1
|
Santos D, Foglia L, Kiser PD, Yu A. The molecular mechanisms of visual chromophore release from cellular retinaldehyde-binding protein. Structure 2025:S0969-2126(25)00174-1. [PMID: 40403716 DOI: 10.1016/j.str.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/11/2025] [Accepted: 04/25/2025] [Indexed: 05/24/2025]
Abstract
Cellular retinaldehyde-binding protein (CRALBP) is an 11-cis-retinoid binding protein operating within the visual cycle. CRALBP serves as the terminal acceptor of 11-cis-retinaldehyde (11cRAL) produced within the retinal pigment epithelium (RPE) and mediates 11cRAL transport to the RPE apical microvilli. Crystallographic structures of CRALBP revealed that the 11cRAL-binding pocket is sealed off from bulk solvent, indicating a necessity for conformational changes to allow ligand egress. Here, we performed long timescale all-atom molecular dynamics simulations of CRALBP to elucidate the mechanisms of ligand release. CRALBP exhibits slower diffusive behavior in the presence of membranes containing negatively charged phospholipids, which bind to an exposed cationic pocket in CRALBP. Umbrella sampling calculations revealed thermodynamically likely pathways for 11cRAL egress. Our data suggest that the CRALBP-acidic phospholipid interaction facilitates 11cRAL release through allosteric, conformational changes that perturb the binding site, lowering ligand affinity. These findings offer insights into the molecular pathology of CRALBP-associated retinopathy.
Collapse
Affiliation(s)
- Daniel Santos
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Lorenzo Foglia
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Philip D Kiser
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA; Department of Ophthalmology, University of California, Irvine, Irvine, CA 92617, USA; Department of Clinical Pharmacy Practice, University of California, Irvine, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 92697, USA.
| | - Alvin Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA.
| |
Collapse
|
2
|
Mizuno Y, Katayama K, Imai H, Kandori H. Deprotonation of retinal Schiff base and structural dynamics in the early photoreaction of primate blue cone visual pigment. Biophys J 2025:S0006-3495(25)00284-X. [PMID: 40340252 DOI: 10.1016/j.bpj.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/20/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025] Open
Abstract
Animal rhodopsin is a photoreceptive protein crucial for vision, with activation triggered by the cis-trans isomerization of a retinal chromophore upon light absorption. This activation involves a series of thermal intermediates, ultimately leading to G protein-mediated signal transduction. The retinal chromophore is covalently bound to the protein through a protonated Schiff base, and its deprotonation during the formation of the active intermediate is believed to induce structural changes in α-helices that facilitate G-protein interactions. Using low-temperature UV-visible absorption and Fourier transform infrared spectroscopy, we investigated the early photoreaction of the primate blue cone visual pigment (MB). Our results demonstrate that Schiff base deprotonation in the early photoreaction is coupled with local perturbations in α-helices, promoting the formation of the Lumi intermediate. Using site-directed mutagenesis, we identified the proton acceptor involved in Schiff base deprotonation and mapped the regions of α-helical structural changes during the formation of the Lumi intermediate. We discovered that the proton released from the Schiff base is transferred to the counterion Glu113. Systematic mutagenesis revealed that structural perturbations in transmembrane helix 7 bring Glu113 and the lysine residue forming the Schiff base into proximity, facilitating efficient proton transfer during the early photoreaction. Additionally, the Lumi intermediate formed at low temperatures was found to revert to the original state through thermally driven reverse proton transfer, coupled with retinal reisomerization. From an evolutionary perspective, MB is part of a group of UV-sensitive cone visual pigments characterized by a deprotonated retinal Schiff base in the ground state. The observed propensity for MB to undergo Schiff base deprotonation is consistent with this evolutionary trait.
Collapse
Affiliation(s)
- Yosuke Mizuno
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan.
| | - Hiroo Imai
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan.
| |
Collapse
|
3
|
Zaluski J, Bassetto M, Kiser PD, Tochtrop GP. Advances and therapeutic opportunities in visual cycle modulation. Prog Retin Eye Res 2025; 106:101360. [PMID: 40280538 DOI: 10.1016/j.preteyeres.2025.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The visual cycle is a metabolic pathway that enables continuous vision by regenerating the 11-cis-retinal chromophore for photoreceptors opsins. Although integral to normal visual function, the flux of retinoids through this cycle can contribute to a range of retinal pathologies, including Stargardt disease, age-related macular degeneration, and diabetic retinopathy. In such conditions, intermediates and byproducts of the visual cycle, such as bisretinoid components of lipofuscin, can accumulate, concomitant with cellular damage and eventual photoreceptor loss. This has inspired efforts to modulate the visual cycle, aiming to slow or prevent the formation of these toxic intermediates and thus preserve retinal structure and function. Over the past two decades, multiple strategies to modulate the visual cycle have emerged. These include both intrinsic approaches, targeting key enzymes, retinoid-binding proteins, or receptors within the pigment epithelium or photoreceptors (e.g., RPE65, CRBP1, and rhodopsin inhibitors/antagonists) and extrinsic strategies that indirectly alter retinoid availability within the retina (e.g., RBP4 antagonists). Many of these agents have shown promise in animal models of visual cycle-associated retinal diseases, reducing pathological changes, and improving retinal survival. Several have advanced into clinical studies, although none are currently FDA-approved. Challenges remain in optimizing drug specificity and duration of action while minimizing side effects such as nyctalopia. In this review, we comprehensively examine current and emerging visual cycle modulators, discuss their medicinal chemistry, mechanisms of action, efficacy in preclinical and clinical studies, and highlight future opportunities for drug discovery aimed at safely and effectively preserving vision through modulation of this biochemical pathway.
Collapse
Affiliation(s)
- Jordan Zaluski
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Marco Bassetto
- Department of Physiology and Biophysics, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA
| | - Philip D Kiser
- Department of Physiology and Biophysics, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA; Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California - Irvine, Irvine, CA, 92697, USA.
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Chang W, Hale ME. Neural responses to light stimulation in the octopus arm. J Exp Biol 2025; 228:jeb250111. [PMID: 40067259 PMCID: PMC11993263 DOI: 10.1242/jeb.250111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/19/2025] [Indexed: 04/01/2025]
Abstract
Octopuses are known to be visual animals. Beyond functions of the eyes, recent investigations have documented the importance of extraocular photoreception in behavior. Octopus arms have been shown to respond behaviorally to local light exposure with negative phototaxis. Moreover, light-activated chromatophore expansion (LACE) in octopus arms indicates that skin-based photoreception may contribute to light detection. In this study, we used electrophysiological recordings to investigate the neural activity of the arm's axial nerve cord in response to light on the arm. We tested the hypothesis that light stimulates the activity of neurons in the arm's axial nerve cord. We also aimed to determine sensitivity to different wavelengths of light. The results showed that the axial nerve cord is strongly responsive to light stimulation of the arm and that the response travels along the length of the axial nerve cord. Blue light generated the strongest neural activity while red and green light also induced responses. Light-induced neural activity was mediated through the aboral arm skin and by the oral-side skin and suckers. These findings reveal the role of the skin in the sensory abilities of octopuses and provide insights into the neural mechanisms underlying their response to light. Our study underscores the importance of extraocular photoreception in future investigations of cephalopod sensory and behavioral biology.
Collapse
Affiliation(s)
- Weipang Chang
- Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Melina E. Hale
- Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Hedger G, Yen HY. The Influence of Phosphoinositide Lipids in the Molecular Biology of Membrane Proteins: Recent Insights from Simulations. J Mol Biol 2025; 437:168937. [PMID: 39793883 PMCID: PMC7617384 DOI: 10.1016/j.jmb.2025.168937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The phosphoinositide family of membrane lipids play diverse and critical roles in eukaryotic molecular biology. Much of this biological activity derives from interactions of phosphoinositide lipids with integral and peripheral membrane proteins, leading to modulation of protein structure, function, and cellular distribution. Since the discovery of phosphoinositides in the 1940s, combined molecular biology, biophysical, and structural approaches have made enormous progress in untangling this vast and diverse cellular network of interactions. More recently, in silico approaches such as molecular dynamics simulations have proven to be an asset in prospectively identifying, characterising, explaining the structural basis of these interactions, and in the best cases providing atomic level testable hypotheses on how such interactions control the function of a given membrane protein. This review details a number of recent seminal discoveries in phosphoinositide biology, enabled by advanced biomolecular simulation, and its integration with molecular biology, biophysical, and structural biology approaches. The results of the simulation studies agree well with experimental work, and in a number of notable cases have arrived at the key conclusion several years in advance of the experimental structures. SUMMARY: Hedger and Yen review developments in simulations of phosphoinositides and membrane proteins.
Collapse
Affiliation(s)
- George Hedger
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| | - Hsin-Yung Yen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
6
|
Ayoub N, Djabeur N, Harder D, Jeckelmann JM, Ucurum Z, Hirschi S, Fotiadis D. Actinorhodopsin: an efficient and robust light-driven proton pump for bionanotechnological applications. Sci Rep 2025; 15:4054. [PMID: 39900604 PMCID: PMC11790970 DOI: 10.1038/s41598-025-88055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Actinorhodopsins are encoded by a distinct group of microbial rhodopsin (MR) genes predominant in non-marine actinobacteria. Despite their role in the global energy cycle and potential for bionanotechnological applications, our understanding of actinorhodopsin proteins is limited. Here, we characterized the actinorhodopsin RlActR from the freshwater actinobacterium Rhodoluna lacicola, which conserves amino acid residues critical for light-driven proton pumping found in MRs. RlActR was efficiently overexpressed in Escherichia coli in milligram amounts and isolated with high purity and homogeneity. The purified RlActR absorbed green light and its primary proton acceptor exhibited a mildly acidic apparent pKa. Size-exclusion chromatography of RlActR purified in the relatively mild and harsh detergents 5-cyclohexyl-1-pentyl-β-D-maltoside and n-octyl-β-D-glucopyranoside revealed highly homogeneous oligomers and no disruption into monomers, indicating significant robustness of the RlActR oligomer. Cryo-electron microscopy and 2D classification of protein particles provided a projection structure identifying the oligomeric state of RlActR as a pentamer. Efficient establishment of a proton gradient across lipid membranes upon light illumination was demonstrated using RlActR-overexpressing E. coli cells and reconstituted RlActR proteoliposomes. In summary, these features make RlActR an attractive energizing building block for the bottom-up assembly of molecular systems for bionanotechnological applications.
Collapse
Affiliation(s)
- Nooraldeen Ayoub
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Nadia Djabeur
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland.
| |
Collapse
|
7
|
Salom D, Kiser PD, Palczewski K. Insights into the Activation and Self-Association of Arrestin-1. Biochemistry 2025; 64:364-376. [PMID: 39704710 PMCID: PMC11784764 DOI: 10.1021/acs.biochem.4c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Arrestins halt signal transduction by binding to the phosphorylated C-termini of activated G protein-coupled receptors. Arrestin-1, the first subtype discovered, binds to rhodopsin in rod cells. Mutations in SAG, the gene encoding Arrestin-1, are linked to Oguchi disease, characterized by delayed dark adaptation. Since the discovery of Arrestin-1, substantial progress has been made in understanding the role of these regulatory proteins in phototransduction, including the characterization of visual phenotypes of animals and humans lacking this protein, discovery of splice variants, and documentation of its binding to inositol-polyphosphates. Arrestin-1 was one of the first structurally characterized proteins in the phototransduction cascade. However, there are knowledge gaps regarding the conformational intermediates leading to its binding to phosphorylated rhodopsin. Among various mammalian Arrestin-1 conformations captured via crystallography, the preactivated state is represented by the mutant R175E-Arrestin-1 and by a C-terminally truncated splice variant (p44). This report describes a novel purification method of Arrestin-1 from bovine retinas followed by limited proteolysis to obtain a protein resembling p44. We solved the crystal structure of this preactivated, shortened 3-367Arrestin-1 at a resolution of 1.40 Å. The structure reveals a more complete picture of the finger loop structure and of the role of the polar core in the activation of Arrestin-1. The structure of 3-367Arrestin-1 captures an intermediate form halfway between the inactive and fully activated conformations of Arrestin-1. Finally, we addressed the question of Arrestin-1 oligomerization by comparing the packing interfaces in different Arrestin-1 crystals and dimer models predicted by AlphaFold 3.
Collapse
Affiliation(s)
- David Salom
- Gavin Herbert Eye Institute – Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA 92697, USA
| | - Philip D. Kiser
- Gavin Herbert Eye Institute – Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA
- Department of Clinical Pharmacy Practice, University of Irvine School of Pharmacy and Pharmaceutical Sciences, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute – Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Du SW, Newby GA, Salom D, Gao F, Menezes CR, Suh S, Choi EH, Chen PZ, Liu DR, Palczewski K. In vivo photoreceptor base editing ameliorates rhodopsin-E150K autosomal-recessive retinitis pigmentosa in mice. Proc Natl Acad Sci U S A 2024; 121:e2416827121. [PMID: 39556729 PMCID: PMC11621631 DOI: 10.1073/pnas.2416827121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/28/2024] [Indexed: 11/20/2024] Open
Abstract
Rhodopsin, the prototypical class-A G-protein coupled receptor, is a highly sensitive receptor for light that enables phototransduction in rod photoreceptors. Rhodopsin plays not only a sensory role but also a structural role as a major component of the rod outer segment disc, comprising over 90% of the protein content of the disc membrane. Mutations in RHO which lead to structural or functional abnormalities, including the autosomal recessive E150K mutation, result in rod dysfunction and death. Therefore, correction of deleterious rhodopsin mutations could rescue inherited retinal degeneration, as demonstrated for other visual genes such as RPE65 and PDE6B. In this study, we describe a CRISPR/Cas9 adenine base editing strategy to correct the E150K mutation and demonstrate precise in vivo editing in a Rho-E150K mouse model of autosomal recessive retinitis pigmentosa (RP). Using ultraviolet-visible spectroscopy, mass spectrometry, and the G-protein activation assay, we characterized wild-type rhodopsin and rhodopsin variants containing bystander base edits. Subretinal injection of dual-adeno-associated viruses delivering our base editing strategy yielded up to 44% Rho correction in homozygous Rho-E150K mice. Injection at postnatal day 15, but not later time points, restored rhodopsin expression, partially rescued retinal function, and partially preserved retinal structure. These findings demonstrate that in vivo base editing can restore the function of mutated structural and functional proteins in animal models of disease, including rhodopsin-associated RP and suggest that the timing of gene-editing is a crucial determinant of successful treatment outcomes for degenerative genetic diseases.
Collapse
Affiliation(s)
- Samuel W. Du
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
- Department of Physiology and Biophysics, University of California, Irvine, CA92617
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- HHMI, Harvard University, Cambridge, MA02138
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21205
| | - David Salom
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Fangyuan Gao
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Carolline Rodrigues Menezes
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
- Department of Physiology and Biophysics, University of California, Irvine, CA92617
| | - Susie Suh
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Elliot H. Choi
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Paul Z. Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- HHMI, Harvard University, Cambridge, MA02138
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- HHMI, Harvard University, Cambridge, MA02138
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
- Department of Physiology and Biophysics, University of California, Irvine, CA92617
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| |
Collapse
|
9
|
Harracksingh AN, Bandura J, Morizumi T, Monnier PP, Henderson JT, Feng ZP. Functional characterization of optic photoreception in Lymnaea stagnalis. PLoS One 2024; 19:e0313407. [PMID: 39531462 PMCID: PMC11556747 DOI: 10.1371/journal.pone.0313407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Optic photoreception is a critical function for animal survival. Across the evolutionary spectrum, diverse animal models have been used to investigate visual system function and potential mechanisms under physiological or pathophysiological states. However less is known on photoreceptive behaviors and retinal processing in invertebrates, especially molluscs. This study focuses on the freshwater pond snail, Lymnaea stagnalis (L. stagnalis), to explore its visual function and underlying mechanisms. Using anatomical and histological approaches we characterized the L. stagnalis eye structure and demonstrated structural connections and retinal rhodopsin-positive sensory cells potentially critical for phototransduction. To assess the snail phototactic responses, we developed a new neurobehavioral protocol and employed DeepLabCut to track and quantify animal locomotion. We demonstrated that L. stagnalis exhibits a positive locomotory response to intense focal light and has diverse photo-locomotory responses. Further, we conducted phylogenetic and protein structure analyses and demonstrated that L. stagnalis has a unique repertoire of both vertebrate and invertebrate phototransduction genes. Further characterization of a rhodopsin-like gene identified unique characteristics compared to other mollusks and vertebrates, suggesting different mechanisms of phototransduction. Taken together, our work establishes L. stagnalis as a model organism for studying optic photoreception, offering new insights into the evolution and diversity of visual function across animal species.
Collapse
Affiliation(s)
- Alicia N. Harracksingh
- Departments of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Julia Bandura
- Departments of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Philippe P. Monnier
- Departments of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Zhong-Ping Feng
- Departments of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Taheri Z, Mozafari N, Moradian G, Lovison D, Dehshahri A, De Marco R. Integrin-Specific Stimuli-Responsive Nanomaterials for Cancer Theranostics. Pharmaceutics 2024; 16:1441. [PMID: 39598564 PMCID: PMC11597626 DOI: 10.3390/pharmaceutics16111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Cancer is one of the leading causes of death worldwide. The tumor microenvironment makes the tumor difficult to treat, favoring drug resistance and the formation of metastases, resulting in death. Methods: Stimuli-responsive nanoparticles have shown great capacity to be used as a powerful strategy for cancer treatment, diagnostic, as well as theranostic. Nanocarriers are not only able to respond to internal stimuli such as oxidative stress, weakly acidic pH, high temperature, and the high expression of particular enzymes, but also to external stimuli such as light and paramagnetic characteristics to be exploited. Results: In this work, stimulus-responsive nanocarriers functionalized with arginine-glycine-aspartic acid (Arg-Gly-Asp) sequence as well as mimetic sequences with the capability to recognize integrin receptors are analyzed. Conclusions: This review highlights the progress that has been made in the development of new nanocarriers, capable of responding to endogenous and exogenous stimuli essential to combat cancer.
Collapse
Affiliation(s)
- Zahra Taheri
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran; (Z.T.); (N.M.)
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran;
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran; (Z.T.); (N.M.)
| | - Ghazal Moradian
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran;
| | - Denise Lovison
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy;
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran
| | - Rossella De Marco
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy;
| |
Collapse
|
11
|
Bighinati A, D'Alessandro S, Felline A, Zeitz C, Bocquet B, Casarini L, Kalatzis V, Meunier I, Fanelli F, Manes G, Marigo V. Differential pathogenetic mechanisms of mutations in helix 2 and helix 6 of rhodopsin. Int J Biol Macromol 2024; 279:135089. [PMID: 39197629 DOI: 10.1016/j.ijbiomac.2024.135089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Variants in rhodopsin (RHO) have been linked to autosomal dominant congenital stationary night blindness (adCSNB), which affects the ability to see in dim light, and the pathogenetic mechanism is still not well understood. In this study we report two novel RHO variants found in adCSNB families, p.W265R and p.A269V, that map in the sixth transmembrane domain of RHO protein. We applied in silico molecular simulation and in vitro biochemical and molecular studies to characterize the two new variants and compare the molecular determinants to two previously characterized adCSNB variants, p.G90D and p.T94I, that map in the second transmembrane domain of the RHO protein. We demonstrate that W265R and A269V cause constitutive activation of RHO with light-independent G protein coupling and impaired binding to arrestin. Differently, G90D and T94I are characterized by slow kinetics of RHO activation and deactivation. This study provides new evidence on the differential contribution of transmembrane α-helixes two and six to the interaction with intracellular transducers of RHO and mutations in these helixes result in a similar phenotype in patients but with distinct molecular effects.
Collapse
Affiliation(s)
- Andrea Bighinati
- University of Modena and Reggio Emilia, Department of Life Sciences, via G. Campi 287, 41125 Modena, Italy
| | - Sara D'Alessandro
- University of Modena and Reggio Emilia, Department of Life Sciences, via G. Campi 287, 41125 Modena, Italy
| | - Angelo Felline
- University of Modena and Reggio Emilia, Department of Life Sciences, via G. Campi 287, 41125 Modena, Italy
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Béatrice Bocquet
- INM, Univ Montpellier, INSERM, CHU Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | - Livio Casarini
- University of Modena and Reggio Emilia, Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, via P. Giardini, 1355, 41126 Baggiovara, Modena, Italy
| | - Vasiliki Kalatzis
- INM, Univ Montpellier, INSERM, 80 rue Augustin Fliche, 34091 Montpellier, France
| | - Isabelle Meunier
- INM, Univ Montpellier, INSERM, CHU Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | - Francesca Fanelli
- University of Modena and Reggio Emilia, Department of Life Sciences, via G. Campi 287, 41125 Modena, Italy.
| | - Gaël Manes
- INM, Univ Montpellier, INSERM, 80 rue Augustin Fliche, 34091 Montpellier, France.
| | - Valeria Marigo
- University of Modena and Reggio Emilia, Department of Life Sciences, via G. Campi 287, 41125 Modena, Italy.
| |
Collapse
|
12
|
Wang F, Fernandez-Gonzalez P, Perez JJ, Morillo M, Garriga P. Retigabine increases the conformational stability of the visual photoreceptor rhodopsin. Int J Biol Macromol 2024; 279:135343. [PMID: 39241995 DOI: 10.1016/j.ijbiomac.2024.135343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Rhodopsin is the key photoreceptor protein that mediates vision in low-light conditions. Mutations in rhodopsin are the cause of retinal degenerative diseases such as retinitis pigmentosa. Some of these mutations cause a decreased stability of the receptor. It is, therefore, of interest to find new approaches that can help improving rhodopsin conformational stability. In this study, we have analyzed the effect of retigabine, an anticonvulsant formerly used to treat epilepsy, on rhodopsin thermal stability, regeneration capacity, and signal transduction by means of UV-visible and fluorescence spectroscopic techniques. We find that retigabine enhances the thermal stability of dark-state rhodopsin and improves chromophore regeneration without disrupting the photobleaching process. Furthermore, retigabine does not significantly affect transducin activation. These results provide novel insights into the potential therapeutic applications of retigabine in the treatment of retinitis pigmentosa caused by rhodopsin mutations that cause a decreased stability of the mutated receptors.
Collapse
Affiliation(s)
- Feifei Wang
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Quimica, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Pol Fernandez-Gonzalez
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Quimica, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Juan Jesus Perez
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Quimica, Universitat Politècnica de Catalunya-Barcelona Tech Edifici ETSEIB, Av. Diagonal, 647, 08028 Barcelona, Catalonia, Spain
| | - Margarita Morillo
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Quimica, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Quimica, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain.
| |
Collapse
|
13
|
Engfer ZJ, Palczewski K. The multifaceted roles of retinoids in eye development, vision, and retinal degenerative diseases. Curr Top Dev Biol 2024; 161:235-296. [PMID: 39870435 DOI: 10.1016/bs.ctdb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Vitamin A (all-trans-retinol; at-Rol) and its derivatives, known as retinoids, have been adopted by vertebrates to serve as visual chromophores and signaling molecules, particularly in the eye/retina. Few tissues rely on retinoids as heavily as the retina, and the study of genetically modified mouse models with deficiencies in specific retinoid-metabolizing proteins has allowed us to gain insight into the unique or redundant roles of these proteins in at-Rol uptake and storage, or their downstream roles in retinal development and function. These processes occur during embryogenesis and continue throughout life. This review delves into the role of these genes in supporting retinal function and maps the impact that genetically modified mouse models have had in studying retinoid-related genes. These models display distinct perturbations in retinoid biochemistry, physiology, and metabolic flux, mirroring human ocular diseases.
Collapse
Affiliation(s)
- Zachary J Engfer
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States; Department of Chemistry, University of California Irvine, Irvine, CA, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
14
|
Hu Y, Li G, Zhao S, Dai J, Peng X, Zhao Q. Charge transfer characteristics in rhodopsin mimics during photoexcitation. Phys Chem Chem Phys 2024; 26:26004-26011. [PMID: 39370953 DOI: 10.1039/d4cp02970d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
To gain insights into the light-harvesting capabilities of the chromophores, it is essential to understand their molecular and electronic structures within their natural chemical or biological contexts. Rhodopsins display varied absorption characteristics due to the interaction between the chromophore retinal and its surrounding protein environments. In this study, we employed a quantum mechanics/molecular mechanics approach to examine a series of artificially designed rhodopsin mimics based on human cellular retinol acid binding protein 2 (hCRABP II). We elucidated the electron transfer within the all-trans protonated Schiff base upon light excitation, and our calculated absorption spectra show well consistency with the experimental result. Furthermore, the interaction mechanisms between the chromophore and the protein were investigated, and the relationship between the blueshifts and redshifts in the absorption spectra was analyzed. Our calculation demonstrates that the blueshifts and redshifts in the rhodopsin mimics correlate well with attractive (such as the hydrogen bonds or electrostatic interactions) and repulsive interactions (such as the steric effects) between the chromophore and the protein environment, respectively. These findings could provide hints for designing rhodopsin with absorption spectra at different wavelengths.
Collapse
Affiliation(s)
- Yongnan Hu
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Gaoshang Li
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Siteng Zhao
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jin Dai
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xubiao Peng
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China.
| | - Qing Zhao
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China.
| |
Collapse
|
15
|
Krishnamoorthi A, Salom D, Wu A, Palczewski K, Rentzepis PM. Ultrafast transient absorption spectra and kinetics of human blue cone visual pigment at room temperature. Proc Natl Acad Sci U S A 2024; 121:e2414037121. [PMID: 39356673 PMCID: PMC11474067 DOI: 10.1073/pnas.2414037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024] Open
Abstract
The ultrafast photochemical reaction mechanism, transient spectra, and transition kinetics of the human blue cone visual pigment have been recorded at room temperature. Ultrafast time-resolved absorption spectroscopy revealed the progressive formation and decay of several metastable photo-intermediates, corresponding to the Batho to Meta-II photo-intermediates previously observed with bovine rhodopsin and human green cone opsin, on the picosecond to millisecond timescales following pulsed excitation. The experimental data reveal several interesting similarities and differences between the photobleaching sequences of bovine rhodopsin, human green cone opsin, and human blue cone opsin. While Meta-II formation kinetics are comparable between bovine rhodopsin and blue cone opsin, the transition kinetics of earlier photo-intermediates and qualitative characteristics of the Meta-I to Meta-II transition are more similar for blue cone opsin and green cone opsin. Additionally, the blue cone photo-intermediate spectra exhibit a high degree of overlap with uniquely small spectral shifts. The observed variation in Meta-II formation kinetics between rod and cone visual pigments is explained based on key structural differences.
Collapse
Affiliation(s)
- Arjun Krishnamoorthi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX77843
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
| | - Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
- Department of Chemistry, University of California Irvine, Irvine, CA92697
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA92697
| | - Peter M. Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX77843
| |
Collapse
|
16
|
Takatani N, Miyafusa H, Yamano Y, Beppu F, Hosokawa M. Apo-12'-capsorubinal exhibits anti-inflammatory effects and activates nuclear factor erythroid 2-related factor 2 in RAW264.7 macrophages. Arch Biochem Biophys 2024; 760:110125. [PMID: 39154816 DOI: 10.1016/j.abb.2024.110125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Apocarotenoids have short carbon chain structures cleaved at a polyene-conjugated double bond. They can be biosynthesized in plants and microorganisms. Animals ingest carotenoids through food and then metabolize them into apocarotenoids. Although several apocarotenoids have been identified in the body, their precise health functions are still poorly understood. This study investigated the anti-inflammatory activities of apo-12'-capsorubinal in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. It was confirmed that apo-12'-capsorubinal was not cytotoxic to the macrophages at the concentrations tested. Apo-12'-capsorubinal treatment led to a marked downregulation of interleukin (IL)-6 protein and Il6 mRNA levels. This apocarotenoid exhibited more potent inhibitory effects than its parent carotenoids, capsanthin and capsorubin. Furthermore, apo-12'-capsorubinal, but not its parent carotenoids, promoted the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated the expression of Nrf2-target genes, such as heme oxygenase 1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO-1), in a dose-dependent manner. Furthermore, a comparison using apo-12'-zeaxanthinal and 7,8-dihydro-8-oxo-apo-12'-zeaxanthinal revealed that the α, β-unsaturated carbonyl group on the polyene linear chain mediated the enhanced nuclear Nrf2 translocation, HO-1 expression, and inhibition of IL-6 production. In contrast, apo-12'-mytiloxanthinal, which harbored a hydroxyl group at C-8 of apo-12'-capsorubinal, did not exhibit any of these activities. These results indicated that the β carbon of the α, β-unsaturated carbonyl group in the linear part of the polyene chain is crucial to the Nrf2-activating and anti-inflammatory effects of apo-12'-capsorubinal. This study will advance our knowledge of the physiological significance of xanthophyll-derived apocarotenoids and their potential use as nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Naoki Takatani
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| | - Hiroki Miyafusa
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yumiko Yamano
- Comprehensive Education and Research Center, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Fumiaki Beppu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
17
|
Rajala A, Rajala RVS. Age-Related Changes in the Glycolytic Enzymes of M2-Isoform of Pyruvate Kinase and Fructose-1,6-Bisphosphate Aldolase: Implications to Age-Related Macular Degeneration. Aging Dis 2024; 15:2271-2283. [PMID: 38739943 PMCID: PMC11346409 DOI: 10.14336/ad.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Prior studies have emphasized a bioenergetic crisis in the retinal pigment epithelium (RPE) as a critical factor in the development of age-related macular degeneration (AMD). The isoforms Fructose-1,6-bisphosphate aldolase C (ALDOC) and pyruvate kinase M2 (PKM2) have been proposed to play a role in AMD pathogenesis. While PKM2 and ALDOC are crucial for aerobic glycolysis in the neural retina, they are not as essential for the RPE. In this study, we examined the expression and activity of PKM2 and ALDOC in both young and aged RPE cells, as well as in the retina and RPE tissue of mice, including an experimentally induced AMD mouse model. Our findings reveal an upregulation in PKM2 and ALDOC expression, accompanied by increased pyruvate kinase activity, in the aged and AMD mouse RPE. Conversely, there is a decrease in ALDOC expression but an increase in PKM2 expression and pyruvate kinase activity in the aged and AMD retina. Overall, our study indicates that aged and AMD RPE cells tend to favor aerobic glycolysis, while this tendency is diminished in the aged and AMD retina. These results underscore the significance of targeting PKM2 and ALDOC in the RPE as a promising therapeutic approach to address the bioenergetic crisis and prevent vision loss in AMD.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology
- Dean McGee Eye Institute, Oklahoma, Oklahoma 73104, USA.
| | - Raju V. S. Rajala
- Department of Ophthalmology
- Department of Biochemistry and Physiology, and
- Department of Cell Biology, University of Oklahoma Health Sciences Center
- Dean McGee Eye Institute, Oklahoma, Oklahoma 73104, USA.
| |
Collapse
|
18
|
Nishikino T, Sugimoto T, Kandori H. Low-temperature FTIR spectroscopy of the L/Q switch of proteorhodopsin. Phys Chem Chem Phys 2024; 26:22959-22967. [PMID: 39171479 DOI: 10.1039/d4cp02248c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Rhodopsins are photoreceptive membrane proteins containing a retinal chromophore, and the color tuning mechanism in rhodopsins is one of the important topics. Color switch is a color-determining residue at the same position, where replacement of red- and blue-shifting amino acids in two wild-type rhodopsins causes spectral blue- and red-shifts, respectively. The first and most famous color switch in microbial rhodopsins is the L/Q switch in proteorhodopsins (PRs). Green- or blue-absorbing PR (GPR or BPR) contains Leu and Gln at position 105 of the C-helix (TM3), respectively, and their replacement converted absorbing colors. The L/Q switch enables bacteria to absorb green or blue light in shallow or deep ocean waters, respectively. Although Gln and Leu are hydrophilic and hydrophobic residues, respectively, a comprehensive mutation study of position 105 in GPR revealed that the λmax correlated with the volume of residues, not the hydropathy index. To gain structural insights into the mechanism, we applied low-temperature FTIR spectroscopy of L105Q GPR, and the obtained spectra were compared with those of GPR and BPR. The difference FTIR spectra of L105Q GPR were similar to those of BPR, not GPR, implying that the L/Q switch converts the GPR structure into a BPR structure in terms of the local environments of the retinal chromophore. It includes retinal skeletal vibration, hydrogen-bonding strength of the protonated Schiff base, amide-A vibration (peptide backbone), and protein-bound water molecules. Consequently color is switched accompanying such structural alterations, and known as the L/Q switch.
Collapse
Affiliation(s)
- Tatsuro Nishikino
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
19
|
Giudetti G, Mukherjee M, Nandi S, Agrawal S, Prezhdo OV, Nakano A. Exploring the Global Reaction Coordinate for Retinal Photoisomerization: A Graph Theory-Based Machine Learning Approach. J Chem Inf Model 2024. [PMID: 39259968 DOI: 10.1021/acs.jcim.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Unraveling the reaction pathway of photoinduced reactions poses a great challenge owing to its complexity. Recently, graph theory-based machine learning combined with nonadiabatic molecular dynamics (NAMD) has been applied to obtain the global reaction coordinate of the photoisomerization of azobenzene. However, NAMD simulations are computationally expensive as they require calculating the nonadiabatic coupling vectors at each time step. Here, we showed that ab initio molecular dynamics (AIMD) can be used as an alternative to NAMD by choosing an appropriate initial condition for the simulation. We applied our methodology to determine a plausible global reaction coordinate of retinal photoisomerization, which is essential for human vision. On rank-ordering the internal coordinates, based on the mutual information (MI) between the internal coordinates and the HOMO energy, NAMD and AIMD give a similar trend. Our results demonstrate that our AIMD-based machine learning protocol for retinal is 1.5 times faster than that of NAMD to study reaction coordinates.
Collapse
Affiliation(s)
- Goran Giudetti
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Madhubani Mukherjee
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Samprita Nandi
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Sraddha Agrawal
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Aiichiro Nakano
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Computer Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
20
|
Sugiura M, Kandori H. Photoisomerization pathway of the microbial rhodopsin chromophore in solution. Photochem Photobiol Sci 2024; 23:1435-1443. [PMID: 38886314 DOI: 10.1007/s43630-024-00602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Photoisomerization is a key photochemical reaction in microbial and animal rhodopsins. It is well established that such photoisomerization is highly selective; all-trans to 13-cis, and 11-cis to all-trans forms in microbial and animal rhodopsins, respectively. Nevertheless, unusual photoisomerization pathways have been discovered recently in microbial rhodopsins. In an enzymerhodopsin NeoR, the all-trans chromophore is isomerized into the 7-cis form exclusively, which is stable at room temperature. Although, the 7-cis form is produced by illumination of retinal, formation of the 7-cis form was never reported for a protonated Schiff base of all-trans retinal in solution. Present HPLC analysis of retinal oximes prepared by hydroxylamine reaction revealed that all-trans and 7-cis forms cannot be separated from the syn peaks under the standard HPLC conditions, while it is possible by the analysis of the anti-peaks. Consequently, we found formation of the 7-cis form by the photoreaction of all-trans chromophore in solution, regardless of the protonation state of the Schiff base. Upon light absorption of all-trans protonated retinal Schiff base in solution, excited-state relaxation accompanies double-bond isomerization, producing 7-cis, 9-cis, 11-cis, or 13-cis form. In contrast, specific chromophore-protein interaction enforces selective isomerization into the 13-cis form in many microbial rhodopsins, but into 7-cis in NeoR.
Collapse
Affiliation(s)
- Masahiro Sugiura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| |
Collapse
|
21
|
Zhang C, Tong F, Zhou B, He M, Liu S, Zhou X, Ma Q, Feng T, Du WJ, Yang H, Xu H, Xiao L, Xu ZZ, Zhu C, Wu R, Wang YQ, Han Q. TMC6 functions as a GPCR-like receptor to sense noxious heat via Gαq signaling. Cell Discov 2024; 10:66. [PMID: 38886367 PMCID: PMC11183229 DOI: 10.1038/s41421-024-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/08/2024] [Indexed: 06/20/2024] Open
Abstract
Thermosensation is vital for the survival, propagation, and adaption of all organisms, but its mechanism is not fully understood yet. Here, we find that TMC6, a membrane protein of unknown function, is highly expressed in dorsal root ganglion (DRG) neurons and functions as a Gαq-coupled G protein-coupled receptor (GPCR)-like receptor to sense noxious heat. TMC6-deficient mice display a substantial impairment in noxious heat sensation while maintaining normal perception of cold, warmth, touch, and mechanical pain. Further studies show that TMC6 interacts with Gαq via its intracellular C-terminal region spanning Ser780 to Pro810. Specifically disrupting such interaction using polypeptide in DRG neurons, genetically ablating Gαq, or pharmacologically blocking Gαq-coupled GPCR signaling can replicate the phenotype of TMC6 deficient mice regarding noxious heat sensation. Noxious heat stimulation triggers intracellular calcium release from the endoplasmic reticulum (ER) of TMC6- but not control vector-transfected HEK293T cell, which can be significantly inhibited by blocking PLC or IP3R. Consistently, noxious heat-induced intracellular Ca2+ release from ER and action potentials of DRG neurons largely reduced when ablating TMC6 or blocking Gαq/PLC/IP3R signaling pathway as well. In summary, our findings indicate that TMC6 can directly function as a Gαq-coupled GPCR-like receptor sensing noxious heat.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Fang Tong
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Bin Zhou
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Mingdong He
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Shuai Liu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xiaomeng Zhou
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qiang Ma
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianyu Feng
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wan-Jie Du
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Huan Yang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Hao Xu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Lei Xiao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Zhen-Zhong Xu
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruiqi Wu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Yan-Qing Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Qingjian Han
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Solano YJ, Everett MP, Dang KS, Abueg J, Kiser PD. Carotenoid cleavage enzymes evolved convergently to generate the visual chromophore. Nat Chem Biol 2024; 20:779-788. [PMID: 38355721 PMCID: PMC11142922 DOI: 10.1038/s41589-024-01554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The retinal light response in animals originates from the photoisomerization of an opsin-coupled 11-cis-retinaldehyde chromophore. This visual chromophore is enzymatically produced through the action of carotenoid cleavage dioxygenases. Vertebrates require two carotenoid cleavage dioxygenases, β-carotene oxygenase 1 and retinal pigment epithelium 65 (RPE65), to form 11-cis-retinaldehyde from carotenoid substrates, whereas invertebrates such as insects use a single enzyme known as Neither Inactivation Nor Afterpotential B (NinaB). RPE65 and NinaB couple trans-cis isomerization with hydrolysis and oxygenation, respectively, but the mechanistic relationship of their isomerase activities remains unknown. Here we report the structure of NinaB, revealing details of its active site architecture and mode of membrane binding. Structure-guided mutagenesis studies identify a residue cluster deep within the NinaB substrate-binding cleft that controls its isomerization activity. Our data demonstrate that isomerization activity is mediated by distinct active site regions in NinaB and RPE65-an evolutionary convergence that deepens our understanding of visual system diversity.
Collapse
Affiliation(s)
- Yasmeen J Solano
- Department of Physiology and Biophysics, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Michael P Everett
- Department of Physiology and Biophysics, University of California Irvine School of Medicine, Irvine, CA, USA
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA
| | - Kelly S Dang
- Department of Physiology and Biophysics, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Jude Abueg
- Department of Physiology and Biophysics, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Philip D Kiser
- Department of Physiology and Biophysics, University of California Irvine School of Medicine, Irvine, CA, USA.
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA.
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine School of Medicine, Irvine, CA, USA.
- Department of Clinical Pharmacy Practice, University of California Irvine School of Pharmacy and Pharmaceutical Sciences, Irvine, CA, USA.
| |
Collapse
|
23
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
24
|
Rose K, Chen N, Andreev A, Chen J, Kefalov VJ, Chen J. Light regulation of rhodopsin distribution during outer segment renewal in murine rod photoreceptors. Curr Biol 2024; 34:1492-1505.e6. [PMID: 38508186 PMCID: PMC11003846 DOI: 10.1016/j.cub.2024.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Vision under dim light relies on primary cilia elaborated by rod photoreceptors in the retina. This specialized sensory structure, called the rod outer segment (ROS), comprises hundreds of stacked, membranous discs containing the light-sensitive protein rhodopsin, and the incorporation of new discs into the ROS is essential for maintaining the rod's health and function. ROS renewal appears to be primarily regulated by extrinsic factors (light); however, results vary depending on different model organisms. We generated two independent transgenic mouse lines where rhodopsin's fate is tracked by a fluorescently labeled rhodopsin fusion protein (Rho-Timer) and show that rhodopsin incorporation into nascent ROS discs appears to be regulated by both external lighting cues and autonomous retinal clocks. Live-cell imaging of the ROS isolated from mice exposed to six unique lighting conditions demonstrates that ROS formation occurs in a periodic manner in cyclic light, constant darkness, and artificial light/dark cycles. This alternating bright/weak banding of Rho-Timer along the length of the ROS relates to inhomogeneities in rhodopsin density and potential points of structural weakness. In addition, we reveal that prolonged dim ambient light exposure impacts not only the rhodopsin content of new discs but also that of older discs, suggesting a dynamic interchange of material between new and old discs. Furthermore, we show that rhodopsin incorporation into the ROS is greatly altered in two autosomal recessive retinitis pigmentosa mouse models, potentially contributing to the pathogenesis. Our findings provide insights into how extrinsic (light) and intrinsic (retinal clocks and genetic mutation) factors dynamically regulate mammalian ROS renewal.
Collapse
Affiliation(s)
- Kasey Rose
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Natalie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Andrey Andreev
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jiayan Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine CA 92697, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
25
|
Sasaki T, Katayama K, Imai H, Kandori H. Glu102 2.53-Mediated Early Conformational Changes in the Process of Light-Induced Green Cone Pigment Activation. Biochemistry 2024; 63:843-854. [PMID: 38458614 PMCID: PMC10993417 DOI: 10.1021/acs.biochem.3c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
Ligand-triggered activation of G protein-coupled receptors (GPCRs) relies on the phenomenon of loose allosteric coupling, which involves conformational alterations spanning from the extracellular ligand-binding domain to the cytoplasmic region, where interactions with G proteins occur. During the GPCR activation process, several intermediate and equilibrium states orchestrate the movement of the flexible and rigid transmembrane (TM) segments of the GPCR. Monitoring early conformational changes is important in unraveling the structural intricacies of the loose allosteric coupling. Here, we focus on the lumi intermediate formed by thermal relaxation from the initial photointermediate, batho in primate green cone pigment (MG), a light-sensitive GPCR responsible for color vision. Our findings from light-induced Fourier transform infrared difference spectroscopy reveal its similarity with rhodopsin, which mediates twilight vision, specifically involving the flip motion of the β-ionone ring, the relaxation of the torsional structure of the retinal, and local perturbations in the α-helix upon lumi intermediate formation. Conversely, we observe a hydrogen bond modification specific to MG's protonated carboxylic acid, identifying its origin as Glu1022.53 situated in TM2. The weakening of the hydrogen bond strength at Glu1022.53 during the transition from the batho to the lumi intermediates corresponds to a slight outward movement of TM2. Additionally, within the X-ray crystal structure of the rhodopsin lumi intermediate, we note the relocation of the Met862.53 side chain in TM2, expanding the volume of the retinal binding pocket. Consequently, the position of 2.53 emerges as the early step in the conformational shift toward light-induced activation. Moreover, given the prevalence of IR-insensitive hydrophobic amino acids at position 2.53 in many rhodopsin-like GPCRs, including rhodopsin, the hydrogen bond alteration in the C═O stretching band at Glu1022.53 of MG can be used as a probe for tracing conformational changes during the GPCR activation process.
Collapse
Affiliation(s)
- Takuma Sasaki
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku,Nagoya 466-8555, Japan
| | - Kota Katayama
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku,Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku,Nagoya 466-8555, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroo Imai
- Center
for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan
| | - Hideki Kandori
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku,Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku,Nagoya 466-8555, Japan
| |
Collapse
|
26
|
Abrams KL, Ward DA, Sabiniewicz A, Hummel T. Olfaction evaluation in dogs with sudden acquired retinal degeneration syndrome. Vet Ophthalmol 2024; 27:127-138. [PMID: 37399129 DOI: 10.1111/vop.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE To evaluate olfaction in dogs with sudden acquired retinal degeneration syndrome (SARDS) compared with sighted dogs and blind dogs without SARDS as control groups. ANIMALS STUDIED Forty client-owned dogs. PROCEDURE Olfactory threshold testing was performed on three groups: SARDS, sighted, and blind/non-SARDS using eugenol as the test odorant. The olfactory threshold was determined when subjects indicated the detection of a specific eugenol concentration with behavioral responses. Olfactory threshold, age, body weight, and environmental room factors were evaluated. RESULTS Sixteen dogs with SARDS, 12 sighted dogs, and 12 blind/non-SARDS dogs demonstrated mean olfactory threshold pen numbers of 2.8 (SD = 1.4), 13.8 (SD = 1.4), and 13.4 (SD = 1.1), respectively, which correspond to actual mean concentrations of 0.017 g/mL, 1.7 × 10-13 g/mL and 4.26 × 10-13 g/mL, respectively. Dogs with SARDS had significantly poorer olfactory threshold scores compared with the two control groups (p < .001), with no difference between the control groups (p = .5). Age, weight, and room environment did not differ between the three groups. CONCLUSIONS Dogs with SARDS have severely decreased olfaction capabilities compared with sighted dogs and blind/non-SARDS dogs. This finding supports the suspicion that SARDS is a systemic disease causing blindness, endocrinopathy, and hyposmia. Since the molecular pathways are similar in photoreceptors, olfactory receptors, and steroidogenesis with all using G-protein coupled receptors in the cell membrane, the cause of SARDS may exist at the G-protein associated interactions with intracellular cyclic nucleotides. Further investigations into G-protein coupled receptors pathway and canine olfactory receptor genes in SARDS patients may be valuable in revealing the cause of SARDS.
Collapse
Affiliation(s)
- Kenneth L Abrams
- Veterinary Ophthalmology Services, North Kingstown, Rhode Island, USA
| | - Daniel A Ward
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Agnieszka Sabiniewicz
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany
- Institute of Psychology, University of Wrocław, Wrocław, Poland
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
27
|
Zhang Z, Shi C, Han J, Ge X, Li N, Liu Y, Huang J, Chen S. Nonvisual system-mediated body color change in fish reveals nonvisual function of Opsin 3 in skin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112861. [PMID: 38335869 DOI: 10.1016/j.jphotobiol.2024.112861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Body-color changes in many poikilothermic animals can occur quickly. This color change is generally initiated by visual system, followed by neuromuscular or neuroendocrine control. We have previously showed that the ventral skin color of the large yellow croaker (Larimichthys crocea) presents golden yellow in dark environment and quickly changes to silvery white in light environment. In the present study, we found that the light-induced whitening of ventral skin color was independent of visual input. Using light-emitting diode sources of different wavelength with same luminance (150 lx) but different absolute irradiance (0.039-0.333 mW/cm2), we further found that the blue light (λmax = 480 nm, 0.107 mW/cm2) is more effectively in induction of whitening of ventral skin color in compare with other light sources. Interestingly, the result of RT-PCR showed opsin 3 transcripts expressed in xanthophores. Recombinant protein of Opsin 3 with 11-cis retinal formed functional blue-sensitive pigment, with an absorption maximum at 468 nm. The HEK293T cells transfected with Opsin 3 showed a blue light-evoked Ca2+ response. Knock-down of Opsin 3 expression blocked the light-induced xanthosomes aggregation in vitro. Moreover, the light-induced xanthosomes aggregation was mediated via Ca2+-PKC and Ca2+-CaMKII pathways, and relied on microtubules and dynein. Decrease of cAMP levels was a prerequisite for xanthosomes aggregation. Our results provide a unique organism model exhibiting light-induced quick body color change, which was independent of visual input but rather rely on non-visual function of Opsin 3 within xanthophore.
Collapse
Affiliation(s)
- Zihao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jian Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China; Key laboratory of fish applied biology and aquaculture in North China, College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Xiaoyu Ge
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Na Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shixi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
28
|
Sun X, Liang C, Chen Y, Cui T, Han J, Dai M, Zhang Y, Zhou Q, Li W. Knockout and Replacement Gene Surgery to Treat Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa. Hum Gene Ther 2024; 35:151-162. [PMID: 38368562 DOI: 10.1089/hum.2023.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024] Open
Abstract
Mutations in the rhodopsin (RHO) gene are the predominant causes of autosomal dominant retinitis pigmentosa (adRP). Given the diverse gain-of-function mutations, therapeutic strategies targeting specific sequences face significant challenges. Here, we provide a universal approach to conquer this problem: we have devised a CRISPR-Cas12i-based, mutation-independent gene knockout and replacement compound therapy carried by a dual AAV2/8 system. In this study, we successfully delayed the progression of retinal degeneration in the classic mouse disease model RhoP23H, and also RhoP347S, a new native mouse mutation model we developed. Our research expands the horizon of potential options for future treatments of RHO-mediated adRP.
Collapse
Affiliation(s)
- Xuehan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China; and
| | - Chen Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China; and
| | - Yangcan Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jiabao Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China; and
| | - Moyu Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China; and
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China; and
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China; and
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
29
|
Miller WE, O'Connor CM. CMV-encoded GPCRs in infection, disease, and pathogenesis. Adv Virus Res 2024; 118:1-75. [PMID: 38461029 DOI: 10.1016/bs.aivir.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
G protein coupled receptors (GPCRs) are seven-transmembrane domain proteins that modulate cellular processes in response to external stimuli. These receptors represent the largest family of membrane proteins, and in mammals, their signaling regulates important physiological functions, such as vision, taste, and olfaction. Many organisms, including yeast, slime molds, and viruses encode GPCRs. Cytomegaloviruses (CMVs) are large, betaherpesviruses, that encode viral GPCRs (vGPCRs). Human CMV (HCMV) encodes four vGPCRs, including UL33, UL78, US27, and US28. Each of these vGPCRs, as well as their rodent and primate orthologues, have been investigated for their contributions to viral infection and disease. Herein, we discuss how the CMV vGPCRs function during lytic and latent infection, as well as our understanding of how they impact viral pathogenesis.
Collapse
Affiliation(s)
- William E Miller
- Department of Molecular and Cellular Bioscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christine M O'Connor
- Infection Biology, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
30
|
Aplin C, Cerione RA. Probing the mechanism by which the retinal G protein transducin activates its biological effector PDE6. J Biol Chem 2024; 300:105608. [PMID: 38159849 PMCID: PMC10838916 DOI: 10.1016/j.jbc.2023.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Phototransduction in retinal rods occurs when the G protein-coupled photoreceptor rhodopsin triggers the activation of phosphodiesterase 6 (PDE6) by GTP-bound alpha subunits of the G protein transducin (GαT). Recently, we presented a cryo-EM structure for a complex between two GTP-bound recombinant GαT subunits and native PDE6, that included a bivalent antibody bound to the C-terminal ends of GαT and the inhibitor vardenafil occupying the active sites on the PDEα and PDEβ subunits. We proposed GαT-activated PDE6 by inducing a striking reorientation of the PDEγ subunits away from the catalytic sites. However, questions remained including whether in the absence of the antibody GαT binds to PDE6 in a similar manner as observed when the antibody is present, does GαT activate PDE6 by enabling the substrate cGMP to access the catalytic sites, and how does the lipid membrane enhance PDE6 activation? Here, we demonstrate that 2:1 GαT-PDE6 complexes form with either recombinant or retinal GαT in the absence of the GαT antibody. We show that GαT binding is not necessary for cGMP nor competitive inhibitors to access the active sites; instead, occupancy of the substrate binding sites enables GαT to bind and reposition the PDE6γ subunits to promote catalytic activity. Moreover, we demonstrate by reconstituting GαT-stimulated PDE6 activity in lipid bilayer nanodiscs that the membrane-induced enhancement results from an increase in the apparent binding affinity of GαT for PDE6. These findings provide new insights into how the retinal G protein stimulates rapid catalytic turnover by PDE6 required for dim light vision.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Department of Molecular Medicine, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
31
|
Eria-Oliveira AS, Folacci M, Chassot AA, Fedou S, Thézé N, Zabelskii D, Alekseev A, Bamberg E, Gordeliy V, Sandoz G, Vivaudou M. Hijacking of internal calcium dynamics by intracellularly residing viral rhodopsins. Nat Commun 2024; 15:65. [PMID: 38167346 PMCID: PMC10761956 DOI: 10.1038/s41467-023-44548-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Rhodopsins are ubiquitous light-driven membrane proteins with diverse functions, including ion transport. Widely distributed, they are also coded in the genomes of giant viruses infecting phytoplankton where their function is not settled. Here, we examine the properties of OLPVR1 (Organic Lake Phycodnavirus Rhodopsin) and two other type 1 viral channelrhodopsins (VCR1s), and demonstrate that VCR1s accumulate exclusively intracellularly, and, upon illumination, induce calcium release from intracellular IP3-dependent stores. In vivo, this light-induced calcium release is sufficient to remote control muscle contraction in VCR1-expressing tadpoles. VCR1s natively confer light-induced Ca2+ release, suggesting a distinct mechanism for reshaping the response to light of virus-infected algae. The ability of VCR1s to photorelease calcium without altering plasma membrane electrical properties marks them as potential precursors for optogenetics tools, with potential applications in basic research and medicine.
Collapse
Affiliation(s)
- Ana-Sofia Eria-Oliveira
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
- Fédération Hospitalo-Universitaire InovPain, Cote d'Azur University, University Hospital Center Nice, Nice, France
| | - Mathilde Folacci
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Amandine Chassot
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
- Fédération Hospitalo-Universitaire InovPain, Cote d'Azur University, University Hospital Center Nice, Nice, France
| | - Sandrine Fedou
- Univ. Bordeaux, Inserm, BRIC, UMR, 1312, Bordeaux, France
| | - Nadine Thézé
- Univ. Bordeaux, Inserm, BRIC, UMR, 1312, Bordeaux, France
| | | | - Alexey Alekseev
- Advanced Optogenes Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Gordeliy
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Guillaume Sandoz
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France.
- Fédération Hospitalo-Universitaire InovPain, Cote d'Azur University, University Hospital Center Nice, Nice, France.
| | - Michel Vivaudou
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France.
| |
Collapse
|
32
|
Gaspar CJ, Gomes T, Martins JC, Melo MN, Adrain C, Cordeiro TN, Domingos PM. Xport-A functions as a chaperone by stabilizing the first five transmembrane domains of rhodopsin-1. iScience 2023; 26:108309. [PMID: 38025784 PMCID: PMC10663829 DOI: 10.1016/j.isci.2023.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/21/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Rhodopsin-1 (Rh1), the main photosensitive protein of Drosophila, is a seven-transmembrane domain protein, which is inserted co-translationally in the endoplasmic reticulum (ER) membrane. Biogenesis of Rh1 occurs in the ER, where various chaperones interact with Rh1 to aid in its folding and subsequent transport from the ER to the rhabdomere, the light-sensing organelle of the photoreceptors. Xport-A has been proposed as a chaperone/transport factor for Rh1, but the exact molecular mechanism for Xport-A activity upon Rh1 is unknown. Here, we propose a model where Xport-A functions as a chaperone during the biogenesis of Rh1 in the ER by stabilizing the first five transmembrane domains (TMDs) of Rh1.
Collapse
Affiliation(s)
- Catarina J. Gaspar
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157 Oeiras, Portugal
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência (IGC), 2780-156 Oeiras, Portugal
| | - Tiago Gomes
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Joana C. Martins
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Colin Adrain
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência (IGC), 2780-156 Oeiras, Portugal
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, BT9 7AE Belfast, UK
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Pedro M. Domingos
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
33
|
Zheng Y, Sun C, Zhang X, Ruzycki PA, Chen S. Missense mutations in CRX homeodomain cause dominant retinopathies through two distinct mechanisms. eLife 2023; 12:RP87147. [PMID: 37963072 PMCID: PMC10645426 DOI: 10.7554/elife.87147] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Homeodomain transcription factors (HD TFs) are instrumental to vertebrate development. Mutations in HD TFs have been linked to human diseases, but their pathogenic mechanisms remain elusive. Here, we use Cone-Rod Homeobox (CRX) as a model to decipher the disease-causing mechanisms of two HD mutations, p.E80A and p.K88N, that produce severe dominant retinopathies. Through integrated analysis of molecular and functional evidence in vitro and in knock-in mouse models, we uncover two novel gain-of-function mechanisms: p.E80A increases CRX-mediated transactivation of canonical CRX target genes in developing photoreceptors; p.K88N alters CRX DNA-binding specificity resulting in binding at ectopic sites and severe perturbation of CRX target gene expression. Both mechanisms produce novel retinal morphological defects and hinder photoreceptor maturation distinct from loss-of-function models. This study reveals the distinct roles of E80 and K88 residues in CRX HD regulatory functions and emphasizes the importance of transcriptional precision in normal development.
Collapse
Affiliation(s)
- Yiqiao Zheng
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
| | - Chi Sun
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
| | - Xiaodong Zhang
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
| | - Philip A Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Genetics, Washington University in St LouisSaint LouisUnited States
| | - Shiming Chen
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Developmental Biology, Washington University in St LouisSaint LouisUnited States
| |
Collapse
|
34
|
Ros-Rocher N, Brunet T. What is it like to be a choanoflagellate? Sensation, processing and behavior in the closest unicellular relatives of animals. Anim Cogn 2023; 26:1767-1782. [PMID: 37067637 PMCID: PMC10770216 DOI: 10.1007/s10071-023-01776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
All animals evolved from a single lineage of unicellular precursors more than 600 million years ago. Thus, the biological and genetic foundations for animal sensation, cognition and behavior must necessarily have arisen by modifications of pre-existing features in their unicellular ancestors. Given that the single-celled ancestors of the animal kingdom are extinct, the only way to reconstruct how these features evolved is by comparing the biology and genomic content of extant animals to their closest living relatives. Here, we reconstruct the Umwelt (the subjective, perceptive world) inhabited by choanoflagellates, a group of unicellular (or facultatively multicellular) aquatic microeukaryotes that are the closest living relatives of animals. Although behavioral research on choanoflagellates remains patchy, existing evidence shows that they are capable of chemosensation, photosensation and mechanosensation. These processes often involve specialized sensorimotor cellular appendages (cilia, microvilli, and/or filopodia) that resemble those that underlie perception in most animal sensory cells. Furthermore, comparative genomics predicts an extensive "sensory molecular toolkit" in choanoflagellates, which both provides a potential basis for known behaviors and suggests the existence of a largely undescribed behavioral complexity that presents exciting avenues for future research. Finally, we discuss how facultative multicellularity in choanoflagellates might help us understand how evolution displaced the locus of decision-making from a single cell to a collective, and how a new space of behavioral complexity might have become accessible in the process.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Thibaut Brunet
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
35
|
Senapati S, Park PSH. Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies. CHEM REC 2023; 23:e202300113. [PMID: 37265335 PMCID: PMC10908267 DOI: 10.1002/tcr.202300113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Indexed: 06/03/2023]
Abstract
Rhodopsin is a G protein-coupled receptor (GPCR) present in the rod outer segment (ROS) of photoreceptor cells that initiates the phototransduction cascade required for scotopic vision. Due to the remarkable advancements in technological tools, the chemistry of rhodopsin has begun to unravel especially over the past few decades, but mostly at the ensemble scale. Atomic force microscopy (AFM) is a tool capable of providing critical information from a single-molecule point of view. In this regard, to bolster our understanding of rhodopsin at the nanoscale level, AFM-based imaging, force spectroscopy, and nano-indentation techniques were employed on ROS disc membranes containing rhodopsin, isolated from vertebrate species both in normal and diseased states. These AFM studies on samples from native retinal tissue have provided fundamental insights into the structure and function of rhodopsin under normal and dysfunctional states. We review here the findings from these AFM studies that provide important insights on the supramolecular organization of rhodopsin within the membrane and factors that contribute to this organization, the molecular interactions stabilizing the structure of the receptor and factors that can modify those interactions, and the mechanism underlying constitutive activity in the receptor that can cause disease.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Prayoga Institute of Education Research, Bengaluru, KA 560116, India
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
36
|
Qiu L, Wei S, Wang Y, Zhang R, Ru S, Zhang X. Mechanism of thyroid hormone and its structurally similar contaminant bisphenol S exposure on retinoid metabolism in zebrafish larval eyes. ENVIRONMENT INTERNATIONAL 2023; 180:108217. [PMID: 37748373 DOI: 10.1016/j.envint.2023.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
The photoreceptor necessitates the retinoids metabolism processes in visual cycle pathway to regenerate visual pigments and sustain vision. Bisphenol S (BPS), with similar structure of thyroid hormone (TH), was reported to impair the light-sensing function of zebrafish larvae via disturbing TH-thyroid hormone receptor β (TRβ) signaling pathway. However, it remains unknown whether TRβ could modulate the toxicity of BPS on retinoid metabolism in visual cycle. This study showed that BPS diminished the optokinetic response of zebrafish larvae and had a stimulative effect on all-trans-retinoic acid (atRA) metabolism, like exogenous T3 exposure. By modulating CYP26A1 and TRβ expression, it was found that CYP26A1 played a crucial role in catalyzing oxidative metabolism of atRA and retinoids regeneration in visual cycle, and TRβ mediated cyp26a1 expression in zebrafish eyes. Similar with 10 nM T3 treatment, cyp26a1 expression could be induced by BPS in the presence of TRβ. Further, in CYP26A1 and TRβ- deficient eyes, 100 μg/L BPS could no longer promote atRA metabolism, or decrease the all-trans-retinol and 11-cis retinal contents in visual cycle, demonstrating that BPS exposure disturbed CYP26A1-mediated visual retinoids metabolism via TRβ. Overall, this study highlights the role of TRβ in mediating the retinoids homeostasis disruption caused by BPS, and provides new clues for exploring molecular targets of visual toxicity under pollutants stress.
Collapse
Affiliation(s)
- Liguo Qiu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
37
|
Hong JD, Palczewski K. A short story on how chromophore is hydrolyzed from rhodopsin for recycling. Bioessays 2023; 45:e2300068. [PMID: 37454357 PMCID: PMC10614701 DOI: 10.1002/bies.202300068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
The photocycle of visual opsins is essential to maintain the light sensitivity of the retina. The early physical observations of the rhodopsin photocycle by Böll and Kühne in the 1870s inspired over a century's worth of investigations on rhodopsin biochemistry. A single photon isomerizes the Schiff-base linked 11-cis-retinylidene chromophore of rhodopsin, converting it to the all-trans agonist to elicit phototransduction through photoactivated rhodopsin (Rho*). Schiff base hydrolysis of the agonist is a key step in the photocycle, not only diminishing ongoing phototransduction but also allowing for entry and binding of fresh 11-cis chromophore to regenerate the rhodopsin pigment and maintain light sensitivity. Many challenges have been encountered in measuring the rate of this hydrolysis, but recent advancements have facilitated studies of the hydrolysis within the native membrane environment of rhodopsin. These techniques can now be applied to study hydrolysis of agonist in other opsin proteins that mediate phototransduction or chromophore turnover. In this review, we discuss the progress that has been made in characterizing the rhodopsin photocycle and the journey to characterize the hydrolysis of its all-trans-retinylidene agonist.
Collapse
Affiliation(s)
- John D. Hong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
38
|
Park B, Bang S, Hwang KS, Cha YK, Kwak J, Tran NL, Kim HS, Park S, Oh SJ, Im M, Chung S, Kim J, Park TH, Song HS, Kim HN, Kim JH. Eye-Mimicked Neural Network Composed of Photosensitive Neural Spheroids with Human Opsin Proteins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302996. [PMID: 37377148 DOI: 10.1002/adma.202302996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
An in vitro model, composed of the short-wavelength human opsins and rhodopsins, is created. Two types of photosensitive neural spheroids are transfected for selective reaction under bluish-purple and green lights. These are employed to two devices with intact neuron and neural-spheroid to study the interaction. By photostimulation, the photosensitive spheroid initiated photoactivation, and the signal generated from its body is transmitted to adjacent neural networks. Specifically, the signal traveled through the axon bundle in narrow gap from photosensitive spheroid to intact spheroid as an eye-to-brain model including optic nerve. The whole process with photosensitive spheroid is monitored by calcium ion detecting fluorescence images. The results of this study can be applied to examine vision restoration and novel photosensitive biological systems with spectral sensitivity.
Collapse
Affiliation(s)
- Byeongho Park
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seokyoung Bang
- Department of Biomedical Engineering, Dongguk University, Goyang, 10326, Republic of Korea
| | - Kyeong Seob Hwang
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeon Kyung Cha
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jisung Kwak
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Na Ly Tran
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyo-Suk Kim
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Subeen Park
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seung Ja Oh
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Maesoon Im
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sooyoung Chung
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tai Hyun Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hyun Seok Song
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hong Nam Kim
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Hun Kim
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| |
Collapse
|
39
|
Sun C, Ruzycki PA, Chen S. Rho enhancers play unexpectedly minor roles in Rhodopsin transcription and rod cell integrity. Sci Rep 2023; 13:12899. [PMID: 37558693 PMCID: PMC10412641 DOI: 10.1038/s41598-023-39979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Enhancers function with a basal promoter to control the transcription of target genes. Enhancer regulatory activity is often studied using reporter-based transgene assays. However, unmatched results have been reported when selected enhancers are silenced in situ. In this study, using genomic deletion analysis in mice, we investigated the roles of two previously identified enhancers and the promoter of the Rho gene that codes for the visual pigment rhodopsin. The Rho gene is robustly expressed by rod photoreceptors of the retina, and essential for the subcellular structure and visual function of rod photoreceptors. Mutations in RHO cause severe vision loss in humans. We found that each Rho regulatory region can independently mediate local epigenomic changes, but only the promoter is absolutely required for establishing active Rho chromatin configuration and transcription and maintaining the cell integrity and function of rod photoreceptors. To our surprise, two Rho enhancers that enable strong promoter activation in reporter assays are largely dispensable for Rho expression in vivo. Only small and age-dependent impact is detectable when both enhancers are deleted. Our results demonstrate context-dependent roles of enhancers and highlight the importance of studying functions of cis-regulatory regions in the native genomic context.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA
| | - Philip A Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA.
- Department of Genetics, Washington University, 660 South Euclid Avenue, MSC 8096-0006-11, Saint Louis, MO, 63110, USA.
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University, 660 South Euclid Avenue, MSC 8096-0006-06, Saint Louis, MO, 63110, USA.
| |
Collapse
|
40
|
Krishnamoorthi A, Khosh Abady K, Dhankhar D, Rentzepis PM. Ultrafast Transient Absorption Spectra and Kinetics of Rod and Cone Visual Pigments. Molecules 2023; 28:5829. [PMID: 37570798 PMCID: PMC10421382 DOI: 10.3390/molecules28155829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Rods and cones are the photoreceptor cells containing the visual pigment proteins that initiate visual phototransduction following the absorption of a photon. Photon absorption induces the photochemical transformation of a visual pigment, which results in the sequential formation of distinct photo-intermediate species on the femtosecond to millisecond timescales, whereupon a visual electrical signal is generated and transmitted to the brain. Time-resolved spectroscopic studies of the rod and cone photo-intermediaries enable the detailed understanding of initial events in vision, namely the key differences that underlie the functionally distinct scotopic (rod) and photopic (cone) visual systems. In this paper, we review our recent ultrafast (picoseconds to milliseconds) transient absorption studies of rod and cone visual pigments with a detailed comparison of the transient molecular spectra and kinetics of their respective photo-intermediaries. Key results include the characterization of the porphyropsin (carp fish rhodopsin) and human green-cone opsin photobleaching sequences, which show significant spectral and kinetic differences when compared against that of bovine rhodopsin. These results altogether reveal a rather strong interplay between the visual pigment structure and its corresponding photobleaching sequence, and relevant outstanding questions that will be further investigated through a forthcoming study of the human blue-cone visual pigment are discussed.
Collapse
Affiliation(s)
- Arjun Krishnamoorthi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Keyvan Khosh Abady
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dinesh Dhankhar
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Thermo Fisher Scientific, Hillsboro, OR 97124, USA
| | - Peter M. Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
41
|
Sp S, Mitra RN, Zheng M, Chrispell JD, Wang K, Kwon YS, Weiss ER, Han Z. Gene augmentation for autosomal dominant retinitis pigmentosa using rhodopsin genomic loci nanoparticles in the P23H +/- knock-in murine model. Gene Ther 2023; 30:628-640. [PMID: 36935427 DOI: 10.1038/s41434-023-00394-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/21/2023]
Abstract
Gene therapy for autosomal dominant retinitis pigmentosa (adRP) is challenged by the dominant inheritance of the mutant genes, which would seemingly require a combination of mutant suppression and wild-type replacement of the appropriate gene. We explore the possibility that delivery of a nanoparticle (NP)-mediated full-length mouse genomic rhodopsin (gRho) or human genomic rhodopsin (gRHO) locus can overcome the dominant negative effects of the mutant rhodopsin in the clinically relevant P23H+/--knock-in heterozygous mouse model. Our results demonstrate that mice in both gRho and gRHO NP-treated groups exhibit significant structural and functional recovery of the rod photoreceptors, which lasted for 3 months post-injection, indicating a promising reduction in photoreceptor degeneration. We performed miRNA transcriptome analysis using next generation sequencing and detected differentially expressed miRNAs as a first step towards identifying miRNAs that could potentially be used as rhodopsin gene expression enhancers or suppressors for sustained photoreceptor rescue. Our results indicate that delivering an intact genomic locus as a transgene has a greater chance of success compared to the use of the cDNA for treatment of this model of adRP, emphasizing the importance of gene augmentation using a gDNA that includes regulatory elements.
Collapse
Affiliation(s)
- Simna Sp
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rajendra N Mitra
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Min Zheng
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jared D Chrispell
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kai Wang
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yong-Su Kwon
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for NanoMedicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
42
|
Helbing J, Hamm P. Versatile Femtosecond Laser Synchronization for Multiple-Timescale Transient Infrared Spectroscopy. J Phys Chem A 2023. [PMID: 37478282 DOI: 10.1021/acs.jpca.3c03526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Several ways to electronically synchronize different types of amplified femtosecond laser systems are presented based on a single freely programmable electronics hardware: arbitrary-detuning asynchronous optical sampling (ADASOPS), as well as actively locking two femtosecond laser oscillators, albeit not necessarily to the same round-trip frequency. They allow us to rapidly probe a very wide range of timescales, from picoseconds to potentially seconds, in a single transient absorption experiment without the need to move any delay stage. Experiments become possible that address a largely unexplored aspect of many photochemical reactions, in particular in the context of photo-catalysis as well as photoactive proteins, where an initial femtosecond trigger very often initiates a long-lasting cascade of follow-up processes. The approach is very versatile and allows us to synchronize very different lasers, such as a Ti:Sa amplifier and a 100 kHz Yb-laser system. The jitter of the synchronization, and therewith the time-resolution in the transient experiment, lies in the range from 1 to 3 ps, depending on the method. For illustration, transient IR measurements of the excited state solvation and decay of a metal carbonyl complex as well as the full reaction cycle of bacteriorhodopsin are shown. The pros and cons of the various methods are discussed, with regard to the scientific question one might want to address, and also with regard to the laser systems that might be already existent in a laser lab.
Collapse
Affiliation(s)
- Jan Helbing
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
43
|
Zheng Y, Sun C, Zhang X, Ruzycki PA, Chen S. Missense mutations in CRX homeodomain cause dominant retinopathies through two distinct mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526652. [PMID: 36778408 PMCID: PMC9915647 DOI: 10.1101/2023.02.01.526652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Homeodomain transcription factors (HD TFs) are instrumental to vertebrate development. Mutations in HD TFs have been linked to human diseases, but their pathogenic mechanisms remain elusive. Here we use Cone-Rod Homeobox (CRX) as a model to decipher the disease-causing mechanisms of two HD mutations, p.E80A and p.K88N, that produce severe dominant retinopathies. Through integrated analysis of molecular and functional evidence in vitro and in knock-in mouse models, we uncover two novel gain-of-function mechanisms: p.E80A increases CRX-mediated transactivation of canonical CRX target genes in developing photoreceptors; p.K88N alters CRX DNA-binding specificity resulting in binding at ectopic sites and severe perturbation of CRX target gene expression. Both mechanisms produce novel retinal morphological defects and hinder photoreceptor maturation distinct from loss-of-function models. This study reveals the distinct roles of E80 and K88 residues in CRX HD regulatory functions and emphasizes the importance of transcriptional precision in normal development.
Collapse
Affiliation(s)
- Yiqiao Zheng
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
| | - Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
| | - Xiaodong Zhang
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
| | - Philip A. Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
- Department of Genetics, Washington University in St Louis, Saint Louis, Missouri, USA
| | - Shiming Chen
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
- Department of Developmental Biology, Washington University in St Louis, Saint Louis, Missouri, USA
| |
Collapse
|
44
|
Marwan M, Dawood M, Ullah M, Shah IU, Khan N, Hassan MT, Karam M, Rawlins LE, Baple EL, Crosby AH, Saleha S. Unravelling the genetic basis of retinal dystrophies in Pakistani consanguineous families. BMC Ophthalmol 2023; 23:205. [PMID: 37165311 PMCID: PMC10170854 DOI: 10.1186/s12886-023-02948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Retinitis Pigmentosa (RP) is a clinically and genetically progressive retinal dystrophy associated with severe visual impairments and sometimes blindness, the most common syndromic form of which is Usher syndrome (USH). This study aimed to further increase understanding of the spectrum of RP in the Khyber Pakhtunkhwa region of Pakistan. METHODOLOGY Four consanguineous families of Pashtun ethnic group were investigated which were referred by the local collaborating ophthalmologists. In total 42 individuals in four families were recruited and investigated using whole exome and dideoxy sequencing. Among them, 20 were affected individuals including 6 in both family 1 and 2, 5 in family 3 and 3 in family 4. RESULT Pathogenic gene variants were identified in all four families, including two in cone dystrophy and RP genes in the same family (PDE6C; c.480delG, p.Asn161ThrfsTer33 and TULP1; c.238 C > T, p.Gln80Ter) with double-homozygous individuals presenting with more severe disease. Other pathogenic variants were identified in MERTK (c.2194C > T, p.Arg732Ter), RHO (c.448G > A, p.Glu150Lys) associated with non-syndromic RP, and MYO7A (c.487G > A, p.Gly163Arg) associated with USH. In addition, the reported variants were of clinical significance as the PDE6C variant was detected novel, whereas TULP1, MERTK, and MYO7A variants were detected rare and first time found segregating with retinal dystrophies in Pakistani consanguineous families. CONCLUSIONS This study increases knowledge of the genetic basis of retinal dystrophies in families from Pakistan providing information important for genetic testing and diagnostic provision particularly from the Khyber Pakhtunkhwa region.
Collapse
Affiliation(s)
- Muhammad Marwan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Muhammad Dawood
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Mukhtar Ullah
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, 4031, Switzerland
- Department of Ophthalmology, University of Basel, Basel, 4056, Switzerland
| | - Irfan Ullah Shah
- Department of Ophthalmology, KMU Institute of Medical Sciences KIMS, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Muhammad Taimur Hassan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Muhammad Karam
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Lettie E Rawlins
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Emma L Baple
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
| |
Collapse
|
45
|
Abstract
Rhodopsin is the photoreceptor in human rod cells responsible for dim-light vision. The visual receptors are part of the large superfamily of G protein-coupled receptors (GPCRs) that mediate signal transduction in response to diverse diffusible ligands. The high level of sequence conservation within the transmembrane helices of the visual receptors and the family A GPCRs has long been considered evidence for a common pathway for signal transduction. I review recent studies that reveal a comprehensive mechanism for how light absorption by the retinylidene chromophore drives rhodopsin activation and highlight those features of the mechanism that are conserved across the ligand-activated GPCRs.
Collapse
Affiliation(s)
- Steven O Smith
- Department of Biochemistry and Cell Biology, Center for Structural Biology, Stony Brook University, Stony Brook, New York, USA;
| |
Collapse
|
46
|
Inukai S, Katayama K, Koyanagi M, Terakita A, Kandori H. Counterion at an atypical position: Investigating the mechanism of photoisomerization in jellyfish rhodopsin. J Biol Chem 2023; 299:104726. [PMID: 37094700 DOI: 10.1016/j.jbc.2023.104726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
The position of the counterion in animal rhodopsins plays a crucial role in maintaining visible light sensitivity and facilitating the photoisomerization of their retinal chromophore. The counterion displacement is thought to be closely related to the evolution of rhodopsins, with different positions found in invertebrates and vertebrates. Interestingly, box jellyfish rhodopsin (JelRh) acquired the counterion in transmembrane 2 (TM2) independently. This is a unique feature, as in most animal rhodopsins, the counterion is found in a different location. In this study, we used Fourier Transform Infrared spectroscopy to examine the structural changes that occur in the early photointermediate state of JelRh. We aimed to determine whether the photochemistry of JelRh is similar to that of other animal rhodopsins by comparing its spectra to those of vertebrate bovine rhodopsin (BovRh) and invertebrate squid rhodopsin (SquRh). We observed that the N-D stretching band of the retinal Schiff base was similar to that of BovRh, indicating the interaction between the Schiff base and the counterion is similar in both rhodopsins, despite their different counterion positions. Furthermore, we found that the chemical structure of the retinal in JelRh is similar to that in BovRh, including the changes in the hydrogen-out-of-plane band that indicates a retinal distortion. Overall, the protein conformational changes induced by the photoisomerization of JelRh yielded spectra that resemble an intermediate between BovRh and SquRh, suggesting a unique spectral property of JelRh, and making it the only animal rhodopsin with a counterion in TM2 and an ability to activate Gs protein.
Collapse
Affiliation(s)
- Shino Inukai
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Mitsumasa Koyanagi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akihisa Terakita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
47
|
Hanai S, Nagata T, Katayama K, Inukai S, Koyanagi M, Inoue K, Terakita A, Kandori H. Difference FTIR Spectroscopy of Jumping Spider Rhodopsin-1 at 77 K. Biochemistry 2023; 62:1347-1359. [PMID: 37001008 DOI: 10.1021/acs.biochem.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Animal visual rhodopsins can be classified into monostable and bistable rhodopsins, which are typically found in vertebrates and invertebrates, respectively. The former example is bovine rhodopsin (BovRh), whose structures and functions have been extensively studied. On the other hand, those of bistable rhodopsins are less known, despite their importance in optogenetics. Here, low-temperature Fourier-transform infrared (FTIR) spectroscopy was applied to jumping spider rhodopsin-1 (SpiRh1) at 77 K, and the obtained light-induced spectral changes were compared with those of squid rhodopsin (SquRh) and BovRh. Although chromophore distortion of the resting state monitored by HOOP vibrations is not distinctive between invertebrate and vertebrate rhodopsins, distortion of the all-trans chromophore after photoisomerization is unique for BovRh, and the distortion was localized at the center of the chromophore in SpiRh1 and SquRh. Highly conserved aspartate (D83 in BovRh) does not change the hydrogen-bonding environment in invertebrate rhodopsins. Thus, present FTIR analysis provides specific structural changes, leading to activation of invertebrate and vertebrate rhodopsins. On the other hand, the analysis of O-D stretching vibrations in D2O revealed unique features of protein-bound water molecules. Numbers of water bands in SpiRh1 and SquRh were less and more than those in BovRh. The X-ray crystal structure of SpiRh1 observed a bridged water molecule between the protonated Schiff base and its counterion (E194), but strongly hydrogen-bonded water molecules were never detected in SpiRh1, as well as SquRh and BovRh. Thus, absence of strongly hydrogen-bonded water molecules is substantial for animal rhodopsins, which is distinctive from microbial rhodopsins.
Collapse
|
48
|
Palczewska G, Wojtkowski M, Palczewski K. From mouse to human: Accessing the biochemistry of vision in vivo by two-photon excitation. Prog Retin Eye Res 2023; 93:101170. [PMID: 36787681 PMCID: PMC10463242 DOI: 10.1016/j.preteyeres.2023.101170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The eye is an ideal organ for imaging by a multi-photon excitation approach, because ocular tissues such as the sclera, cornea, lens and neurosensory retina, are highly transparent to infrared (IR) light. The interface between the retina and the retinal pigment epithelium (RPE) is especially informative, because it reflects the health of the visual (retinoid) cycle and its changes in response to external stress, genetic manipulations, and drug treatments. Vitamin A-derived retinoids, like retinyl esters, are natural fluorophores that respond to multi-photon excitation with near IR light, bypassing the filter-like properties of the cornea, lens, and macular pigments. Also, during natural aging some retinoids form bisretinoids, like diretinoid-pyridiniumethanolamine (A2E), that are highly fluorescent. These bisretinoids appear to be elevated concurrently with aging. Vitamin A-derived retinoids and bisretinoidss are detected by two-photon ophthalmoscopy (2PO), using a new class of light sources with adjustable spatial, temporal, and spectral properties. Furthermore, the two-photon (2P) absorption of IR light by the visual pigments in rod and cone photoreceptors can initiate visual transduction by cis-trans isomerization of retinal, enabling parallel functional studies. Recently we overcame concerns about safety, data interpretation and complexity of the 2P-based instrumentation, the major roadblocks toward advancing this modality to the clinic. These imaging and retina-function assessment advancements have enabled us to conduct the first 2P studies with humans.
Collapse
Affiliation(s)
- Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Polgenix, Inc., Department of Medical Devices, Cleveland, OH, USA; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Maciej Wojtkowski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; Department of Physiology & Biophysics, School of Medicine, And Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
49
|
Rajala A, Bhat MA, Teel K, Gopinadhan Nair GK, Purcell L, Rajala RVS. The function of lactate dehydrogenase A in retinal neurons: implications to retinal degenerative diseases. PNAS NEXUS 2023; 2:pgad038. [PMID: 36896135 PMCID: PMC9991461 DOI: 10.1093/pnasnexus/pgad038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The postmitotic retina is highly metabolic and the photoreceptors depend on aerobic glycolysis for an energy source and cellular anabolic activities. Lactate dehydrogenase A (LDHA) is a key enzyme in aerobic glycolysis, which converts pyruvate to lactate. Here we show that cell-type-specific actively translating mRNA purification by translating ribosome affinity purification shows a predominant expression of LDHA in rods and cones and LDHB in the retinal pigment epithelium and Müller cells. We show that genetic ablation of LDHA in the retina resulted in diminished visual function, loss of structure, and a loss of dorsal-ventral patterning of the cone-opsin gradient. Loss of LDHA in the retina resulted in increased glucose availability, promoted oxidative phosphorylation, and upregulated the expression of glutamine synthetase (GS), a neuron survival factor. However, lacking LDHA in Müller cells does not affect visual function in mice. Glucose shortage is associated with retinal diseases, such as age-related macular degeneration (AMD), and regulating the levels of LDHA may have therapeutic relevance. These data demonstrate the unique and unexplored roles of LDHA in the maintenance of a healthy retina.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Mohd A Bhat
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Kenneth Teel
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Gopa Kumar Gopinadhan Nair
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Lindsey Purcell
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| |
Collapse
|
50
|
Poria D, Kolesnikov AV, Lee TJ, Salom D, Palczewski K, Kefalov VJ. Investigating the Role of Rhodopsin F45L Mutation in Mouse Rod Photoreceptor Signaling and Survival. eNeuro 2023; 10:ENEURO.0330-22.2023. [PMID: 36823167 PMCID: PMC9997694 DOI: 10.1523/eneuro.0330-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Rhodopsin is the critical receptor molecule which enables vertebrate rod photoreceptor cells to detect a single photon of light and initiate a cascade of molecular events leading to visual perception. Recently, it has been suggested that the F45L mutation in the transmembrane helix of rhodopsin disrupts its dimerization in vitro To determine whether this mutation of rhodopsin affects its signaling properties in vivo, we generated knock-in mice expressing the rhodopsin F45L mutant. We then examined the function of rods in the mutant mice versus wild-type controls, using in vivo electroretinography and transretinal and single cell suction recordings, combined with morphologic analysis and spectrophotometry. Although we did not evaluate the effect of the F45L mutation on the state of dimerization of the rhodopsin in vivo, our results revealed that F45L-mutant mice exhibit normal retinal morphology, normal rod responses as measured both in vivo and ex vivo, and normal rod dark adaptation. We conclude that the F45L mutation does not affect the signaling properties of rhodopsin in its natural setting.
Collapse
Affiliation(s)
- Deepak Poria
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
| | - Alexander V Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
| | - Tae Jun Lee
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| |
Collapse
|