1
|
Ahmed AA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, Chakraborty I, Chen X, Cheon J, Chilla G, Coelho Conceicao AL, Delehanty J, Dulle M, Efros AL, Epple M, Fedyk M, Feliu N, Feng M, Fernández-Chacón R, Fernandez-Cuesta I, Fertig N, Förster S, Garrido JA, George M, Guse AH, Hampp N, Harberts J, Han J, Heekeren HR, Hofmann UG, Holzapfel M, Hosseinkazemi H, Huang Y, Huber P, Hyeon T, Ingebrandt S, Ienca M, Iske A, Kang Y, Kasieczka G, Kim DH, Kostarelos K, Lee JH, Lin KW, Liu S, Liu X, Liu Y, Lohr C, Mailänder V, Maffongelli L, Megahed S, Mews A, Mutas M, Nack L, Nakatsuka N, Oertner TG, Offenhäusser A, Oheim M, Otange B, Otto F, Patrono E, Peng B, Picchiotti A, Pierini F, Pötter-Nerger M, Pozzi M, Pralle A, Prato M, Qi B, Ramos-Cabrer P, Genger UR, Ritter N, Rittner M, Roy S, Santoro F, Schuck NW, Schulz F, Şeker E, Skiba M, Sosniok M, Stephan H, Wang R, Wang T, Wegner KD, Weiss PS, Xu M, Yang C, Zargarian SS, Zeng Y, Zhou Y, Zhu D, Zierold R, Parak WJ. Interfacing with the Brain: How Nanotechnology Can Contribute. ACS NANO 2025; 19:10630-10717. [PMID: 40063703 PMCID: PMC11948619 DOI: 10.1021/acsnano.4c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Collapse
Affiliation(s)
- Abdullah
A. A. Ahmed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Nuria Alegret
- Biogipuzkoa
HRI, Paseo Dr. Begiristain
s/n, 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bethany Almeida
- Department
of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Ramón Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Anne M. Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Neuroscience
Interdepartmental Program, University of
California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
& Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Laura Ballerini
- Neuroscience
Area, International School for Advanced
Studies (SISSA/ISAS), Trieste 34136, Italy
| | | | - Charline Becker
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H. Blick
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Shahin Bonakdar
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- National
Cell Bank Department, Pasteur Institute
of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Indranath Chakraborty
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Nano Science and Technology, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices (iFLEX), Max Planck − NTU Joint
Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinwoo Cheon
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Gerwin Chilla
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - James Delehanty
- U.S. Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Martin Dulle
- JCNS-1, Forschungszentrum
Jülich, 52428 Jülich, Germany
| | | | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Mark Fedyk
- Center
for Neuroengineering and Medicine, UC Davis, Sacramento, California 95817, United States
| | - Neus Feliu
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Miao Feng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Rafael Fernández-Chacón
- Instituto
de Biomedicina de Sevilla (IBiS), Hospital
Universitario Virgen del Rocío/Consejo Superior de Investigaciones
Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Departamento
de Fisiología Médica y Biofísica, Facultad de
Medicina, Universidad de Sevilla, CIBERNED,
ISCIII, 41013 Seville, Spain
| | | | - Niels Fertig
- Nanion
Technologies GmbH, 80339 München, Germany
| | | | - Jose A. Garrido
- ICREA, 08010 Barcelona, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | | | - Andreas H. Guse
- The Calcium
Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Norbert Hampp
- Fachbereich
Chemie, Universität Marburg, 35032 Marburg, Germany
| | - Jann Harberts
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Drug Delivery,
Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jili Han
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hauke R. Heekeren
- Executive
University Board, Universität Hamburg, 20148 Hamburg Germany
| | - Ulrich G. Hofmann
- Section
for Neuroelectronic Systems, Department for Neurosurgery, University Medical Center Freiburg, 79108 Freiburg, Germany
- Faculty
of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Holzapfel
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | | | - Yalan Huang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, 21073 Hamburg, Germany
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sven Ingebrandt
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcello Ienca
- Institute
for Ethics and History of Medicine, School of Medicine and Health, Technische Universität München (TUM), 81675 München, Germany
| | - Armin Iske
- Fachbereich
Mathematik, Universität Hamburg, 20146 Hamburg, Germany
| | - Yanan Kang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- Centre
for Nanotechnology in Medicine, Faculty of Biology, Medicine &
Health and The National Graphene Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Jae-Hyun Lee
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Kai-Wei Lin
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sijin Liu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yang Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Lohr
- Fachbereich
Biologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Volker Mailänder
- Department
of Dermatology, Center for Translational Nanomedicine, Universitätsmedizin der Johannes-Gutenberg,
Universität Mainz, 55131 Mainz, Germany
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| | - Laura Maffongelli
- Institute
of Medical Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Saad Megahed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics
Department, Faculty of Science, Al-Azhar
University, 4434104 Cairo, Egypt
| | - Alf Mews
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Marina Mutas
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Leroy Nack
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Nako Nakatsuka
- Laboratory
of Chemical Nanotechnology (CHEMINA), Neuro-X
Institute, École Polytechnique Fédérale de Lausanne
(EPFL), Geneva CH-1202, Switzerland
| | - Thomas G. Oertner
- Institute
for Synaptic Neuroscience, University Medical
Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Oheim
- Université
Paris Cité, CNRS, Saints Pères
Paris Institute for the Neurosciences, 75006 Paris, France
| | - Ben Otange
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ferdinand Otto
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Enrico Patrono
- Institute
of Physiology, Czech Academy of Sciences, Prague 12000, Czech Republic
| | - Bo Peng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Pötter-Nerger
- Head and
Neurocenter, Department of Neurology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pozzi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Arnd Pralle
- University
at Buffalo, Department of Physics, Buffalo, New York 14260, United States
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bing Qi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Life Sciences, Southern University of
Science and Technology, Shenzhen, 518055, China
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ute Resch Genger
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Norbert Ritter
- Executive
Faculty Board, Faculty for Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20345 Hamburg, Germany
| | - Marten Rittner
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sathi Roy
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
- Department
of Mechanical Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Francesca Santoro
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty
of Electrical Engineering and Information Technology, RWTH Aachen, 52074 Aachen, Germany
| | - Nicolas W. Schuck
- Institute
of Psychology, Universität Hamburg, 20146 Hamburg, Germany
- Max Planck
Research Group NeuroCode, Max Planck Institute
for Human Development, 14195 Berlin, Germany
- Max Planck
UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany
| | - Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Erkin Şeker
- University
of California, Davis, Davis, California 95616, United States
| | - Marvin Skiba
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Martin Sosniok
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, 01328 Dresden, Germany
| | - Ruixia Wang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ting Wang
- State Key
Laboratory of Organic Electronics and Information Displays & Jiangsu
Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing University of Posts and
Telecommunications, Nanjing 210023, China
| | - K. David Wegner
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Ming Xu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yuan Zeng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Dingcheng Zhu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- College
of Material, Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education,
Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert Zierold
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | |
Collapse
|
2
|
Tsemperouli M, Cheppali SK, Rivera-Molina F, Chetrit D, Landajuela A, Toomre D, Karatekin E. Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1. Biophys J 2024:S0006-3495(24)04104-3. [PMID: 39719826 DOI: 10.1016/j.bpj.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood. Syt1 has additional roles in docking dense-core vesicles (DCVs) and synaptic vesicles to the plasma membrane and in regulating fusion pore dynamics. Thus, Syt1 perturbations could affect release through vesicle docking, fusion triggering, fusion pore regulation, or a combination of these. Here, using a human neuroendocrine cell line, we show that neutralization of highly conserved polybasic patches in either C2 domain of Syt1 impairs both DCV docking and efficient release of serotonin from DCVs. Interestingly, the same mutations resulted in larger fusion pores and faster release of serotonin during individual fusion events. Thus, Syt1's roles in vesicle docking, fusion triggering, and fusion pore control may be functionally related.
Collapse
Affiliation(s)
- Maria Tsemperouli
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Sudheer Kumar Cheppali
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Félix Rivera-Molina
- Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; CINEMA Lab, School of Medicine, Yale University, New Haven, Connecticut
| | - David Chetrit
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Ane Landajuela
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Derek Toomre
- Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; CINEMA Lab, School of Medicine, Yale University, New Haven, Connecticut
| | - Erdem Karatekin
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut; Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
3
|
Tomagra G, Re A, Varzi V, Aprà P, Britel A, Franchino C, Sturari S, Amine NH, Westerink RHS, Carabelli V, Picollo F. Enhancing the Study of Quantal Exocytotic Events: Combining Diamond Multi-Electrode Arrays with Amperometric PEak Analysis (APE) an Automated Analysis Code. BIOSENSORS 2023; 13:1033. [PMID: 38131793 PMCID: PMC10741388 DOI: 10.3390/bios13121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
MicroGraphited-Diamond-Multi Electrode Arrays (μG-D-MEAs) can be successfully used to reveal, in real time, quantal exocytotic events occurring from many individual neurosecretory cells and/or from many neurons within a network. As μG-D-MEAs arrays are patterned with up to 16 sensing microelectrodes, each of them recording large amounts of data revealing the exocytotic activity, the aim of this work was to support an adequate analysis code to speed up the signal detection. The cutting-edge technology of microGraphited-Diamond-Multi Electrode Arrays (μG-D-MEAs) has been implemented with an automated analysis code (APE, Amperometric Peak Analysis) developed using Matlab R2022a software to provide easy and accurate detection of amperometric spike parameters, including the analysis of the pre-spike foot that sometimes precedes the complete fusion pore dilatation. Data have been acquired from cultured PC12 cells, either collecting events during spontaneous exocytosis or after L-DOPA incubation. Validation of the APE code was performed by comparing the acquired spike parameters with those obtained using Quanta Analysis (Igor macro) by Mosharov et al.
Collapse
Affiliation(s)
- Giulia Tomagra
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy; (G.T.); (C.F.); (V.C.)
| | - Alice Re
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Veronica Varzi
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Pietro Aprà
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Adam Britel
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Claudio Franchino
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy; (G.T.); (C.F.); (V.C.)
| | - Sofia Sturari
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Nour-Hanne Amine
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Remco H. S. Westerink
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, The Netherlands;
| | - Valentina Carabelli
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy; (G.T.); (C.F.); (V.C.)
| | - Federico Picollo
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| |
Collapse
|
4
|
Rousseau CR, Kumakli H, White RJ. Perspective-Assessing Electrochemical, Aptamer-Based Sensors for Dynamic Monitoring of Cellular Signaling. ECS SENSORS PLUS 2023; 2:042401. [PMID: 38152504 PMCID: PMC10750225 DOI: 10.1149/2754-2726/ad15a1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Electrochemical, aptamer-based (E-AB) sensors provide a generalizable strategy to quantitatively detect a variety of targets including small molecules and proteins. The key signaling attributes of E-AB sensors (sensitivity, selectivity, specificity, and reagentless and dynamic sensing ability) make them well suited to monitor dynamic processes in complex environments. A key bioanalytical challenge that could benefit from the detection capabilities of E-AB sensors is that of cell signaling, which involves the release of molecular messengers into the extracellular space. Here, we provide a perspective on why E-AB sensors are suited for this measurement, sensor requirements, and pioneering examples of cellular signaling measurements.
Collapse
Affiliation(s)
- Celeste R. Rousseau
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
| | - Hope Kumakli
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
| | - Ryan J. White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
| |
Collapse
|
5
|
De Alwis AC, Denison JD, Shah R, McCarty GS, Sombers LA. Exploiting Microelectrode Geometry for Comprehensive Detection of Individual Exocytosis Events at Single Cells. ACS Sens 2023; 8:3187-3194. [PMID: 37552870 PMCID: PMC10464603 DOI: 10.1021/acssensors.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
Carbon fiber microelectrodes are commonly used for real-time monitoring of individual exocytosis events at single cells. Since the nature of an electrochemical signal is fundamentally governed by mass transport to the electrode surface, microelectrode geometry can be exploited to achieve precise and accurate measurements. Researchers traditionally pair amperometric measurements of exocytosis with a ∼10-μm diameter, disk microelectrode in an "artificial synapse" configuration to directly monitor individual release events from single cells. Exocytosis is triggered, and released molecules diffuse to the "post-synaptic" electrode for oxidation. This results in a series of distinct current spikes corresponding to individual exocytosis events. However, it remains unclear how much of the material escapes detection. In this work, the performance of 10- and 34-μm diameter carbon fiber disk microelectrodes was directly compared in monitoring exocytosis at single chromaffin cells. The 34-μm diameter electrode was more sensitive to catecholamines and enkephalins than its traditional, 10-μm diameter counterpart, and it more effectively covered the entire cell. As such, the larger sensor detected more exocytosis events overall, as well as a larger quantal size, suggesting that the traditional tools underestimate the above measurements. Both sensors reliably measured l-DOPA-evoked changes in quantal size, and both exhibited diffusional loss upon adjustment of cell-electrode spacing. Finite element simulations using COMSOL support the improved collection efficiency observed using the larger sensor. Overall, this work demonstrates how electrode geometry can be exploited for improved detection of exocytosis events by addressing diffusional loss─an often-overlooked source of inaccuracy in single-cell measurements.
Collapse
Affiliation(s)
- A. Chathuri De Alwis
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - J. Dylan Denison
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Ruby Shah
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Gregory S. McCarty
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Xu P, Wang X, Shi J, Chen W, Lu ZJ, Jia H, Ye D, Li X. Functionally Collaborative Nanostructure for Direct Monitoring of Neurotransmitter Exocytosis in Living Cells. NANO LETTERS 2023; 23:2427-2435. [PMID: 36715488 DOI: 10.1021/acs.nanolett.2c04117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neurotransmitter exocytosis of living cells plays a vital role in neuroscience. However, the available amperometric technique with carbon fiber electrodes typically measures exocytotic events from one cell during one procedure, which requires professional operations and takes time to produce statistical results of multiple cells. Here, we develop a functionally collaborative nanostructure to directly measure the neurotransmitter dopamine (DA) exocytosis from living rat pheochromocytoma (PC12) cells. The functionally collaborative nanostructure is constructed of metal-organic framework (MOF)-on-nanowires-on-graphene oxide, which is highly sensitive to DA molecules and enables direct detection of neurotransmitter exocytosis. Using the microsensor, the exocytosis from PC12 cells pretreated with the desired drugs (e.g., anticoronavirus drug, antiflu drug, or anti-inflammatory drug) has been successfully measured. Our achievements demonstrate the feasibility of the functionally collaborative nanostructure in the real-time detection of exocytosis and the potential applicability in the highly efficient assessment of the modulation effects of medications on exocytosis.
Collapse
Affiliation(s)
- Pengcheng Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xuefeng Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jiaci Shi
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Wei Chen
- Department of Emergency, Tongji Hospital, Tongji University School of Medicine, Shanghai200065, China
| | - Zhan-Jun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, China
| | - Hao Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing100049, China
| | - Daixin Ye
- Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai200444, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
7
|
Ikegawa N, Kozuka A, Morita N, Murakami M, Sasakawa N, Niikura T. Humanin derivative, HNG, enhances neurotransmitter release. Biochim Biophys Acta Gen Subj 2022; 1866:130204. [PMID: 35843407 DOI: 10.1016/j.bbagen.2022.130204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Humanin (HN) is an endogenous 24-residue peptide that was first identified as a protective factor against neuronal death in Alzheimer's disease (AD). We previously demonstrated that the highly potent HN derivative HNG (HN with substitution of Gly for Ser14) ameliorated cognitive impairment in AD mouse models. Despite the accumulating evidence on the antagonizing effects of HN against cognitive deficits, the mechanisms behind these effects remain to be elucidated. METHODS The extracellular fluid in the hippocampus of wild-type young mice was collected by microdialysis and the amounts of neurotransmitters were measured. The kinetic analysis of exocytosis was performed by amperometry using neuroendocrine cells. RESULTS The hippocampal acetylcholine (ACh) levels were increased by intraperitoneal injection of HNG. HNG did not affect the physical activities of the mice but modestly improved their object memory. In a neuronal cell model, rat pheochromocytoma PC12 cells, HNG enhanced ACh-induced dopamine release. HNG increased ACh-induced secretory events and vesicular quantal size in primary neuroendocrine cells. CONCLUSIONS These findings suggest that HN directly enhances regulated exocytosis in neurons, which can contribute to the improvement of cognitive functions. GENERAL SIGNIFICANCE The regulator of exocytosis is a novel physiological role of HN, which provides a molecular clue for HN's effects on brain functions under health and disease.
Collapse
Affiliation(s)
- Natsumi Ikegawa
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Japan
| | - Ayari Kozuka
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Japan
| | - Nozomi Morita
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Japan
| | - Minetaka Murakami
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Japan
| | - Nobuyuki Sasakawa
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Japan
| | - Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Japan.
| |
Collapse
|
8
|
Protection of the PC12 Cells by Nesfatin-1 Against Methamphetamine-Induced Neurotoxicity. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Gwon HJ, Lim D, Ahn HS. Bioanalytical chemistry with scanning electrochemical microscopy. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hyo Jin Gwon
- Department of Chemistry Institution: Yonsei University Seoul South Korea
| | - Donghoon Lim
- Department of Chemistry Institution: Yonsei University Seoul South Korea
| | - Hyun S. Ahn
- Department of Chemistry Institution: Yonsei University Seoul South Korea
| |
Collapse
|
10
|
Bouret Y, Guille-Collignon M, Lemaître F. Simulations of amperometric monitoring of exocytosis: moderate pH variations within the cell-electrode cleft with the buffer diffusion. Anal Bioanal Chem 2021; 413:6769-6776. [PMID: 34120197 DOI: 10.1007/s00216-021-03443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Amperometry with ultramicroelectrodes is nowadays a routine technique to investigate neurotransmitter secretion by vesicular exocytosis at the single-cell level. This electroanalytical tool allows one to understand many aspects of the vesicular release in terms of mechanisms. However, the electrochemical detection relies on the oxidation of released neurotransmitters that produce 2H+ and thus the possible acidification of the cell-electrode cleft. In a previous work, we considered a model involving the H+ diffusion or/and its reaction with buffer species. In this article, we report a more general model which takes into account the ability of buffer species to move and to be regenerated within the cell-electrode cleft. As a consequence, the pH within the cleft is still equal to its physiological value regardless of the electrochemical detection of the vesicular release for usual exocytotic cell frequencies. This confirms that amperometry at the single-cell level is a very robust technique for investigating vesicular exocytosis.
Collapse
Affiliation(s)
- Yann Bouret
- CNRS-UMR 7010 Institut de Physique de Nice, Université Nice Côte d'Azur, Av. Joseph Vallot, 06100, Nice, France
| | - Manon Guille-Collignon
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Frédéric Lemaître
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
11
|
Dinarvand M, Elizarova S, Daniel J, Kruss S. Imaging of Monoamine Neurotransmitters with Fluorescent Nanoscale Sensors. Chempluschem 2020; 85:1465-1480. [DOI: 10.1002/cplu.202000248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/05/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Meshkat Dinarvand
- Institute of Physical ChemistryGöttingen University Tammannstrasse 2 37077 Göttingen Germany
| | - Sofia Elizarova
- Department of Molecular NeurobiologyMax Planck Institute of Experimental Medicine 37077 Göttingen Germany
| | - James Daniel
- Department of Molecular NeurobiologyMax Planck Institute of Experimental Medicine 37077 Göttingen Germany
| | - Sebastian Kruss
- Institute of Physical ChemistryGöttingen University Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
12
|
Tsutsuki H, Kasamatsu S, Kunieda K, Ida T, Sawa T, Sasakawa N, Akaike T, Ihara H. 8-Nitro-cGMP modulates exocytosis in adrenal chromaffin cells. Biochem Biophys Res Commun 2020; 526:225-230. [PMID: 32201073 DOI: 10.1016/j.bbrc.2020.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO)-mediated production of cyclic guanosine 3',5'-monophosphate (cGMP) is a crucial signaling pathway that controls a wide array of neuronal functions, including exocytotic neurotransmitter release. A novel nitrated derivative of cGMP, 8-nitro-cGMP, not only activates cGMP-dependent protein kinase (PKG), but also has membrane permeability and redox activity to produce superoxide and S-guanylated protein. To date, no studies have addressed the effects of 8-nitro-cGMP on exocytotic kinetics. Here, we aimed to assess the 8-nitro-cGMP-mediated modulation of the depolarization-evoked catecholamine release from bovine chromaffin cells. 8-Nitro-cGMP was produced in bovine chromaffin cells dependent on NO donor. Amperometric analysis revealed that 8-nitro-cGMP modulated the kinetic parameters of secretory spikes from chromaffin cells, particularly decreased the speed of individual spikes, resulting in a reduced amperometric spike height, slope β, and absolute value of slope γ. The modulatory effects were independent of the PKG signal and superoxide production. This is the first study to demonstrate that 8-nitro-cGMP modulates exocytosis and provide insights into a novel regulatory mechanism of exocytosis.
Collapse
Affiliation(s)
- Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Shingo Kasamatsu
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Kohei Kunieda
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Tomoaki Ida
- Departments of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Nobuyuki Sasakawa
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, 102-8554, Japan
| | - Takaaki Akaike
- Departments of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hideshi Ihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan.
| |
Collapse
|
13
|
A Nanodisc-Cell Fusion Assay with Single-Pore Sensitivity and Sub-millisecond Time Resolution. Methods Mol Biol 2019; 1860:263-275. [PMID: 30317511 DOI: 10.1007/978-1-4939-8760-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
During exocytosis, vesicles fuse with the plasma membrane and release their contents. The fusion pore is the initial, nanometer-sized connection between the plasma membrane and the cargo-laden vesicle. A growing body of evidence points toward the fusion pore being a regulator of exocytosis, but the shortcomings of current experimental techniques to investigate single-fusion pores make it difficult to study factors governing pore behavior. Here we describe an assay that fuses v-SNARE-reconstituted nanodiscs with cells ectopically expressing "flipped" t-SNAREs to monitor dynamics of single fusion pores in a biochemically defined system using electrical recordings. We also describe a fluorescence microscopy-based approach to monitor nanodisc-cell fusion that is much simpler to employ, but cannot resolve single pores.
Collapse
|
14
|
Balaji Ramachandran S, Gillis KD. A matched-filter algorithm to detect amperometric spikes resulting from quantal secretion. J Neurosci Methods 2018; 293:338-346. [PMID: 29061344 DOI: 10.1016/j.jneumeth.2017.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Electrochemical microelectrodes located immediately adjacent to the cell surface can detect spikes of amperometric current during exocytosis as the transmitter released from a single vesicle is oxidized on the electrode surface. Automated techniques to detect spikes are needed in order to quantify the spike rate as a measure of the rate of exocytosis. NEW METHOD We have developed a Matched Filter (MF) detection algorithm that scans the data set with a library of prototype spike templates while performing a least-squares fit to determine the amplitude and standard error. The ratio of the fit amplitude to the standard error constitutes a criterion score that is assigned for each time point and for each template. A spike is detected when the criterion score exceeds a threshold and the highest-scoring template and the time of peak score is identified. The search for the next spike commences only after the score falls below a second, lower threshold to reduce false positives. The approach was extended to detect spikes with double-exponential decays with the sum of two templates. RESULTS Receiver Operating Characteristic plots (ROCs) demonstrate that the algorithm detects >95% of manually identified spikes with a false-positive rate of ∼2%. COMPARISON WITH EXISTING METHODS ROCs demonstrate that the MF algorithm performs better than algorithms that detect spikes based on a derivative-threshold approach. CONCLUSIONS The MF approach performs well and leads into approaches to identify spike parameters.
Collapse
Affiliation(s)
- Supriya Balaji Ramachandran
- Department of Bioengineering, 254 Agricultural Engineering, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Kevin D Gillis
- Department of Bioengineering, 254 Agricultural Engineering, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, 1 Hospital Dr., Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
15
|
Old and emerging concepts on adrenal chromaffin cell stimulus-secretion coupling. Pflugers Arch 2017; 470:1-6. [PMID: 29110079 DOI: 10.1007/s00424-017-2082-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
The chromaffin cells (CCs) of the adrenal medulla play a key role in the control of circulating catecholamines to adapt our body function to stressful conditions. A huge research effort over the last 35 years has converted these cells into the Escherichia coli of neurobiology. CCs have been the testing bench for the development of patch-clamp and amperometric recording techniques and helped clarify most of the known molecular mechanisms that regulate cell excitability, Ca2+ signals associated with secretion, and the molecular apparatus that regulates vesicle fusion. This special issue provides a state-of-the-art on the many well-known and unsolved questions related to the molecular processes at the basis of CC function. The issue is also the occasion to highlight the seminal work of Antonio G. García (Emeritus Professor at UAM, Madrid) who greatly contributed to the advancement of our present knowledge on CC physiology and pharmacology. All the contributors of the present issue are distinguished scientists who are either staff members, external collaborators, or friends of Prof. García.
Collapse
|
16
|
Wu Z, Thiyagarajan S, O'Shaughnessy B, Karatekin E. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains. Front Mol Neurosci 2017; 10:315. [PMID: 29066949 PMCID: PMC5641348 DOI: 10.3389/fnmol.2017.00315] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons and neuroendocrine cells underlies neuronal communication, motor activity and endocrine functions. The core of the neuronal exocytotic machinery is composed of soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs). Formation of complexes between vesicle-attached v- and plasma-membrane anchored t-SNAREs in a highly regulated fashion brings the membranes into close apposition. Small, soluble proteins called Complexins (Cpx) and calcium-sensing Synaptotagmins cooperate to block fusion at low resting calcium concentrations, but trigger release upon calcium increase. A growing body of evidence suggests that the transmembrane domains (TMDs) of SNARE proteins play important roles in regulating the processes of fusion and release, but the mechanisms involved are only starting to be uncovered. Here we review recent evidence that SNARE TMDs exert influence by regulating the dynamics of the fusion pore, the initial aqueous connection between the vesicular lumen and the extracellular space. Even after the fusion pore is established, hormone release by neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo release and the net amount released, and can determine the mode of vesicle recycling. Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly, both during exocytosis and in biochemical reconstitutions. To explain these effects, TMD flexibility, and interactions among TMDs or between TMDs and lipids have been invoked. Exocytosis has provided the best setting in which to unravel the underlying mechanisms, being unique among membrane fusion reactions in that single fusion pores can be probed using high-resolution methods. An important role will likely be played by methods that can probe single fusion pores in a biochemically defined setting which have recently become available. Finally, computer simulations are valuable mechanistic tools because they have the power to access small length scales and very short times that are experimentally inaccessible.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, United States.,Nanobiology Institute, Yale University, West Haven, CT, United States
| | | | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, United States.,Nanobiology Institute, Yale University, West Haven, CT, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
17
|
Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0048] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Agasid MT, Comi TJ, Saavedra SS, Aspinwall CA. Enhanced Temporal Resolution with Ion Channel-Functionalized Sensors Using a Conductance-Based Measurement Protocol. Anal Chem 2017; 89:1315-1322. [PMID: 27981836 PMCID: PMC5862562 DOI: 10.1021/acs.analchem.6b04226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding of a target analyte to an ion channel (IC), which is readily detected electrochemically in a label-free manner with single-molecule selectivity and specificity, has generated widespread interest in using natural and engineered ICs as transducers in biosensing platforms. To date, the majority of developments in IC-functionalized sensing have focused on IC selectivity or sensitivity or development of suitable membrane environments and aperture geometries. Comparatively little work has addressed analytical performance criteria, particularly criteria required for temporal measurements of dynamic processes. We report a measurement protocol suitable for rapid, time-resolved monitoring (≤30 ms) of IC-modulated membrane conductance. Key features of this protocol include the reduction of membrane area and the use of small voltage steps (10 mV) and short duration voltage pulses (10 ms), which have the net effect of reducing the capacitive charging and decreasing the time required to achieve steady state currents. Application of a conductance protocol employing three sequential, 10 ms voltage steps (-10 mV, -20 mV, -30 mV) in an alternating, pyramid-like arrangement enabled sampling of membrane conductance every 30 ms. Using this protocol, dynamic IC measurements on black lipid membranes (BLMs) functionalized with gramicidin A were conducted using a fast perfusion system. BLM conductance decreased by 76 ± 7.5% within 30 ms of switching from solutions containing 0 to 1 M Ca2+, which demonstrates the feasibility of using this approach to monitor rapid, dynamic chemical processes. Rapid conductance measurements will be broadly applicable to IC-based sensors that undergo analyte-specific gating.
Collapse
Affiliation(s)
- Mark T. Agasid
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - Troy J. Comi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - S. Scott Saavedra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
- BIO5 Institute, University of Arizona, Tucson, AZ 85721
| | - Craig A. Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
- BIO5 Institute, University of Arizona, Tucson, AZ 85721
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
19
|
Abstract
Exocytosis is the fundamental process by which cells communicate with each other. The events that lead up to the fusion of a vesicle loaded with chemical messenger with the cell membrane were the subject of a Nobel Prize in 2013. However, the processes occurring after the initial formation of a fusion pore are very much still in debate. The release of chemical messenger has traditionally been thought to occur through full distention of the vesicle membrane, hence assuming exocytosis to be all or none. In contrast to the all or none hypothesis, here we discuss the evidence that during exocytosis the vesicle-membrane pore opens to release only a portion of the transmitter content during exocytosis and then close again. This open and closed exocytosis is distinct from kiss-and-run exocytosis, in that it appears to be the main content released during regular exocytosis. The evidence for this partial release via open and closed exocytosis is presented considering primarily the quantitative evidence obtained with amperometry.
Collapse
|
20
|
Picollo F, Battiato A, Bernardi E, Plaitano M, Franchino C, Gosso S, Pasquarelli A, Carbone E, Olivero P, Carabelli V. All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters. Sci Rep 2016; 6:20682. [PMID: 26857940 PMCID: PMC4746641 DOI: 10.1038/srep20682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/31/2015] [Indexed: 02/05/2023] Open
Abstract
We report on the ion beam fabrication of all-carbon multi electrode arrays (MEAs) based on 16 graphitic micro-channels embedded in single-crystal diamond (SCD) substrates. The fabricated SCD-MEAs are systematically employed for the in vitro simultaneous amperometric detection of the secretory activity from populations of chromaffin cells, demonstrating a new sensing approach with respect to standard techniques. The biochemical stability and biocompatibility of the SCD-based device combined with the parallel recording of multi-electrodes array allow: i) a significant time saving in data collection during drug screening and/or pharmacological tests over a large number of cells, ii) the possibility of comparing altered cell functionality among cell populations, and iii) the repeatition of acquisition runs over many cycles with a fully non-toxic and chemically robust bio-sensitive substrate.
Collapse
Affiliation(s)
- Federico Picollo
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torino; via P. Giuria 1, 10125, Torino, Italy.,Physics Department and "NIS" Inter-departmental Centre - University of Torino; via P. Giuria 1, 10125, Torino, Italy.,Consorzio Nazionale Inter-universitario per le Scienze fisiche della Materia (CNISM) Sez. Torino, Italy
| | - Alfio Battiato
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torino; via P. Giuria 1, 10125, Torino, Italy.,Physics Department and "NIS" Inter-departmental Centre - University of Torino; via P. Giuria 1, 10125, Torino, Italy.,Consorzio Nazionale Inter-universitario per le Scienze fisiche della Materia (CNISM) Sez. Torino, Italy
| | - Ettore Bernardi
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torino; via P. Giuria 1, 10125, Torino, Italy.,Physics Department and "NIS" Inter-departmental Centre - University of Torino; via P. Giuria 1, 10125, Torino, Italy.,Consorzio Nazionale Inter-universitario per le Scienze fisiche della Materia (CNISM) Sez. Torino, Italy
| | - Marilena Plaitano
- Physics Department and "NIS" Inter-departmental Centre - University of Torino; via P. Giuria 1, 10125, Torino, Italy
| | - Claudio Franchino
- Consorzio Nazionale Inter-universitario per le Scienze fisiche della Materia (CNISM) Sez. Torino, Italy.,Drug Science and Technology Department and "NIS" Inter-departmental Centre - University of Torino; Corso Raffaello 30, 10125, Torino, Italy
| | - Sara Gosso
- Consorzio Nazionale Inter-universitario per le Scienze fisiche della Materia (CNISM) Sez. Torino, Italy.,Drug Science and Technology Department and "NIS" Inter-departmental Centre - University of Torino; Corso Raffaello 30, 10125, Torino, Italy
| | - Alberto Pasquarelli
- Institute of Electron Devices and Circuits - University of Ulm - Ulm; Albert Einstein Allee 45, 89069, Germany
| | - Emilio Carbone
- Consorzio Nazionale Inter-universitario per le Scienze fisiche della Materia (CNISM) Sez. Torino, Italy.,Drug Science and Technology Department and "NIS" Inter-departmental Centre - University of Torino; Corso Raffaello 30, 10125, Torino, Italy
| | - Paolo Olivero
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torino; via P. Giuria 1, 10125, Torino, Italy.,Physics Department and "NIS" Inter-departmental Centre - University of Torino; via P. Giuria 1, 10125, Torino, Italy.,Consorzio Nazionale Inter-universitario per le Scienze fisiche della Materia (CNISM) Sez. Torino, Italy
| | - Valentina Carabelli
- Consorzio Nazionale Inter-universitario per le Scienze fisiche della Materia (CNISM) Sez. Torino, Italy.,Drug Science and Technology Department and "NIS" Inter-departmental Centre - University of Torino; Corso Raffaello 30, 10125, Torino, Italy
| |
Collapse
|
21
|
He R, Tang H, Jiang D, Chen HY. Electrochemical Visualization of Intracellular Hydrogen Peroxide at Single Cells. Anal Chem 2016; 88:2006-9. [DOI: 10.1021/acs.analchem.6b00150] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ruiqin He
- The State
Key Lab of Analytical Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Huifen Tang
- The State
Key Lab of Analytical Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dechen Jiang
- The State
Key Lab of Analytical Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hong-yuan Chen
- The State
Key Lab of Analytical Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
22
|
Amperometric detection of vesicular exocytosis from BON cells at carbon fiber microelectrodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.07.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Ges IA, Brindley RL, Currie KPM, Baudenbacher FJ. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells. LAB ON A CHIP 2013; 13:4663-73. [PMID: 24126415 PMCID: PMC3892771 DOI: 10.1039/c3lc50779c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Release of neurotransmitters and hormones by calcium-regulated exocytosis is a fundamental cellular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. As such, there is significant interest in targeting neurosecretion for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistic insight coupled with increased experimental throughput. Here, we report a simple, inexpensive, reusable, microfluidic device designed to analyze catecholamine secretion from small populations of adrenal chromaffin cells in real time, an important neuroendocrine component of the sympathetic nervous system and versatile neurosecretory model. The device is fabricated by replica molding of polydimethylsiloxane (PDMS) using patterned photoresist on silicon wafer as the master. Microfluidic inlet channels lead to an array of U-shaped "cell traps", each capable of immobilizing single or small groups of chromaffin cells. The bottom of the device is a glass slide with patterned thin film platinum electrodes used for electrochemical detection of catecholamines in real time. We demonstrate reliable loading of the device with small populations of chromaffin cells, and perfusion/repetitive stimulation with physiologically relevant secretagogues (carbachol, PACAP, KCl) using the microfluidic network. Evoked catecholamine secretion was reproducible over multiple rounds of stimulation, and graded as expected to different concentrations of secretagogue or removal of extracellular calcium. Overall, we show this microfluidic device can be used to implement complex stimulation paradigms and analyze the amount and kinetics of catecholamine secretion from small populations of neuroendocrine cells in real time.
Collapse
Affiliation(s)
- Igor A Ges
- Dept. of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235-1631, USA.
| | | | | | | |
Collapse
|
24
|
Fhaner MJ, Galligan JJ, Swain GM. Increased catecholamine secretion from single adrenal chromaffin cells in DOCA-salt hypertension is associated with potassium channel dysfunction. ACS Chem Neurosci 2013; 4:1404-13. [PMID: 23937098 DOI: 10.1021/cn400115v] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The mechanism of catecholamine release from single adrenal chromaffin cells isolated from normotensive and DOCA-salt hypertensive rats was investigated. These cells were used as a model for sympathetic nerves to better understand how exocytotic release of catecholamines is altered in this model of hypertension. Catecholamine secretion was evoked by local application of acetylcholine (1 mM) or high K+ (70 mM), and continuous amperometry was used to monitor catecholamine secretion as an oxidative current. The total number of catecholamine molecules secreted from a vesicle, the total number of vesicles fusing and secreting, and the duration of secretion in response to a stimulus were all significantly greater for chromaffin cells from hypertensive rats as compared to normotensive controls. The greater catecholamine secretion from DOCA-salt cells results, at least in part, from functionally impaired large conductance, Ca2+-activated (BK) and ATP-sensitive K+ channels. This work reveals that there is altered vesicular release of catecholamines from these cells (and possibly from perivascular sympathetic nerves) and this may contribute to increased vasomotor tone in DOCA-salt hypertension.
Collapse
Affiliation(s)
- Matthew J. Fhaner
- Department of Chemistry, ‡Department of Pharmacology and Toxicology, and §The Neuroscience
Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - James J. Galligan
- Department of Chemistry, ‡Department of Pharmacology and Toxicology, and §The Neuroscience
Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Greg M. Swain
- Department of Chemistry, ‡Department of Pharmacology and Toxicology, and §The Neuroscience
Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
25
|
Picollo F, Gosso S, Vittone E, Pasquarelli A, Carbone E, Olivero P, Carabelli V. A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:4696-700. [PMID: 23847004 DOI: 10.1002/adma.201300710] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/07/2013] [Indexed: 05/15/2023]
Abstract
An MeV ion-microbeam lithographic technique can be successfully employed for the fabrication of an all-carbon miniaturized cellular biosensor based on graphitic microchannels embedded in a single-crystal diamond matrix. The device is functionally characterized for the in vitro recording of quantal exocytic events from single chromaffin cells, with high sensitivity and signal-to-noise ratio, opening promising perspectives for the realization of monolithic all-carbon cellular biosensors.
Collapse
Affiliation(s)
- Federico Picollo
- Department of Physics, NIS Centre of Excellence, CNISM Research Unit - University of Torino, INFN Sez. Torino, via P. Giuria 1, Torino, 10125, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
Matti U, Pattu V, Halimani M, Schirra C, Krause E, Liu Y, Weins L, Chang HF, Guzman R, Olausson J, Freichel M, Schmitz F, Pasche M, Becherer U, Bruns D, Rettig J. Synaptobrevin2 is the v-SNARE required for cytotoxic T-lymphocyte lytic granule fusion. Nat Commun 2013; 4:1439. [PMID: 23385584 DOI: 10.1038/ncomms2467] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/07/2013] [Indexed: 01/15/2023] Open
Abstract
Cytotoxic T lymphocytes kill virus-infected and tumorigenic target cells through the release of perforin and granzymes via fusion of lytic granules at the contact site, the immunological synapse. It has been postulated that this fusion process is mediated by non-neuronal members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex protein family. Here, using a synaptobrevin2-monomeric red fluorescence protein knock-in mouse we demonstrate that, surprisingly, the major neuronal v-SNARE synaptobrevin2 is expressed in cytotoxic T lymphocytes and exclusively localized on granzyme B-containing lytic granules. Cleavage of synaptobrevin2 by tetanus toxin or ablation of the synaptobrevin2 gene leads to a complete block of lytic granule exocytosis while leaving upstream events unaffected, identifying synaptobrevin2 as the v-SNARE responsible for the fusion of lytic granules at the immunological synapse.
Collapse
Affiliation(s)
- Ulf Matti
- Department of Physiology, Saarland University, Building 59, 66421 Homburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ghosh J, Liu X, Gillis KD. Electroporation followed by electrochemical measurement of quantal transmitter release from single cells using a patterned microelectrode. LAB ON A CHIP 2013; 13:2083-2090. [PMID: 23598689 PMCID: PMC3698871 DOI: 10.1039/c3lc41324a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An electrochemical microelectrode located immediately adjacent to a single neuroendocrine cell can record spikes of amperometric current that result from exocytosis of oxidizable transmitter from individual vesicles, i.e., quantal exocytosis. Here, we report the development of an efficient method where the same electrochemical microelectrode is used to electropermeabilize an adjacent chromaffin cell and then measure the consequent quantal catecholamine release using amperometry. Trains of voltage pulses, 5-7 V in amplitude and 0.1-0.2 ms in duration, were used to reliably trigger release from cells using gold electrodes. Amperometric spikes induced by electropermeabilization had similar areas, peak heights and durations as amperometric spikes elicited by depolarizing high K(+) solutions, therefore release occurs from individual secretory granules. Uptake of trypan blue stain into cells demonstrated that the plasma membrane is permeabilized by the voltage stimulus. Voltage pulses did not degrade the electrochemical sensitivity of the electrodes assayed using a test analyte. Surprisingly, robust quantal release was elicited upon electroporation in the absence of Ca(2+) in the bath solution (0 Ca(2+)/5 mM EGTA). In contrast, electropermeabilization-induced transmitter release required Cl(-) in the bath solution in that bracketed experiments demonstrated a steep dependence of the rate of electropermeabilization-induced transmitter release on [Cl(-)] between 2 and 32 mM. Using the same electrochemical electrode to electroporate and record quantal release of catecholamines from an individual chromaffin cell allows precise timing of the stimulus, stimulation of a single cell at a time, and can be used to load membrane-impermeant substances into a cell.
Collapse
|
28
|
Wickham RJ, Solecki W, Rathbun LR, Neugebauer NM, Wightman RM, Addy NA. Advances in studying phasic dopamine signaling in brain reward mechanisms. Front Biosci (Elite Ed) 2013; 5:982-99. [PMID: 23747914 DOI: 10.2741/e678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The last sixty years of research has provided extraordinary advances of our knowledge of the reward system. Since its discovery as a neurotransmitter by Carlsson and colleagues (1), dopamine (DA) has emerged as an important mediator of reward processing. As a result, a number of electrochemical techniques have been developed to measure DA in the brain. Together, these techniques have begun to elucidate the complex roles of tonic and phasic DA signaling in reward processing and addiction. In this review, we will first provide a guide for the most commonly used electrochemical methods for DA detection and describe their utility in furthering our knowledge about DA's role in reward and addiction. Second, we will review the value of common in vitro and in vivo preparations and describe their ability to address different types of questions. Last, we will review recent data that has provided new mechanistic insight of in vivo phasic DA signaling and its role in reward processing and reward-mediated behavior.
Collapse
Affiliation(s)
- Robert J Wickham
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
29
|
Yakushenko A, Kätelhön E, Wolfrum B. Parallel On-Chip Analysis of Single Vesicle Neurotransmitter Release. Anal Chem 2013; 85:5483-90. [DOI: 10.1021/ac4006183] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexey Yakushenko
- Institute of Bioelectronics
(PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
| | - Enno Kätelhön
- Institute of Bioelectronics
(PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
| | - Bernhard Wolfrum
- Institute of Bioelectronics
(PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
- IV. Institute of
Physics, RWTH Aachen University, 52074
Aachen, Germany
| |
Collapse
|
30
|
Becherer U, Medart MR, Schirra C, Krause E, Stevens D, Rettig J. Regulated exocytosis in chromaffin cells and cytotoxic T lymphocytes: How similar are they? Cell Calcium 2012; 52:303-12. [DOI: 10.1016/j.ceca.2012.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/27/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
|
31
|
Indium Tin Oxide devices for amperometric detection of vesicular release by single cells. Biophys Chem 2012; 162:14-21. [DOI: 10.1016/j.bpc.2011.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/09/2011] [Accepted: 12/18/2011] [Indexed: 11/22/2022]
|
32
|
Reed JA, Love SA, Lucero AE, Haynes CL, Canavan HE. Effect of polymer deposition method on thermoresponsive polymer films and resulting cellular behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2281-7. [PMID: 21506526 PMCID: PMC3978603 DOI: 10.1021/la102606k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Poly(N-isopropyl acrylamide) or pNIPAM is a thermoresponsive polymer that is widely studied for use in bioengineering applications. The interest in this polymer lies in the polymer's unique capability to undergo a sharp property change near physiological temperature, which aids in the spontaneous release of biological cells from substrates. Currently, there are many methods for depositing pNIPAM onto substrates, including atom-transfer radical polymerization (ATRP) and electron beam ionization. Each method yields pNIPAM-coated substrates with different surface characteristics that can influence cell behavior. In this work, we compare two methods of pNIPAM deposition: plasma deposition and codeposition with a sol-gel. The resulting pNIPAM films were analyzed for use as substrates for mammalian cell culture based on surface characterization (XPS, ToF-SIMS, AFM, contact angles), cell attachment/detachment studies, and an analysis of exocytosis function using carbon-fiber microelectrode amperometry (CFMA). We find that although both methods are useful for the deposition of functional pNIPAM films, plasma deposition is much preferred for cell-sheet engineering applications because of the films' thermoresponse, minimal change in cell density, and maintenance of supported cell exocytosis function.
Collapse
Affiliation(s)
- JA Reed
- Center for Biomedical Engineering, University of New Mexico
- Department of Chemical and Nuclear Engineering, University of New Mexico
| | - SA Love
- Department of Chemistry, University of Minnesota
| | - AE Lucero
- Center for Biomedical Engineering, University of New Mexico
- Department of Chemical and Nuclear Engineering, University of New Mexico
| | - CL Haynes
- Department of Chemistry, University of Minnesota
| | - HE Canavan
- Center for Biomedical Engineering, University of New Mexico
- Department of Chemical and Nuclear Engineering, University of New Mexico
| |
Collapse
|
33
|
Ges IA, Currie KPM, Baudenbacher F. Electrochemical detection of catecholamine release using planar iridium oxide electrodes in nanoliter microfluidic cell culture volumes. Biosens Bioelectron 2011; 34:30-6. [PMID: 22398270 DOI: 10.1016/j.bios.2011.11.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 11/18/2022]
Abstract
Release of neurotransmitters and hormones by calcium regulated exocytosis is a fundamental cellular/molecular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. Therefore, this area represents a relevant target for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistically rich data with increased throughput. Toward this goal, we have electrochemically deposited iridium oxide (IrOx) films onto planar thin film platinum electrodes (20 μm×300 μm) and utilized these for quantitative detection of catecholamine release from adrenal chromaffin cells trapped in a microfluidic network. The IrOx electrodes show a linear response to norepinephrine in the range of 0-400 μM, with a sensitivity of 23.1±0.5 mA/M mm(2). The sensitivity of the IrOx electrodes does not change in the presence of ascorbic acid, a substance commonly found in biological samples. A replica molded polydimethylsiloxane (PDMS) microfluidic device with nanoliter sensing volumes was aligned and sealed to a glass substrate with the sensing electrodes. Small populations of chromaffin cells were trapped in the microfluidic device and stimulated by rapid perfusion with high potassium (50mM) containing Tyrode's solution at a flow rate of 1 nL/s. Stimulation of the cells produced a rapid increase in current due to oxidation of the released catecholamines, with an estimated maximum concentration in the cell culture volume of ~52 μM. Thus, we demonstrate the utility of an integrated microfluidic network with IrOx electrodes for real-time quantitative detection of catecholamines released from small populations of chromaffin cells.
Collapse
Affiliation(s)
- Igor A Ges
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235-1631, USA
| | | | | |
Collapse
|
34
|
Kim D, Koseoglu S, Manning BM, Meyer AF, Haynes CL. Electroanalytical eavesdropping on single cell communication. Anal Chem 2011; 83:7242-9. [PMID: 21766792 PMCID: PMC3184337 DOI: 10.1021/ac200666c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article reviews measurement of single cell exocytosis with microelectrodes, covering history, basic instrumentation, cell types investigated, and fundamental insight gained.
Collapse
|
35
|
Liu X, Barizuddin S, Shin W, Mathai CJ, Gangopadhyay S, Gillis KD. Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis. Anal Chem 2011; 83:2445-51. [PMID: 21355543 DOI: 10.1021/ac1033616] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical microelectrodes are commonly used to detect spikes of amperometric current that correspond to exocytosis of oxidizable transmitter from individual vesicles, i.e., quantal exocytosis. We are developing transparent multielectrochemical electrode arrays on microchips in order to automate measurement of quantal exocytosis. Here, we report development of an improved device to target individual cells to each microelectrode in an array. Efficient targeting (~75%) is achieved using cell-sized microwell traps fabricated in SU-8 photoresist together with patterning of poly(l-lysine) in register with electrodes to promote cell adhesion. The surface between electrodes is made resistant to cell adhesion using poly(ethylene glycol) in order to facilitate movement of cells to electrode "docking sites". We demonstrate the activity of the electrodes using the test analyte ferricyanide and perform recordings of quantal exocytosis from bovine adrenal chromaffin cells on the device. Multiple cell recordings on a single device demonstrate the consistency of spike measurements, and multiple recordings from the same electrodes demonstrate that the device can be cleaned and reused without degradation of performance. The new device will enable high-throughput studies of quantal exocytosis and may also find application in rapidly screening drugs or toxins for effects on exocytosis.
Collapse
Affiliation(s)
- Xin Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
36
|
Marquis BJ, Liu Z, Braun KL, Haynes CL. Investigation of noble metal nanoparticleζ-potential effects on single-cell exocytosis function in vitro with carbon-fiber microelectrode amperometry. Analyst 2011; 136:3478-86. [DOI: 10.1039/c0an00785d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Abstract
Exploration of electrochemical properties in ultrasmall volumes is still an emerging area. It is not only of great importance for the fundamental research, but also endowed with practical significance in the area of bioanalysis and medicine. Microelectrodes with superior electrochemical characteristics and versatile configurations are suitable tools for the investigation in confined geometries, and remarkable progress involving both preparation methods and theoretical interpretation has been made during the last few decades. Despite this success, electrochemical studies in nanoscopic volumes are still highly challenging due to the less predictable situations in very limited spatial and temporal domains, as well as difficulty in micromanipulation at the nanoscale. In this mini-review, we will summarize the main strategies for this topic, briefly look through the recent advances, and specifically introduce the design and application of a new kind of on-chip ultrasmall electrochemical cells based on micro- and nanogap electrodes, which are prepared by photolithographic method with volume ranging from femtolitre to attolitre. Finally, the limits of current systems and the future perspectives of this field are discussed.
Collapse
Affiliation(s)
- Tao Li
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | |
Collapse
|
38
|
Pascal D, Valérie R, Stefan W, Remy O, Louise CM, Pauline H, Alain M, Justin T. Targeted Macromolecules Delivery by Large Lipidic Nanovesicles Electrofusion with Mammalian Cells. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jbnb.2011.225063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Monitoring of Cellular Dynamics with Electrochemical Detection Techniques. MODERN ASPECTS OF ELECTROCHEMISTRY 2011. [DOI: 10.1007/978-1-4614-0347-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Zhang B, Heien MLAV, Santillo MF, Mellander L, Ewing AG. Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays. Anal Chem 2010; 83:571-7. [PMID: 21190375 DOI: 10.1021/ac102502g] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Carbon-fiber-microelectrode arrays (MEAs) have been utilized to electrochemically image neurochemical secretion from individual pheochromocytoma (PC12) cells. Dopamine release events were electrochemically monitored from seven different locations on single PC12 cells using alternately constant-potential amperometry and fast-scan cyclic voltammetry (FSCV). Cyclic voltammetry, when compared to amperometry, can provide excellent chemical resolution; however, spatial and temporal resolution are both compromised. The spatial and temporal resolution of these two methods have been quantitatively compared and the differences explained using models of molecular diffusion at the nanogap between the electrode and the cell. A numerical simulation of the molecular flux reveals that the diffusion of dopamine molecules and electrochemical reactions both play important roles in the temporal resolution of electrochemical imaging. The simulation also reveals that the diffusion and electrode potential cause the differences in signal crosstalk between electrodes when comparing amperometry and FSCV.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
41
|
Walsh PL, Petrovic J, Wightman RM. Distinguishing splanchnic nerve and chromaffin cell stimulation in mouse adrenal slices with fast-scan cyclic voltammetry. Am J Physiol Cell Physiol 2010; 300:C49-57. [PMID: 21048165 DOI: 10.1152/ajpcell.00332.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electrical stimulation is an indispensible tool in studying electrically excitable tissues in neurobiology and neuroendocrinology. In this work, the consequences of high-intensity electrical stimulation on the release of catecholamines from adrenal gland slices were examined with fast-scan cyclic voltammetry at carbon fiber microelectrodes. A biphasic signal, consisting of a fast and slow phase, was observed when electrical stimulations typically used in tissue slices (10 Hz, 350 μA biphasic, 2.0 ms/phase pulse width) were applied to bipolar tungsten-stimulating electrodes. This signal was found to be stimulation dependent, and the slow phase of the signal was abolished when smaller (≤250 μA) and shorter (1 ms/phase) stimulations were used. The slow phase of the biphasic signal was found to be tetrodotoxin and hexamethonium independent, while the fast phase was greatly reduced using these pharmacological agents. Two different types of calcium responses were observed, where the fast phase was abolished by perfusion with a low-calcium buffer while both the fast and slow phases could be modulated when Ca²(+) was completely excluded from the solution using EGTA. Perfusion with nifedipine resulted in the reduction of the slow catecholamine release to 29% of the original signal, while the fast phase was only decreased to 74% of predrug values. From these results, it was determined that high-intensity stimulations of the adrenal medulla result in depolarizing not only the splanchnic nerves, but also the chromaffin cells themselves resulting in a biphasic catecholamine release.
Collapse
Affiliation(s)
- Paul L Walsh
- Department of Chemistry, University of North Carolina, Chapel Hill, 27599-3290, USA
| | | | | |
Collapse
|
42
|
Ge S, White JG, Haynes CL. Critical role of membrane cholesterol in exocytosis revealed by single platelet study. ACS Chem Biol 2010; 5:819-28. [PMID: 20590163 DOI: 10.1021/cb100130b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exocytosis is a fundamental cellular process, pivotal in a wide range of cell types, used to deliver chemical messengers from one cell to another cell or tissue. While a tremendous amount of knowledge has been gained in the past several decades about the exocytotic machinery, recently it has become clear that the role of membrane lipids is also crucial in this process. In particular, the critical role of the abundant and ubiquitous cholesterol molecules has not been well-defined. Early insight has been gleaned from single cell amperometric studies on several commonly used secretory cell models, including chromaffin cells and PC12 cells; however, these secretory cell models are not ideal because manipulations of membrane cholesterol content may influence downstream cholesterol-dependent processes, making data interpretation difficult. Herein, blood platelets are employed as a simpler secretory cell model based on their anuclear nature and unique chemical messenger exocytosis behavior. Carbon-fiber microelectrochemistry was employed to measure real-time exocytosis from single platelets with depleted or enriched cholesterol either in the naturally occurring form or as the synthetic analogue epicholesterol. The experimental results show that membrane cholesterol directly modulates the secretion efficiency of individual platelets, as well as the kinetics of secretion events. Moreover, substitution of platelet membrane cholesterol with epicholesterol yields exocytotic behavior indistinguishable from that of normal platelets, arguing against the possibility of cholesterol-specific interactions in regulating exocytosis. It is clear from this work that membrane cholesterol plays a critical biophysical, rather than biochemical, role in platelet exocytosis and likely in exocytosis in general.
Collapse
Affiliation(s)
- Shencheng Ge
- Department of Chemistry, Institute of Technology
| | - James G. White
- Department of Laboratory Medicine, Pathology and Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55455
| | | |
Collapse
|
43
|
Patel BA, Dai X, Burda JE, Zhao H, Swain GM, Galligan JJ, Bian X. Inhibitory neuromuscular transmission to ileal longitudinal muscle predominates in neonatal guinea pigs. Neurogastroenterol Motil 2010; 22:909-18, e236-7. [PMID: 20482699 PMCID: PMC2911488 DOI: 10.1111/j.1365-2982.2010.01508.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Inhibitory neurotransmission to the longitudinal muscle is more prominent in the neonatal than in the adult guinea pig ileum. METHODS Inhibitory neuromuscular transmission was investigated using in vitro ileal longitudinal muscle myenteric plexus (LMMP) preparations made from neonatal (< or =48 h postnatal) and adult ( approximately 4 weeks postnatal) guinea pigs. KEY RESULTS Amperometric measurements of nicotine-induced nitric oxide (NO) release (measured as an oxidation current) from myenteric ganglia revealed larger currents in neonatal (379 +/- 24 pA) vs adult (119 +/- 39 pA, P < 0.05) tissues. Nicotine-induced oxidation currents were blocked by the nitric oxide synthase (NOS) inhibitor, nitro-l-arginine (NLA, 100 micromol L(-1)). Nicotine-induced, NLA-sensitive oxidation currents could be detected in the tertiary plexus of neonatal but not adult tissues. Immunohistochemistry demonstrated stronger NOS immunoreactivity in neonatal compared with adult myenteric ganglia. Western blot studies revealed higher levels of NOS in neonatal compared with adult LMMP. Cell counts revealed that the total number of myenteric neurons in the small intestine was greater in adults than in neonatal guinea pigs, however, the ratio of NOS : Calbindin neurons was significantly higher in neonatal compared with adult tissues. CONCLUSIONS & INFERENCES Nitric oxide signaling to the longitudinal muscle is stronger in neonatal compared with adult guinea pig ileum. Nitric oxide synthase-containing neurons are diluted postnatally by cholinergic and other, as yet unidentified neuronal subtypes.
Collapse
Affiliation(s)
- Bhavik A. Patel
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Xiaoling Dai
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Joshua E. Burda
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Hong Zhao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA,Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - Greg M. Swain
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA,Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - James J. Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA,Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - Xiaochun Bian
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
44
|
Barizuddin S, Liu X, Mathai JC, Hossain M, Gillis KD, Gangopadhyay S. Automated targeting of cells to electrochemical electrodes using a surface chemistry approach for the measurement of quantal exocytosis. ACS Chem Neurosci 2010; 1:590-597. [PMID: 21113333 DOI: 10.1021/cn1000183] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here we describe a method to fabricate a multi-channel high-throughput microchip device for measurement of quantal transmitter release from individual cells. Instead of bringing carbon-fiber electrodes to cells, the device uses a surface chemistry approach to bring cells to an array of electrochemical microelectrodes. The microelectrodes are small and "cytophilic" in order to promote adhesion of a single cell whereas all other areas of the chip are covered with a thin "cytophobic" film to block cell attachement and facilitate movement of cells to electrodes. This cytophobic film also insulates unused areas of the conductive film, thus the alignment of cell docking sites to working electrodes is automatic. Amperometric spikes resulting from single-granule fusion events were recorded on the device and had amplitudes and kinetics similar to those measured using carbon-fiber microelectrodes. Use of this device will increase the pace of basic neuroscience research and may also find applications in drug discovery or validation.
Collapse
Affiliation(s)
- Syed Barizuddin
- Department of Electrical and Computer Engineering
- Dalton Cardiovascular Research Center
| | - Xin Liu
- Dalton Cardiovascular Research Center
| | | | | | - Kevin, D. Gillis
- Dalton Cardiovascular Research Center
- Department of Biological Engineering
- Department of Medical Pharmacology and Physiology
| | - Shubhra Gangopadhyay
- Department of Electrical and Computer Engineering
- Dalton Cardiovascular Research Center
| |
Collapse
|
45
|
Zhang Z, Hui E, Chapman ER, Jackson MB. Regulation of exocytosis and fusion pores by synaptotagmin-effector interactions. Mol Biol Cell 2010; 21:2821-31. [PMID: 20573977 PMCID: PMC2921110 DOI: 10.1091/mbc.e10-04-0285] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Synaptotagmin isoforms and mutants altered fusion event frequency and fusion pore transitions. These effects showed a strong correlation with PS binding, but not with SNARE binding. Synaptotagmin-PS interaction thus function in two distinct kinetic steps in Ca2+ triggered exocytosis, and stabilize open fusion pores. Synaptotagmin (syt) serves as a Ca2+ sensor in the release of neurotransmitters and hormones. This function depends on the ability of syt to interact with other molecules. Syt binds to phosphatidylserine (PS)-containing lipid bilayers as well as to soluble N-ethylmaleimide sensitive factor receptors (SNAREs) and promotes SNARE assembly. All these interactions are regulated by Ca2+, but their specific roles in distinct kinetic steps of exocytosis are not well understood. To explore these questions we used amperometry recording from PC12 cells to investigate the kinetics of exocytosis. Syt isoforms and syt I mutants were overexpressed to perturb syt-PS and syt-SNARE interactions to varying degrees and evaluate the effects on fusion event frequency and the rates of fusion pore transitions. Syt I produced more rapid dilation of fusion pores than syt VII or syt IX, consistent with its role in synchronous synaptic release. Stronger syt-PS interactions were accompanied by a higher frequency of fusion events and more stable fusion pores. By contrast, syt-SNARE interactions and syt-induced SNARE assembly were uncorrelated with rates of exocytosis. This associates the syt-PS interaction with two distinct kinetic steps in Ca2+ triggered exocytosis and supports a role for the syt-PS interaction in stabilizing open fusion pores.
Collapse
Affiliation(s)
- Zhen Zhang
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
46
|
Pelkonen A, Hiltunen M, Kiianmaa K, Yavich L. Stimulated dopamine overflow and alpha-synuclein expression in the nucleus accumbens core distinguish rats bred for differential ethanol preference. J Neurochem 2010; 114:1168-76. [PMID: 20533994 DOI: 10.1111/j.1471-4159.2010.06844.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The key neurochemical systems and structures involved in the predisposition to substance abuse and preference to ethanol (EtOH) are not known in detail but clearly dopamine (DA) is an important modulator of addiction. Recent data indicate that alpha-synuclein (alpha-syn), a pre-synaptic protein, plays a role in regulation of DA release from the pre-synaptic terminals in striatum and the expression of this protein is different after drug abuse or following abstinence. In the present work, we analysed stimulated DA overflow in the dorsal and ventral striatum in EtOH naïve alko alchohol (AA) and alko non-alchohol (ANA) rats selected for more than 100 generations for their differential EtOH preference. In the same structures, we studied the expression of alpha-syn using western blotting. AA rats, in comparison with ANA rats, showed a marked reduction of stimulated peak DA overflow and higher levels of alpha-syn in the nucleus accumbens core. In the same structure, DA re-uptake was increased in AA rats in comparison with ANA rats. The effects of EtOH at low (0.1 g/kg) and higher (3 mg/kg) doses on DA overflow measured in the nucleus accumbens shell were similar in both lines. These results indicate that high expression of alpha-syn may contribute to the reduced DA overflow and the possible activation of re-uptake in the nucleus accumbens core of AA rats in comparison with ANA rats.
Collapse
Affiliation(s)
- Anssi Pelkonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | | | | | | |
Collapse
|
47
|
Petrovic J, Walsh PL, Thornley KT, Miller CE, Wightman RM. Real-time monitoring of chemical transmission in slices of the murine adrenal gland. Endocrinology 2010; 151:1773-83. [PMID: 20181796 PMCID: PMC2850225 DOI: 10.1210/en.2009-1324] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The real-time electrochemical detection of catecholamine secretion from murine adrenal slices using fast-scan cyclic voltammetry (FSCV) and amperometry at carbon fiber microelectrodes is described. Bright-field and immunofluorescent microscopy supported that chromaffin cells in the adrenal medulla are organized into clusters and positively stain for tyrosine hydroxylase confirming that they are catecholaminergic. Spontaneous exocytotic catecholamine events were observed inside chromaffin cell clusters with both FSCV and amperometry and were modulated by the nicotinic acetylcholine receptor antagonist hexamethonium and low extracellular calcium. Reintroduction of extracellular calcium and pressure ejection of acetylcholine caused the frequency of spikes to increase back to predrug levels. Electrical stimulation caused the synchronous secretion from multiple cells within the gland, which were modulated by nicotinic acetylcholine receptors but not muscarinic receptors or gap junctions. Furthermore, electrically stimulated release was abolished with perfusion of low extracellular calcium or tetrodotoxin, indicating that the release requires electrical excitability. An extended waveform was used to study the spontaneous and stimulated release events to determine their chemical content by FSCV. Consistent with total content analysis and immunohistochemical studies, about two thirds of the cells studied spontaneously secreted epinephrine, whereas one third secreted norepinephrine. Whereas adrenergic sites contained mostly epinephrine during electrical stimulation, noradrenergic sites contained a mixture of the catecholamines showing the heterogeneity of the adrenal medulla.
Collapse
Affiliation(s)
- Jelena Petrovic
- Neuroscience Center (R.M.W.), Caudill Laboratories, Venable Hall B-5, CB 3290, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | | | |
Collapse
|
48
|
Amatore C, Arbault S, Koh ACW. Simultaneous Detection of Reactive Oxygen and Nitrogen Species Released by a Single Macrophage by Triple Potential-Step Chronoamperometry. Anal Chem 2010; 82:1411-9. [DOI: 10.1021/ac902486x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Amatore
- UMR CNRS-ENS-UPMC 8640 “PASTEUR” and LIA CNRS XiamENS, École Normale Supérieure, 24 rue Lhomond, 75231 PARIS Cedex 5, France
| | - Stéphane Arbault
- UMR CNRS-ENS-UPMC 8640 “PASTEUR” and LIA CNRS XiamENS, École Normale Supérieure, 24 rue Lhomond, 75231 PARIS Cedex 5, France
| | - Alaric C. W. Koh
- UMR CNRS-ENS-UPMC 8640 “PASTEUR” and LIA CNRS XiamENS, École Normale Supérieure, 24 rue Lhomond, 75231 PARIS Cedex 5, France
| |
Collapse
|
49
|
Zachek MK, Takmakov P, Park J, Wightman RM, McCarty GS. Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo. Biosens Bioelectron 2010; 25:1179-85. [PMID: 19896822 PMCID: PMC2818289 DOI: 10.1016/j.bios.2009.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 09/30/2009] [Accepted: 10/08/2009] [Indexed: 02/05/2023]
Abstract
When coupled with a microelectrode, background-subtracted fast scan cyclic voltammetry (FSCV) allows fast, sensitive and selective determination of analytes within a small spatial location. For the past 30 years experiments using this technique have been largely confined to recordings at a single microelectrode. Arrays with closely separated microelectrodes would allow researchers to gain more informative data as well as probe regions in close spatial proximity. This work presents one of the first FSCV microelectrode arrays (MEA) implemented in vivo with the ability to sample from different regions in close spatial proximity (equidistant within 1mm). The array is manufactured from fused silica capillaries and a microfabricated electrode spacer. The functionality of the array is assessed by simultaneously monitoring electrically stimulated dopamine (DA) release in the striatum of anesthetized rat. As expected, heterogeneous dopamine release was simultaneously observed. Additionally, the pharmacological effect of raclopride (D(2) receptor antagonist) and cocaine (monoamine uptake blocker) on the heterogeneity of DA release, in spatially different brain regions was shown to alter neurotransmitter release at all four electrode sites.
Collapse
Affiliation(s)
- Matthew K Zachek
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
50
|
Dittami GM, Rabbitt RD. Electrically evoking and electrochemically resolving quantal release on a microchip. LAB ON A CHIP 2010; 10:30-35. [PMID: 20024047 PMCID: PMC3000936 DOI: 10.1039/b911763f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A microchip was applied to electrically depolarize rat pheochromocytoma (PC12) cells and to simultaneously detect exocytotic catecholamine release amperometrically. Results demonstrate exocytosis elicited by flowing cells through an electric field generated by a potentiostat circuit in a microchannel, as well as exocytosis triggered by application of an extracellular voltage pulse across. Electrical finite element model (FEM) analysis illustrated that larger cells experienced greater depolarizing excitation from the extracellular electric fields due to the smaller shunt path and higher resistance to current flow in the channel around the cell. Consistent with these simulations, data recorded from cell clusters and large cells exhibited increased release rates relative to data from the smaller cells. Overall, the system was capable of resolving single vesicle quantal release, in the zeptomole range, as well as the kinetics associated with the vesicle fusion process. Analysis of spike population statistics suggested detection of catecholamines from multiple release sites around the cells. The potential for such a device to be used in flow cytometry to evoke and detect exocytosis was demonstrated.
Collapse
Affiliation(s)
- Gregory M Dittami
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84118, USA.
| | | |
Collapse
|