1
|
Takemura K, Kolasinski V, Del Poeta M, Vieira de Sa NF, Garg A, Ojima I, Del Poeta M, Pereira de Sa N. Iron acquisition strategies in pathogenic fungi. mBio 2025:e0121125. [PMID: 40391928 DOI: 10.1128/mbio.01211-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
Iron plays a crucial role in various biological processes, including enzyme function, DNA replication, energy production, oxygen transport, lipid, and carbon metabolism. Although it is abundant in the Earth's crust, its bioavailability is restricted by the insolubility of ferric iron (Fe³+) and the auto-oxidation of ferrous iron (Fe²+) in oxygen-rich environments. This limitation poses significant challenges for all organisms, including fungi, which have developed intricate mechanisms for iron acquisition and utilization. These mechanisms include reductive iron uptake, siderophore production/transport, and heme utilization. Fungi employ a variety of enzymes-such as ferric reductases, ferroxidases, permeases, and transporters-to regulate intracellular iron levels effectively. The challenge is heightened for pathogenic fungi during infection, as they must compete with the host's iron-binding proteins like transferrin and lactoferrin, which sequester iron to restrict pathogen growth. This review delves into the iron acquisition strategies of medically important fungi, emphasizing the roles of reductive iron uptake and siderophore pathways. Understanding these mechanisms is vital for enhancing our knowledge of fungal pathogenesis and developing effective treatments. By targeting these iron acquisition processes, new antifungal therapies can be formulated more effectively to combat fungal infections.
Collapse
Affiliation(s)
- Kathryn Takemura
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
| | - Vanessa Kolasinski
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Matteo Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | | | - Ashna Garg
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
| | - Maurizio Del Poeta
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Affairs Medical Center, Northport, New York, USA
| | - Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Du G, He J, Zhan Y, Chen L, Hu Y, Qian J, Huang H, Meng F, Shan L, Chen Z, Hu D, Zhu C, Yue M, Qi Y, Tan W. Changes and application prospects of biomolecular materials in small extracellular vesicles (sEVs) after flavivirus infection. Eur J Med Res 2025; 30:275. [PMID: 40229861 PMCID: PMC11998145 DOI: 10.1186/s40001-025-02539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Small extracellular vesicles (sEVs), also known as exosomes, are membranous vesicles filled with various proteins and nucleic acids, serving as a communication vector between cells. Recent research has highlighted their role in viral diseases. This review synthesizes current understanding of viral sEVs and includes recent findings on sEVs infected with flaviviruses. It discusses the implications of viral sEVs research for advancing arbovirus sEVs research and anticipates the potential applications of sEVs in flavivirus infections.
Collapse
Affiliation(s)
- Gengting Du
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Junhua He
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Yan Zhan
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Leru Chen
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Yue Hu
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Jiaojiao Qian
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Huan Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fanjin Meng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Laiyou Shan
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Zhiyu Chen
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | | | - Changqiang Zhu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Ming Yue
- Department of Infectious Diseases, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Qi
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Weilong Tan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China.
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Gao J, Franzkoch R, Rocha-Roa C, Psathaki OE, Hensel M, Vanni S, Ungermann C. Any1 is a phospholipid scramblase involved in endosome biogenesis. J Cell Biol 2025; 224:e202410013. [PMID: 40047640 PMCID: PMC11893163 DOI: 10.1083/jcb.202410013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 03/12/2025] Open
Abstract
Endosomes are central organelles in the recycling and degradation of receptors and membrane proteins. Once endocytosed, such proteins are sorted at endosomes into intraluminal vesicles (ILVs). The resulting multivesicular bodies (MVBs) then fuse with the lysosomes, leading to the degradation of ILVs and recycling of the resulting monomers. However, the biogenesis of MVBs requires a constant lipid supply for efficient ILV formation. An ER-endosome membrane contact site has been suggested to play a critical role in MVB biogenesis. Here, we identify Any1 as a novel phospholipid scramblase, which functions with the lipid transfer protein Vps13 in MVB biogenesis. We uncover that Any1 cycles between the early endosomes and the Golgi and colocalizes with Vps13, possibly at a here-discovered potential contact site between lipid droplets (LDs) and endosomes. Strikingly, both Any1 and Vps13 are required for MVB formation, presumably to couple lipid flux with membrane homeostasis during ILV formation and endosome maturation.
Collapse
Affiliation(s)
- Jieqiong Gao
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Rico Franzkoch
- Department of Biology/Chemistry, Division of Microbiology, Osnabrück University, Osnabrück, Germany
- Integrated Bioimaging Facility, Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | | | - Olympia Ekaterini Psathaki
- Integrated Bioimaging Facility, Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Michael Hensel
- Department of Biology/Chemistry, Division of Microbiology, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
4
|
Ebner M, Fröhlich F, Haucke V. Mechanisms and functions of lysosomal lipid homeostasis. Cell Chem Biol 2025; 32:392-407. [PMID: 40054455 DOI: 10.1016/j.chembiol.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 03/23/2025]
Abstract
Lysosomes are the central degradative organelle of mammalian cells and have emerged as major intersections of cellular metabolite flux. Macromolecules derived from dietary and intracellular sources are delivered to the acidic lysosomal lumen where they are subjected to degradation by acid hydrolases. Lipids derived from lipoproteins, autophagy cargo, or autophagosomal membranes themselves constitute major lysosomal substrates. Dysregulation of lysosomal lipid processing, defective export of lipid catabolites, and lysosomal membrane permeabilization underly diseases ranging from neurodegeneration to metabolic syndromes and lysosomal storage disorders. Mammalian cells are equipped with sophisticated homeostatic control mechanisms that protect the lysosomal limiting membrane from excessive damage, prevent the spillage of luminal hydrolases into the cytoplasm, and preserve the lysosomal membrane composition in the face of constant fusion with heterotypic organelles such as endosomes and autophagosomes. In this review we discuss the molecular mechanisms that govern lysosomal lipid homeostasis and, thereby, lysosome function in health and disease.
Collapse
Affiliation(s)
- Michael Ebner
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Florian Fröhlich
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - Volker Haucke
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Freie Universität Berlin, Faculty of Biology, Chemistry, Pharmacy, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Chae CW, Choi G, Yoon T, Kwon YW. Exosome-Based Therapy in Cardiovascular Diseases: A New Frontier in Cardiovascular Disease Treatment. Korean Circ J 2025; 55:55.e54. [PMID: 40206010 DOI: 10.4070/kcj.2025.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 04/11/2025] Open
Abstract
Exosomes, small extracellular vesicles ranging from 30 to 150 nanometers in diameter, have emerged as pivotal mediators of intercellular communication. These vesicles, originally perceived as cellular debris, are now recognized for their intricate roles in transporting bioactive molecules, including proteins, lipids, and nucleic acids, between cells. Exosomes have received considerable attention due to their roles in diverse physiological and pathological processes, especially in relation to cardiovascular diseases (CVDs). CVDs are intricately linked, sharing common risk factors and pathological mechanisms, such as inflammation, oxidative stress, and endothelial dysfunction. Exosomes have been implicated in either directly or indirectly influencing these phenomena. They are secreted by virtually all cell types, including endothelial cells, cardiomyocytes, and stem cells, play critical roles in maintaining vascular homeostasis and responding to pathological stimuli. Their capacity to traverse biological barriers, maintain stability in circulation, and effectively encapsulate and deliver a variety of molecular cargos makes them promising candidates for both biomarkers and therapeutic agents. This review aims to explore the multifaceted roles of exosomes in CVDs. And we will discuss the mechanisms of exosome biogenesis and release, their molecular composition, and the ways in which they contribute to disease pathophysiology. Additionally, we will emphasize the potential of exosomes as diagnostic biomarkers and their therapeutic uses, highlighting their significance in the advancement of innovative treatment strategies. This review explores recent findings and advancements in exosome research, emphasizing their significance in CVD and paving the way for future studies and clinical applications.
Collapse
Affiliation(s)
- Cheong-Whan Chae
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Translational Medicine, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Gun Choi
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Taehun Yoon
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Yoo-Wook Kwon
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
6
|
Gyurkovska V, Alvarado Cartagena YM, Murtazina R, Zhao SF, Ximenez de Olaso C, Segev N. Selective clearance of aberrant membrane proteins by TORC1-mediated micro-ER-phagy. Cell Rep 2025; 44:115282. [PMID: 39946230 PMCID: PMC11999474 DOI: 10.1016/j.celrep.2025.115282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/28/2025] Open
Abstract
Aberrant accumulation and clearance of membrane proteins is associated with disease. Membrane proteins are inserted first to the endoplasmic reticulum (ER). During normal growth, two quality control (QC) processes, ER-associated degradation and macro-ER-phagy, deliver misfolded and excess membrane proteins for degradation in the proteasome and lysosome, respectively. We show that in yeast during normal growth, ER-QC is constitutive, since none of the stress-induced signaling pathways-nutritional, proteotoxic, or heat-are involved. In mutant cells defective in ER-QC, misfolded or excess proteins accumulate and nutritional stress, but not proteotoxic or heat stress, can stimulate their clearance. Early during nutritional stress, clearance occurs in the lysosome through a selective micro-ER-phagy pathway dependent on the ubiquitin ligase Rsp5, its Ssh4 adaptor, and ESCRT. In contrast, only a fraction of normal membrane proteins is degraded much later via macro-autophagy. Because the pathways explored here are conserved, nutritional stress emerges as a possible way for clearing disease-associated membrane proteins.
Collapse
Affiliation(s)
- Valeriya Gyurkovska
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yaneris M Alvarado Cartagena
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rakhilya Murtazina
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah F Zhao
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Candela Ximenez de Olaso
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Xu Z, Booth A, Rappolt M, Peckham M, Tyler AII, Beales PA. Topological and Morphological Membrane Dynamics in Giant Lipid Vesicles Driven by Monoolein Cubosomes. Angew Chem Int Ed Engl 2025; 64:e202414970. [PMID: 39348462 DOI: 10.1002/anie.202414970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/02/2024]
Abstract
Lipid nanoparticles have important applications as biomedical delivery platforms and broader engineering biology applications in artificial cell technologies. These emerging technologies often require changes in the shape and topology of biological or biomimetic membranes. Here we show that topologically-active lyotropic liquid crystal nanoparticles (LCNPs) can trigger such transformations in the membranes of giant unilamellar vesicles (GUVs). Monoolein (MO) LCNPs, cubosomes with an internal nanostructure of space groupI m 3 m ${Im3m}$ incorporate into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) GUVs creating excess membrane area with stored curvature stress. Using time-resolved fluorescence confocal and lattice light sheet microscopy, we observe and characterise various life-like dynamic events in these GUVs, including growth, division, tubulation, membrane budding and fusion. Our results shed new light on the interactions of LCNPs with bilayer lipid membranes, providing insights relevant to how these nanoparticles might interact with cellular membranes during drug delivery and highlighting their potential as minimal triggers of topological transitions in artificial cells.
Collapse
Affiliation(s)
- Zexi Xu
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Andrew Booth
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Michelle Peckham
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Arwen I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Paul A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
8
|
Dong J, Tong W, Liu M, Liu M, Liu J, Jin X, Chen J, Jia H, Gao M, Wei M, Duan Y, Zhong X. Endosomal traffic disorders: a driving force behind neurodegenerative diseases. Transl Neurodegener 2024; 13:66. [PMID: 39716330 DOI: 10.1186/s40035-024-00460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Endosomes are crucial sites for intracellular material sorting and transportation. Endosomal transport is a critical process involved in the selective uptake, processing, and intracellular transport of substances. The equilibrium between endocytosis and circulation mediated by the endosome-centered transport pathway plays a significant role in cell homeostasis, signal transduction, and immune response. In recent years, there have been hints linking endosomal transport abnormalities to neurodegenerative diseases, including Alzheimer's disease. Nonetheless, the related mechanisms remain unclear. Here, we provide an overview of endosomal-centered transport pathways and highlight potential physiological processes regulated by these pathways, with a particular focus on the correlation of endosomal trafficking disorders with common pathological features of neurodegenerative diseases. Additionally, we summarize potential therapeutic agents targeting endosomal trafficking for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jianru Dong
- School of Pharmacy, China Medical University, Shenyang, 110122, China
- Weifang Hospital of Traditional Chinese Medicine, Weifang, 261000, China
| | - Weiwei Tong
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110069, China
| | - Mingyan Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Mengyu Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jinyue Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ju Chen
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Huachao Jia
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Menglin Gao
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, 110167, China.
| | - Ying Duan
- Liaoning Maternal and Child Health Hospital, Shenyang, 110005, China.
| | - Xin Zhong
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
9
|
Keeley O, Coyne AN. Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease. Nucleus 2024; 15:2349085. [PMID: 38700207 PMCID: PMC11073439 DOI: 10.1080/19491034.2024.2349085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.
Collapse
Affiliation(s)
- Olivia Keeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Jacomin AC, Dikic I. Membrane remodeling via ubiquitin-mediated pathways. Cell Chem Biol 2024; 31:1627-1635. [PMID: 39303699 DOI: 10.1016/j.chembiol.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
The dynamic process of membrane shaping and remodeling plays a vital role in cellular functions, with proteins and cellular membranes interacting intricately to adapt to various cellular needs and environmental cues. Ubiquitination-a posttranslational modification-was shown to be essential in regulating membrane structure and shape. It influences virtually all pathways relying on cellular membranes, such as endocytosis and autophagy by directing protein degradation, sorting, and oligomerization. Ubiquitin is mostly known as a protein modifier; however, it was reported that ubiquitin and ubiquitin-like proteins can associate directly with lipids, affecting membrane curvature and dynamics. In this review, we summarize some of the current knowledge on ubiquitin-mediated membrane remodeling in the context of endocytosis, autophagy, and ER-phagy.
Collapse
Affiliation(s)
- Anne-Claire Jacomin
- Goethe University Frankfurt, Medical Faculty, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Ivan Dikic
- Goethe University Frankfurt, Medical Faculty, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany; Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 15, 60438 Frankfurt Am Main, Germany.
| |
Collapse
|
11
|
Rolli S, Langridge CA, Sontag EM. Clearing the JUNQ: the molecular machinery for sequestration, localization, and degradation of the JUNQ compartment. Front Mol Biosci 2024; 11:1427542. [PMID: 39234568 PMCID: PMC11372896 DOI: 10.3389/fmolb.2024.1427542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024] Open
Abstract
Cellular protein homeostasis (proteostasis) plays an essential role in regulating the folding, sequestration, and turnover of misfolded proteins via a network of chaperones and clearance factors. Previous work has shown that misfolded proteins are spatially sequestered into membrane-less compartments in the cell as part of the proteostasis process. Soluble misfolded proteins in the cytoplasm are trafficked into the juxtanuclear quality control compartment (JUNQ), and nuclear proteins are sequestered into the intranuclear quality control compartment (INQ). However, the mechanisms that control the formation, localization, and degradation of these compartments are unknown. Previously, we showed that the JUNQ migrates to the nuclear membrane adjacent to the INQ at nucleus-vacuole junctions (NVJ), and the INQ moves through the NVJ into the vacuole for clearance in an ESCRT-mediated process. Here we have investigated what mechanisms are involved in the formation, migration, and clearance of the JUNQ. We find Hsp70s Ssa1 and Ssa2 are required for JUNQ localization to the NVJ and degradation of cytoplasmic misfolded proteins. We also confirm that sequestrases Btn2 and Hsp42 sort misfolded proteins to the JUNQ or IPOD, respectively. Interestingly, proteins required for piecemeal microautophagy of the nucleus (PMN) (i.e., Nvj1, Vac8, Atg1, and Atg8) drive the formation and clearance of the JUNQ. This suggests that the JUNQ migrates to the NVJ to be cleared via microautophagy.
Collapse
Affiliation(s)
- Sarah Rolli
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Chloe A Langridge
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Emily M Sontag
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
12
|
Kundu S, Rohokale R, Lin C, Chen S, Biswas S, Guo Z. Bifunctional glycosphingolipid (GSL) probes to investigate GSL-interacting proteins in cell membranes. J Lipid Res 2024; 65:100570. [PMID: 38795858 PMCID: PMC11261293 DOI: 10.1016/j.jlr.2024.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/28/2024] Open
Abstract
Glycosphingolipids (GSLs) are abundant glycolipids on cells and essential for cell recognition, adhesion, signal transduction, and so on. However, their lipid anchors are not long enough to cross the membrane bilayer. To transduce transmembrane signals, GSLs must interact with other membrane components, whereas such interactions are difficult to investigate. To overcome this difficulty, bifunctional derivatives of II3-β-N-acetyl-D-galactosamine-GA2 (GalNAc-GA2) and β-N-acetyl-D-glucosamine-ceramide (GlcNAc-Cer) were synthesized as probes to explore GSL-interacting membrane proteins in live cells. Both probes contain photoreactive diazirine in the lipid moiety, which can crosslink with proximal membrane proteins upon photoactivation, and clickable alkyne in the glycan to facilitate affinity tag addition for crosslinked protein pull-down and characterization. The synthesis is highlighted by the efficient assembly of simple glycolipid precursors followed by on-site lipid remodeling. These probes were employed to profile GSL-interacting membrane proteins in HEK293 cells. The GalNAc-GA2 probe revealed 312 distinct proteins, with GlcNAc-Cer probe-crosslinked proteins as controls, suggesting the potential influence of the glycan on GSL functions. Many of the proteins identified with the GalNAc-GA2 probe are associated with GSLs, and some have been validated as being specific to this probe. The versatile probe design and experimental protocols are anticipated to be widely applicable to GSL research.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA; Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Shayak Biswas
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
14
|
György B, Pálóczi K, Balbisi M, Turiák L, Drahos L, Visnovitz T, Koltai E, Radák Z. Effect of the 35 nm and 70 nm Size Exclusion Chromatography (SEC) Column and Plasma Storage Time on Separated Extracellular Vesicles. Curr Issues Mol Biol 2024; 46:4337-4357. [PMID: 38785532 PMCID: PMC11120626 DOI: 10.3390/cimb46050264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The technical difficulty of separating extracellular vesicles (EVs) from plasma proteins in human blood presents a significant hurdle in EV research, particularly during nano ultra-high-performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) analysis, where detecting "vesicular" proteins among abundant plasma proteins is challenging. Standardisation is a pressing issue in EV research, prompting collaborative global efforts to address it. While the MISEV guidelines offer valuable recommendations, unanswered questions remain, particularly regarding sample storage. We compared size exclusion chromatography (SEC) columns with pore sizes of 35 nm and 70 nm to identify fractions with minimal contaminating proteins and the highest concentration of small EVs (sEVs). Following column selection, we explored potential differences in the quality and quantity of sEVs isolated from platelet-free plasma (PFP) after long-term storage at -80 °C (>2.5 years) compared to freshly drawn blood. Our methodologically rigorous study indicates that prolonged storage, under correct storage and processing conditions, does not compromise sEV quality. Both columns effectively isolated vesicles, with the 70 nm column exhibiting a higher abundance of "vesicular" proteins. We propose a relatively rapid and moderately efficient protocol for obtaining a comparatively pure sEV fraction from plasma, facilitating sEV processing in clinical trials.
Collapse
Affiliation(s)
- Bernadett György
- Research Centre for Molecular Exercise Science, Hungarian University of Sport Science, Alkotás u. 42-48, 1123 Budapest, Hungary; (B.G.); (E.K.)
| | - Krisztina Pálóczi
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (K.P.); (T.V.)
| | - Mirjam Balbisi
- Research Centre for Natural Sciences, Institute of Organic Chemistry, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (M.B.); (L.T.); (L.D.)
| | - Lilla Turiák
- Research Centre for Natural Sciences, Institute of Organic Chemistry, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (M.B.); (L.T.); (L.D.)
| | - László Drahos
- Research Centre for Natural Sciences, Institute of Organic Chemistry, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (M.B.); (L.T.); (L.D.)
| | - Tamás Visnovitz
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (K.P.); (T.V.)
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Erika Koltai
- Research Centre for Molecular Exercise Science, Hungarian University of Sport Science, Alkotás u. 42-48, 1123 Budapest, Hungary; (B.G.); (E.K.)
| | - Zsolt Radák
- Research Centre for Molecular Exercise Science, Hungarian University of Sport Science, Alkotás u. 42-48, 1123 Budapest, Hungary; (B.G.); (E.K.)
- Faculty of Sport Sciences, Waseda University, Tokorozawa 2-579-15, Japan
| |
Collapse
|
15
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Vasileiadi S, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. A Current Synopsis of the Emerging Role of Extracellular Vesicles and Micro-RNAs in Pancreatic Cancer: A Forward-Looking Plan for Diagnosis and Treatment. Int J Mol Sci 2024; 25:3406. [PMID: 38542378 PMCID: PMC10969997 DOI: 10.3390/ijms25063406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 12/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, while it persists as the fourth most prevalent cause of cancer-related death in the United States of America. Although there are several novel therapeutic strategies for the approach of this intensely aggressive tumor, it remains a clinical challenge, as it is hard to identify in early stages, due to its asymptomatic course. A diagnosis is usually established when the disease is already in its late stages, while its chemoresistance constitutes an obstacle to the optimal management of this malignancy. The discovery of novel diagnostic and therapeutic tools is considered a necessity for this tumor, due to its low survival rates and treatment failures. One of the most extensively investigated potential diagnostic and therapeutic modalities is extracellular vesicles (EVs). These vesicles constitute nanosized double-lipid membraned particles that are characterized by a high heterogeneity that emerges from their distinct biogenesis route, their multi-variable sizes, and the particular cargoes that are embedded into these particles. Their pivotal role in cell-to-cell communication via their cargo and their implication in the pathophysiology of several diseases, including pancreatic cancer, opens new horizons in the management of this malignancy. Meanwhile, the interplay between pancreatic carcinogenesis and short non-coding RNA molecules (micro-RNAs or miRs) is in the spotlight of current studies, as they can have either a role as tumor suppressors or promoters. The deregulation of both of the aforementioned molecules leads to several aberrations in the function of pancreatic cells, leading to carcinogenesis. In this review, we will explore the role of extracellular vesicles and miRNAs in pancreatic cancer, as well as their potent utilization as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 11527 Athens, Greece;
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Sofia Vasileiadi
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|
16
|
Ye Y, Liang X, Wang G, Bewley MC, Hamamoto K, Liu X, Flanagan JM, Wang HG, Takahashi Y, Tian F. Identification of membrane curvature sensing motifs essential for VPS37A phagophore recruitment and autophagosome closure. Commun Biol 2024; 7:334. [PMID: 38491121 PMCID: PMC10942982 DOI: 10.1038/s42003-024-06026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
VPS37A, an ESCRT-I complex component, is required for recruiting a subset of ESCRT proteins to the phagophore for autophagosome closure. However, the mechanism by which VPS37A is targeted to the phagophore remains obscure. Here, we demonstrate that the VPS37A N-terminal domain exhibits selective interactions with highly curved membranes, mediated by two membrane-interacting motifs within the disordered regions surrounding its Ubiquitin E2 variant-like (UEVL) domain. Site-directed mutations of residues in these motifs disrupt ESCRT-I localization to the phagophore and result in defective phagophore closure and compromised autophagic flux in vivo, highlighting their essential role during autophagy. In conjunction with the UEVL domain, we postulate that these motifs guide a functional assembly of the ESCRT machinery at the highly curved tip of the phagophore for autophagosome closure. These results advance the notion that the distinctive membrane architecture of the cup-shaped phagophore spatially regulates autophagosome biogenesis.
Collapse
Affiliation(s)
- Yansheng Ye
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA.
| | - Xinwen Liang
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guifang Wang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Maria C Bewley
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Kouta Hamamoto
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Xiaoming Liu
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
17
|
Sambre P, Ho JCS, Parikh AN. Intravesicular Solute Delivery and Surface Area Regulation in Giant Unilamellar Vesicles Driven by Cycles of Osmotic Stresses. J Am Chem Soc 2024; 146:3250-3261. [PMID: 38266489 PMCID: PMC10859933 DOI: 10.1021/jacs.3c11679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
Phospholipid bilayers are dynamic cellular components that undergo constant changes in their topology, facilitating a broad diversity of physiological functions including endo- and exocytosis, cell division, and intracellular trafficking. These shape transformations consume energy, supplied invariably by the activity of proteins. Here, we show that cycles of oppositely directed osmotic stresses─unassisted by any protein activity─can induce well-defined remodeling of giant unilamellar vesicles, minimally recapitulating the phenomenologies of surface area homeostasis and macropinocytosis. We find that a stress cycle consisting of deflationary hypertonic stress followed by an inflationary hypotonic one prompts an elaborate sequence of membrane shape changes ultimately transporting molecular cargo from the outside into the intravesicular milieu. The initial osmotic deflation produces microscopic spherical invaginations. During the subsequent inflation, the first subpopulation contributes area to the swelling membrane, thereby providing a means for surface area regulation and tensional homeostasis. The second subpopulation vesiculates into the lumens of the mother vesicles, producing pinocytic vesicles. Remarkably, the gradients of solute concentrations between the GUV and the daughter pinocytic vesicles create cascades of water current, inducing pulsatory transient poration that enable solute exchange between the buds and the GUV interior. This results in an efficient water-flux-mediated delivery of molecular cargo across the membrane boundary. Our findings suggest a primitive physical mechanism for communication and transport across protocellular compartments driven only by osmotic stresses. They also suggest plausible physical routes for intravesicular, and possibly intracellular, delivery of ions, solutes, and molecular cargo stimulated simply by cycles of osmotic currents of water.
Collapse
Affiliation(s)
- Pallavi
D. Sambre
- Department
of Materials Science and Engineering, University
of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - James C. S. Ho
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore
- Institute
for Digital Molecular Analytics and Science, Nanyang Technological University, 60 Nanyang Drive, 637551Singapore
| | - Atul N. Parikh
- Department
of Materials Science and Engineering, University
of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore
- Institute
for Digital Molecular Analytics and Science, Nanyang Technological University, 60 Nanyang Drive, 637551Singapore
- Department
of Biomedical Engineering, University of
California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
18
|
Yang Q, Li S, Ou H, Zhang Y, Zhu G, Li S, Lei L. Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application. J Nanobiotechnology 2024; 22:41. [PMID: 38281957 PMCID: PMC10823703 DOI: 10.1186/s12951-024-02298-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Malignancy is a major public health problem and among the leading lethal diseases worldwide. Although the current tumor treatment methods have therapeutic effect to a certain extent, they still have some shortcomings such as poor water solubility, short half-life, local and systemic toxicity. Therefore, how to deliver therapeutic agent so as to realize safe and effective anti-tumor therapy become a problem urgently to be solved in this field. As a medium of information exchange and material transport between cells, exosomes are considered to be a promising drug delivery carrier due to their nano-size, good biocompatibility, natural targeting, and easy modification. In this review, we summarize recent advances in the isolation, identification, drug loading, and modification of exosomes as drug carriers for tumor therapy alongside their application in tumor therapy. Basic knowledge of exosomes, such as their biogenesis, sources, and characterization methods, is also introduced herein. In addition, challenges related to the use of exosomes as drug delivery vehicles are discussed, along with future trends. This review provides a scientific basis for the application of exosome delivery systems in oncological therapy.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Haibo Ou
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shaohong Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
19
|
Zhu Y, Zhao Q, Cao W, Huang S, Ji C, Zhang W, Trujillo M, Shen J, Jiang L. The plant-unique protein DRIF1 coordinates with sorting nexin 1 to regulate membrane protein homeostasis. THE PLANT CELL 2023; 35:4217-4237. [PMID: 37647529 PMCID: PMC10689196 DOI: 10.1093/plcell/koad227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Membrane protein homeostasis is fine-tuned by the cellular pathways for vacuolar degradation and recycling, which ultimately facilitate plant growth and cell-environment interactions. The endosomal sorting complex required for transport (ESCRT) machinery plays important roles in regulating intraluminal vesicle (ILV) formation and membrane protein sorting to vacuoles. We previously showed that the plant-specific ESCRT component FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING1 (FREE1) performs multiple functions in plants, although the underlying mechanisms remain elusive. In this study, we performed a suppressor screen of the FREE1-RNAi mutant and identified and characterized 2 suppressor of free1 (sof) mutants in Arabidopsis (Arabidopsis thaliana). These mutants, sof10 and sof641, result in a premature stop codon or a missense mutation in AT5G10370, respectively. This gene was named DEAH and RING domain-containing protein as FREE1 suppressor 1 (DRIF1). DRIF1 has a homologous gene, DRIF2, in the Arabidopsis genome with 95% identity to DRIF1. The embryos of drif1 drif2 mutants arrested at the globular stage and formed enlarged multivesicular bodies (MVBs) with an increased number of ILVs. DRIF1 is a membrane-associated protein that coordinates with retromer component sorting nexin 1 to regulate PIN-FORMED2 recycling to the plasma membrane. Altogether, our data demonstrate that DRIF1 is a unique retromer interactor that orchestrates FREE1-mediated ILV formation of MVBs and vacuolar sorting of membrane proteins for degradation in plants.
Collapse
Affiliation(s)
- Ying Zhu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuxian Huang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Changyang Ji
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenxin Zhang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Marco Trujillo
- RWTH Aachen University, Institute for Biology 3, Aachen 52074, Germany
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
20
|
Nenciarini S, Cavalieri D. Immunomodulatory Potential of Fungal Extracellular Vesicles: Insights for Therapeutic Applications. Biomolecules 2023; 13:1487. [PMID: 37892168 PMCID: PMC10605264 DOI: 10.3390/biom13101487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicular organelles that perform a variety of biological functions including cell communication across different biological kingdoms. EVs of mammals and, to a lesser extent, bacteria have been deeply studied over the years, whereas investigations of fungal EVs are still in their infancy. Fungi, encompassing both yeast and filamentous forms, are increasingly recognized for their production of extracellular vesicles (EVs) containing a wealth of proteins, lipids, and nucleic acids. These EVs play pivotal roles in orchestrating fungal communities, bolstering pathogenicity, and mediating interactions with the environment. Fungal EVs have emerged as promising candidates for innovative applications, not only in the management of mycoses but also as carriers for therapeutic molecules. Yet, numerous questions persist regarding fungal EVs, including their mechanisms of generation, release, cargo regulation, and discharge. This comprehensive review delves into the present state of knowledge regarding fungal EVs and provides fresh insights into the most recent hypotheses on the mechanisms driving their immunomodulatory properties. Furthermore, we explore the considerable potential of fungal EVs in the realms of medicine and biotechnology. In the foreseeable future, engineered fungal cells may serve as vehicles for tailoring cargo- and antigen-specific EVs, positioning them as invaluable biotechnological tools for diverse medical applications, such as vaccines and drug delivery.
Collapse
Affiliation(s)
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
21
|
XUE P, SÁNCHEZ-LEÓN E, DAMOO D, HU G, JUNG WH, KRONSTAD JW. Heme sensing and trafficking in fungi. FUNGAL BIOL REV 2023; 43:100286. [PMID: 37781717 PMCID: PMC10540271 DOI: 10.1016/j.fbr.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fungal pathogens cause life-threatening diseases in humans, and the increasing prevalence of these diseases emphasizes the need for new targets for therapeutic intervention. Nutrient acquisition during infection is a promising target, and recent studies highlight the contributions of endomembrane trafficking, mitochondria, and vacuoles in the sensing and acquisition of heme by fungi. These studies have been facilitated by genetically encoded biosensors and other tools to quantitate heme in subcellular compartments and to investigate the dynamics of trafficking in living cells. In particular, the applications of biosensors in fungi have been extended beyond the detection of metabolites, cofactors, pH, and redox status to include the detection of heme. Here, we focus on studies that make use of biosensors to examine mechanisms of heme uptake and degradation, with guidance from the model fungus Saccharomyces cerevisiae and an emphasis on the pathogenic fungi Candida albicans and Cryptococcus neoformans that threaten human health. These studies emphasize a role for endocytosis in heme uptake, and highlight membrane contact sites involving mitochondria, the endoplasmic reticulum and vacuoles as mediators of intracellular iron and heme trafficking.
Collapse
Affiliation(s)
- Peng XUE
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy SÁNCHEZ-LEÓN
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Djihane DAMOO
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan HU
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Won Hee JUNG
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - James W. KRONSTAD
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Liang J, Yin H. STAM transports STING oligomers into extracellular vesicles, down-regulating the innate immune response. J Extracell Vesicles 2023; 12:e12316. [PMID: 36946680 PMCID: PMC10032202 DOI: 10.1002/jev2.12316] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Stimulator of interferon genes (STING) mediates the innate immune response against damaged endogenous double-strand DNA and exogenous virus infection. The location of STING is critical to the accurate control of defence signalling pathways. Recently, the effects of extracellular vesicles (EVs) in the regulation of innate immune signalling have been reported. Nevertheless, the particular roles played by STING in EVs and the related mechanisms have remained largely unknown. Herein, we report that when STING was activated in cells, EVs derived from these cells carried STING oligomers. Signal transducing adapter molecule 1 (STAM) was found to be a STING transporter that directly interacted with STING and facilitated STING transport into EVs. Importantly, the translocation of STING into EVs was a mechanism by which STING was degraded, suppressing the innate immune response. In summary, we elucidated the mechanism and function of the translocation of STING into EVs, adding to the understanding of STING activity regulation.
Collapse
Affiliation(s)
- Jiaqi Liang
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Hang Yin
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
- Beijing Advanced Innovation Center for Structural BiologyTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
23
|
The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int J Mol Sci 2023; 24:ijms24021337. [PMID: 36674857 PMCID: PMC9865891 DOI: 10.3390/ijms24021337] [Citation(s) in RCA: 248] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Exosomes are a subtype of membrane-contained vesicles 40-200 nm in diameter that are secreted by cells into their surroundings. By transporting proteins, lipids, mRNA, miRNA, lncRNA, and DNA, exosomes are able to perform such vital functions as maintaining cellular homeostasis, removing cellular debris, and facilitating intercellular and interorgan communication. Exosomes travel in all body fluids and deliver their molecular messages in autocrine, paracrine as well as endocrine manners. In recent years, there has been an increased interest in studying exosomes as diagnostic markers and therapeutic targets, since in many disease conditions this machinery becomes dysregulated or hijacked by pathological processes. Additionally, delivery of exosomes and exosomal miRNA has already been shown to improve systemic metabolism and inhibit progression of cancer development in mice. However, the subcellular machinery of exosomes, including their biogenesis, release and uptake, remains largely unknown. This review will bring molecular details of these processes up to date with the goal of expanding the knowledge basis for designing impactful exosome experiments in the future.
Collapse
|
24
|
Duda JM, Thomas SN. Combination of Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Substrate Trapping for the Detection of Transient Protein Interactions. Methods Mol Biol 2023; 2603:219-234. [PMID: 36370283 PMCID: PMC10567058 DOI: 10.1007/978-1-0716-2863-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibody-based affinity purification is a recognized method for use in studying protein-protein interactions. There are four different classes of proteins that are typically identified with such affinity purification workflows: bait protein, proteins that specifically interact with the bait protein, proteins nonspecifically associated with the antibody, and proteins that cross-react with the antibody. Mass spectrometry can be used to differentiate these classes of proteins in affinity-purified mixtures. Here we describe the use of stable isotope labeling by amino acids in cell culture, substrate trapping, and mass spectrometry to enable the objective identification of the components of affinity-purified protein complexes.
Collapse
Affiliation(s)
- Jolene M Duda
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota College of Biological Sciences, Minneapolis, MN, USA
| | - Stefani N Thomas
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| |
Collapse
|
25
|
Virus Hijacks Host Proteins and Machinery for Assembly and Budding, with HIV-1 as an Example. Viruses 2022; 14:v14071528. [PMID: 35891508 PMCID: PMC9318756 DOI: 10.3390/v14071528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Viral assembly and budding are the final steps and key determinants of the virus life cycle and are regulated by virus–host interaction. Several viruses are known to use their late assembly (L) domains to hijack host machinery and cellular adaptors to be used for the requirement of virus replication. The L domains are highly conserved short sequences whose mutation or deletion may lead to the accumulation of immature virions at the plasma membrane. The L domains were firstly identified within retroviral Gag polyprotein and later detected in structural proteins of many other enveloped RNA viruses. Here, we used HIV-1 as an example to describe how the HIV-1 virus hijacks ESCRT membrane fission machinery to facilitate virion assembly and release. We also introduce galectin-3, a chimera type of the galectin family that is up-regulated by HIV-1 during infection and further used to promote HIV-1 assembly and budding via the stabilization of Alix–Gag interaction. It is worth further dissecting the details and finetuning the regulatory mechanism, as well as identifying novel candidates involved in this final step of replication cycle.
Collapse
|
26
|
McLean JW, Wilson JA, Tian T, Watson JA, VanHart M, Bean AJ, Scherer SS, Crossman DK, Ubogu E, Wilson SM. Disruption of Endosomal Sorting in Schwann Cells Leads to Defective Myelination and Endosomal Abnormalities Observed in Charcot-Marie-Tooth Disease. J Neurosci 2022; 42:5085-5101. [PMID: 35589390 PMCID: PMC9233440 DOI: 10.1523/jneurosci.2481-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Endosomal sorting plays a fundamental role in directing neural development. By altering the temporal and spatial distribution of membrane receptors, endosomes regulate signaling pathways that control the differentiation and function of neural cells. Several genes linked to inherited demyelinating peripheral neuropathies, known as Charcot-Marie-Tooth (CMT) disease, encode proteins that directly interact with components of the endosomal sorting complex required for transport (ESCRT). Our previous studies demonstrated that a point mutation in the ESCRT component hepatocyte growth-factor-regulated tyrosine kinase substrate (HGS), an endosomal scaffolding protein that identifies internalized cargo to be sorted by the endosome, causes a peripheral neuropathy in the neurodevelopmentally impaired teetering mice. Here, we constructed a Schwann cell-specific deletion of Hgs to determine the role of endosomal sorting during myelination. Inactivation of HGS in Schwann cells resulted in motor and sensory deficits, slowed nerve conduction velocities, delayed myelination and hypomyelinated axons, all of which occur in demyelinating forms of CMT. Consistent with a delay in Schwann cell maturation, HGS-deficient sciatic nerves displayed increased mRNA levels for several promyelinating genes and decreased mRNA levels for genes that serve as markers of myelinating Schwann cells. Loss of HGS also altered the abundance and activation of the ERBB2/3 receptors, which are essential for Schwann cell development. We therefore hypothesize that HGS plays a critical role in endosomal sorting of the ERBB2/3 receptors during Schwann cell maturation, which further implicates endosomal dysfunction in inherited peripheral neuropathies.SIGNIFICANCE STATEMENT Schwann cells myelinate peripheral axons, and defects in Schwann cell function cause inherited demyelinating peripheral neuropathies known as CMT. Although many CMT-linked mutations are in genes that encode putative endosomal proteins, little is known about the requirements of endosomal sorting during myelination. In this study, we demonstrate that loss of HGS disrupts the endosomal sorting pathway in Schwann cells, resulting in hypomyelination, aberrant myelin sheaths, and impairment of the ERBB2/3 receptor pathway. These findings suggest that defective endosomal trafficking of internalized cell surface receptors may be a common mechanism contributing to demyelinating CMT.
Collapse
Affiliation(s)
- John W McLean
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Julie A Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Tina Tian
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jennifer A Watson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary VanHart
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Andrew J Bean
- Graduate College, Rush University, Chicago, Illinois 60612
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Eroboghene Ubogu
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Scott M Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
27
|
Retzer K, Moulinier-Anzola J, Lugsteiner R, Konstantinova N, Schwihla M, Korbei B, Luschnig C. Endosomally Localized RGLG-Type E3 RING-Finger Ligases Modulate Sorting of Ubiquitylation-Mimic PIN2. Int J Mol Sci 2022; 23:6767. [PMID: 35743207 PMCID: PMC9224344 DOI: 10.3390/ijms23126767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022] Open
Abstract
Intracellular sorting and the abundance of sessile plant plasma membrane proteins are imperative for sensing and responding to environmental inputs. A key determinant for inducing adjustments in protein localization and hence functionality is their reversible covalent modification by the small protein modifier ubiquitin, which is for example responsible for guiding proteins from the plasma membrane to endosomal compartments. This mode of membrane protein sorting control requires the catalytic activity of E3 ubiquitin ligases, amongst which members of the RING DOMAIN LIGASE (RGLG) family have been implicated in the formation of lysine 63-linked polyubiquitin chains, serving as a prime signal for endocytic vacuolar cargo sorting. Nevertheless, except from some indirect implications for such RGLG activity, no further evidence for their role in plasma membrane protein sorting has been provided so far. Here, by employing RGLG1 reporter proteins combined with assessment of plasma membrane protein localization in a rglg1 rglg2 loss-of-function mutant, we demonstrate a role for RGLGs in cargo trafficking between plasma membrane and endosomal compartments. Specifically, our findings unveil a requirement for RGLG1 association with endosomal sorting compartments for fundamental aspects of plant morphogenesis, underlining a vital importance for ubiquitylation-controlled intracellular sorting processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (K.R.); (J.M.-A.); (R.L.); (N.K.); (M.S.)
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (K.R.); (J.M.-A.); (R.L.); (N.K.); (M.S.)
| |
Collapse
|
28
|
Adashev VE, Bazylev SS, Potashnikova DM, Godneeva BK, Shatskikh AS, Olenkina OM, Olenina LV, Kotov AA. Comparative transcriptional analysis uncovers molecular processes in early and mature somatic cyst cells of Drosophila testes. Eur J Cell Biol 2022; 101:151246. [PMID: 35667338 DOI: 10.1016/j.ejcb.2022.151246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 04/29/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
The tight interaction between somatic and germline cells is conserved in animal spermatogenesis. The testes of Drosophila melanogaster are the model of choice to identify processes responsible for mature gamete production. However, processes of differentiation and soma-germline interactions occurring in somatic cyst cells are currently understudied. Here we focused on the comparison of transcriptome expression patterns of early and mature somatic cyst cells to find out the developmental changes taking place in them. We employed a FACS-based approach for the isolation of early and mature somatic cyst cells from fly testes, subsequent preparation of RNA-Seq libraries, and analysis of gene differential expression in the sorted cells. We found increased expression of genes involved in cell cycle-related processes in early cyst cells, which is necessary for the proliferation and self-renewal of a crucial population of early cyst cells, cyst stem cells. Genes proposedly required for lamellipodium-like projection organization for proper cyst formation were also detected among the upregulated ones in early cyst cells. Gene Ontology and interactome analyses of upregulated genes in mature cyst cells revealed a striking over-representation of gene categories responsible for metabolic and catabolic cellular processes, as well as genes supporting the energetic state of the cells provided by oxidative phosphorylation that is carried out in mitochondria. Our comparative analyses of differentially expressed genes revealed major peculiarities in early and mature cyst cells and provide novel insight into their regulation, which is important for male fertility.
Collapse
Affiliation(s)
- Vladimir E Adashev
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| | - Sergei S Bazylev
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| | - Daria M Potashnikova
- Lomonosov Moscow State University, School of Biology, Department of Cell Biology and Histology, Moscow 119234, Russia.
| | - Baira K Godneeva
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| | - Aleksei S Shatskikh
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| | - Oxana M Olenkina
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| | - Ludmila V Olenina
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| | - Alexei A Kotov
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| |
Collapse
|
29
|
Maccaroni K, La Torre M, Burla R, Saggio I. Phase Separation in the Nucleus and at the Nuclear Periphery during Post-Mitotic Nuclear Envelope Reformation. Cells 2022; 11:1749. [PMID: 35681444 PMCID: PMC9179440 DOI: 10.3390/cells11111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane-enclosed organelle compartmentalization is not the only way by which cell processes are spatially organized. Phase separation is emerging as a new driver in the organization of membrane-less compartments and biological processes. Liquid-liquid phase separation has been indicated as a new way to control the kinetics of molecular reactions and is based on weak multivalent interactions affecting the stoichiometry of the molecules involved. In the nucleus, liquid-liquid phase separation may represent an ancestral means of controlling genomic activity by forming discrete chromatin regions, regulating transcriptional activity, contributing to the assembly of DNA damage response foci, and controlling the organization of chromosomes. Liquid-liquid phase separation also contributes to chromatin function through its role in the reorganization of the nuclear periphery in the post-mitotic phase. Herein, we describe the basic principles regulating liquid-liquid phase separation, analyze examples of phase separation occurring in the nucleus, and dedicate attention to the implication of liquid-liquid phase separation in the reorganization of the nuclear periphery by the endosomal sorting complexes required for transport (ESCRT) machinery. Although some caution is warranted, current scientific knowledge allows for the hypothesis that many factors and processes in the cell are yet to be discovered which are functionally associated with phase separation.
Collapse
Affiliation(s)
- Klizia Maccaroni
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
- Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
30
|
Moonmuang S, Maniratanachote R, Chetprayoon P, Sornsuwan K, Thongkum W, Chupradit K, Tayapiwatana C. Specific Interaction of DARPin with HIV-1 CA NTD Disturbs the Distribution of Gag, RNA Packaging, and Tetraspanin Remodelling in the Membrane. Viruses 2022; 14:v14040824. [PMID: 35458554 PMCID: PMC9025900 DOI: 10.3390/v14040824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
A designed repeat scaffold protein (AnkGAG1D4) recognizing the human immunodeficiency virus-1 (HIV-1) capsid (CA) was formerly established with antiviral assembly. Here, we investigated the molecular mechanism of AnkGAG1D4 function during the late stages of the HIV-1 replication cycle. By applying stimulated emission-depletion (STED) microscopy, Gag polymerisation was interrupted at the plasma membrane. Disturbance of Gag polymerisation triggered Gag accumulation inside producer cells and trapping of the CD81 tetraspanin on the plasma membrane. Moreover, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) experiments were performed to validate the packaging efficiency of RNAs. Our results advocated that AnkGAG1D4 interfered with the Gag precursor protein from selecting HIV-1 and cellular RNAs for encapsidation into viral particles. These findings convey additional information on the antiviral activity of AnkGAG1D4 at late stages of the HIV-1 life cycle, which is potential for an alternative anti-HIV molecule.
Collapse
Affiliation(s)
- Sutpirat Moonmuang
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (K.S.); (W.T.); (K.C.)
- Department of Medical Technology, Division of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rawiwan Maniratanachote
- Toxicology and Bio Evaluation Service Center (TBES), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (R.M.); (P.C.)
| | - Paninee Chetprayoon
- Toxicology and Bio Evaluation Service Center (TBES), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (R.M.); (P.C.)
| | - Kanokporn Sornsuwan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (K.S.); (W.T.); (K.C.)
| | - Weeraya Thongkum
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (K.S.); (W.T.); (K.C.)
- Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Koollawat Chupradit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (K.S.); (W.T.); (K.C.)
- Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chatchai Tayapiwatana
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (K.S.); (W.T.); (K.C.)
- Department of Medical Technology, Division of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
31
|
Banjade S, Zhu L, Jorgensen JR, Suzuki SW, Emr SD. Recruitment and organization of ESCRT-0 and ubiquitinated cargo via condensation. SCIENCE ADVANCES 2022; 8:eabm5149. [PMID: 35363519 PMCID: PMC10938570 DOI: 10.1126/sciadv.abm5149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The general mechanisms by which ESCRTs (Endosomal Sorting Complexes Required for Transport) are specifically recruited to various membranes, and how ESCRT subunits are spatially organized remain central questions in cell biology. At the endosome and lysosomes, ubiquitination of membrane proteins triggers ESCRT-mediated substrate recognition and degradation. Using the yeast lysosome/vacuole, we define the principles by which substrate engagement by ESCRTs occurs at this organelle. We find that multivalent interactions between ESCRT-0 and polyubiquitin are critical for substrate recognition at yeast vacuoles, with a lower-valency requirement for cargo engagement at endosomes. Direct recruitment of ESCRT-0 induces dynamic foci on the vacuole membrane and forms fluid condensates in vitro with polyubiquitin. We propose that self-assembly of early ESCRTs induces condensation, an initial step in ESCRT assembly/nucleation at membranes. This property can be tuned specifically at various organelles by modulating the number of binding interactions.
Collapse
Affiliation(s)
- Sudeep Banjade
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Lu Zhu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jeffrey R. Jorgensen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Sho W. Suzuki
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Scott D. Emr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
32
|
Hou W, Hao Y, Sun L, Zhao Y, Zheng X, Song L. The dual roles of autophagy and the GPCRs-mediating autophagy signaling pathway after cerebral ischemic stroke. Mol Brain 2022; 15:14. [PMID: 35109896 PMCID: PMC8812204 DOI: 10.1186/s13041-022-00899-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke, caused by a lack of blood supply in brain tissues, is the third leading cause of human death and disability worldwide, and usually results in sensory and motor dysfunction, cognitive impairment, and in severe cases, even death. Autophagy is a highly conserved lysosome-dependent process in which eukaryotic cells removal misfolded proteins and damaged organelles in cytoplasm, which is critical for energy metabolism, organelle renewal, and maintenance of intracellular homeostasis. Increasing evidence suggests that autophagy plays important roles in pathophysiological mechanisms under ischemic conditions. However, there are still controversies about whether autophagy plays a neuroprotective or damaging role after ischemia. G-protein-coupled receptors (GPCRs), one of the largest protein receptor superfamilies in mammals, play crucial roles in various physiological and pathological processes. Statistics show that GPCRs are the targets of about one-fifth of drugs known in the world, predicting potential values as targets for drug research. Studies have demonstrated that nutritional deprivation can directly or indirectly activate GPCRs, mediating a series of downstream biological processes, including autophagy. It can be concluded that there are interactions between autophagy and GPCRs signaling pathway, which provides research evidence for regulating GPCRs-mediated autophagy. This review aims to systematically discuss the underlying mechanism and dual roles of autophagy in cerebral ischemia, and describe the GPCRs-mediated autophagy, hoping to probe promising therapeutic targets for ischemic stroke through in-depth exploration of the GPCRs-mediated autophagy signaling pathway.
Collapse
Affiliation(s)
- Weichen Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yang Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Xiangyu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
33
|
Carlin CR. Role of EGF Receptor Regulatory Networks in the Host Response to Viral Infections. Front Cell Infect Microbiol 2022; 11:820355. [PMID: 35083168 PMCID: PMC8785968 DOI: 10.3389/fcimb.2021.820355] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
In this review article, we will first provide a brief overview of EGF receptor (EGFR) structure and function, and its importance as a therapeutic target in epithelial carcinomas. We will then compare what is currently known about canonical EGFR trafficking pathways that are triggered by ligand binding, versus ligand-independent pathways activated by a variety of intrinsic and environmentally induced cellular stresses. Next, we will review the literature regarding the role of EGFR as a host factor with critical roles facilitating viral cell entry and replication. Here we will focus on pathogens exploiting virus-encoded and endogenous EGFR ligands, as well as EGFR-mediated trafficking and signaling pathways that have been co-opted by wild-type viruses and recombinant gene therapy vectors. We will also provide an overview of a recently discovered pathway regulating non-canonical EGFR trafficking and signaling that may be a common feature of viruses like human adenoviruses which signal through p38-mitogen activated protein kinase. We will conclude by discussing the emerging role of EGFR signaling in innate immunity to viral infections, and how viral evasion mechanisms are contributing to our understanding of fundamental EGFR biology.
Collapse
Affiliation(s)
- Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Cathleen R. Carlin,
| |
Collapse
|
34
|
Wang X, Wang D, Wang Q, Huang W, Dongye M, Zhang X, Lin D, Lin Z, Li J, Hu W, Li X, Lin X, Zhong Q, Chen W, Lin H. Broadening the Mutation Spectrum in GJA8 and CHMP4B: Novel Missense Variants and the Associated Phenotypes in Six Chinese Han Congenital Cataracts Families. Front Med (Lausanne) 2021; 8:713284. [PMID: 34722561 PMCID: PMC8554029 DOI: 10.3389/fmed.2021.713284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To broaden the mutation and phenotype spectrum of the GJA8 and CHMP4B genes and to reveal genotype-phenotype correlations in a cohort of Chinese patients with congenital cataracts (CCs). Methods: Six Chinese Han families with CCs inherited in an autosomal dominant (AD) pattern were recruited for this study. All patients underwent full ocular examinations. Genomic DNA was extracted from the leukocytes of peripheral blood collected from all available patients and their unaffected family members. Whole-exome sequencing (WES) was performed on all probands and at least one of their parents. Candidate variants were further confirmed by Sanger sequencing. Bioinformatic analysis with several computational predictive programs was performed to assess the impacts of the candidate variants on the structure and function of the proteins. Results: Four heterozygous candidate variants in three different genes (CRYBB2, GJA8, and CHMP4B) were identified in affected individuals from the six families, including two novel missense variants (GJA8: c.64G > C/p. G22R, and CHMP4B: c.587C > G/p. S196C), one missense mutation (CRYBB2: c.562C > T/p. R188C), and one small deletion (GJA8: c.426_440delGCTGGAGGGGACCCT/p.143_147delLEGTL). The three missense mutations were predicted as deleterious in all four computational prediction programs. In the homologous model, the GJA8: p.143_147delLEGTL mutation showed a sequence deletion of five amino acids at the cytoplasmic loop of the Cx50 protein, close to the third transmembrane domain. Patients carrying mutations in the same gene showed similar cataract phenotypes at a young age, including total cataracts, Y-sutural with fetal nuclear cataracts, and subcapsular cataracts. Conclusion: This study further expands the mutation spectrum and genotype-phenotype correlation of CRYBB2, GJA8, and CHMP4B underlying CCs. This study sheds light on the importance of comparing congenital cataract phenotypes in patients at the same age stage. It offers clues for the pathogenesis of CCs and allows for an early prenatal diagnosis for families carrying these genetic variants.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dongni Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qiwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Weiming Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Meimei Dongye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xulin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Duoru Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhuoling Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Weiling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qiuping Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Agaoua A, Bendahmane A, Moquet F, Dogimont C. Membrane Trafficking Proteins: A New Target to Identify Resistance to Viruses in Plants. PLANTS 2021; 10:plants10102139. [PMID: 34685948 PMCID: PMC8541145 DOI: 10.3390/plants10102139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Replication cycles from most simple-stranded positive RNA viruses infecting plants involve endomembrane deformations. Recent published data revealed several interactions between viral proteins and plant proteins associated with vesicle formation and movement. These plant proteins belong to the COPI/II, SNARE, clathrin and ESCRT endomembrane trafficking mechanisms. In a few cases, variations of these plant proteins leading to virus resistance have been identified. In this review, we summarize all known interactions between these plant cell mechanisms and viruses and highlight strategies allowing fast identification of variant alleles for membrane-associated proteins.
Collapse
Affiliation(s)
- Aimeric Agaoua
- INRAE Génétique et Amélioration des Fruits et Légumes (GAFL), 84140 Montfavet, France;
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences-Paris-Saclay (IPS2), Université Paris-Saclay, INRAE, CNRS, Univ Evry, 91405 Orsay, France;
| | | | - Catherine Dogimont
- INRAE Génétique et Amélioration des Fruits et Légumes (GAFL), 84140 Montfavet, France;
- Correspondence:
| |
Collapse
|
36
|
Yu X, Qu C, Ke L, Tong Z, Li W. Step-by-Step Construction of Gene Co-Expression Network Analysis for Identifying Novel Biomarkers of Sepsis Occurrence and Progression. Int J Gen Med 2021; 14:6047-6057. [PMID: 34594129 PMCID: PMC8478343 DOI: 10.2147/ijgm.s328076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background Sepsis is the leading cause of death in critically ill patients. Although it is well known that the immune system plays a key role in sepsis, exactly how it works remains unknown. Methods In our study, we used weighted gene co-expression network analysis (WGCNA) to screen out the immune-related genes that may play a critical role in the process of sepsis. Results A total of three sepsis-related hub genes were screened for further verification. Subsequent analysis of immune subtypes suggested their potential predictive effect in the clinic. Conclusion Our study shows that three immune-related genes CHMP1A, MED15 and MGAT1 are important biomarkers of sepsis. The screened genes may help to distinguish normal individuals from patients with different degrees of sepsis.
Collapse
Affiliation(s)
- Xianqiang Yu
- Medical School, Southeast University, Nanjing, People's Republic of China
| | - Cheng Qu
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Lu Ke
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Zhihui Tong
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Weiqin Li
- Medical School, Southeast University, Nanjing, People's Republic of China.,Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
37
|
Mahalakshmi K, Parimalanandhini D, Sangeetha R, Livya Catherene M, Beulaja M, Thiagarajan R, Arumugam M, Janarthanan S, Manikandan R. Influential role of 7-Ketocholesterol in the progression of Alzheimer's disease. Prostaglandins Other Lipid Mediat 2021; 156:106582. [PMID: 34273491 DOI: 10.1016/j.prostaglandins.2021.106582] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Millions of people are affected by neurodegenerative diseases worldwide. They occur due to the loss of brain functions or peripheral nervous system dysfunction. If untreated, prolonged condition ultimately leads to death. Mostly they are associated with stress, altered cholesterol metabolism, inflammation and organelle dysfunction. Endogenous cholesterol and phospholipids in brain undergo auto-oxidation by enzymatic as well as non-enzymatic modes leading to the formation of by-products such as 4-hydroxynonenal and oxysterols. Among various oxysterols, 7-ketocholesterol (7KCh) is one of the major toxic components involved in altering neuronal lipid metabolism, contributing to inflammation and nerve cell damage. More evidently 7KCh is proven to induce oxidative stress and affects membrane permeability. Loss in mitochondrial membrane potential affects metabolism of cell organelles such as lysosomes and peroxisomes which are involved in lipid and protein homeostasis. This in turn could affect amyloidogenesis, tau protein phosphorylation and accumulation in pathological conditions of neurodegenerative diseases. Lipid alterations and the consequent pathogenic protein accumulation, results in the damage of cell organelles and microglial cells. This could be a reason behind disease progression and predominantly reported characteristics of neurodegenerative disorders such as Alzheimer's disease. This review focuses on the role of 7KCh mediated neurodegenerative Alzheimer's disease with emphasis on alterations in the lipid raft microdomain. In addition, current trends in the significant therapies related to 7KCh inhibition are highlighted.
Collapse
Affiliation(s)
- K Mahalakshmi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - D Parimalanandhini
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - R Sangeetha
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - M Livya Catherene
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - M Beulaja
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai, 600 015, India
| | - R Thiagarajan
- Department of Advanced Zoology and Biotechnology, Ramakrishna Mission, Vivekananda College, Chennai, 600 004, India
| | - M Arumugam
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - S Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - R Manikandan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India.
| |
Collapse
|
38
|
Schuler MH, English AM, Xiao T, Campbell TJ, Shaw JM, Hughes AL. Mitochondrial-derived compartments facilitate cellular adaptation to amino acid stress. Mol Cell 2021; 81:3786-3802.e13. [PMID: 34547239 PMCID: PMC8513802 DOI: 10.1016/j.molcel.2021.08.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/23/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Amino acids are essential building blocks of life. However, increasing evidence suggests that elevated amino acids cause cellular toxicity associated with numerous metabolic disorders. How cells cope with elevated amino acids remains poorly understood. Here, we show that a previously identified cellular structure, the mitochondrial-derived compartment (MDC), functions to protect cells from amino acid stress. In response to amino acid elevation, MDCs are generated from mitochondria, where they selectively sequester and deplete SLC25A nutrient carriers and their associated import receptor Tom70 from the organelle. Generation of MDCs promotes amino acid catabolism, and their formation occurs simultaneously with transporter removal at the plasma membrane via the multivesicular body (MVB) pathway. The combined loss of vacuolar amino acid storage, MVBs, and MDCs renders cells sensitive to high amino acid stress. Thus, we propose that MDCs operate as part of a coordinated cell network that facilitates amino acid homeostasis through post-translational nutrient transporter remodeling.
Collapse
Affiliation(s)
- Max-Hinderk Schuler
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Alyssa M English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Tianyao Xiao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Thane J Campbell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Janet M Shaw
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam L Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
39
|
The Role of Exosome and the ESCRT Pathway on Enveloped Virus Infection. Int J Mol Sci 2021; 22:ijms22169060. [PMID: 34445766 PMCID: PMC8396519 DOI: 10.3390/ijms22169060] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) system consists of peripheral membrane protein complexes ESCRT-0, -I, -II, -III VPS4-VTA1, and ALIX homodimer. This system plays an important role in the degradation of non-essential or dangerous plasma membrane proteins, the biogenesis of lysosomes and yeast vacuoles, the budding of most enveloped viruses, and promoting membrane shedding of cytokinesis. Recent results show that exosomes and the ESCRT pathway play important roles in virus infection. This review mainly focuses on the roles of exosomes and the ESCRT pathway in virus assembly, budding, and infection of enveloped viruses. The elaboration of the mechanism of exosomes and the ESCRT pathway in some enveloped viruses provides important implications for the further study of the infection mechanism of other enveloped viruses.
Collapse
|
40
|
Hovhannisyan L, Czechowska E, Gutowska-Owsiak D. The Role of Non-Immune Cell-Derived Extracellular Vesicles in Allergy. Front Immunol 2021; 12:702381. [PMID: 34489951 PMCID: PMC8417238 DOI: 10.3389/fimmu.2021.702381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), and especially exosomes, have been shown to mediate information exchange between distant cells; this process directly affects the biological characteristics and functionality of the recipient cell. As such, EVs significantly contribute to the shaping of immune responses in both physiology and disease states. While vesicles secreted by immune cells are often implicated in the allergic process, growing evidence indicates that EVs from non-immune cells, produced in the stroma or epithelia of the organs directly affected by inflammation may also play a significant role. In this review, we provide an overview of the mechanisms of allergy to which those EVs contribute, with a particular focus on small EVs (sEVs). Finally, we also give a clinical perspective regarding the utilization of the EV-mediated communication route for the benefit of allergic patients.
Collapse
Affiliation(s)
- Lilit Hovhannisyan
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdansk, Poland
| | - Ewa Czechowska
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Danuta Gutowska-Owsiak
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Zanin N, Viaris de Lesegno C, Lamaze C, Blouin CM. Interferon Receptor Trafficking and Signaling: Journey to the Cross Roads. Front Immunol 2021; 11:615603. [PMID: 33552080 PMCID: PMC7855707 DOI: 10.3389/fimmu.2020.615603] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Like most plasma membrane proteins, type I interferon (IFN) receptor (IFNAR) traffics from the outer surface to the inner compartments of the cell. Long considered as a passive means to simply control subunits availability at the plasma membrane, an array of new evidence establishes IFNAR endocytosis as an active contributor to the regulation of signal transduction triggered by IFN binding to IFNAR. During its complex journey initiated at the plasma membrane, the internalized IFNAR complex, i.e. IFNAR1 and IFNAR2 subunits, will experience post-translational modifications and recruit specific effectors. These finely tuned interactions will determine not only IFNAR subunits destiny (lysosomal degradation vs. plasma membrane recycling) but also the control of IFN-induced signal transduction. Finally, the IFNAR system perfectly illustrates the paradigm of the crosstalk between membrane trafficking and intracellular signaling. Investigating the complexity of IFN receptor intracellular routes is therefore necessary to reveal new insight into the role of IFNAR membrane dynamics in type I IFNs signaling selectivity and biological activity.
Collapse
Affiliation(s)
- Natacha Zanin
- NDORMS, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Christine Viaris de Lesegno
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Christophe Lamaze
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Cedric M Blouin
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| |
Collapse
|
42
|
Biogenesis of Fungal Extracellular Vesicles: What Do We Know? Curr Top Microbiol Immunol 2021; 432:1-11. [DOI: 10.1007/978-3-030-83391-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Horváth P, Müller-Reichert T. A Structural View on ESCRT-Mediated Abscission. Front Cell Dev Biol 2020; 8:586880. [PMID: 33240884 PMCID: PMC7680848 DOI: 10.3389/fcell.2020.586880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/16/2020] [Indexed: 11/25/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) mediates cellular processes that are related to membrane remodeling, such as multivesicular body (MVB) formation, viral budding and cytokinesis. Abscission is the final stage of cytokinesis that results in the physical separation of the newly formed two daughter cells. Although abscission has been investigated for decades, there are still fundamental open questions related to the spatio-temporal organization of the molecular machinery involved in this process. Reviewing knowledge obtained from in vitro as well as in vivo experiments, we give a brief overview on the role of ESCRT components in abscission mainly focussing on mammalian cells.
Collapse
Affiliation(s)
- Péter Horváth
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
44
|
Kaji I, Roland JT, Watanabe M, Engevik AC, Goldstein AE, Hodges CA, Goldenring JR. Lysophosphatidic Acid Increases Maturation of Brush Borders and SGLT1 Activity in MYO5B-deficient Mice, a Model of Microvillus Inclusion Disease. Gastroenterology 2020; 159:1390-1405.e20. [PMID: 32534933 PMCID: PMC8240502 DOI: 10.1053/j.gastro.2020.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIM Myosin VB (MYO5B) is an essential trafficking protein for membrane recycling in gastrointestinal epithelial cells. The inactivating mutations of MYO5B cause the congenital diarrheal disease, microvillus inclusion disease (MVID). MYO5B deficiency in mice causes mislocalization of SGLT1 and NHE3, but retained apical function of CFTR, resulting in malabsorption and secretory diarrhea. Activation of lysophosphatidic acid (LPA) receptors can improve diarrhea, but the effect of LPA on MVID symptoms is unclear. We investigated whether LPA administration can reduce the epithelial deficits in MYO5B-knockout mice. METHODS Studies were conducted with tamoxifen-induced, intestine-specific knockout of MYO5B (VilCreERT2;Myo5bflox/flox) and littermate controls. Mice were given LPA, an LPAR2 agonist (GRI977143), or vehicle for 4 days after a single injection of tamoxifen. Apical SGLT1 and CFTR activities were measured in Üssing chambers. Intestinal tissues were collected, and localization of membrane transporters was evaluated by immunofluorescence analysis in tissue sections and enteroids. RNA sequencing and enrichment analysis were performed with isolated jejunal epithelial cells. RESULTS Daily administration of LPA reduced villus blunting, frequency of multivesicular bodies, and levels of cathepsins in intestinal tissues of MYO5B-knockout mice compared with vehicle administration. LPA partially restored the brush border height and the localization of SGLT1 and NHE3 in small intestine of MYO5B-knockout mice and enteroids. The SGLT1-dependent short-circuit current was increased and abnormal CFTR activities were decreased in jejunum from MYO5B-knockout mice given LPA compared with vehicle. CONCLUSIONS LPA may regulate a MYO5B-independent trafficking mechanism and brush border maturation, and therefore be developed for treatment of MVID.
Collapse
Affiliation(s)
- Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Joseph T. Roland
- Section of Surgical Sciences, Vanderbilt University Medical Center, Sapporo, Japan,Epithelial Biology Center, Vanderbilt University School of Medicine, Sapporo, Japan
| | | | - Amy C. Engevik
- Section of Surgical Sciences, Vanderbilt University Medical Center, Sapporo, Japan,Epithelial Biology Center, Vanderbilt University School of Medicine, Sapporo, Japan
| | - Anna E. Goldstein
- Section of Surgical Sciences, Vanderbilt University Medical Center, Sapporo, Japan,Epithelial Biology Center, Vanderbilt University School of Medicine, Sapporo, Japan
| | - Craig A. Hodges
- Cystic Fibrosis Mouse Models Resource Center, Case Western Reserve University, Cleveland, OH
| | - James R. Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Sapporo, Japan,Epithelial Biology Center, Vanderbilt University School of Medicine, Sapporo, Japan,Cell and Developmental Biology, Vanderbilt University School of Medicine, Sapporo, Japan,Nashville Veterans Affairs Medical Center, Nashville TN
| |
Collapse
|
45
|
West RJH, Ugbode C, Fort-Aznar L, Sweeney ST. Neuroprotective activity of ursodeoxycholic acid in CHMP2B Intron5 models of frontotemporal dementia. Neurobiol Dis 2020; 144:105047. [PMID: 32801000 PMCID: PMC7491204 DOI: 10.1016/j.nbd.2020.105047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is one of the most prevalent forms of early-onset dementia. It represents part of the FTD-Amyotrophic Lateral Sclerosis (ALS) spectrum, a continuum of genetically and pathologically overlapping disorders. FTD-causing mutations in CHMP2B, a gene encoding a core component of the heteromeric ESCRT-III Complex, lead to perturbed endosomal-lysosomal and autophagic trafficking with impaired proteostasis. While CHMP2B mutations are rare, dysfunctional endosomal-lysosomal signalling is common across the FTD-ALS spectrum. Using our established Drosophila and mammalian models of CHMP2BIntron5 induced FTD we demonstrate that the FDA-approved compound Ursodeoxycholic Acid (UDCA) conveys neuroprotection, downstream of endosomal-lysosomal dysfunction in both Drosophila and primary mammalian neurons. UDCA exhibited a dose dependent rescue of neuronal structure and function in Drosophila pan-neuronally expressing CHMP2BIntron5. Rescue of CHMP2BIntron5 dependent dendritic collapse and apoptosis with UDCA in rat primary neurons was also observed. UDCA failed to ameliorate aberrant accumulation of endosomal and autophagic organelles or ubiquitinated neuronal inclusions in both models. We demonstrate the neuroprotective activity of UDCA downstream of endosomal-lysosomal and autophagic dysfunction, delineating the molecular mode of action of UDCA and highlighting its potential as a therapeutic for the treatment of FTD-ALS spectrum disorders.
Collapse
Affiliation(s)
- Ryan J H West
- Sheffield Institute for Translational Neuroscience, University of Sheffield, S10 2HQ, UK; Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Chris Ugbode
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
46
|
OTUD4 enhances TGFβ signalling through regulation of the TGFβ receptor complex. Sci Rep 2020; 10:15725. [PMID: 32973272 PMCID: PMC7519109 DOI: 10.1038/s41598-020-72791-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/02/2020] [Indexed: 11/18/2022] Open
Abstract
Systematic control of the transforming growth factor-β (TGFβ) pathway is essential to keep the amplitude and the intensity of downstream signalling at appropriate levels. Ubiquitination plays a crucial role in the general regulation of this pathway. Here we identify the deubiquitinating enzyme OTUD4 as a transcriptional target of the TGFβ pathway that functions through a positive feedback loop to enhance overall TGFβ activity. Interestingly we demonstrate that OTUD4 functions through both catalytically dependent and independent mechanisms to regulate TGFβ activity. Specifically, we find that OTUD4 enhances TGFβ signalling by promoting the membrane presence of TGFβ receptor I. Furthermore, we demonstrate that OTUD4 inactivates the TGFβ negative regulator SMURF2 suggesting that OTUD4 regulates multiple nodes of the TGFβ pathway to enhance TGFβ activity.
Collapse
|
47
|
Daussy CF, Wodrich H. "Repair Me if You Can": Membrane Damage, Response, and Control from the Viral Perspective. Cells 2020; 9:cells9092042. [PMID: 32906744 PMCID: PMC7564661 DOI: 10.3390/cells9092042] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cells are constantly challenged by pathogens (bacteria, virus, and fungi), and protein aggregates or chemicals, which can provoke membrane damage at the plasma membrane or within the endo-lysosomal compartments. Detection of endo-lysosomal rupture depends on a family of sugar-binding lectins, known as galectins, which sense the abnormal exposure of glycans to the cytoplasm upon membrane damage. Galectins in conjunction with other factors orchestrate specific membrane damage responses such as the recruitment of the endosomal sorting complex required for transport (ESCRT) machinery to either repair damaged membranes or the activation of autophagy to remove membrane remnants. If not controlled, membrane damage causes the release of harmful components including protons, reactive oxygen species, or cathepsins that will elicit inflammation. In this review, we provide an overview of current knowledge on membrane damage and cellular responses. In particular, we focus on the endo-lysosomal damage triggered by non-enveloped viruses (such as adenovirus) and discuss viral strategies to control the cellular membrane damage response. Finally, we debate the link between autophagy and inflammation in this context and discuss the possibility that virus induced autophagy upon entry limits inflammation.
Collapse
|
48
|
Gireud-Goss M, Reyes S, Tewari R, Patrizz A, Howe MD, Kofler J, Waxham MN, McCullough LD, Bean AJ. The ubiquitin ligase UBE4B regulates amyloid precursor protein ubiquitination, endosomal trafficking, and amyloid β42 generation and secretion. Mol Cell Neurosci 2020; 108:103542. [PMID: 32841720 DOI: 10.1016/j.mcn.2020.103542] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023] Open
Abstract
The extracellular accumulation of amyloid β (Aβ) fragments of amyloid precursor protein (APP) in brain parenchyma is a pathological hallmark of Alzheimer's disease (AD). APP can be cleaved into Aβ on late endosomes/multivesicular bodies (MVBs). E3 ubiquitin ligases have been linked to Aβ production, but specific E3 ligases associated with APP ubiquitination that may affect targeting of APP to endosomes have not yet been described. Using cultured cortical neurons isolated from rat pups, we reconstituted APP movement into the internal vesicles (ILVs) of MVBs. Loss of endosomal sorting complexes required for transport (ESCRT) components inhibited APP movement into ILVs and increased endosomal Aβ42 generation, implying a requirement for APP ubiquitination. We identified an ESCRT-binding and APP-interacting endosomal E3 ubiquitin ligase, ubiquitination factor E4B (UBE4B) that regulates APP ubiquitination. Depleting UBE4B in neurons inhibited APP ubiquitination and internalization into MVBs, resulting in increased endosomal Aβ42 levels and increased neuronal secretion of Aβ42. When we examined AD brains, we found levels of the UBE4B-interacting ESCRT component, hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), were significantly decreased in AD brains. These data suggest that ESCRT components critical for membrane protein sorting in the endocytic pathway are altered in AD. These results indicate that the molecular machinery underlying endosomal trafficking of APP, including the ubiquitin ligase UBE4B, regulates Aβ levels and may play an essential role in AD progression.
Collapse
Affiliation(s)
- Monica Gireud-Goss
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, United States of America; The M.D. Anderson/UTHealth Graduate School of Biomedical Sciences at Houston, United States of America; Department of Neurology McGovern Medical School at The University of Texas Health Science Center at Houston, United States of America
| | - Sahily Reyes
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, United States of America; The M.D. Anderson/UTHealth Graduate School of Biomedical Sciences at Houston, United States of America
| | - Ritika Tewari
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, United States of America
| | - Anthony Patrizz
- The M.D. Anderson/UTHealth Graduate School of Biomedical Sciences at Houston, United States of America; Department of Neurology McGovern Medical School at The University of Texas Health Science Center at Houston, United States of America
| | - Matthew D Howe
- The M.D. Anderson/UTHealth Graduate School of Biomedical Sciences at Houston, United States of America; Department of Neurology McGovern Medical School at The University of Texas Health Science Center at Houston, United States of America
| | - Julia Kofler
- Division of Neuropathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, United States of America
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, United States of America
| | - Louise D McCullough
- The M.D. Anderson/UTHealth Graduate School of Biomedical Sciences at Houston, United States of America; Department of Neurology McGovern Medical School at The University of Texas Health Science Center at Houston, United States of America
| | - Andrew J Bean
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, United States of America; The M.D. Anderson/UTHealth Graduate School of Biomedical Sciences at Houston, United States of America; Department of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States of America; Rush University Graduate College, Chicago, IL 60612, United States of America.
| |
Collapse
|
49
|
Kornitzer D, Roy U. Pathways of heme utilization in fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118817. [PMID: 32777371 DOI: 10.1016/j.bbamcr.2020.118817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Iron acquisition is challenging in most environments. As an alternative to elemental iron, organisms can take up iron-protoporphyrin IX, or heme. Heme can be found in decaying organic matter and is particularly prevalent in animal hosts. Fungi have evolved at least three distinct endocytosis-mediated heme uptake systems, which have been studied in detail in the organisms Candida albicans, Cryptococcus neoformans and Schizosaccharomyces pombe. Here we summarize the known molecular details of these three uptake systems that enable parasitic and saprophytic fungi to take advantage of external heme as either cellular iron or heme sources.
Collapse
Affiliation(s)
- Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Udita Roy
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
50
|
Mohan A, Agarwal S, Clauss M, Britt NS, Dhillon NK. Extracellular vesicles: novel communicators in lung diseases. Respir Res 2020; 21:175. [PMID: 32641036 PMCID: PMC7341477 DOI: 10.1186/s12931-020-01423-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The lung is the organ with the highest vascular density in the human body. It is therefore perceivable that the endothelium of the lung contributes significantly to the circulation of extracellular vesicles (EVs), which include exosomes, microvesicles, and apoptotic bodies. In addition to the endothelium, EVs may arise from alveolar macrophages, fibroblasts and epithelial cells. Because EVs harbor cargo molecules, such as miRNA, mRNA, and proteins, these intercellular communicators provide important insight into the health and disease condition of donor cells and may serve as useful biomarkers of lung disease processes. This comprehensive review focuses on what is currently known about the role of EVs as markers and mediators of lung pathologies including COPD, pulmonary hypertension, asthma, lung cancer and ALI/ARDS. We also explore the role EVs can potentially serve as therapeutics for these lung diseases when released from healthy progenitor cells, such as mesenchymal stem cells.
Collapse
Affiliation(s)
- Aradhana Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Matthias Clauss
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicholas S Britt
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Lawrence, Kansas, USA.,Division of Infectious Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA. .,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|