell-cell fusion, whereas expression of a dominant-negative mutant of Ras (N17Ras) inhibited this cell fusion process. Importantly, activation of Raf-1 protein kinase also is required for A-MuLV envelope-induced syncytium formation. Expression of constitutively active BXB Raf supported, whereas expression of a dominant-negative mutant of Raf-1 (Raf301) blocked, A-MuLV-induced cell-cell fusion. These results indicate that specific cell signaling components are involved in regulating PiT2-mediated A-MuLV-induced cell-cell fusion. Selective pharmacological modulation of these signaling components may be an effective means of altering cell susceptibility to viral-mediated cytopathic effects.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Cellular Oncology, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
35
|
Naderi S, Wang JYJ, Chen TT, Gutzkow KB, Blomhoff HK. cAMP-mediated inhibition of DNA replication and S phase progression: involvement of Rb, p21Cip1, and PCNA. Mol Biol Cell 2005; 16:1527-42. [PMID: 15647383 PMCID: PMC551513 DOI: 10.1091/mbc.e04-06-0501] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
cAMP exerts an antiproliferative effect on a number of cell types including lymphocytes. This effect of cAMP is proposed to be mediated by its ability to inhibit G1/S transition. In this report, we provide evidence for a new mechanism whereby cAMP might inhibit cellular proliferation. We show that elevation of intracellular levels of cAMP inhibits DNA replication and arrests the cells in S phase. The cAMP-induced inhibition of DNA synthesis was associated with the increased binding of p21Cip1 to Cdk2-cyclin complexes, inhibition of Cdk2 kinase activity, dephosphorylation of Rb, and dissociation of PCNA from chromatin in S phase cells. The ability of cAMP to inhibit DNA replication and trigger release of PCNA from chromatin required Rb and p21Cip1 proteins, since both processes were only marginally affected by increased levels of cAMP in Rb-/- and p21Cip1-/- 3T3 fibroblasts. Importantly, the implications of cAMP-induced inhibition of DNA synthesis in cancer treatment was demonstrated by the ability of cAMP to reduce apoptosis induced by S phase-specific cytotoxic drugs. Taken together, these results demonstrate a novel role for cAMP in regulation of DNA synthesis and support a model in which activation of cAMP-dependent signaling protects cells from the effect of S phase-specific antitumor agents.
Collapse
Affiliation(s)
- Soheil Naderi
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, Oslo N-0317, Norway.
| | | | | | | | | |
Collapse
|
36
|
Ribeiro-Neto F, Leon A, Urbani-Brocard J, Lou L, Nyska A, Altschuler DL. cAMP-dependent oncogenic action of Rap1b in the thyroid gland. J Biol Chem 2004; 279:46868-75. [PMID: 15331589 DOI: 10.1074/jbc.m406858200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cAMP signaling leads to activation and phosphorylation of Rap1b. Using cellular models where cAMP stimulates cell proliferation, we have demonstrated that cAMP-mediated activation, as well as phosphorylation of Rap1b, is critical for cAMP stimulation of DNA synthesis. To determine whether Rap1b stimulates mitogenesis in vivo, we have constructed a transgenic mouse where a constitutively active G12V-Rap1b, flanked by Cre recombinase LoxP sites, is followed by the dominant negative S17N mutant. Employing this novel mouse model, we have switched, in a tissue-specific (thyroid) and temporally controlled manner, the expression of Rap1b from a stimulatory to an inhibitory form. These experiments provide conclusive evidence that Rap1b is oncogenic in the thyroid in ways linked to transduction of the cAMP mitogenic signal.
Collapse
Affiliation(s)
- Fernando Ribeiro-Neto
- Department of Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
37
|
Zhang L, Insel PA. The pro-apoptotic protein Bim is a convergence point for cAMP/protein kinase A- and glucocorticoid-promoted apoptosis of lymphoid cells. J Biol Chem 2004; 279:20858-65. [PMID: 14996839 DOI: 10.1074/jbc.m310643200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms by which cAMP mediates apoptosis are not well understood. In the current studies, we used wild-type (WT) S49 T-lymphoma cells and the kin(-) variant (which lacks protein kinase A (PKA)) to examine cAMP/PKA-mediated apoptosis. The cAMP analog, 8-CPT-cAMP, increased phosphorylation of the cAMP response element-binding protein (CREB), activated caspase-3, and induced apoptosis in WT but not in kin(-) S49 cells. Using an array of 96 apoptosis-related genes, we found that treatment of WT cells with 8-CPT-cAMP for 24 h induced expression of mRNA for the pro-apoptotic gene, Bim. Real-time PCR analysis indicated that 8-CPT-cAMP increased Bim RNA in WT cells in <2 h and maintained this increase for >24 h. Bim protein expression increased in WT but not kin(-) cells treated with 8-CPT-cAMP or with the beta-adrenergic receptor agonist isoproterenol. Both apoptosis and Bim expression were reversible with removal of 8-CPT-cAMP after <6 h. The glucocorticoid dexamethasone also promoted apoptosis and Bim expression in S49 cells. In contrast, both UV light and anti-mouse Fas monoclonal antibody promoted apoptosis in S49 cells but did not induce Bim expression. 8-CPT-cAMP also induced Bim expression and enhanced dexamethasone-promoted apoptosis in human T-cell leukemia CEM-C7-14 (glucocorticoid-sensitive) and CEM-C1-15 (glucocorticoid-resistant) cells; increased Bim expression in 8-CPT-cAMP-treated CEM-C1-15 cells correlated with conversion of the cells from resistance to sensitivity to glucocorticoid-promoted apoptosis. Induction of Bim appears to be a key event in cAMP-promoted apoptosis in both murine and human T-cell lymphoma and leukemia cells and thus appears to be a convergence point for the killing of such cells by glucocorticoids and agents that elevate cAMP.
Collapse
Affiliation(s)
- Lingzhi Zhang
- Department of Pharmacology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | | |
Collapse
|
38
|
Balmanno K, Millar T, McMahon M, Cook SJ. DeltaRaf-1:ER* bypasses the cyclic AMP block of extracellular signal-regulated kinase 1 and 2 activation but not CDK2 activation or cell cycle reentry. Mol Cell Biol 2003; 23:9303-17. [PMID: 14645540 PMCID: PMC309715 DOI: 10.1128/mcb.23.24.9303-9317.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 09/11/2003] [Indexed: 01/21/2023] Open
Abstract
Elevation of cellular cyclic AMP (cAMP) levels inhibits cell cycle reentry in a variety of cell types. While cAMP can prevent the activation of Raf-1 and extracellular signal-regulated kinases 1 and 2 (ERK1/2) by growth factors, we now show that activation of ERK1/2 by DeltaRaf-1:ER is insensitive to cAMP. Despite this, DeltaRaf-1:ER-stimulated DNA synthesis is still inhibited by cAMP, indicating a cAMP-sensitive step downstream of ERK1/2. Although cyclin D1 expression has been proposed as an alternative target for cAMP, we found that cAMP could inhibit DeltaRaf-1:ER-induced cyclin D1 expression only in Rat-1 cells, not in CCl39 or NIH 3T3 cells. DeltaRaf-1:ER-stimulated activation of CDK2 was strongly inhibited by cAMP in all three cell lines, but cAMP had no effect on the induction of p21(CIP1). cAMP blocked the fetal bovine serum (FBS)-induced degradation of p27(KIP1); however, loss of p27(KIP1) in response to DeltaRaf-1:ER was less sensitive in CCl39 and Rat-1 cells and was completely independent of cAMP in NIH 3T3 cells. The most consistent effect of cAMP was to block both FBS- and DeltaRaf-1:ER-induced expression of Cdc25A and cyclin A, two important activators of CDK2. When CDK2 activity was bypassed by activation of the ER-E2F1 fusion protein, cAMP no longer inhibited expression of Cdc25A or cyclin A but still inhibited DNA synthesis. These studies reveal multiple points of cAMP sensitivity during cell cycle reentry. Inhibition of Raf-1 and ERK1/2 activation may operate early in G(1), but when this early block is bypassed by DeltaRaf-1:ER, cells still fail to enter S phase due to inhibition of CDK2 or targets downstream of E2F1.
Collapse
Affiliation(s)
- Kathryn Balmanno
- Signalling Programme, The Babraham Institute, Babraham Hall, Cambridge CB2 4AT, England, UK
| | | | | | | |
Collapse
|
39
|
|
40
|
Misra UK, Akabani G, Pizzo SV. The role of cAMP-dependent signaling in receptor-recognized forms of alpha 2-macroglobulin-induced cellular proliferation. J Biol Chem 2002; 277:36509-20. [PMID: 12114513 DOI: 10.1074/jbc.m203543200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligation of alpha(2)-macroglobulin receptors by receptor-recognized forms of alpha(2)-macroglobulin (alpha(2)M*) activates various signaling cascades and promotes cell proliferation. It also elevates cAMP in murine peritoneal macrophages. We now report that a significant elevation of cAMP-response element-binding protein (CREB) occurs in alpha(2)M*-stimulated cells, and this effect is potentiated by isobutylmethylxanthine, dibutyryl-cAMP, or forskolin. An alpha(2)M* concentration-dependent rapid increase in phosphorylated CREB at Ser(133) also occurred, a necessary event in its activation. Inhibition of Ca(2+)/calmodulin kinase, protein kinases A and C, tyrosine kinases, ribosomal S6 kinase, farnesyl transferase, extracellular signal-regulated kinases 1/2, phosphatidylinositol 3-kinase, or p38 mitogen-activated protein kinase markedly reduce alpha(2)M*-induced phosphorylation of CREB, indicating a role for the p21(ras)-dependent and phosphatidylinositol 3-kinase signaling pathways in regulating CREB activation by alpha(2)M*. Finally, silencing the CREB gene by transfecting cells with a homologous gene sequence double-stranded RNA drastically reduced the expression of CREB and blocked the ability of alpha(2)M* to promote macrophage cell division. We conclude that cAMP-dependent signal transduction as well as other signaling cascades are essential for alpha(2)M*-induced cell proliferation.
Collapse
Affiliation(s)
- Uma Kant Misra
- Department of Pathology and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
41
|
Klinger M, Kudlacek O, Seidel MG, Freissmuth M, Sexl V. MAP kinase stimulation by cAMP does not require RAP1 but SRC family kinases. J Biol Chem 2002; 277:32490-7. [PMID: 12082090 DOI: 10.1074/jbc.m200556200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small G protein RAP1 and the kinase B-RAF have been proposed to link elevations of cAMP to activation of ERK/mitogen-activated protein (MAP) kinase. In order to delineate signaling pathways that link receptor-generated cAMP to the activation of MAP kinase, the human A(2A)-adenosine receptor, a prototypical G(s)-coupled receptor, was heterologously expressed in Chinese hamster ovary cells (referred as CHO-A(2A) cells). In CHO-A(2A) cells, the stimulation of the A(2A)-receptor resulted in an activation of RAP1 and formation of RAP1-B-RAF complexes. However, overexpression of a RAP1 GTPase-activating protein (RAP1GAP), which efficiently clamped cellular RAP1 in the inactive GDP-bound form, did not affect A(2A)-agonist-mediated MAP kinase stimulation. In contrast, the inhibitor of protein kinase A H89 efficiently suppressed A(2A)-agonist-mediated MAP kinase stimulation. Neither dynamin-dependent receptor internalization nor receptor-promoted shedding of matrix-bound growth factors accounted for A(2A)-receptor-dependent MAP kinase activation. PP1, an inhibitor of SRC family kinases, blunted both the A(2A)-receptor- and the forskolin-induced MAP kinase stimulation (IC(50) = 50 nm); this was also seen in PC12 cells, which express the A(2A)-receptor endogenously, and in NIH3T3 fibroblasts, in which cAMP causes MAP kinase stimulation. In the corresponding murine fibroblast cell line SYF, which lacks the ubiquitously expressed SRC family kinases SRC, YES, and FYN, forskolin barely stimulated MAP kinase; this reduction was reversed in cells in which c-SRC had been reintroduced. These findings show that activation of MAP kinase by cAMP requires a SRC family kinase that lies downstream of protein kinase A. A role for RAP1, as documented for the beta(2)-adrenergic receptor, is apparently contingent on receptor endocytosis.
Collapse
Affiliation(s)
- Markus Klinger
- Institute of Pharmacology, University of Vienna, Währinger Strasse 13a, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
42
|
Fernstrom MJ, Koffler LD, Abou-Rjaily G, Boucher PD, Shewach DS, Ruch RJ. Neoplastic reversal of human ovarian carcinoma cells transfected with connexin43. Exp Mol Pathol 2002; 73:54-60. [PMID: 12127054 DOI: 10.1006/exmp.2002.2436] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gap junctional intercellular communication and expression of gap junction proteins (connexins) are decreased frequently in neoplastic cells including human ovarian carcinoma cells. In order to test the hypothesis that these changes contribute to the neoplastic phenotype of ovarian carcinoma cells, we transfected human ovarian carcinoma SKOV-3 cells with connexin43. Stable, connexin43-expressing transfectants were characterized for cell proliferation in vitro in normal, low-serum, and serum-free culture medium, for tumorigenicity in nude mice, and for sensitivity to adriamycin in vitro. Transfected clones expressed higher levels of connexin43 and gap junctional intercellular communication, reduced proliferation and greater dependence upon serum for growth in vitro, decreased tumor formation, increased sensitivity to adriamycin, and reduced expression of p-glycoprotein. These data suggest that gap junctional intercellular communication and/or connexin43 expression suppresses the neoplastic phenotype of ovarian carcinoma cells and their downregulation is involved in neoplastic transformation of ovarian epithelial cells. The increased sensitivity to adriamycin and elevated expression of p-glycoprotein by the transfected cells also suggest that gap junctional intercellular communication and connexin43 expression are involved in drug sensitivity and might be manipulated to enhance the clinical response.
Collapse
|
43
|
Abstract
Skin is a major target of oxidative stress due to reactive oxygen species (ROS) that originate in the environment and in the skin itself. ROS are generated during normal metabolism, are an integral part of normal cellular function, and are usually of little harm because of intracellular mechanisms that reduce their damaging effects. Antioxidants attenuate the damaging effects of ROS and can impair and/or reverse many of the events that contribute to epidermal toxicity and disease. However, increased or prolonged free radical action can overwhelm ROS defense mechanisms, contributing to the development of cutaneous diseases and disorders. Although ROS play a role in diseases such as skin cancer, their biological targets and pathogenic mode of action are still not fully understood. In addition, strategies useful in the therapeutic management of ROS action in human skin are still lacking. This review is intended to give investigators an introduction to ROS, antioxidants, two skin disorders influenced by ROS action (skin cancer and psoriasis), and relevant model systems used to study ROS action.
Collapse
Affiliation(s)
- Kevin J Trouba
- National Institute of Environmental Health Sciences, Laboratory of Molecular Toxicology, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
44
|
Anesini C, Borda E. Modulatory effect of the adrenergic system upon fibroblast proliferation: participation of beta 3-adrenoceptors. AUTONOMIC & AUTACOID PHARMACOLOGY 2002; 22:177-86. [PMID: 12452903 DOI: 10.1046/j.1474-8673.2002.00261.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The beta3-adrenoceptor agonist ZD 7114, like the non-selective beta-adrenoceptor agonist isoprenaline, but unlike the beta1-adrenoceptor agonist dobutamine and the beta2-adrenoceptor agonist salbutamol, produced an increment on mouse embryonic fibroblast proliferation. The half-maximal stimulation of cell growth occurred at substantially lower concentrations with the beta3-adrenoceptor agonist (EC50: 5.5 x 10(-8) m) than with isoprenaline (EC50: 1.25 x 10(-6) m). 2. The selective beta3-adrenoceptor antagonist SR 5923 OA prevented the beta3-stimulated fibroblast proliferation. Conversely, practolol and butoxamine did not prevent fibroblast growth. 3. Additionally, a decrease of cAMP was obtained in fibroblasts cells upon stimulation with isoprenaline and ZD 7114. 4. The expression of beta-adrenoreceptors on fibroblast cells was also studied by radioligand binding. The Ki values in the presence of beta1- and beta2-adrenoceptor antagonist was two-fold higher than the Ki values for beta3 adrenoceptor antagonist indicating the presence of A3-receptor subtype. 5. Inhibitors of different intracellular coupling pathways including phospholipase C (U 73122), protein kinase C (staurosporine), calcium/calmodulin (trifluoroperazine) and calcium channel (verapamil), prevented the stimulatory actions of the selective beta3-adrenoceptor agonist ZD 7114. 6. The presence of beta3-adrenoceptors on embryonic mouse fibroblast cells may play a role in the modulation of cell growth and biologic activity. The mechanism by which ZD 7114 triggers cell proliferation and function, involves the activation of phospholipase C, PKC, calcium/calmodulin and the influx of calcium.
Collapse
Affiliation(s)
- C Anesini
- Pharmacology Unit, School of Dentistry, University of Buenos Aires, Marcelo T de Alvear 2142 (1122), Capitol Federal Buenos Aires, Argentina
| | | |
Collapse
|
45
|
Ribeiro-Neto F, Urbani J, Lemee N, Lou L, Altschuler DL. On the mitogenic properties of Rap1b: cAMP-induced G(1)/S entry requires activated and phosphorylated Rap1b. Proc Natl Acad Sci U S A 2002; 99:5418-23. [PMID: 11959997 PMCID: PMC122784 DOI: 10.1073/pnas.082122499] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have shown that the small GTPase Rap1b, a protein known to antagonize the mitogenic and transforming activity of Ras, is endowed with both mitogenic and tumorigenic properties. Rap1b can be activated by cAMP, an intracellular message known to either stimulate or inhibit cell proliferation. The oncogenic property of Rap1b was revealed in a model system in which cAMP stimulates cell proliferation and was linked to Rap's ability to promote S phase entry. We have now tested the significance of the mitogenic action of Rap1b in a physiologically relevant model, the differentiated thyroid follicular cells, a system that requires thyroid-stimulating hormone (TSH), acting via cAMP, to mediate a full mitogenic response. Here we report that cAMP-dependent hormonal stimulation of DNA synthesis requires Rap1b in a manner dependent on its phosphorylation by protein kinase A.
Collapse
Affiliation(s)
- Fernando Ribeiro-Neto
- Department of Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
46
|
Sampath J, Adachi M, Hatse S, Naesens L, Balzarini J, Flatley R, Matherly L, Schuetz J. Role of MRP4 and MRP5 in biology and chemotherapy. AAPS PHARMSCI 2002; 4:E14. [PMID: 12423063 PMCID: PMC2751353 DOI: 10.1208/ps040314] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Accepted: 04/01/2002] [Indexed: 01/22/2023]
Abstract
Nucleotide efflux (especially cyclic nucleotides) from a variety of mammalian tissues, bacteria, and lower eukaryotes has been studied for several decades. However, the molecular identity of these nucleotide efflux transporters remained elusive, despite extensive knowledge of their kinetic properties and inhibitor profiles. Identification of the subfamily of adenosine triphosphate (ATP) binding cassette transporters, multidrug resistance protein (MRP) subfamily, permitted rapid advances because some recently identified MRP family members transport modified nucleotide analogs (ie, chemotherapeutic agents). We first identified, MRP4, based on its ability to efflux antiretroviral compounds, such as azidothymidine monophosphate (AZT-MP) and 9-(2-phosphonyl methoxyethyl) adenine (PMEA), in drug-resistant and also in transfected cell lines. MRP5, a close structural homologue of MRP4 also transported PMEA. MRP4 and MRP5 confer resistance to cytotoxic thiopurine nucleotides, and we demonstrate MRP4 expression varies among acute lymphoblastic leukemias, suggesting this as a factor in response to chemotherapy with these agents. The ability of MRP4 and MRP5 to transport 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) suggests they may play a biological role in cellular signaling by these nucleotides. Finally, we propose that MRP4 may also play a role in hepatic bile acid homeostasis because loss of the main bile acid efflux transporter, sister of P-glycoprotein (SPGP) aka bile-salt export pump (BSEP), leads to a strong compensatory upregulation in MRP4 expression. Cumulatively, these studies reveal that the ATP-binding cassette (ABC) transporters MRP4 and MRP5 have a unique role in biology and in chemotherapeutic response.
Collapse
Affiliation(s)
- Janardhan Sampath
- Department of Pharmaceutical Sciences, St Jude Childrens Research Hospital, 38105 Memphis, TN
| | - Masashi Adachi
- Department of Pharmaceutical Sciences, St Jude Childrens Research Hospital, 38105 Memphis, TN
| | - Sigrid Hatse
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Lieve Naesens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Jan Balzarini
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Robin Flatley
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 48201 Detroit, MI
| | - Larry Matherly
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 48201 Detroit, MI
| | - John Schuetz
- Department of Pharmaceutical Sciences, St Jude Childrens Research Hospital, 38105 Memphis, TN
| |
Collapse
|
47
|
Resistance of muscle to tumor metastases: a role for a3 adenosine receptor agonists. Neoplasia 2001. [PMID: 11420748 DOI: 10.1038/sj/neo/7900138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tumor metastases are extremely rare in striated muscles. Lately, we have found that muscle cell conditioned medium (MCM) inhibits the proliferation of various tumor cells while maintaining the growth of normal murine bone marrow cells. This dual activity was confirmed in vivo when the MCM was administered orally, i.e., it inhibited the development of tumor growth in mice and prevented the myelotoxic effects of chemotherapy. Adenosine was found to be one of the active components of MCM, inhibiting tumor cell growth while maintaining bone marrow cell proliferation in vitro. Adenosine is known to act as an important regulatory molecule through its binding to specific G-protein-associated A1, A(2a), A(2b) and A3 cell surface receptors. In distinction from MCM, adenosine did not suppress tumor development in mice and was not active as a chemoprotective agent when administered orally or intravenously. Thus, the in vivo activity of MCM could not be attributed to adenosine. In this study, MCM from which adenosine was enzymatically removed still retained its dual activity that was also found to be mediated through the A3 adenosine receptor (A3AR). This result led to the conclusion that natural agonists to A3AR were responsible for the activity of MCM. We further tested synthetic agonist to the A3AR and demonstrated that it possessed the same in vitro and in vivo activity profile as MCM. Taken together, muscle cells, in addition to adenosine, secrete natural agonists to A3AR. These agonists are stable nondegradable molecules and may contribute to the systemic anticancer and chemoprotective activity exerted by MCM. This group of molecules may account for the rarity of tumor metastases in muscle.
Collapse
|
48
|
Giorgi M, Leonetti C, Citro G, Augusti-Tocco G. In vitro and in vivo inhibition of SK-N-MC neuroblastoma growth using cyclic nucleotide phosphodiesterase inhibitors. J Neurooncol 2001; 51:25-31. [PMID: 11349877 DOI: 10.1023/a:1006489020190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of cyclic nucleotide phosphodiesterase (PDE) inhibitors Zaprinast and DC-TA-46 has been tested on SK-N-MC neuroblastoma growth. Antiproliferative activity of the tested drugs was assayed both in vitro and in the xenograft model of nude mice. In clonal density experiments, the IC50 value was 3.3 microM for Zaprinast and 1.9 microM for DC-TA-46, while 7.5 microM BCNU alkylating agent was required to obtain the same effect. SK-N-MC cells xenografted in the nude mouse showed that the administration of Zaprinast and DC-TA-46 caused a significant 50% decrease of the tumour weight. These data demonstrate that PDE inhibitors may be useful for at least reducing tumour growth; they may be of interest for further evaluation as alternative molecules in the design of multiple agent protocols for neuroblastoma treatment.
Collapse
Affiliation(s)
- M Giorgi
- Dipartimento di Biologia di Base e Applicata, Università dell'Aquila, L'Aquila, Italy
| | | | | | | |
Collapse
|
49
|
Re G, Badino P, De Angelis I, Odore R, Belloli C, Stammati A, Zucco F. Identification and coupling to adenylate cyclase of three different [(3)H]CGP 12177 binding sites in Caco-2 cell membranes. Pharmacol Res 2001; 43:393-8. [PMID: 11352544 DOI: 10.1006/phrs.2001.0802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present investigation the identification of beta -adrenoceptor (beta -ARs) subtypes in the Caco-2 cell line was performed using radiometric assays. beta -ARs were measured using increasing concentrations of the highly specific beta -AR antagonist (-)[(3)H]CGP 12177 (0.06-4 nM), whereas the beta(1)- and beta(2)-AR subtypes discriminated through selective binding assays using the highly selective unlabelled antagonists CGP 20712A and ICI 118551. Atypical beta -ARs were measured using an incubation system formed by higher concentrations (0.6-20 nM) of (-)[(3)H]CGP 12177. beta - Atypical binding site concentrations (69 +/- 5 fmol mg ml(-1)of membrane protein) were higher than beta(1)-ARs (7 +/- 1) and beta(2)-ARs (24 +/- 2), respectively. The different beta -AR subtype affinities were characterized by binding inhibition experiments and the adrenergic agonists displaced the radioligand from its specific binding sites in the following order of potency: isoproterenol > clenbuterol > dobutamine > SR 58611A; for antagonists the order of potency was: propranolol approximately = ICI118551 approximately = CGP20712A. For atypical beta -ARs the order was: SR 58611A > clenbuterol > dobutamine > isoproterenol for agonists and propranolol > CGP 20712A > ICI 118551 for antagonists. As far as in vitro functional studies are concerned, beta -AR subtypes were shown to be coupled to adenylyl cyclase as their stimulation produced cAMP in an amount significantly higher than basal values. cAMP production after stimulation with dobutamine, clenbuterol, isoproterenol, and SR 58611A was measured using a cAMP radioassay kit. The order of efficacy suggested that the stimulation of beta(2)-ARs was the most effective in inducing the activation of cell signalling mechanisms. The identification of functional beta -ARs in a cancer cell line represents the first step in the study of the possible adrenergic control of cellular activities (e.g. proliferation and/or differentiation), which could suggest the use of this cancer cell line as a model for the study of cell activity or possibly new therapeutic strategies.
Collapse
Affiliation(s)
- G Re
- Dipartimento di Patologia Animale, Settore di Farmacologia e Tossicologia, Università di Torino, via Leonardo da Vinci 44, I-10095 Grugliasco, Torino, Italia.
| | | | | | | | | | | | | |
Collapse
|
50
|
Boucher MJ, Duchesne C, Lainé J, Morisset J, Rivard N. cAMP protection of pancreatic cancer cells against apoptosis induced by ERK inhibition. Biochem Biophys Res Commun 2001; 285:207-16. [PMID: 11444827 DOI: 10.1006/bbrc.2001.5147] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Large increases in cAMP concentration inside the cell are generally growth inhibitory for most cell lines of mesenchymal and epithelial origin. Moreover, recent data suggest a role of cAMP in survival of different cell types. Herein, the ability of forskolin (an adenylyl cyclase activator) and IBMX (3-isobutyl-1-methylxanthine) (a phosphodiesterase inhibitor) to modulate cell cycle progression and survival of human pancreatic cancer cells was evaluated. We showed that forskolin + IBMX inhibited serum-induced ERK activities, Rb hyperphosphorylation, Cdk2 activity, and p27(Kip1) downregulation and caused G1 arrest in MIA PaCa-2 cells. Furthermore, forskolin + IBMX protected pancreatic cells against apoptosis induced by prolonged inhibition of ERK activities by preventing Bcl-X(L) downregulation, activation of caspases 3, 6, 8, and 9, and PARP cleavage and by inducing Bad phosphorylation (ser112). Taken together, our data demonstrate for the first time that cAMP is an inhibitor of cell cycle progression and apoptosis in human pancreatic cancer cells.
Collapse
Affiliation(s)
- M J Boucher
- Département d'Anatomie et Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | | | |
Collapse
|