1
|
Brovchenko N, Berg A, Schubert S, Gräb J, Münzel T, Protzel C, Natarajan K, Berg T. Biaryl Phosphates and Phosphonates as Selective Inhibitors of the Transcription Factor STAT4. Angew Chem Int Ed Engl 2025; 64:e202504420. [PMID: 40067743 PMCID: PMC12087874 DOI: 10.1002/anie.202504420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025]
Abstract
The transcription factor STAT4 has been implicated in the pathogenesis of autoimmune diseases, including inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and diabetes mellitus. Here, we report p-biaryl phosphates and phosphonates as the first small-molecule inhibitors of STAT4. The most potent p-biaryl phosphate inhibited the protein-protein interaction domain of STAT4, the SH2 domain, with submicromolar potency (Ki = 0.35 µM) and 14-fold selectivity over the closely related family member STAT3, which has the same core peptide binding motif as STAT4. Further development resulted in the phosphatase-stable inhibitor Stafori-1, which protected STAT4 but not STAT3, against thermal denaturation in cell lysates. Its cell-permeable prodrug Pomstafori-1 selectively inhibited STAT4 phosphorylation in cultured human cells at low micromolar concentrations. Our data open up the possibility of exploring STAT4 as a target protein for small molecules in the treatment of unmet medical needs.
Collapse
Affiliation(s)
- Nadiya Brovchenko
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Angela Berg
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Sabine Schubert
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Julian Gräb
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Theresa Münzel
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Christoph Protzel
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Kalaiselvi Natarajan
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Thorsten Berg
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
2
|
Baryshev A, La Fleur A, Groves B, Michel C, Baker D, Ljubetič A, Seelig G. Massively parallel measurement of protein-protein interactions by sequencing using MP3-seq. Nat Chem Biol 2024; 20:1514-1523. [PMID: 39192093 PMCID: PMC11511666 DOI: 10.1038/s41589-024-01718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Protein-protein interactions (PPIs) regulate many cellular processes and engineered PPIs have cell and gene therapy applications. Here, we introduce massively parallel PPI measurement by sequencing (MP3-seq), an easy-to-use and highly scalable yeast two-hybrid approach for measuring PPIs. In MP3-seq, DNA barcodes are associated with specific protein pairs and barcode enrichment can be read by sequencing to provide a direct measure of interaction strength. We show that MP3-seq is highly quantitative and scales to over 100,000 interactions. We apply MP3-seq to characterize interactions between families of rationally designed heterodimers and to investigate elements conferring specificity to coiled-coil interactions. Lastly, we predict coiled heterodimer structures using AlphaFold-Multimer (AF-M) and train linear models on physics-based energy terms to predict MP3-seq values. We find that AF-M-based models could be valuable for prescreening interactions but experimentally measuring interactions remains necessary to rank their strengths quantitatively.
Collapse
Affiliation(s)
- Alexandr Baryshev
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
| | - Alyssa La Fleur
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Benjamin Groves
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
| | - Cirstyn Michel
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Ajasja Ljubetič
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department for Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Milon TI, Wang Y, Fontenot RL, Khajouie P, Villinger F, Raghavan V, Xu W. Development of a novel representation of drug 3D structures and enhancement of the TSR-based method for probing drug and target interactions. Comput Biol Chem 2024; 112:108117. [PMID: 38852360 PMCID: PMC11390338 DOI: 10.1016/j.compbiolchem.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Understanding the mechanisms underlying interactions between drugs and target proteins is critical for drug discovery. In our earlier studies, we introduced the Triangular Spatial Relationship (TSR)-based algorithm, which enables the representation of a protein's 3D structure as a vector of integers (TSR keys). These TSR keys correspond to substructures of the 3D structure of a protein and are computed based on the triangles constructed by all possible triples of Cα atoms within the protein. In this study, we report on a new TSR-based algorithm for probing drug and target interactions. Specifically, we have extended the previous algorithm in three novel directions: TSR keys for representing the 3D structure of a drug or a ligand, cross TSR keys between drugs and their targets and intra-residual TSR keys for phosphorylated amino acids. The outcomes illustrate the key contributions as follows: (i) The TSR-based method, which uses the TSR keys as features, is unique in its capability to interpret hierarchical relationships of drugs as well as drug - target complexes using common and specific TSR keys. (ii) The method can distinguish not only the binding sites from the rest of the protein structures, but also the binding sites of primary targets from those of off-targets. (iii) The method has the potential to correlate the 3D structures of drugs with their functions. (iv) Representation of 3D structures by TSR keys has its unique advantage in terms of ease of making searching for similar substructures across structure datasets easier. In summary, this study presents a novel computational methodology, with significant advantages, for providing insights into the mechanism underlying drug and target interactions.
Collapse
Affiliation(s)
- Tarikul I Milon
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Yuhong Wang
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Ryan L Fontenot
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Poorya Khajouie
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA; The Center for Advanced Computer Studies, University of Louisiana at Lafayette, LA 70504, USA
| | - Francois Villinger
- Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Vijay Raghavan
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, LA 70504, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA.
| |
Collapse
|
4
|
Shanker OR, Kumar S, Banerjee J, Tripathi M, Chandra PS, Dixit AB. Role of non-receptor tyrosine kinases in epilepsy: significance and potential as therapeutic targets. Expert Opin Ther Targets 2024; 28:283-294. [PMID: 38629385 DOI: 10.1080/14728222.2024.2343952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Epilepsy is a chronic neurological condition characterized by a persistent propensity for seizure generation. About one-third of patients do not achieve seizure control with the first-line treatment options, which include >20 antiseizure medications. It is therefore imperative that new medications with novel targets and mechanisms of action are developed. AREAS COVERED Clinical studies and preclinical research increasingly implicate Non-receptor tyrosine kinases (nRTKs) in the pathogenesis of epilepsy. To date, several nRTK members have been linked to processes relevant to the development of epilepsy. Therefore, in this review, we provide insight into the molecular mechanisms by which the various nRTK subfamilies can contribute to the pathogenesis of epilepsy. We further highlight the prospective use of specific nRTK inhibitors in the treatment of epilepsy deriving evidence from existing literature providing a rationale for their use as therapeutic targets. EXPERT OPINION Specific small-molecule inhibitors of NRTKs can be employed for the targeted therapy as already seen in other diseases by examining the precise molecular pathways regulated by them contributing to the development of epilepsy. However, the evidence supporting NRTKs as therapeutic targets are limiting in nature thus, necessitating more research to fully comprehend their function in the development and propagation of seizures.
Collapse
Affiliation(s)
- Ozasvi R Shanker
- Dr. B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, New Delhi, India
| | - Sonali Kumar
- Dr. B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Aparna Banerjee Dixit
- Dr. B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, New Delhi, India
| |
Collapse
|
5
|
Lemieux P, Bradley D, Dubé AK, Dionne U, Landry CR. Dissection of the role of a Src homology 3 domain in the evolution of binding preference of paralogous proteins. Genetics 2024; 226:iyad175. [PMID: 37793087 PMCID: PMC10763533 DOI: 10.1093/genetics/iyad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 10/06/2023] Open
Abstract
Protein-protein interactions (PPIs) drive many cellular processes. Some interactions are directed by Src homology 3 (SH3) domains that bind proline-rich motifs on other proteins. The evolution of the binding specificity of SH3 domains is not completely understood, particularly following gene duplication. Paralogous genes accumulate mutations that can modify protein functions and, for SH3 domains, their binding preferences. Here, we examined how the binding of the SH3 domains of 2 paralogous yeast type I myosins, Myo3 and Myo5, evolved following duplication. We found that the paralogs have subtly different SH3-dependent interaction profiles. However, by swapping SH3 domains between the paralogs and characterizing the SH3 domains freed from their protein context, we find that very few of the differences in interactions, if any, depend on the SH3 domains themselves. We used ancestral sequence reconstruction to resurrect the preduplication SH3 domains and examined, moving back in time, how the binding preference changed. Although the most recent ancestor of the 2 domains had a very similar binding preference as the extant ones, older ancestral domains displayed a gradual loss of interaction with the modern interaction partners when inserted in the extant paralogs. Molecular docking and experimental characterization of the free ancestral domains showed that their affinity with the proline motifs is likely not the cause for this loss of binding. Taken together, our results suggest that a SH3 and its host protein could create intramolecular or allosteric interactions essential for the SH3-dependent PPIs, making domains not functionally equivalent even when they have the same binding specificity.
Collapse
Affiliation(s)
- Pascale Lemieux
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Centre de recherche en données massives (CRDM), Université Laval, 1065, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biochimie, microbiologie et bio-informatique, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
| | - David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Centre de recherche en données massives (CRDM), Université Laval, 1065, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biochimie, microbiologie et bio-informatique, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biologie, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Centre de recherche en données massives (CRDM), Université Laval, 1065, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biochimie, microbiologie et bio-informatique, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biologie, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
| | - Ugo Dionne
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Université Laval, Québec, QC, Canada G1R 2J6
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada M5G 1X5
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Centre de recherche en données massives (CRDM), Université Laval, 1065, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biochimie, microbiologie et bio-informatique, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biologie, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
| |
Collapse
|
6
|
Wang Z, Qu S, Yuan J, Tian W, Xu J, Tao R, Sun S, Lu T, Tang W, Zhu Y. Review and prospects of targeted therapies for Spleen tyrosine kinase (SYK). Bioorg Med Chem 2023; 96:117514. [PMID: 37984216 DOI: 10.1016/j.bmc.2023.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase. The dysregulation of SYK is closely related to the occurrence and development of allergic diseases, autoimmune diseases and cancer. SYK has become an attractive target for drug discovery due to its important biological functions. This article reviews the biological function of SYK, the relationship between SYK and disease, and therapies targeting SYK. In addition, inspired by new technologies such as proteolysis targeting chimeras (PROTACs) and phosphatase recruiting chimeras (PHORCs), we propose the development of new therapeutic approaches for targeting SYK, such as SYK PROTACs and SYK PHORCs, which may overcome deficiencies of existing methods.
Collapse
Affiliation(s)
- Zhaozhao Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shu Qu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jiahao Yuan
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Wen Tian
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jinglei Xu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Rui Tao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shilong Sun
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Weifang Tang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Yong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
7
|
Zhou Z, Liu J, Zhang J, Yan H, Yi T, Shim WB. Characterization of Fusarium verticillioides Med1 LxxLL Motif Involved in Fumonisin Biosynthesis. Toxins (Basel) 2023; 15:652. [PMID: 37999515 PMCID: PMC10675092 DOI: 10.3390/toxins15110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The Med1 transcriptional coactivator is a crucial component of the Mediator middle complex, which regulates the expression of specific genes involved in cell development, differentiation, reproduction, and homeostasis. The Med1 LxxLL motif, a five-amino-acid peptide sequence, is essential for Med1-mediated gene expression. Our previous study revealed that the disruption of the Med1 subunit leads to a significant increase in fumonisin B1 (FB1) production in the maize pathogen Fusarium verticillioides. However, our understanding of how Med1 regulates FB1 biosynthesis in F. verticillioides, particularly through the Med1 LxxLL motifs, remains limited. To characterize the role of LxxLL motifs, we generated a series of Med1 LxxLL deletion and amino acid substitution mutants. These mutants exhibited impaired mycelial growth and conidia germination while demonstrating enhanced conidia production and virulence. Similar to the Med1 deletion mutant, Med1 LxxLL motif mutants also exhibited increased FB1 biosynthesis in F. verticillioides. Proteomic profiling revealed that the Med1 LxxLL motif regulated the biosynthesis of several key substances that affected FB1 production, including starch and carotenoid. Subsequent studies demonstrated that the production of amylopectin, which is strongly linked to FB1 biosynthesis, was significantly increased in Med1 LxxLL motif mutants. In addition, the disruption of carotenoid metabolic genes decreased carotenoid content, thus stimulating FB1 biosynthesis in F. verticillioides. Taken together, our results provide valuable insights into how the Med1 LxxLL motif regulates FB1 biosynthesis in the mycotoxigenic fungus F. verticillioides.
Collapse
Affiliation(s)
- Zehua Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, Hunan Agricultural University, Changsha 410128, China; (Z.Z.); (J.L.)
| | - Jie Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, Hunan Agricultural University, Changsha 410128, China; (Z.Z.); (J.L.)
| | - Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Huijuan Yan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Tuyong Yi
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, Hunan Agricultural University, Changsha 410128, China; (Z.Z.); (J.L.)
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Baryshev A, La Fleur A, Groves B, Michel C, Baker D, Ljubetič A, Seelig G. Massively parallel protein-protein interaction measurement by sequencing (MP3-seq) enables rapid screening of protein heterodimers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527770. [PMID: 36798377 PMCID: PMC9934699 DOI: 10.1101/2023.02.08.527770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Protein-protein interactions (PPIs) regulate many cellular processes, and engineered PPIs have cell and gene therapy applications. Here we introduce massively parallel protein-protein interaction measurement by sequencing (MP3-seq), an easy-to-use and highly scalable yeast-two-hybrid approach for measuring PPIs. In MP3-seq, DNA barcodes are associated with specific protein pairs, and barcode enrichment can be read by sequencing to provide a direct measure of interaction strength. We show that MP3-seq is highly quantitative and scales to over 100,000 interactions. We apply MP3-seq to characterize interactions between families of rationally designed heterodimers and to investigate elements conferring specificity to coiled-coil interactions. Finally, we predict coiled heterodimer structures using AlphaFold-Multimer (AF-M) and train linear models on physics simulation energy terms to predict MP3-seq values. We find that AF-M and AF-M complex prediction-based models could be valuable for pre-screening interactions, but that measuring interactions experimentally remains necessary to rank their strengths quantitatively.
Collapse
Affiliation(s)
- Alexander Baryshev
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Alyssa La Fleur
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Benjamin Groves
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Cirstyn Michel
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ajasja Ljubetič
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department for Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana SI-1000, Slovenia
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Lin J, Wang S, Wen L, Ye H, Shang S, Li J, Shu J, Zhou P. Targeting peptide-mediated interactions in omics. Proteomics 2023; 23:e2200175. [PMID: 36461811 DOI: 10.1002/pmic.202200175] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Peptide-mediated interactions (PMIs) play a crucial role in cell signaling network, which are responsible for about half of cellular protein-protein associations in the human interactome and have recently been recognized as a new kind of promising druggable target for drug development and disease therapy. In this article, we give a systematic review regarding the proteome-wide discovery of PMIs and targeting druggable PMIs (dPMIs) with chemical drugs, self-inhibitory peptides (SIPs) and protein agents, particularly focusing on their implications and applications for therapeutic purpose in omics. We also introduce computational peptidology strategies used to model, analyze, and design PMI-targeted molecular entities and further extend the concepts of protein context, direct/indirect readout, and enthalpy/entropy effect involved in PMIs. Current issues and future perspective on this topic are discussed. There is still a long way to go before establishment of efficient therapeutic strategies to target PMIs on the omics scale.
Collapse
Affiliation(s)
- Jing Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Shaozhou Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Li Wen
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Haiyang Ye
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Shuyong Shang
- Institute of Ecological Environment Protection, Chengdu Normal University, Chengdu, China
| | - Juelin Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Jianping Shu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Peng Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| |
Collapse
|
10
|
Bobone S, Storti C, Calligari P, Stella L. Fluorescence Anisotropy and Polarization in the Characterization of Biomolecular Association Processes and Their Application to Study SH2 Domain Binding Affinity. Methods Mol Biol 2023; 2705:93-112. [PMID: 37668971 DOI: 10.1007/978-1-0716-3393-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Fluorescence anisotropy (or polarization) is a powerful technique to study biomolecular association processes, by following the rotational motions of one of the two partners in the interaction, labeled with a fluorophore. It can be used to determine dissociation constants in solution, down to nM values, and unlabeled ligands can be characterized, too, by using competition experiments. In this chapter, we introduce the basic principles of the technique, compare it with other experimental approaches, and discuss the experimental details with specific examples regarding SH2 domain/phosphopeptide association processes. The experimental protocols to be used in binding experiments and displacement studies are described, as well as the caveats to be considered in performing accurate measurements.
Collapse
Affiliation(s)
- Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Storti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Calligari
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
11
|
Trieu TA, Nguyen PA, Le MN, Chu HN. Myosin-II proteins are involved in the growth, morphogenesis, and virulence of the human pathogenic fungus Mucor circinelloides. Front Cell Infect Microbiol 2022; 12:1031463. [PMID: 36590583 PMCID: PMC9800795 DOI: 10.3389/fcimb.2022.1031463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Mucormycosis is an emerging lethal invasive fungal infection. The infection caused by fungi belonging to the order Mucorales has been reported recently as one of the most common fungal infections among COVID-19 patients. The lack of understanding of pathogens, particularly at the molecular level, is one of the reasons for the difficulties in the management of the infection. Myosin is a diverse superfamily of actin-based motor proteins that have various cellular roles. Four families of myosin motors have been found in filamentous fungi, including myosin I, II, V, and fungus-specific chitin synthase with myosin motor domains. Our previous study on Mucor circinelloides, a common pathogen of mucormycosis, showed that the Myo5 protein (ID 51513) belonging to the myosin type V family had a critical impact on the growth and virulence of this fungus. In this study, to investigate the roles of myosin II proteins in M. circinelloides, silencing phenotypes and null mutants corresponding to myosin II encoding genes, designated mcmyo2A (ID 149958) and mcmyo2B (ID 136314), respectively, were generated. Those mutant strains featured a significantly reduced growth rate and impaired sporulation in comparison with the wild-type strain. Notably, the disruption of mcmyo2A led to an almost complete lack of sporulation. Both mutant strains displayed abnormally short, septate, and inflated hyphae with the presence of yeast-like cells and an unusual accumulation of pigment-filled vesicles. In vivo virulence assays of myosin-II mutant strains performed in the invertebrate model Galleria mellonella indicated that the mcmyo2A-knockout strain was avirulent, while the pathogenesis of the mcmyo2B null mutant was unaltered despite the low growth rate and impaired sporulation. The findings provide suggestions for critical contributions of the myosin II proteins to the polarity growth, septation, morphology, pigment transportation, and pathogenesis of M. circinelloides. The findings also implicate the myosin family as a potential target for future therapy to treat mucormycosis.
Collapse
Affiliation(s)
- Trung Anh Trieu
- Department of Genetics - Biochemistry, Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam,*Correspondence: Trung Anh Trieu,
| | - Phuong Anh Nguyen
- Department of Genetics - Biochemistry, Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Mai Ngoc Le
- Department of Genetics - Biochemistry, Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Huy Nhat Chu
- Environmental Bioremediation Laboratory, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
12
|
A High-Throughput Fluorescence Polarization-Based Assay for the SH2 Domain of STAT4. Methods Protoc 2022; 5:mps5060093. [PMID: 36548135 PMCID: PMC9781101 DOI: 10.3390/mps5060093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The signal transducer and activation of transcription (STAT) proteins are a family of Src homology 2 (SH2) domain-containing transcription factors. The family member STAT4 is a mediator of IL-12 signalling and has been implicated in the pathogenesis of multiple autoimmune diseases. The activity of STAT4 requires binding of phosphotyrosine-containing motifs to its SH2 domain. Selective inhibitors of the STAT4 SH2 domain have not been published to date. Here, we present a fluorescence polarization-based assay for the identification of inhibitors of the STAT4 SH2 domain. The assay is based on the interaction between the STAT4 SH2 domain and the fluorophore-labelled peptide 5-carboxyfluorescein-GpYLPQNID (Kd = 34 ± 4 nM). The assay is stable with respect to DMSO concentrations of up to 10% and incubation times of at least 8 h. The Z'-value of 0.85 ± 0.01 indicates that the assay is suited for use in high-throughput screening campaigns aimed at identifying new therapeutic modalities for the treatment of autoimmune diseases.
Collapse
|
13
|
Basant A, Way M. The relative binding position of Nck and Grb2 adaptors impacts actin-based motility of Vaccinia virus. eLife 2022; 11:e74655. [PMID: 35796545 PMCID: PMC9333988 DOI: 10.7554/elife.74655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Phosphotyrosine (pTyr) motifs in unstructured polypeptides orchestrate important cellular processes by engaging SH2-containing adaptors to assemble complex signalling networks. The concept of phase separation has recently changed our appreciation of multivalent networks, however, the role of pTyr motif positioning in their function remains to be explored. We have now investigated this parameter in the operation of the signalling cascade driving actin-based motility and spread of Vaccinia virus. This network involves two pTyr motifs in the viral protein A36 that recruit the adaptors Nck and Grb2 upstream of N-WASP and Arp2/3 complex-mediated actin polymerisation. Manipulating the position of pTyr motifs in A36 and the unrelated p14 from Orthoreovirus, we find that only specific spatial arrangements of Nck and Grb2 binding sites result in robust N-WASP recruitment, Arp2/3 complex driven actin polymerisation and viral spread. This suggests that the relative position of pTyr adaptor binding sites is optimised for signal output. This finding may explain why the relative positions of pTyr motifs are frequently conserved in proteins from widely different species. It also has important implications for regulation of physiological networks, including those undergoing phase transitions.
Collapse
Affiliation(s)
- Angika Basant
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
14
|
Duan D, Hanson M, Holland DO, Johnson ME. Integrating protein copy numbers with interaction networks to quantify stoichiometry in clathrin-mediated endocytosis. Sci Rep 2022; 12:5413. [PMID: 35354856 PMCID: PMC8967901 DOI: 10.1038/s41598-022-09259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Proteins that drive processes like clathrin-mediated endocytosis (CME) are expressed at copy numbers within a cell and across cell types varying from hundreds (e.g. auxilin) to millions (e.g. clathrin). These variations contain important information about function, but without integration with the interaction network, they cannot capture how supply and demand for each protein depends on binding to shared and distinct partners. Here we construct the interface-resolved network of 82 proteins involved in CME and establish a metric, a stoichiometric balance ratio (SBR), that quantifies whether each protein in the network has an abundance that is sub- or super-stoichiometric dependent on the global competition for binding. We find that highly abundant proteins (like clathrin) are super-stoichiometric, but that not all super-stoichiometric proteins are highly abundant, across three cell populations (HeLa, fibroblast, and neuronal synaptosomes). Most strikingly, within all cells there is significant competition to bind shared sites on clathrin and the central AP-2 adaptor by other adaptor proteins, resulting in most being in excess supply. Our network and systematic analysis, including response to perturbations of network components, show how competition for shared binding sites results in functionally similar proteins having widely varying stoichiometries, due to variations in both abundance and their unique network of binding partners.
Collapse
Affiliation(s)
- Daisy Duan
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Meretta Hanson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | | | - Margaret E Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA.
| |
Collapse
|
15
|
Alberstein RG, Guo AB, Kortemme T. Design principles of protein switches. Curr Opin Struct Biol 2022; 72:71-78. [PMID: 34537489 PMCID: PMC8860883 DOI: 10.1016/j.sbi.2021.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/14/2023]
Abstract
Protein switches perform essential roles in many biological processes and are exciting targets for de novo protein design, which aims to produce proteins of arbitrary shape and functionality. However, the biophysical requirements for switch function - multiple conformational states, fine-tuned energetics, and stimuli-responsiveness - pose a formidable challenge for design by computation (or intuition). A variety of methods have been developed toward tackling this challenge, usually taking inspiration from the wealth of sequence and structural information available for naturally occurring protein switches. More recently, modular switches have been designed computationally, and new methods have emerged for sampling unexplored structure space, providing promising new avenues toward the generation of purpose-built switches and de novo signaling systems for cellular engineering.
Collapse
Affiliation(s)
- Robert G Alberstein
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Amy B Guo
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
Liu Q, Lin J, Wen L, Wang S, Zhou P, Mei L, Shang S. Systematic Modeling, Prediction, and Comparison of Domain-Peptide Affinities: Does it Work Effectively With the Peptide QSAR Methodology? Front Genet 2022; 12:800857. [PMID: 35096016 PMCID: PMC8795790 DOI: 10.3389/fgene.2021.800857] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
The protein-protein association in cellular signaling networks (CSNs) often acts as weak, transient, and reversible domain-peptide interaction (DPI), in which a flexible peptide segment on the surface of one protein is recognized and bound by a rigid peptide-recognition domain from another. Reliable modeling and accurate prediction of DPI binding affinities would help to ascertain the diverse biological events involved in CSNs and benefit our understanding of various biological implications underlying DPIs. Traditionally, peptide quantitative structure-activity relationship (pQSAR) has been widely used to model and predict the biological activity of oligopeptides, which employs amino acid descriptors (AADs) to characterize peptide structures at sequence level and then statistically correlate the resulting descriptor vector with observed activity data via regression. However, the QSAR has not yet been widely applied to treat the direct binding behavior of large-scale peptide ligands to their protein receptors. In this work, we attempted to clarify whether the pQSAR methodology can work effectively for modeling and predicting DPI affinities in a high-throughput manner? Over twenty thousand short linear motif (SLiM)-containing peptide segments involved in SH3, PDZ and 14-3-3 domain-medicated CSNs were compiled to define a comprehensive sequence-based data set of DPI affinities, which were represented by the Boehringer light units (BLUs) derived from previous arbitrary light intensity assays following SPOT peptide synthesis. Four sophisticated MLMs (MLMs) were then utilized to perform pQSAR modeling on the set described with different AADs to systematically create a variety of linear and nonlinear predictors, and then verified by rigorous statistical test. It is revealed that the genome-wide DPI events can only be modeled qualitatively or semiquantitatively with traditional pQSAR strategy due to the intrinsic disorder of peptide conformation and the potential interplay between different peptide residues. In addition, the arbitrary BLUs used to characterize DPI affinity values were measured via an indirect approach, which may not very reliable and may involve strong noise, thus leading to a considerable bias in the modeling. The R prd 2 = 0.7 can be considered as the upper limit of external generalization ability of the pQSAR methodology working on large-scale DPI affinity data.
Collapse
Affiliation(s)
- Qian Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Jing Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Li Wen
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Shaozhou Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Peng Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Li Mei
- Institute of Culinary, Sichuan Tourism University, Chengdu, China
| | - Shuyong Shang
- Institute of Ecological Environment Protection, Chengdu Normal University, Chengdu, China
| |
Collapse
|
17
|
Bobone S, Pannone L, Biondi B, Solman M, Flex E, Canale VC, Calligari P, De Faveri C, Gandini T, Quercioli A, Torini G, Venditti M, Lauri A, Fasano G, Hoeksma J, Santucci V, Cattani G, Bocedi A, Carpentieri G, Tirelli V, Sanchez M, Peggion C, Formaggio F, den Hertog J, Martinelli S, Bocchinfuso G, Tartaglia M, Stella L. Targeting Oncogenic Src Homology 2 Domain-Containing Phosphatase 2 (SHP2) by Inhibiting Its Protein-Protein Interactions. J Med Chem 2021; 64:15973-15990. [PMID: 34714648 PMCID: PMC8591604 DOI: 10.1021/acs.jmedchem.1c01371] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein. The best peptide reverted the effects of a pathogenic variant (D61G) in zebrafish embryos. Our results provide a novel route for SHP2-targeted therapies and a tool for investigating the role of protein-protein interactions in the function of SHP2.
Collapse
Affiliation(s)
- Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Luca Pannone
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy.,Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy
| | - Maja Solman
- Hubrecht institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Elisabetta Flex
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Viviana Claudia Canale
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Paolo Calligari
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Chiara De Faveri
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Tommaso Gandini
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Andrea Quercioli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giuseppe Torini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Jelmer Hoeksma
- Hubrecht institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Valerio Santucci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giada Cattani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Alessio Bocedi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giovanna Carpentieri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy.,Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Valentina Tirelli
- Centre of Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Massimo Sanchez
- Centre of Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Cristina Peggion
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy.,Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Jeroen den Hertog
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy.,Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Simone Martinelli
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Gianfranco Bocchinfuso
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| |
Collapse
|
18
|
Xu X, Masubuchi T, Cai Q, Zhao Y, Hui E. Molecular features underlying differential SHP1/SHP2 binding of immune checkpoint receptors. eLife 2021; 10:74276. [PMID: 34734802 PMCID: PMC8631942 DOI: 10.7554/elife.74276] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 12/19/2022] Open
Abstract
A large number of inhibitory receptors recruit SHP1 and/or SHP2, tandem-SH2-containing phosphatases through phosphotyrosine-based motifs immunoreceptor tyrosine-based inhibitory motif (ITIM) and immunoreceptor tyrosine-based switch motif (ITSM). Despite the similarity, these receptors exhibit differential effector binding specificities, as exemplified by the immune checkpoint receptors PD-1 and BTLA, which preferentially recruit SHP2 and SHP1, respectively. The molecular basis by which structurally similar receptors discriminate SHP1 and SHP2 is unclear. Here, we provide evidence that human PD-1 and BTLA optimally bind to SHP1 and SHP2 via a bivalent, parallel mode that involves both SH2 domains of SHP1 or SHP2. PD-1 mainly uses its ITSM to prefer SHP2 over SHP1 via their C-terminal SH2 domains (cSH2): swapping SHP1-cSH2 with SHP2-cSH2 enabled PD-1:SHP1 association in T cells. In contrast, BTLA primarily utilizes its ITIM to prefer SHP1 over SHP2 via their N-terminal SH2 domains (nSH2). The ITIM of PD-1, however, appeared to be de-emphasized due to a glycine at pY+1 position. Substitution of this glycine with alanine, a residue conserved in BTLA and several SHP1-recruiting receptors, was sufficient to induce PD-1:SHP1 interaction in T cells. Finally, structural simulation and mutagenesis screening showed that SHP1 recruitment activity exhibits a bell-shaped dependence on the molecular volume of the pY+1 residue of ITIM. Collectively, we provide a molecular interpretation of the SHP1/SHP2-binding specificities of PD-1 and BTLA, with implications for the mechanisms of a large family of therapeutically relevant receptors.
Collapse
Affiliation(s)
- Xiaozheng Xu
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Takeya Masubuchi
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yunlong Zhao
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Enfu Hui
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
19
|
Xiao T, Sun L, Zhang M, Li Z, Haura EB, Schonbrunn E, Ji H. Synthesis and structural characterization of a monocarboxylic inhibitor for GRB2 SH2 domain. Bioorg Med Chem Lett 2021; 51:128354. [PMID: 34506932 DOI: 10.1016/j.bmcl.2021.128354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
A monocarboxylic inhibitor was designed and synthesized to disrupt the protein-protein interaction (PPI) between GRB2 and phosphotyrosine-containing proteins. Biochemical characterizations show compound 7 binds with the Src homology 2 (SH2) domain of GRB2 and is more potent than EGFR1068 phosphopeptide 14-mer. X-ray crystallographic studies demonstrate compound 7 occupies the GRB2 binding site for phosphotyrosine-containing sequences and reveal key structural features for GRB2-inhibitor binding. This compound with a -1 formal charge offers a new direction for structural optimization to generate cell-permeable inhibitors for this key protein target of the aberrant Ras-MAPK signaling cascade.
Collapse
Affiliation(s)
- Tao Xiao
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Luxin Sun
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Zilu Li
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Ernst Schonbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States.
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
20
|
Bage MG, Almohammed R, Cowling VH, Pisliakov A. A novel RNA pol II CTD interaction site on the mRNA capping enzyme is essential for its allosteric activation. Nucleic Acids Res 2021; 49:3109-3126. [PMID: 33684220 PMCID: PMC8034621 DOI: 10.1093/nar/gkab130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/12/2022] Open
Abstract
Recruitment of the mRNA capping enzyme (CE/RNGTT) to the site of transcription is essential for the formation of the 5' mRNA cap, which in turn ensures efficient transcription, splicing, polyadenylation, nuclear export and translation of mRNA in eukaryotic cells. The CE GTase is recruited and activated by the Serine-5 phosphorylated carboxyl-terminal domain (CTD) of RNA polymerase II. Through the use of molecular dynamics simulations and enhanced sampling techniques, we provide a systematic and detailed characterization of the human CE-CTD interface, describing the effect of the CTD phosphorylation state, length and orientation on this interaction. Our computational analyses identify novel CTD interaction sites on the human CE GTase surface and quantify their relative contributions to CTD binding. We also identify, for the first time, allosteric connections between the CE GTase active site and the CTD binding sites, allowing us to propose a mechanism for allosteric activation. Through binding and activity assays we validate the novel CTD binding sites and show that the CDS2 site is essential for CE GTase activity stimulation. Comparison of the novel sites with cocrystal structures of the CE-CTD complex in different eukaryotic taxa reveals that this interface is considerably more conserved than previous structures have indicated.
Collapse
Affiliation(s)
- Marcus G Bage
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rajaei Almohammed
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
21
|
Murugesan S, Murugesan J, Palaniappan S, Palaniappan S, Murugan T, Siddiqui SS, Loganathan S. Tyrosine Kinase Inhibitors (TKIs) in Lung Cancer Treatment: A Comprehensive Analysis. Curr Cancer Drug Targets 2021; 21:55-69. [PMID: 33038912 DOI: 10.2174/1568009620666201009130008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading type of cancer worldwide today. Kinases play a crucial role in mediating the signaling pathways, and it directs to control several necessary cellular processes. Conversely, the deregulation of tyrosine kinases leads to oncogenic conversion, uncontrolled cell proliferation and tumorigenesis. Tyrosine kinases are largely deregulated in lung cancer and specifically in non-small cell lung cancer (NSCLC). Therefore, the inhibition of pathogenic kinases is a breakthrough development in cancer research, treatment and care, which clinically improve the quality of life. In the last decades, various single or combination inhibitors are approved by U.S Food and Drug Administration (FDA) and commercially available in clinics, and currently, several preclinical studies are ongoing and examining the kinase inhibitors. However, many gaps remain in understanding the mechanisms of kinase inhibitors and their selectivity. In this analysis, we focus on a class of receptor and non-receptor tyrosine kinase inhibitors and their novel role in lung cancer.
Collapse
Affiliation(s)
- Sivakumar Murugesan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| | - Jayakumar Murugesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar- 608002, Tamilnadu, India
| | - Seedevi Palaniappan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| | - Sivasankar Palaniappan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| | - Tamilselvi Murugan
- Department of Zoology, Government Arts College (Autonomous), Coimbatore-641018, Tamil Nadu, India
| | - Shahid S Siddiqui
- Department of Medicine, University of Chicago, Chicago, IL-60637, United States
| | - Sivakumar Loganathan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| |
Collapse
|
22
|
Hojjat-Farsangi M, Moshfegh A, Schultz J, Norin M, Olin T, Österborg A, Mellstedt H. Targeting the Receptor Tyrosine Kinase ROR1 by Small Molecules. Handb Exp Pharmacol 2021; 269:75-99. [PMID: 34490515 DOI: 10.1007/164_2021_535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Receptor tyrosine kinases (RTKs) are frequently dysregulated in malignancies and important for the malignant characteristics of tumor cells. RTKs are attractive structures for drug targeting of cancer. The RTK ROR1 is of significance during embryogenesis but downregulated in post-partum tissues. However, ROR1 is overexpressed in several hematological and solid tumors and important for tumor cell proliferation, survival, migration, and metastasis. WNT5a is a main ligand for ROR1. Several clinical trials are ongoing using anti-ROR1 antibody based drugs directed against the external domain (monoclonal antibodies, BiTE, CAR-T). We have produced small molecules (KAN834/1571c) fitting to the ATP pocket of the intracellular tyrosine kinase (TK) domain of ROR1 (TK inhibitor, TKI). These inhibitors of ROR1 prevented ROR1 phosphorylation and inactivated the WNT/β-catenin independent as well as WNT/β-catenin dependent pathways. ROR1-TKI induced apoptosis of ROR1 positive fresh patient derived tumor cells and appropriate cell lines and a dose and time dependent tumor reduction in animal models. In combination with other clinically relevant targeting drugs as venetoclax a synergistic apoptotic effect was seen. Two other small molecules (ARI-1 and strictinin) bound also to ROR1 and inhibited tumor growth. Development of small molecule ROR1 inhibitors is warranted to include this novel therapeutic approach for cancer therapy.
Collapse
Affiliation(s)
| | - Ali Moshfegh
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Schultz
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Martin Norin
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Thomas Olin
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Anders Österborg
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Håkan Mellstedt
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Teyra J, Kelil A, Jain S, Helmy M, Jajodia R, Hooda Y, Gu J, D’Cruz AA, Nicholson SE, Min J, Sudol M, Kim PM, Bader GD, Sidhu SS. Large-scale survey and database of high affinity ligands for peptide recognition modules. Mol Syst Biol 2020; 16:e9310. [PMID: 33438817 PMCID: PMC7724964 DOI: 10.15252/msb.20199310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Many proteins involved in signal transduction contain peptide recognition modules (PRMs) that recognize short linear motifs (SLiMs) within their interaction partners. Here, we used large-scale peptide-phage display methods to derive optimal ligands for 163 unique PRMs representing 79 distinct structural families. We combined the new data with previous data that we collected for the large SH3, PDZ, and WW domain families to assemble a database containing 7,984 unique peptide ligands for 500 PRMs representing 82 structural families. For 74 PRMs, we acquired enough new data to map the specificity profiles in detail and derived position weight matrices and binding specificity logos based on multiple peptide ligands. These analyses showed that optimal peptide ligands resembled peptides observed in existing structures of PRM-ligand complexes, indicating that a large majority of the phage-derived peptides are likely to target natural peptide-binding sites and could thus act as inhibitors of natural protein-protein interactions. The complete dataset has been assembled in an online database (http://www.prm-db.org) that will enable many structural, functional, and biological studies of PRMs and SLiMs.
Collapse
Affiliation(s)
- Joan Teyra
- The Donnelly CentreUniversity of TorontoTorontoONCanada
| | | | - Shobhit Jain
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
| | - Mohamed Helmy
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Present address:
Singapore Institute of Food and Biotechnology Innovation (SIFBI)Agency for ScienceTechnology and Research (A*STAR)Singapore CitySingapore
| | - Raghav Jajodia
- Indian Institute of Engineering Science and TechnologyShibpurIndia
| | - Yogesh Hooda
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Present address:
MRC Laboratory of Molecular BiologyCambridgeUK
| | - Jun Gu
- The Donnelly CentreUniversity of TorontoTorontoONCanada
| | - Akshay A D’Cruz
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Jinrong Min
- Structural Genomics ConsortiumUniversity of TorontoTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| | - Marius Sudol
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Philip M Kim
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Gary D Bader
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Sachdev S Sidhu
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
24
|
Wen J, Liao H, Stachowski K, Hempfling JP, Qian Z, Yuan C, Foster MP, Pei D. Rational design of cell-permeable cyclic peptides containing a d-Pro-l-Pro motif. Bioorg Med Chem 2020; 28:115711. [PMID: 33069067 DOI: 10.1016/j.bmc.2020.115711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/01/2022]
Abstract
Cyclic peptides are capable of binding to challenging targets (e.g., proteins involved in protein-protein interactions) with high affinity and specificity, but generally cannot gain access to intracellular targets because of poor membrane permeability. In this work, we discovered a conformationally constrained cyclic cell-penetrating peptide (CPP) containing a d-Pro-l-Pro motif, cyclo(AFΦrpPRRFQ) (where Φ is l-naphthylalanine, r is d-arginine, and p is d-proline). The structural constraints provided by cyclization and the d-Pro-l-Pro motif permitted the rational design of cell-permeable cyclic peptides of large ring sizes (up to 16 amino acids). This strategy was applied to design a potent, cell-permeable, and biologically active cyclic peptidyl inhibitor, cyclo(YpVNFΦrpPRR) (where Yp is l-phosphotyrosine), against the Grb2 SH2 domain. Multidimensional NMR spectroscopic and circular dichroism analyses revealed that the cyclic CPP as well as the Grb2 SH2 inhibitor assume a predominantly random coil structure but have significant β-hairpin character surrounding the d-Pro-l-Pro motif. These results demonstrate cyclo(AFΦrpPRRFQ) as an effective CPP for endocyclic (insertion of cargo into the CPP ring) or exocyclic delivery of biological cargos (attachment of cargo to the Gln side chain).
Collapse
Affiliation(s)
- Jin Wen
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Hui Liao
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Kye Stachowski
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Jordan P Hempfling
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Ziqing Qian
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Mark P Foster
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA.
| | - Dehua Pei
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Anselmi M, Calligari P, Hub JS, Tartaglia M, Bocchinfuso G, Stella L. Structural Determinants of Phosphopeptide Binding to the N-Terminal Src Homology 2 Domain of the SHP2 Phosphatase. J Chem Inf Model 2020; 60:3157-3171. [PMID: 32395997 PMCID: PMC8007070 DOI: 10.1021/acs.jcim.0c00307] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 11/28/2022]
Abstract
SH2 domain-containing tyrosine phosphatase 2 (SHP2), encoded by PTPN11, plays a fundamental role in the modulation of several signaling pathways. Germline and somatic mutations in PTPN11 are associated with different rare diseases and hematologic malignancies, and recent studies have individuated SHP2 as a central node in oncogenesis and cancer drug resistance. The SHP2 structure includes two Src homology 2 domains (N-SH2 and C-SH2) followed by a catalytic protein tyrosine phosphatase (PTP) domain. Under basal conditions, the N-SH2 domain blocks the active site, inhibiting phosphatase activity. Association of the N-SH2 domain with binding partners containing short amino acid motifs comprising a phosphotyrosine residue (pY) leads to N-SH2/PTP dissociation and SHP2 activation. Considering the relevance of SHP2 in signaling and disease and the central role of the N-SH2 domain in its allosteric regulation mechanism, we performed microsecond-long molecular dynamics (MD) simulations of the N-SH2 domain complexed to 12 different peptides to define the structural and dynamical features determining the binding affinity and specificity of the domain. Phosphopeptide residues at position -2 to +5, with respect to pY, have significant interactions with the SH2 domain. In addition to the strong interaction of the pY residue with its conserved binding pocket, the complex is stabilized hydrophobically by insertion of residues +1, +3, and +5 in an apolar groove of the domain and interaction of residue -2 with both the pY and a protein surface residue. Additional interactions are provided by hydrogen bonds formed by the backbone of residues -1, +1, +2, and +4. Finally, negatively charged residues at positions +2 and +4 are involved in electrostatic interactions with two lysines (Lys89 and Lys91) specific for the SHP2 N-SH2 domain. Interestingly, the MD simulations illustrated a previously undescribed conformational flexibility of the domain, involving the core β sheet and the loop that closes the pY binding pocket.
Collapse
Affiliation(s)
- Massimiliano Anselmi
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| | - Paolo Calligari
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| | - Jochen S. Hub
- Theoretical
Physics and Center for Biophysics, Saarland
University, Campus E2 6, 66123 Saarbrücken, Germany
| | - Marco Tartaglia
- Genetics
and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Gianfranco Bocchinfuso
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| | - Lorenzo Stella
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
26
|
McClendon CJ, Miller WT. Structure, Function, and Regulation of the SRMS Tyrosine Kinase. Int J Mol Sci 2020; 21:E4233. [PMID: 32545875 PMCID: PMC7352994 DOI: 10.3390/ijms21124233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/05/2023] Open
Abstract
Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (SRMS) is a tyrosine kinase that was discovered in 1994. It is a member of a family of nonreceptor tyrosine kinases that also includes Brk (PTK6) and Frk. Compared with other tyrosine kinases, there is relatively little information about the structure, function, and regulation of SRMS. In this review, we summarize the current state of knowledge regarding SRMS, including recent results aimed at identifying downstream signaling partners. We also present a structural model for the enzyme and discuss the potential involvement of SRMS in cancer cell signaling.
Collapse
Affiliation(s)
- Chakia J. McClendon
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA;
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA;
- Department of Veterans Affairs Medical Center, Northport, NY 11768, USA
| |
Collapse
|
27
|
Mohanty P, Bhatnagar S. In Silico Screening to Identify Inhibitors of Growth Factor Receptor 2-Focal Adhesion Kinase Interaction for Therapeutic Treatment of Pathological Cardiac Hypertrophy. Assay Drug Dev Technol 2020; 17:58-67. [PMID: 30869527 DOI: 10.1089/adt.2018.887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The focal adhesion kinase-growth factor receptor 2 (FAK-Grb2) protein-protein interaction is implicated in pathogenesis of stress-induced cardiac hypertrophy. The focal adhesion targeting (FAT) domain of FAK unfolds to form a structural intermediate that interacts with a multibinding hot spot in the SH2 domain of Grb2. Disruption of the Grb2-FAT interaction is a therapeutic strategy for prevention of pathological cardiac hypertrophy. A pharmacophore was generated on the basis of structural and electrostatic properties of FAT bound to FAK using the Forge tool (Cresset). This pharmacophore was used as a query for Blaze server (Cresset) to screen a selectively enriched chemical library of 4,32,508 small molecules. The compounds selected were further filtered by hierarchical flexible docking approach using AutoDock v4. From the favorably docked compounds, five were selected on the basis of good adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties using SwissADME, MedChem Designer v.3, and MOLINSPIRATION. Stability of the binding mode of the inhibitors was further confirmed by molecular dynamic simulation study with AMBER v15 for a simulation time of 50 ns in aqueous environment. PM2307 was identified as the best inhibitor in terms of pharmacophoric features, dock score, and in silico ADMET analysis. The calculated binding affinity of PM2307 was better than that of the FAT-Grb2 complex as well as a previously reported small molecule inhibitor. PM2307 is also a quinolyl derivative sharing a similar scaffold with ofloxacin drugs, asserting its drug-like properties. Thus, it was proposed as a lead compound for development of drugs for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Pallavi Mohanty
- Computational and Structural Biology Laboratory, Division of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, India
| |
Collapse
|
28
|
A tunable orthogonal coiled-coil interaction toolbox for engineering mammalian cells. Nat Chem Biol 2020; 16:513-519. [PMID: 31907374 PMCID: PMC7182445 DOI: 10.1038/s41589-019-0443-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/21/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Protein interactions guide most cellular processes. Orthogonal hetero-specific protein-protein interaction domains may facilitate better control of engineered biological systems. Here, we report a tunable de novo designed set of orthogonal coiled-coil (CC) peptide heterodimers (called the NICP set) and its application for the regulation of diverse cellular processes, from cellular localization to transcriptional regulation. We demonstrate the application of CC pairs for multiplex localization in single cells and exploit the interaction strength and variable stoichiometry of CC peptides for tuning of gene transcription strength. A concatenated CC peptide tag (CCC-tag) was used to construct highly potent CRISPR-dCas9-based transcriptional activators and to amplify the response of light and small molecule-inducible transcription in cell culture as well as in vivo. The NICP set and its implementations represent a valuable toolbox of minimally disruptive modules for the recruitment of versatile functional domains and regulation of cellular processes for synthetic biology.
Collapse
|
29
|
Zhou P, Yan F, Miao Q, Chen Z, Wang H. Why the first self-binding peptide of human c-Src kinase does not contain class II motif but can bind to its cognate Src homology 3 domain in class II mode? J Biomol Struct Dyn 2020; 39:310-318. [DOI: 10.1080/07391102.2019.1709547] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Peng Zhou
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu, China
- Center for Information in BioMedicine, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu, China
| | - Fugang Yan
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu, China
| | - Qingqing Miao
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu, China
| | - Zheng Chen
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu, China
| | - Heyi Wang
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu, China
| |
Collapse
|
30
|
Andersen TCB, Kristiansen PE, Huszenicza Z, Johansson MU, Gopalakrishnan RP, Kjelstrup H, Boyken S, Sundvold-Gjerstad V, Granum S, Sørli M, Backe PH, Fulton DB, Karlsson BG, Andreotti AH, Spurkland A. The SH3 domains of the protein kinases ITK and LCK compete for adjacent sites on T cell-specific adapter protein. J Biol Chem 2019; 294:15480-15494. [PMID: 31484725 DOI: 10.1074/jbc.ra119.008318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
T-cell activation requires stimulation of specific intracellular signaling pathways in which protein-tyrosine kinases, phosphatases, and adapter proteins interact to transmit signals from the T-cell receptor to the nucleus. Interactions of LCK proto-oncogene, SRC family tyrosine kinase (LCK), and the IL-2-inducible T cell kinase (ITK) with the T cell-specific adapter protein (TSAD) promotes LCK-mediated phosphorylation and thereby ITK activation. Both ITK and LCK interact with TSAD's proline-rich region (PRR) through their Src homology 3 (SH3) domains. Whereas LCK may also interact with TSAD through its SH2 domain, ITK interacts with TSAD only through its SH3 domain. To begin to understand on a molecular level how the LCK SH3 and ITK SH3 domains interact with TSAD in human HEK293T cells, here we combined biochemical analyses with NMR spectroscopy. We found that the ITK and LCK SH3 domains potentially have adjacent and overlapping binding sites within the TSAD PRR amino acids (aa) 239-274. Pulldown experiments and NMR spectroscopy revealed that both domains may bind to TSAD aa 239-256 and aa 257-274. Co-immunoprecipitation experiments further revealed that both domains may also bind simultaneously to TSAD aa 242-268. Accordingly, NMR spectroscopy indicated that the SH3 domains may compete for these two adjacent binding sites. We propose that once the associations of ITK and LCK with TSAD promote the ITK and LCK interaction, the interactions among TSAD, ITK, and LCK are dynamically altered by ITK phosphorylation status.
Collapse
Affiliation(s)
- Thorny Cesilie Bie Andersen
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | | | - Zsuzsa Huszenicza
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Maria U Johansson
- Swedish NMR Centre at the University of Gothenburg, Gothenburg 413 90, Sweden
| | | | - Hanna Kjelstrup
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Scott Boyken
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - Vibeke Sundvold-Gjerstad
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Stine Granum
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Morten Sørli
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Paul Hoff Backe
- Department of Microbiology, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - B Göran Karlsson
- Swedish NMR Centre at the University of Gothenburg, Gothenburg 413 90, Sweden
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - Anne Spurkland
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
31
|
Berg A, Sperl B, Berg T. ATP Inhibits the Transcription Factor STAT5b. Chembiochem 2019; 20:2227-2231. [PMID: 30985989 DOI: 10.1002/cbic.201900173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Although naturally occurring low-molecular-weight compounds have many known roles within the cell, these do not usually involve the direct inhibition of protein-protein interactions. Based on the results of high-throughput screening of a library of bioactive compounds and neurotransmitters, we report here that the four nucleoside triphosphates ATP, GTP, CTP and UTP inhibit the SH2 domain of the tumor-related transcription factor STAT5b. ATP and GTP are the most active nucleoside triphosphates and show specificity for STAT5b over STAT5a, STAT3, STAT6 and the p53-binding protein HDM2. As the inhibition constant of ATP against STAT5b is significantly lower than published values for the intracellular ATP concentration, our data suggest that ATP might inhibit the protein-protein interactions of STAT5b in living cells.
Collapse
Affiliation(s)
- Angela Berg
- Institute of Organic Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Bianca Sperl
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Thorsten Berg
- Institute of Organic Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
32
|
Meirson T, Bomze D, Kahlon L, Gil-Henn H, Samson AO. A helical lock and key model of polyproline II conformation with SH3. Bioinformatics 2019; 36:154-159. [DOI: 10.1093/bioinformatics/btz527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
Motivation
More than half of the human proteome contains the proline-rich motif, PxxP. This motif has a high propensity for adopting a left-handed polyproline II (PPII) helix and can potentially bind SH3 domains. SH3 domains are generally grouped into two classes, based on whether the PPII binds in a positive (N-to-C terminal) or negative (C-to-N terminal) orientation. Since the discovery of this structural motif, over six decades ago, a systematic understanding of its binding remains poor and the consensus amino acid sequence that binds SH3 domains is still ill defined.
Results
Here, we show that the PPII interaction with SH3 domains is governed by the helix backbone and its prolines, and their rotation angle around the PPII helical axis. Based on a geometric analysis of 131 experimentally solved SH3 domains in complex with PPIIs, we observed a rotary translation along the helical screw axis, and separated them by 120° into three categories we name α (0–120°), β (120–240°) and γ (240–360°). Furthermore, we found that PPII helices are distinguished by a shifting PxxP motif preceded by positively charged residues which act as a structural reading frame and dictates the organization of SH3 domains; however, there is no one single consensus motif for all classified PPIIs. Our results demonstrate a remarkable apparatus of a lock with a rotating and translating key with no known equivalent machinery in molecular biology. We anticipate our model to be a starting point for deciphering the PPII code, which can unlock an exponential growth in our understanding of the relationship between protein structure and function.
Availability and implementation
We have implemented the proposed methods in the R software environment and in an R package freely available at https://github.com/Grantlab/bio3d.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tomer Meirson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Safed 1589, Israel
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - David Bomze
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
| | - Liron Kahlon
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Safed 1589, Israel
| |
Collapse
|
33
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
34
|
Lambert MW. Spectrin and its interacting partners in nuclear structure and function. Exp Biol Med (Maywood) 2019; 243:507-524. [PMID: 29557213 DOI: 10.1177/1535370218763563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonerythroid αII-spectrin is a structural protein whose roles in the nucleus have just begun to be explored. αII-spectrin is an important component of the nucleoskelelton and has both structural and non-structural functions. Its best known role is in repair of DNA ICLs both in genomic and telomeric DNA. αII-spectrin aids in the recruitment of repair proteins to sites of damage and a proposed mechanism of action is presented. It interacts with a number of different groups of proteins in the nucleus, indicating it has roles in additional cellular functions. αII-spectrin, in its structural role, associates/co-purifies with proteins important in maintaining the architecture and mechanical properties of the nucleus such as lamin, emerin, actin, protein 4.1, nuclear myosin, and SUN proteins. It is important for the resilience and elasticity of the nucleus. Thus, αII-spectrin's role in cellular functions is complex due to its structural as well as non-structural roles and understanding the consequences of a loss or deficiency of αII-spectrin in the nucleus is a significant challenge. In the bone marrow failure disorder, Fanconi anemia, there is a deficiency in αII-spectrin and, among other characteristics, there is defective DNA repair, chromosome instability, and congenital abnormalities. One may speculate that a deficiency in αII-spectrin plays an important role not only in the DNA repair defect but also in the congenital anomalies observed in Fanconi anemia , particularly since αII-spectrin has been shown to be important in embryonic development in a mouse model. The dual roles of αII-spectrin in the nucleus in both structural and non-structural functions make this an extremely important protein which needs to be investigated further. Such investigations should help unravel the complexities of αII-spectrin's interactions with other nuclear proteins and enhance our understanding of the pathogenesis of disorders, such as Fanconi anemia , in which there is a deficiency in αII-spectrin. Impact statement The nucleoskeleton is critical for maintaining the architecture and functional integrity of the nucleus. Nonerythroid α-spectrin (αIISp) is an essential nucleoskeletal protein; however, its interactions with other structural and non-structural nuclear proteins and its functional importance in the nucleus have only begun to be explored. This review addresses these issues. It describes αIISp's association with DNA repair proteins and at least one proposed mechanism of action for its role in DNA repair. Specific interactions of αIISp with other nucleoskeletal proteins as well as its important role in the biomechanical properties of the nucleus are reviewed. The consequences of loss of αIISp, in disorders such as Fanconi anemia, are examined, providing insights into the profound impact of this loss on critical processes known to be abnormal in FA, such as development, carcinogenesis, cancer progression and cellular functions dependent upon αIISp's interactions with other nucleoskeletal proteins.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
35
|
Michel E, Plückthun A, Zerbe O. Peptide binding affinity redistributes preassembled repeat protein fragments. Biol Chem 2018; 400:395-404. [DOI: 10.1515/hsz-2018-0355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/21/2018] [Indexed: 01/21/2023]
Abstract
Abstract
Designed armadillo repeat proteins (dArmRPs) are modular peptide binders composed of N- and C-terminal capping repeats Y and A and a variable number of internal modules M that each specifically recognize two amino acids of the target peptide. Complementary fragments of dArmRPs obtained by splitting the protein between helices H1 and H2 of an internal module show conditional and specific assembly only in the presence of a target peptide (Michel, E., Plückthun, A., and Zerbe, O. (2018). Peptide-guided assembly of repeat protein fragments. Angew. Chem. Int. Ed. 57, 4576–4579). Here, we investigate dArmRP fragments that already spontaneously assemble with high affinity, e.g. those obtained from splits between entire modules or between helices H2 and H3. We find that the interaction of the peptide with the assembled fragments induces distal conformational rearrangements that suggest an induced fit on a global protein level. A population analysis of an equimolar mixture of an N-terminal and three C-terminal fragments with various affinities for the target peptide revealed predominant assembly of the weakest peptide binder. However, adding a target peptide to this mixture altered the population of the protein complexes such that the combination with the highest affinity for the peptide increased and becomes predominant when adding excess of peptide, highlighting the feasibility of peptide-induced enrichment of best binders from inter-modular fragment mixtures.
Collapse
Affiliation(s)
- Erich Michel
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zürich , Switzerland
| | - Andreas Plückthun
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zürich , Switzerland
| | - Oliver Zerbe
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zürich , Switzerland
| |
Collapse
|
36
|
Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit Rev Biochem Mol Biol 2018; 53:535-563. [PMID: 30183386 PMCID: PMC6328253 DOI: 10.1080/10409238.2018.1495173] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the "Src module," composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.
Collapse
Affiliation(s)
- Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jeanine F. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Laura M. Nocka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
37
|
Jethva PN, Udgaonkar JB. The Osmolyte TMAO Modulates Protein Folding Cooperativity by Altering Global Protein Stability. Biochemistry 2018; 57:5851-5863. [DOI: 10.1021/acs.biochem.8b00698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Prashant N. Jethva
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
- Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
38
|
Michel E, Plückthun A, Zerbe O. Peptide‐Guided Assembly of Repeat Protein Fragments. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Erich Michel
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Andreas Plückthun
- Department of Biochemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Oliver Zerbe
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
39
|
Michel E, Plückthun A, Zerbe O. Peptide-Guided Assembly of Repeat Protein Fragments. Angew Chem Int Ed Engl 2018; 57:4576-4579. [DOI: 10.1002/anie.201713377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Erich Michel
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Andreas Plückthun
- Department of Biochemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Oliver Zerbe
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
40
|
Ali S, Hoven A, Dress RJ, Schaal H, Alferink J, Scheu S. Identification of a novel Dlg2 isoform differentially expressed in IFNβ-producing plasmacytoid dendritic cells. BMC Genomics 2018; 19:194. [PMID: 29703139 PMCID: PMC6389146 DOI: 10.1186/s12864-018-4573-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/01/2018] [Indexed: 12/13/2022] Open
Abstract
Background The murine discs large homolog 2 (DLG2; post synaptic density 93 (PSD-93); Chapsyn-110) is a member of the membrane-associated guanylate kinase (MAGUK) protein family involved in receptor assembly and associated with signaling enzymes on cell membranes. In neurons, DLG2 protein isoforms derived from alternatively spliced transcripts have been described to bind to NMDA (N-methyl-aspartate) receptors and K channels and to mediate clustering of these channels in the postsynaptic membrane. In myeloid cells of the immune system, such as dendritic cells (DCs), a lack of data exists on the expression or function of DLG2. In cDNA microarray transcriptome analyses, we found Dlg2 highly expressed in a subpopulation of plasmacytoid DCs (pDCs) stimulated to produce type I interferons (IFNs) such as IFNβ. Results Using RACE- and RT-PCR as well as immunoprecipitation followed by Western blotting we characterised the differential expression of the Dlg2 splice variants in IFNβ-producing pDCs. Besides Dlg2ɣ this cell population expressed a novel short Dlg2η transcript we termed Dlg2η3. Our expression data were integrated into information from genome databases to obtain a novel and comprehensive overview of the mouse Dlg2 gene architecture. To elucidate the intracellular localisation pattern of protein isoforms, ectopical expression analysis of fluorescently tagged DLG2 splice variants was performed. Here we found an enrichment of the larger isoform DLG2α1 at the plasma membrane while the newly identified shorter (DLG2η) isoform as well as DLG2ɣ were equally distributed throughout the cytoplasm. Additionally, DLG2η was also found in the nucleus. Analysis of Dlg2-knockout mice previously generated by deleting exon 9 surprisingly revealed that the protein for the novel DLG2η isoform was still expressed in the brain and in bone marrow-derived pDCs from mice carrying the homozygous deletion (Dlg2ΔE9/ΔE9). Conclusion We describe a novel splice variant of the mouse Dlg2 gene termed Dlg2η and define the differential expression pattern of DLG2 isoforms in IFNβ-producing pDCs. The presence of DLG2η protein in the CNS of Dlg2ΔE9/ΔE9 mice might influence the phenotype of these mice and has to be taken into account in the interpretation of results regarding the functional role of DLG2 in neuronal postsynaptic membranes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4573-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.,Cluster of Excellence EXC 1003, Cells in Motion, Waldeyerstraße 15, D-48149, Münster, Germany
| | - Alexander Hoven
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Regine J Dress
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.,Singapore Immunology Network, Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore
| | - Heiner Schaal
- Institute of Virology, Heinrich Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.,BMFZ (Biologisch-Medizinisches Forschungszentrum), Heinrich Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Judith Alferink
- Cluster of Excellence EXC 1003, Cells in Motion, Waldeyerstraße 15, D-48149, Münster, Germany.,Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich, Heine University of Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
41
|
Roskoski R. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders. Pharmacol Res 2018; 129:65-83. [DOI: 10.1016/j.phrs.2018.01.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/15/2022]
|
42
|
Zheng F, Grigoryan G. Simplifying the Design of Protein-Peptide Interaction Specificity with Sequence-Based Representations of Atomistic Models. Methods Mol Biol 2018; 1561:189-200. [PMID: 28236239 DOI: 10.1007/978-1-4939-6798-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Computationally designed peptides targeting protein-protein interaction interfaces are of great interest as reagents for biological research and potential therapeutics. In recent years, it has been shown that detailed structure-based calculations can, in favorable cases, describe relevant determinants of protein-peptide recognition. Yet, despite large increases in available computing power, such accurate modeling of the binding reaction is still largely outside the realm of protein design. The chief limitation is in the large sequence spaces generally involved in protein design problems, such that it is typically infeasible to apply expensive modeling techniques to score each sequence. Toward addressing this issue, we have previously shown that by explicitly evaluating the scores of a relatively small number of sequences, it is possible to synthesize a direct mapping between sequences and scores, such that the entire sequence space can be analyzed extremely rapidly. The associated method, called Cluster Expansion, has been used in a number of studies to design binding affinity and specificity. In this chapter, we provide instructions and guidance for applying this technique in the context of designing protein-peptide interactions to enable the use of more detailed and expensive scoring approaches than is typically possible.
Collapse
Affiliation(s)
- Fan Zheng
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, 6211 Sudikoff Lab, Room 113, Hanover, NH, 03755, USA. .,Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
43
|
Structure function relations in PDZ-domain-containing proteins: Implications for protein networks in cellular signalling. J Biosci 2017. [DOI: 10.1007/s12038-017-9727-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Affiliation(s)
- I. W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| |
Collapse
|
45
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Comprehensive Analysis of the Human SH3 Domain Family Reveals a Wide Variety of Non-canonical Specificities. Structure 2017; 25:1598-1610.e3. [DOI: 10.1016/j.str.2017.07.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/20/2017] [Accepted: 07/28/2017] [Indexed: 01/31/2023]
|
47
|
Sdano MA, Fulcher JM, Palani S, Chandrasekharan MB, Parnell TJ, Whitby FG, Formosa T, Hill CP. A novel SH2 recognition mechanism recruits Spt6 to the doubly phosphorylated RNA polymerase II linker at sites of transcription. eLife 2017; 6:28723. [PMID: 28826505 PMCID: PMC5599234 DOI: 10.7554/elife.28723] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023] Open
Abstract
We determined that the tandem SH2 domain of S. cerevisiae Spt6 binds the linker region of the RNA polymerase II subunit Rpb1 rather than the expected sites in its heptad repeat domain. The 4 nM binding affinity requires phosphorylation at Rpb1 S1493 and either T1471 or Y1473. Crystal structures showed that pT1471 binds the canonical SH2 pY site while pS1493 binds an unanticipated pocket 70 Å distant. Remarkably, the pT1471 phosphate occupies the phosphate-binding site of a canonical pY complex, while Y1473 occupies the position of a canonical pY side chain, with the combination of pT and Y mimicking a pY moiety. Biochemical data and modeling indicate that pY1473 can form an equivalent interaction, and we find that pT1471/pS1493 and pY1473/pS1493 combinations occur in vivo. ChIP-seq and genetic analyses demonstrate the importance of these interactions for recruitment of Spt6 to sites of transcription and for the maintenance of repressive chromatin.
Collapse
Affiliation(s)
- Matthew A Sdano
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - James M Fulcher
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Sowmiya Palani
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Timothy J Parnell
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Frank G Whitby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
48
|
Del Piccolo N, Hristova K. Quantifying the Interaction between EGFR Dimers and Grb2 in Live Cells. Biophys J 2017; 113:1353-1364. [PMID: 28734476 DOI: 10.1016/j.bpj.2017.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/19/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022] Open
Abstract
Adaptor proteins are a class of cytoplasmic proteins that bind to phosphorylated residues in receptor tyrosine kinases and trigger signaling cascades that control critically important cellular processes, such as cell survival, growth, differentiation, and motility. Here, we seek to characterize the interaction between epidermal growth factor receptor (EGFR) and the cytoplasmic adaptor protein growth factor receptor-bound protein 2 (Grb2) in a cellular context. To do so, we explore the utility of a highly biologically relevant model system, mammalian cells under reversible osmotic stress, and a recently introduced Förster resonance energy transfer microscopy method, fully quantified spectral imaging. We present a method that allows us to quantify the stoichiometry and the association constant of the EGFR-Grb2 binding interaction in the plasma membrane, in the presence and absence of activating ligand. The method that we introduce can have broad utility in membrane protein research, as it can be applied to different membrane protein-cytoplasmic protein pairs.
Collapse
Affiliation(s)
- Nuala Del Piccolo
- Department of Materials Science and Engineering and Institute for NanoBio Technology, Johns Hopkins University, Baltimore, Maryland
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBio Technology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
49
|
van der Meulen T, Swarts S, Fischer W, van der Geer P. Identification of STS-1 as a novel ShcA-binding protein. Biochem Biophys Res Commun 2017; 490:1334-1339. [PMID: 28690151 DOI: 10.1016/j.bbrc.2017.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 11/19/2022]
Abstract
ShcA is a cytoplasmic signaling protein that supports signal transduction by receptor protein-tyrosine kinases by providing auxiliary tyrosine phosphorylation sites that engage additional signaling proteins. The principal binding partner for tyrosine phosphorylation sites on ShcA is Grb2. In the current study, we have used phosphotyrosine-containing peptides to isolate and identify STS-1 as a novel ShcA-binding protein. Our results further show that the interaction between STS-1 and ShcA is regulated in response to EGF receptor activation.
Collapse
Affiliation(s)
- Talitha van der Meulen
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | - Spencer Swarts
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | - Wolfgang Fischer
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Peter van der Geer
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA.
| |
Collapse
|
50
|
McKercher MA, Guan X, Tan Z, Wuttke DS. Multimodal Recognition of Diverse Peptides by the C-Terminal SH2 Domain of Phospholipase C-γ1 Protein. Biochemistry 2017; 56:2225-2237. [PMID: 28376302 DOI: 10.1021/acs.biochem.7b00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SH2 domains recognize phosphotyrosine (pY)-containing peptide ligands and play key roles in the regulation of receptor tyrosine kinase pathways. Each SH2 domain has individualized specificity, encoded in the amino acids neighboring the pY, for defined targets that convey their distinct functions. The C-terminal SH2 domain (PLCC) of the phospholipase C-γ1 full-length protein (PLCγ1) typically binds peptides containing small and hydrophobic amino acids adjacent to the pY, including a peptide derived from platelet-derived growth factor receptor B (PDGFRB) and an intraprotein recognition site (Y783 of PLCγ1) involved in the regulation of the protein's lipase activity. Remarkably, PLCC also recognizes unexpected peptides containing amino acids with polar or bulky side chains that deviate from this pattern. This versatility in recognition specificity may allow PLCγ1 to participate in diverse, previously unrecognized, signaling pathways in response to binding chemically dissimilar partners. We have used structural approaches, including nuclear magnetic resonance and X-ray crystallography, to elucidate the mechanisms of noncognate peptide binding to PLCC by ligands derived from receptor tyrosine kinase ErbB2 and from the insulin receptor. The high-resolution peptide-bound structures reveal that PLCC has a relatively static backbone but contains a chemically rich protein surface comprised of a combination of hydrophobic pockets and amino acids with charged side chains. We demonstrate that this expansive and chemically diverse PLCC interface, in addition to peptide conformational plasticity, permits PLCC to recognize specific noncognate peptide ligands with multimodal specificity.
Collapse
Affiliation(s)
- Marissa A McKercher
- Department of Chemistry and Biochemistry, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Deborah S Wuttke
- Department of Chemistry and Biochemistry, University of Colorado Boulder , Boulder, Colorado 80309, United States
| |
Collapse
|