1
|
Tabassum H, Maity A, Singh K, Bagchi D, Nath P, Kumar N, Choudhury S, Vishwakarma S, Chakraborty A. Elucidating Antibody Conjugation and Orientation Dynamics on Phenylalanine-Functionalized Gold Nanoparticles: The Role of Lipid Coating and Other Physiological Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40384431 DOI: 10.1021/acs.langmuir.5c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Gold nanoparticles (AuNPs) functionalized with antibodies offer significant potential to advance biomedical applications due to their unique optical properties and the specificity of antibody-antigen interactions. A critical aspect of optimizing these AuNP-based systems is the effective adsorption of antibodies on the nanoparticle surface. Recent research has focused on developing new strategies to enhance antibody loading and orientation, with the aim of improving antibody activity. However, the lack of robust analytical methods for accurately quantifying the activity of conjugated antibodies and comparing immobilization strategies remains a significant challenge. Herein, for the first time, we describe the effect of DPPC and DOPC lipid coatings on the interaction of phenylalanine functionalized gold nanoparticles (AuPhe NPs) with immunoglobulin G (IgG) antibody under varying pH (∼6, 7.4, and 9) and buffer systems (HEPES and phosphate). Using several techniques, we reveal the superior performance of lipid-coated AuPhe NPs, particularly those coated with DPPC, compared to native AuPhe NPs in terms of stability, antigen-binding activity, and antibody orientation. Between the two different buffer systems, antibody adsorption on AuPhe NPs is significantly higher in the zwitterionic buffer (HEPES) compared to the negatively charged phosphate buffer. Furthermore, at lower pH, native AuPhe NPs and DOPC-coated AuPhe NPs undergo aggregation, and DPPC-coated AuPhe NPs remain stable. Considering the vital role of lipid coatings under varying physiological conditions, we propose that lipid-coated AuPhe NPs serve as robust platforms for diverse biomedical applications, ensuring enhanced stability and efficiency in antibody-mediated processes.
Collapse
Affiliation(s)
- Huma Tabassum
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Avijit Maity
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Krishna Singh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Debanjan Bagchi
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Priyanka Nath
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Suman Choudhury
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Sachin Vishwakarma
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Anjan Chakraborty
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
2
|
Alemán OR, Blanco-Camarillo C, Naranjo-Pinto N, Mora N, Rosales C. Fc gamma receptors activate different protein kinase C isoforms in human neutrophils. J Leukoc Biol 2025; 117:qiaf019. [PMID: 39946245 DOI: 10.1093/jleuko/qiaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/03/2024] [Accepted: 02/11/2025] [Indexed: 04/26/2025] Open
Abstract
Receptors for FcγR on human neutrophils constitute an important mechanism for the recognition of opsonized microorganisms and for cell activation. Human neutrophils express 2 FcγR: FcγRIIa and FcγRIIIb. Previously, it has been reported that activation of each FcγR induces different neutrophil responses by triggering distinct signal transduction pathways, although what particular signal transduction pathway is triggered by each FcγR has not been completely elucidated. It has also been reported that PKC is important for FcγR signaling and that each FcγR may activate different PKC isoforms. Therefore, we explored whether FcγRIIa or FcγRIIIb activates different PKC isoforms in human neutrophils and whether activation of these PKC isoforms results in different neutrophil responses. Hence, either FcγRIIa or FcγRIIIb was selectively cross-linked by monoclonal antibodies in the presence or absence of pharmacological inhibitors for various PKC isoforms. Inhibition of PKCα or PKCδ blocked FcγRIIa-induced reactive oxygen species productions. In contrast, inhibition of PKCα and/or PKCβ blocked FcγRIIIb-induced reactive oxygen species production. Also, inhibition of all PKC isoforms did not affect the FcγRIIa-induced increase in intracellular calcium concentration ([Ca2+]i), while inhibition of PKCα blocked FcγRIIIb-induced increase in [Ca2+]i. Additionally, inhibition of PKCδ blocked FcγRIIa-induced ERK phosphorylation, while inhibition of PKCα prevented FcγRIIIb-induced ERK phosphorylation. These results suggest that both FcγRIIa and FcγRIIIb activate unique PKC isoforms and that activation of these PKC isoforms can selectively regulate different neutrophil functions. These findings also reinforce the idea that each FcγR in human neutrophils triggers distinct signal transduction pathways.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Carlos Blanco-Camarillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado Edificio D primer piso, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Nathalia Naranjo-Pinto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Nancy Mora
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
Kang Y, Kim DS, Hwang H, Kim Y, Seo YJ, Hinterdorfer P, Ko K. Plant-derived recombinant macromolecular PAP-IgG Fc as a novel prostate cancer vaccine candidate eliciting robust immune responses. Transgenic Res 2025; 34:16. [PMID: 40140219 DOI: 10.1007/s11248-025-00433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025]
Abstract
Prostatic acid phosphatase (PAP) is a specific protein that is highly expressed in prostate cancer. In this study, we constructed two recombinant PAP fusion genes: PAP fused to the immunoglobulin G (IgG) Fc fragment (designated PAP-Fc) and PAP-Fc fused to the endoplasmic reticulum retention sequence KDEL (designated PAP-FcK). Transgenic Nicotiana tabacum plants expressing these recombinant macromolecular proteins (MPs) were generated using Agrobacterium-mediated transformation, and the presence of both genes was confirmed through genomic PCR. Western blot analysis validated the expression of PAP-Fc and PAP-FcK MPs, which were successfully purified via protein A affinity chromatography. Size-exclusion high-performance liquid chromatography revealed dimeric peaks for PAP-Fc (PAP-FcP) and PAP-FcK (PAP-FcKP). Bio-transmission electron microscopy demonstrated 'Y'-shaped protein particles resembling antibody structures. Moreover, PAP-FcP and PAP-FcKP exhibited a high association rate with human FcγR and FcRn. Vaccination of mice with both PAP-FcP and PAP-FcKP resulted in increased total IgG against PAP and enhanced activation of CD4+ T cells, comparable to mice immunized with PAP, which served as a positive control. These findings indicate that both plant-derived MPs can effectively induce adaptive immunity, positioning them as promising candidates for prostate cancer vaccines. Overall, plants expressing PAP-Fc and PAP-FcK represent a viable production system for antigenic macromolecule-based prostate cancer vaccines.
Collapse
Affiliation(s)
- Yangjoo Kang
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea
| | - Deuk-Su Kim
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea
| | - Hyunjoo Hwang
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea
| | - Yerin Kim
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Peter Hinterdorfer
- Department of Applied Experimental Biophysics, Johannes Kepler University Linz, 4040, Linz, Austria
| | - Kisung Ko
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea.
| |
Collapse
|
4
|
An H, Huang Y, Zhao Z, Li K, Meng J, Huang X, Tian X, Zhou H, Wu J, Dai Q, Zhang JR. Splenic red pulp macrophages eliminate the liver-resistant Streptococcus pneumoniae from the blood circulation of mice. SCIENCE ADVANCES 2025; 11:eadq6399. [PMID: 40073120 PMCID: PMC11900858 DOI: 10.1126/sciadv.adq6399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Invasive infections by encapsulated bacteria are the major cause of human morbidity and mortality. The liver resident macrophages, Kupffer cells, form the hepatic firewall to clear many encapsulated bacteria in the blood circulation but fail to control certain high-virulence capsule types. Here we report that the spleen is the backup immune organ to clear the liver-resistant serotypes of Streptococcus pneumoniae (pneumococcus), a leading human pathogen. Asplenic mice failed to control the growth of the liver-resistant pneumococci in the blood circulation. Immunologic and genetic analyses identified splenic red pulp (RP) macrophages as the major phagocytes for bacterial clearance. Furthermore, the plasma natural antibodies against the cell wall phosphocholine and the complement system were necessary for RP macrophage-mediated immunity. These findings have provided a conceptual framework for the innate defense against blood bacterial infections, a mechanistic explanation for the hyper-susceptibility of asplenic individuals to S. pneumoniae, and a proof of concept for developing vaccines and therapeutic antibodies against encapsulated pathogens.
Collapse
Affiliation(s)
- Haoran An
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing 100191, China
- Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yijia Huang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhifeng Zhao
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Kunpeng Li
- Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jingjing Meng
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Xueting Huang
- Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xianbin Tian
- Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Hongyu Zhou
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jing-Ren Zhang
- Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
Nikkhoi SK, Li G, Hatefi A. Natural killer cell engagers for cancer immunotherapy. Front Oncol 2025; 14:1483884. [PMID: 39911822 PMCID: PMC11794116 DOI: 10.3389/fonc.2024.1483884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
This review article explores the rapidly evolving field of bi-, tri-, and multi-specific NK cell engagers (NKCEs), highlighting their potential as a cutting-edge approach in cancer immunotherapy. NKCEs offer a significant advancement over conventional monoclonal antibodies (mAbs) by enhancing Antibody-Dependent Cellular Cytotoxicity (ADCC). They achieve this by stably and selectively binding to both NK cell activating receptors and tumor-associated antigens (TAAs). Unlike traditional mAbs, which depend on the relatively transient interaction between their Fc region and CD16a, NKCEs establish more robust connections with a range of activating receptors (e.g., CD16a, NKG2D, NKp30, NKp46, NKG2C) and inhibitory receptors (e.g., Siglec-7) on NK cells, thereby increasing cancer cell killing efficacy and specificity. This review article critically examines the strategies for engineering bi-, tri-, and multi-specific NKCEs for cancer immunotherapy, providing an in-depth analysis of the latest advancements in NKCE platform technologies currently under development by pharmaceutical and biotech companies and discussing the preclinical and clinical progress of these products. While NKCEs show great promise, the review underscores the need for continued research to optimize their therapeutic efficacy and to overcome obstacles related to NK cell functionality in cancer patients. Ultimately, this article presents an overview of the current landscape and future prospects of NKCE-based cancer immunotherapy, emphasizing its potential to revolutionize cancer treatment.
Collapse
Affiliation(s)
| | - Geng Li
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
- Cancer Pharmacology Program, Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
7
|
Li H, Ju B, Luo J, Zhu L, Zhang J, Hu N, Mo L, Wang Y, Tian J, Li Q, Du X, Liu X, He L. Type I interferon-stimulated genes predict clinical response to belimumab in systemic lupus erythematosus. Eur J Pharmacol 2025; 987:177204. [PMID: 39672224 DOI: 10.1016/j.ejphar.2024.177204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The type I interferon (IFN-I) response is crucial in systemic lupus erythematosus (SLE). The mRNA level of interferon-stimulated genes (ISGs) is widely used for evaluating the activity of IFN in SLE. However, the character of ISGs in belimumab-treated SLE patients has not be reported. In this study, we enrolled 53 SLE patients undergoing belimumab treatment and assessed their clinical responses at 3, 6, and 12 months. The expression levels of 25 ISGs in Peripheral blood mononuclear cells (PBMCs) were quantified at baseline and at 3 months using quantitative real-time PCR. Using Least absolute shrinkage and selection operator (LASSO)-logistic regression, five genes (CXCL10, EPSTI1, HECR6, IFI27, IFIH1) were identified to predict belimumab efficacy. The IFN signature score, a multivariate logistic regression model based on the change rates of these genes, positively predicted the SLE responder index (SRI) at 12 months, with an area under curve of 0.940 in receiver operating characteristic and favorable outcomes in decision curve analysis. Patients with an IFN signature score ≥0 had higher SRI response rates, better clinical markers (including SLE disease activity index 2000 scores, anti-dsDNA, IgG levels, daily doses of prednisone, and higher complement C3 and C4 levels), and faster B cell decline than those with scores <0. In conclusion, after 3 months of belimumab treatment, the expression levels of IFN-I-inducible genes varied, and the IFN signature score reliably forecasted the SRI response at 6 and 12 months.
Collapse
Affiliation(s)
- Hanchao Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Bomiao Ju
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jing Luo
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Li Zhu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jing Zhang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nan Hu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Lingfei Mo
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yanhua Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Juan Tian
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Qian Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xinru Du
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xinyi Liu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Lan He
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China.
| |
Collapse
|
8
|
Yanagihara T, Hata K, Matsubara K, Kunimura K, Suzuki K, Tsubouchi K, Ikegame S, Fukui Y, Okamoto I. Immunophenotyping of T Cells in Lung Malignancies and Cryptogenic Organizing Pneumonia. J Clin Med 2025; 14:316. [PMID: 39860323 PMCID: PMC11766438 DOI: 10.3390/jcm14020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Lung malignancies, including cancerous lymphangitis and lymphomas, can mimic interstitial lung diseases like cryptogenic organizing pneumonia (COP) on imaging, leading to diagnostic delays. We aimed to identify potential biomarkers to distinguish between these conditions. Methods: We analyzed bronchoalveolar lavage fluid from 8 patients (4 COP, mean age 59.8 ± 13.5 years; 4 lung malignancies including 2 cancerous lymphangitis, 1 MALT lymphoma, and 1 diffuse large B cell lymphoma, mean age 67.8 ± 4.5 years) using mass cytometry with 35 T cell markers. Data were analyzed using principal component analysis (PCA) and unsupervised Citrus clustering. Results: PCA of T cell marker intensities effectively separated the two groups, with IL-2Rα, PD-L2, CD45RA, CD44, and OX40 being the top discriminating markers. Citrus analysis showed a significant increase in the CD16+ CD4+ and CD16+ CD8+ T cell populations in the COP group compared to lung malignancies. Conclusions: Our findings reveal distinct T cell immunophenotypes in COP versus lung malignancies, particularly increased CD16+ T cells in COP, which could serve as potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka 814-0180, Japan
| | - Kentaro Hata
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keisuke Matsubara
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunihiro Suzuki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuya Tsubouchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Ikegame
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
9
|
Kono DH, Hahn BH. Animal models of systemic lupus erythematosus (SLE). DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2025:189-234. [DOI: 10.1016/b978-0-323-93232-5.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Layhadi JA, Starchenka S, De Kam PJ, Palmer E, Patel N, Keane ST, Hikmawati P, Drazdauskaite G, Wu LYD, Filipaviciute P, Parkin RV, Oluwayi K, Rusyn O, Skinner MA, Heath MD, Hewings SJ, Kramer MF, Turner P, Shamji MH. Ara h 2-expressing cucumber mosaic virus-like particle (VLP Peanut) induces in vitro tolerogenic cellular responses in peanut-allergic individuals. J Allergy Clin Immunol 2025; 155:153-165. [PMID: 39756833 DOI: 10.1016/j.jaci.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Peanut allergy (PA) is one of the most prevalent food allergies with a lack of favorable safety/efficacy treatment. A cucumber mosaic virus-like particle expressing peanut allergen component Ara h 2 (VLP Peanut) has been developed as a novel therapeutic approach for PA. OBJECTIVE We assessed the tolerogenic properties and reactivity of VLP Peanut. METHODS Whole blood and peripheral blood mononuclear cells were collected from 6 peanut-allergic children. Modulation of dendritic cells (DCs), T cells, and B cells, stimulated with VLP Peanut, Ara h 2, and whole peanut extract in vitro, were assessed by quantitative real-time PCR and flow cytometry, respectively. Basophil and skin reactivity in response to VLP Peanut was assessed by basophil activation test and skin prick test, respectively. RESULTS VLP Peanut showed beneficial biochemical properties, fit for use in clinical studies. VLP Peanut induced IFN-γ+ TH1 (P < .05) while having reduced capacity to elicit proliferation of TH2, allergen-specific TH2, and IL-4+-T follicular helper cells. Moreover, VLP Peanut is associated with upregulation of DC1-associated genes (MX1) compared to Ara h 2 and whole peanut extract. VLP Peanut was the most prominent at inducing IL-10+ regulatory B cells (P < .05). Unbiased clustering analyses identified metaclusters of T and B cells targeted by VLP Peanut. Finally, VLP Peanut had reduced capacity to elicit high- and low-affinity IgE receptor-mediated responses compared to Ara h 2 or whole peanut extract (all P < .05). Finally, in an open-label first-in-human cohort of 6 peanut-allergic adults, administration of increasing concentration of VLP Peanut through skin prick test was tolerated and demonstrated no development of skin reactivity. CONCLUSIONS VLP Peanut displayed tolerogenic properties by modulating DCs, T cells, and B cells in vitro. Preliminary findings of skin reactivity using VLP Peanut in 6 peanut-allergic adults was safe and well tolerated in an open-label phase 1 study. CLINICAL TRIAL IDENTIFIER PROTECT, NCT05476497.
Collapse
Affiliation(s)
- Janice A Layhadi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | - Elizabeth Palmer
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nandinee Patel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sean T Keane
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Prista Hikmawati
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gabija Drazdauskaite
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Lily Y D Wu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Rebecca V Parkin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | - Paul Turner
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
11
|
Mekala JR, Nalluri HP, Reddy PN, S B S, N S SK, G V S D SK, Dhiman R, Chamarthy S, Komaragiri RR, Manyam RR, Dirisala VR. Emerging trends and therapeutic applications of monoclonal antibodies. Gene 2024; 925:148607. [PMID: 38797505 DOI: 10.1016/j.gene.2024.148607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Monoclonal antibodies (mAbs) are being used to prevent, detect, and treat a broad spectrum of malignancies and infectious and autoimmune diseases. Over the past few years, the market for mAbs has grown exponentially. They have become a significant part of many pharmaceutical product lines, and more than 250 therapeutic mAbs are undergoing clinical trials. Ever since the advent of hybridoma technology, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some of the benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies, which are affordable versions of therapeutic antibodies. Along with biosimilars, innovations in antibody engineering have helped to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. In the future, mAbs generated by applying next-generation sequencing (NGS) are expected to become a powerful tool in clinical therapeutics. This article describes the methods of mAb production, pre-clinical and clinical development of mAbs, approved indications targeted by mAbs, and novel developments in the field of mAb research.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA.
| | - Hari P Nalluri
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Prakash Narayana Reddy
- Department of Microbiology, Dr. V.S. Krishna Government College, Visakhapatnam 530013, India
| | - Sainath S B
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524320, AP, India
| | - Sampath Kumar N S
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Sai Kiran G V S D
- Santhiram Medical College and General Hospital, Nandyal, Kurnool 518501, AP, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Sciences, National Institute of Technology Rourkela-769008, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA
| | - Raghava Rao Komaragiri
- Department of CSE, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522302, Andhra Pradesh, INDIA
| | - Rajasekhar Reddy Manyam
- Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati Campus, Amaravati, Andhra Pradesh, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India.
| |
Collapse
|
12
|
Matsui K, Hempel HA, Shelton G, Ocampo R, Kemp TJ, Pan Y, Pinto LA. Reproducibility Assessment of Enzyme-Linked Immunosorbent Assays to Detect Anti-HPV16 L1-Specific IgG1, IgG3, IgA, and IgM Antibodies. Vaccines (Basel) 2024; 12:1108. [PMID: 39460275 PMCID: PMC11511443 DOI: 10.3390/vaccines12101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Enzyme-linked immunosorbent assays (ELISAs) have been used to measure anti-human-papillomavirus (HPV) immunoglobulin IgG. The goal of this study was to evaluate the reproducibility of ELISAs measuring different HPV immunoglobulin isotypes, IgG1, 2, 3, and 4, IgA, and IgM, against HPV16. METHODS Seventy-two serum samples collected from participants in the Costa Rica HPV Vaccine Trial (CVT) and immunized with bivalent HPV vaccine (2vHPV) were used for reproducibility assessment. IgG2 and IgG4 levels were too low to be detected. Levels of IgG1, IgG3, IgA, and IgM were measured, and the data were used to calculate intraclass correlation coefficients (ICCs) and coefficients of variation (CVs). RESULTS CVs were assessed between technicians (12.8-22.7%) and across days (6.2-30.6%). The overall CVs ranged from 7.7-31.1%. IgM ELISA showed higher CVs (15.8-31.1%) than IgG1, IgG3, and IgA (6.2-22.7%). All ICC values were >98.7%. IgG3 was detected in all samples, while IgG1 and IgA had >86.3% detectability and IgM had 62.1% detectability. Pearson correlational analyses between different antibodies all showed significant correlations (p ≤ 0.001), except when comparing IgGs or IgA to IgM (p = 0.29-0.53). CONCLUSIONS Our data showed that these ELISAs are reproducible and detect isotype antibodies to HPV16 L1 across a range of concentrations in 2vHPV-vaccinated participants.
Collapse
Affiliation(s)
- Ken Matsui
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Heidi Anne Hempel
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Gloriana Shelton
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Digital Transformation Solutions/Civil Health, Leidos, Bethesda, MD 20817, USA
| | - Rebecca Ocampo
- Agencia Costarricense de Investigaciones Biomédicas (ACIB-FUNIN), San José 10108, Costa Rica
| | - Troy J. Kemp
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yuanji Pan
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ligia A. Pinto
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
13
|
Inoue T, Baba Y, Kurosaki T. BCR signaling in germinal center B cell selection. Trends Immunol 2024; 45:693-704. [PMID: 39168721 DOI: 10.1016/j.it.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
When mature B cells are activated by antigens, the selection of these activated B cells takes place particularly during T cell-dependent immune responses in which an improved antibody repertoire is generated through somatic hypermutation in germinal centers (GCs). In this process the importance of antigen presentation by GC B cells, and subsequent T follicular helper (Tfh) cell help in positive selection of GC B cells, has been well appreciated. By contrast, the role of B cell receptor (BCR) signaling per se remains unclear. Strong experimental support for the involvement of BCR signaling in GC B cell selection has now been provided. Interestingly, these studies suggest that several checkpoints operating through the BCR ensure affinity maturation.
Collapse
Affiliation(s)
- Takeshi Inoue
- Department of Molecular Systems Immunology, University of Tokyo Pandemic Preparedness, Infection, and Advanced Research Center (UTOPIA), Tokyo, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
14
|
Gan SY, Tye GJ, Chew AL, Lai NS. Current development of Fc gamma receptors (FcγRs) in diagnostics: a review. Mol Biol Rep 2024; 51:937. [PMID: 39190190 DOI: 10.1007/s11033-024-09877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
The ability of the immune system to fight against pathogens relies on the intricate collaboration between antibodies and Fc gamma receptors (FcγRs). These receptors are a group of transmembrane glycoprotein molecules, which can specifically detect and bind to the Fc portion of immunoglobulin G (IgG) molecules. They are distributed on a diverse array of immune cells, forming a strong defence system to eliminate invading threats. FcγRs have gained increasing attention as potential biomarkers for various diseases in recent years due to their ability to reflect immune dysregulation and disease pathogenesis. Increasing lines of evidence have shed new light on the remarkable association of FcγRs polymorphisms with the susceptibility of autoimmune diseases such as systemic lupus erythematosus (SLE) and lupus nephritis. Several studies have also reported the application of FcγR as a novel biomarker for the diagnosis of infection and cancer. Due to the surge in interest and concern regarding the potential of FcγRs as promising diagnostic biomarkers, this review, thereby, serves to provide a comprehensive overview of the structural characteristics, functional roles, and expression patterns of FcγRs, with a particular focus on their evolving role as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Shin Yi Gan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Penang, 11700, Malaysia
| | - Ai Lan Chew
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
15
|
Abdoollah Z, Marrero Roche DE, Pavan CH, Moore E, Chandler KB. Site-Specific Glycosylation Analysis of Human and Murine Fcγ Receptor II Family Members Reveals Variant-Specific N-Glycosylation. J Proteome Res 2024; 23:3469-3483. [PMID: 39007905 DOI: 10.1021/acs.jproteome.4c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Fcγ-receptors (FcγRs) including FcγRII (CD32) gene family members are expressed on leukocytes, bind the crystallizable fragment (Fc) region of immunoglobulin G (IgG), and bridge humoral and cellular immunity. FcγRIIA and FcγRIIB have opposing roles, with the former responsible for activation and the latter for inhibition of immune cell signaling and effector functions. The extracellular domains of human and murine FcγRIIs share multiple conserved N-glycosylation sites. Understanding the role(s) of FcγRIIA and FcγRIIB glycosylation in autoimmune diseases is precluded by a lack of effective methods to study disease-associated changes in glycosylation. To address this barrier, we developed a method to assess site-specific glycosylation of human FcγRIIA and FcγRIIB, and the mouse ortholog of human FcγRIIB. Among the receptors, conserved glycosylation sites are compared, with the N144/145 site displaying predominantly complex glycans in recombinant FcγRIIs. Differences in sialylation between recombinant human FcγRIIA H/R134 (H/R131) variants at a nearby N145 N-glycosylation site are reported. Further, a potential human FcγRIIA O-glycosylation site, S179 (S212), is reported in recombinant FcγRIIA. The robust method to assess site-specific glycosylation of FcγRIIs reported here, can be utilized to study the potential role of FcγRII family glycosylation in disease. Data are available via ProteomeXchange with identifier PXD049429.
Collapse
Affiliation(s)
- Zaraah Abdoollah
- Translational Glycobiology Institute, Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Daniel E Marrero Roche
- Translational Glycobiology Institute, Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Carlos H Pavan
- Translational Glycobiology Institute, Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Erika Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Kevin Brown Chandler
- Translational Glycobiology Institute, Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth St., Miami, Florida 33199, United States
| |
Collapse
|
16
|
Sun Y, Xu X, Wu T, Fukuda T, Isaji T, Morii S, Nakano M, Gu J. Core fucosylation within the Fc-FcγR degradation pathway promotes enhanced IgG levels via exogenous L-fucose. J Biol Chem 2024; 300:107558. [PMID: 39002669 PMCID: PMC11345378 DOI: 10.1016/j.jbc.2024.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8+/+), Fut8 heterozygous knockout (Fut8+/-), and Fut8 knockout (Fut8-/-) mice. The IgG levels in serum were lower in Fut8+/- and Fut8-/- mice compared with Fut8+/+ mice. Exogenous L-fucose increased IgG levels in Fut8+/- mice, while the ratios of core fucosylated IgG versus total IgG showed no significant difference among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. These ratios were determined by Western blot, lectin blot, and mass spectrometry analysis. Real-time PCR results demonstrated that mRNA levels of IgG Fc and neonatal Fc receptor, responsible for protecting IgG turnover, were similar among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. In contrast, the expression levels of Fc-gamma receptor Ⅳ (FcγRⅣ), mainly expressed on macrophages and neutrophils, were increased in Fut8+/- mice compared to Fut8+/+ mice. The effect was reversed by administrating L-fucose, suggesting that core fucosylation primarily regulates the IgG levels through the Fc-FcγRⅣ degradation pathway. Consistently, IgG internalization and transcytosis were suppressed in FcγRⅣ-knockout cells while enhanced in Fut8-knockout cells. Furthermore, we assessed the expression levels of specific antibodies against ovalbumin and found they were downregulated in Fut8+/- mice, with potential recovery observed with L-fucose administration. These findings confirm that core fucosylation plays a vital role in regulating IgG levels in serum, which may provide insights into a novel mechanism in adaptive immune regulation.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
17
|
Rojo-Tolosa S, Sánchez-Martínez JA, Caballero-Vázquez A, Pineda-Lancheros LE, González-Gutiérrez MV, Pérez-Ramírez C, Jiménez-Morales A, Morales-García C. SingleNucleotide Polymorphisms as Biomarkers of Mepolizumab and Benralizumab Treatment Response in Severe Eosinophilic Asthma. Int J Mol Sci 2024; 25:8139. [PMID: 39125709 PMCID: PMC11311889 DOI: 10.3390/ijms25158139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The most promising treatment options for severe uncontrolled asthma (SUA) have emerged in recent years with the development of monoclonal antibodies for blocking selective targets responsible for the underlying inflammation, such as mepolizumab and benralizumab. However, there is variability in treatment response that is not fully controlled. The variability of the response to mepolizumab and benralizumab could be influenced by single-nucleotide polymorphisms (SNPs), and it would be useful to detect these and use them as predictive biomarkers of response. We conducted a retrospective observational cohort study of 72 Caucasian patients recruited from a tertiary hospital with severe uncontrolled eosinophilic asthma treated with mepolizumab and benralizumab. Polymorphisms in the IL5 (rs4143832, rs17690122), RAD50 (rs11739623, rs4705959), IL1RL1 (rs1420101, rs17026974, rs1921622), GATA2 (rs4857855), IKZF2 (rs12619285), FCGR2A (rs1801274), FCGR2B (rs3219018, rs1050501), FCGR3A (rs10127939, rs396991), FCER1A (rs2251746, rs2427837), FCER1B (rs1441586, rs573790, rs569108), and ZNF415 (rs1054485) genes were analyzed by real-time polymerase chain reaction (PCR) using Taqman probes. The response was analyzed after 12 months of treatment. In patients under mepolizumab treatment, a treatment response defined as a reduction in exacerbations was associated with ZNF415 rs1054485-T (p = 0.042; OR = 5.33; 95% CI = 1.06-30.02), treatment response defined as a reduction in oral corticosteroids use was associated with the number of exacerbations in the previous year (p = 0.029; OR = 3.89; 95% CI = 1.24-14.92), and treatment response defined as improvement in lung function was associated with the age at the beginning of biological therapy (p = 0.002; OR = 1.10; 95% CI = 1.04-1.18), FCER1B rs569108-AA (p < 0.001; OR = 171.06; 95% CI = 12.94-6264.11), and FCER1A rs2427837-A (p = 0.021; OR = 8.61; 95% CI = 1.71-76.62). On the other hand, in patients under benralizumab treatment, treatment response, defined as a reduction in exacerbations, was associated with ZNF415 rs1054485-T (p = 0.073; OR = 1.3 × 108; 95% CI = 1.8 × 10-19-NA), FCER1B rs569108-AA (p = 0.050; OR = 11.51; 95% CI = 1.19-269.78), allergies (p = 0.045; OR = 4.02; 95% CI = 1.05-16.74), and sex (p = 0.028; OR = 4.78; 95% CI = 1.22-20.63); and treatment response defined as improvement in lung function was associated with polyposis (p = 0.027; OR = 9.16; 95% CI = 1.58-91.4), IKZF2 rs12619285-AA (p = 0.019; OR = 9.1; 95% CI = 1.7-75.78), IL5 rs4143832-T (p = 0.017; OR = 11.1; 95% CI = 1.9-112.17), and FCER1B rs1441586-C (p = 0.045; OR = 7.81; 95% CI = 1.16-73.45). The results of this study show the potential influence of the studied polymorphisms on the response to mepolizumab and benralizumab and the clinical benefit that could be obtained by defining predictive biomarkers of treatment response.
Collapse
Affiliation(s)
- Susana Rojo-Tolosa
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - José Antonio Sánchez-Martínez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| | - Alberto Caballero-Vázquez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| | - Laura Elena Pineda-Lancheros
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
- Department of Pharmacy, Faculty of Sciences, National University of Colombia, Bogota Campus, Cra. 30 No. 45-03, Bogotá 11001, Colombia
| | - María Victoria González-Gutiérrez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| | - Cristina Pérez-Ramírez
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain;
| | - Alberto Jiménez-Morales
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - Concepción Morales-García
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| |
Collapse
|
18
|
Schoenfeld K, Harwardt J, Kolmar H. Better safe than sorry: dual targeting antibodies for cancer immunotherapy. Biol Chem 2024; 405:443-459. [PMID: 38297991 DOI: 10.1515/hsz-2023-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
Antibody-based therapies are revolutionizing cancer treatment and experience a steady increase from preclinical and clinical pipelines to market share. While the clinical success of monoclonal antibodies is frequently limited by low response rates, treatment resistance and various other factors, multispecific antibodies open up new prospects by addressing tumor complexity as well as immune response actuation potently improving safety and efficacy. Novel antibody approaches involve simultaneous binding of two antigens on one cell implying increased specificity and reduced tumor escape for dual tumor-associated antigen targeting and enhanced and durable cytotoxic effects for dual immune cell-related antigen targeting. This article reviews antibody and cell-based therapeutics for oncology with intrinsic dual targeting of either tumor cells or immune cells. As revealed in various preclinical studies and clinical trials, dual targeting molecules are promising candidates constituting the next generation of antibody drugs for fighting cancer.
Collapse
Affiliation(s)
- Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
19
|
Jackson ML, Bond AR, Ascione R, Johnson JL, George SJ. FGL2/FcγRIIB Signalling Mediates Arterial Shear Stress-Mediated Endothelial Cell Apoptosis: Implications for Coronary Artery Bypass Vein Graft Pathogenesis. Int J Mol Sci 2024; 25:7638. [PMID: 39062880 PMCID: PMC11277082 DOI: 10.3390/ijms25147638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The sudden exposure of venous endothelial cells (vECs) to arterial fluid shear stress (FSS) is thought to be a major contributor to coronary artery bypass vein graft failure (VGF). However, the effects of arterial FSS on the vEC secretome are poorly characterised. We propose that analysis of the vEC secretome may reveal potential therapeutic approaches to suppress VGF. Human umbilical vein endothelial cells (HUVECs) pre-conditioned to venous FSS (18 h; 1.5 dynes/cm2) were exposed to venous or arterial FSS (15 dynes/cm2) for 24 h. Tandem Mass Tagging proteomic analysis of the vEC secretome identified significantly increased fibroleukin (FGL2) in conditioned media from HUVECs exposed to arterial FSS. This increase was validated by Western blotting. Application of the NFκB inhibitor BAY 11-7085 (1 µM) following pre-conditioning reduced FGL2 release from vECs exposed to arterial FSS. Exposure of vECs to arterial FSS increased apoptosis, measured by active cleaved caspase-3 (CC3) immunocytochemistry, which was likewise elevated in HUVECs treated with recombinant FGL2 (20 ng/mL) for 24 h under static conditions. To determine the mechanism of FGL2-induced apoptosis, HUVECs were pre-treated with a blocking antibody to FcγRIIB, a receptor FGL2 is proposed to interact with, which reduced CC3 levels. In conclusion, our findings indicate that the exposure of vECs to arterial FSS results in increased release of FGL2 via NFκB signalling, which promotes endothelial apoptosis via FcγRIIB signalling. Therefore, the inhibition of FGL2/FcγRIIB signalling may provide a novel approach to reduce arterial FSS-induced vEC apoptosis in vein grafts and suppress VGF.
Collapse
Affiliation(s)
| | | | | | | | - Sarah J. George
- Translational Health Sciences, Bristol Medical School, Faculty of Health and Life Sciences, University of Bristol, Bristol BS2 8HW, UK; (M.L.J.); (A.R.B.); (R.A.); (J.L.J.)
| |
Collapse
|
20
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
21
|
Kashani B, Zandi Z, Pourbagheri-Sigaroodi A, Yousefi AM, Ghaffari SH, Bashash D. The PI3K signaling pathway; from normal lymphopoiesis to lymphoid malignancies. Expert Rev Anticancer Ther 2024; 24:493-512. [PMID: 38690706 DOI: 10.1080/14737140.2024.2350629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION As a vital mechanism of survival, lymphopoiesis requires the collaboration of different signaling molecules to orchestrate each step of cell development and maturation. The PI3K pathway is considerably involved in the maturation of lymphatic cells and therefore, its dysregulation can immensely affect human well-being and cause some of the most prevalent malignancies. As a result, studies that investigate this pathway could pave the way for a better understanding of the lymphopoiesis mechanisms, the undesired changes that lead to cancer progression, and how to design drugs to solve this issue. AREAS COVERED The present review addresses the aforementioned aspects of the PI3K pathway and helps pave the way for future therapeutic approaches. In order to access the articles, databases such as Medicine Medline/PubMed, Scopus, Google Scholar, and Science Direct were utilized. The search formula was established by identifying main keywords including PI3K/Akt/mTOR pathway, Lymphopoiesis, Lymphoid malignancies, and inhibitors. EXPERT OPINION The PI3K pathway is crucial for lymphocyte development and differentiation, making it a potential target for therapeutic intervention in lymphoid cancers. Studies are focused on developing PI3K inhibitors to impede the progression of hematologic malignancies, highlighting the pathway's significance in lymphoma and lymphoid leukemia.
Collapse
Affiliation(s)
- Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Niazi SK, Magoola M, Mariam Z. Innovative Therapeutic Strategies in Alzheimer's Disease: A Synergistic Approach to Neurodegenerative Disorders. Pharmaceuticals (Basel) 2024; 17:741. [PMID: 38931409 PMCID: PMC11206655 DOI: 10.3390/ph17060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) remains a significant challenge in the field of neurodegenerative disorders, even nearly a century after its discovery, due to the elusive nature of its causes. The development of drugs that target multiple aspects of the disease has emerged as a promising strategy to address the complexities of AD and related conditions. The immune system's role, particularly in AD, has gained considerable interest, with nanobodies representing a new frontier in biomedical research. Advances in targeting antibodies against amyloid-β (Aβ) and using messenger RNA for genetic translation have revolutionized the production of antibodies and drug development, opening new possibilities for treatment. Despite these advancements, conventional therapies for AD, such as Cognex, Exelon, Razadyne, and Aricept, often have limited long-term effectiveness, underscoring the need for innovative solutions. This necessity has led to the incorporation advanced technologies like artificial intelligence and machine learning into the drug discovery process for neurodegenerative diseases. These technologies help identify therapeutic targets and optimize lead compounds, offering a more effective approach to addressing the challenges of AD and similar conditions.
Collapse
Affiliation(s)
| | | | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
23
|
Vianou B, Royo J, Dechavanne S, Bertin GI, Yessoufou A, Houze S, Faucher JF, Aubouy A. Monocytes, particularly nonclassical ones, lose their opsonic and nonopsonic phagocytosis capacity during pediatric cerebral malaria. Front Immunol 2024; 15:1358853. [PMID: 38835780 PMCID: PMC11148436 DOI: 10.3389/fimmu.2024.1358853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Innate immunity is crucial to reducing parasite burden and contributing to survival in severe malaria. Monocytes are key actors in the innate response and, like macrophages, are plastic cells whose function and phenotype are regulated by the signals from the microenvironment. In the context of cerebral malaria (CM), monocyte response constitutes an important issue to understand. We previously demonstrated that decreased percentages of nonclassical monocytes were associated with death outcomes in CM children. In the current study, we postulated that monocyte phagocytosis function is impacted by the severity of malaria infection. Methods To study this hypothesis, we compared the opsonic and nonopsonic phagocytosis capacity of circulant monocytes from Beninese children with uncomplicated malaria (UM) and CM. For the CM group, samples were obtained at inclusion (D0) and 3 and 30 days after treatment (D3, D30). The phagocytosis capacity of monocytes and their subsets was characterized by flow cytometry and transcriptional profiling by studying genes known for their functional implication in infected-red blood cell (iRBC) elimination or immune escape. Results Our results confirm our hypothesis and highlight the higher capacity of nonclassical monocytes to phagocyte iRBC. We also confirm that a low number of nonclassical monocytes is associated with CM outcome when compared to UM, suggesting a mobilization of this subpopulation to the cerebral inflammatory site. Finally, our results suggest the implication of the inhibitory receptors LILRB1, LILRB2, and Tim3 in phagocytosis control. Discussion Taken together, these data provide a better understanding of the interplay between monocytes and malaria infection in the pathogenicity of CM.
Collapse
Affiliation(s)
- Bertin Vianou
- UMR152 PHARMADEV, IRD, UPS, Toulouse University, Toulouse, France
- Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin
| | - Jade Royo
- UMR152 PHARMADEV, IRD, UPS, Toulouse University, Toulouse, France
| | - Sébastien Dechavanne
- UMR261 Mère et Enfant en Milieu tropical (MERIT), Université Paris Cité, IRD, Paris, France
| | - Gwladys I Bertin
- UMR261 Mère et Enfant en Milieu tropical (MERIT), Université Paris Cité, IRD, Paris, France
| | - Akadiri Yessoufou
- Cell Biology and Physiology Laboratory, Abomey Calavi University (UAC), Abomey Calavi, Benin
| | - Sandrine Houze
- UMR261 Mère et Enfant en Milieu tropical (MERIT), Université Paris Cité, IRD, Paris, France
- French Malaria Reference Center, Assistance Publique - Hôpitaux de Paris (APHP), Bichat Hospital, Paris, France
- Parasitology Laboratory, Assistance Publique - Hôpitaux de Paris (APHP), Bichat-Claude-Bernard Hospital, Paris, France
| | - Jean-François Faucher
- Infectious Diseases and Tropical Medicine Department, Limoges University Hospital, Limoges, France
- Unité Mixte de Recherche (UMR) 1094 EpiMaCT, Inserm, Limoges University Hospital, Limoges University, Limoges, France
| | - Agnes Aubouy
- UMR152 PHARMADEV, IRD, UPS, Toulouse University, Toulouse, France
- Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin
| |
Collapse
|
24
|
Gil Gonzalez L, Won KD, Tawhidi Z, Cummins E, Cruz-Leal Y, Tundidor Cabado Y, Sachs UJ, Norris PAA, Shan Y, Bhakta V, Li J, Samudio I, Silva-Moreno B, Cerna-Portillo L, Pavon Oro A, Bergqvist P, Chan P, Moorehead A, Sholzberg M, Sheffield WP, Lazarus AH. Human Fc gamma receptor IIIA blockade inhibits platelet destruction in a humanized murine model of ITP. Blood Adv 2024; 8:1869-1879. [PMID: 38330193 PMCID: PMC11007428 DOI: 10.1182/bloodadvances.2023012155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
ABSTRACT Fc gamma receptor (FcγR) IIIA is an important receptor for immunoglobulin G (IgG) and is involved in immune defense mechanisms as well as tissue destruction in some autoimmune diseases including immune thrombocytopenia (ITP). FcγRIIIA on macrophages can trigger phagocytosis of IgG-sensitized platelets, and prior pilot studies observed blockade of FcγRIIIA increased platelet counts in patients with ITP. Unfortunately, although blockade of FcγRIIIA in patients with ITP increased platelet counts, its engagement by the blocking antibody drove serious adverse inflammatory reactions. These adverse events were postulated to originate from the antibody's Fc and/or bivalent nature. The blockade of human FcγRIIIA in vivo with a monovalent construct lacking an active Fc region has not yet been achieved. To effectively block FcγRIIIA in vivo, we developed a high affinity monovalent single-chain variable fragment (scFv) that can bind and block human FcγRIIIA. This scFv (17C02) was expressed in 3 formats: a monovalent fusion protein with albumin, a 1-armed human IgG1 antibody, and a standard bivalent mouse (IgG2a) antibody. Both monovalent formats were effective in preventing phagocytosis of ITP serum-sensitized human platelets. In vivo studies using FcγR-humanized mice demonstrated that both monovalent therapeutics were also able to increase platelet counts. The monovalent albumin fusion protein did not have adverse event activity as assessed by changes in body temperature, whereas the 1-armed antibody induced some changes in body temperature even though the Fc region function was impaired by the Leu234Ala and Leu235Ala mutations. These data demonstrate that monovalent blockade of human FcγRIIIA in vivo can potentially be a therapeutic strategy for patients with ITP.
Collapse
Affiliation(s)
- Lazaro Gil Gonzalez
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Kevin D. Won
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zoya Tawhidi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Yoelys Cruz-Leal
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
| | - Yaima Tundidor Cabado
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Ulrich J. Sachs
- Institute for Clinical Immunology, Transfusion Medicine, and Haemostasis, Justus Liebig University, Giessen, Germany
- Department of Thrombosis and Haemostasis, Giessen University Hospital, Giessen, Germany
| | - Peter A. A. Norris
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Yuexin Shan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Varsha Bhakta
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
| | - Janessa Li
- adMare BioInnovations, Vancouver, BC, Canada
| | | | | | | | - Alequis Pavon Oro
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | | | | | - Amy Moorehead
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Michelle Sholzberg
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - William P. Sheffield
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
| | - Alan H. Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
| |
Collapse
|
25
|
Yanagihara T, Hata K, Matsubara K, Kunimura K, Suzuki K, Tsubouchi K, Ikegame S, Baba Y, Fukui Y, Okamoto I. Exploratory mass cytometry analysis reveals immunophenotypes of cancer treatment-related pneumonitis. eLife 2024; 12:RP87288. [PMID: 38607373 PMCID: PMC11014725 DOI: 10.7554/elife.87288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
- Department of Respiratory Medicine, NHO Fukuoka National HospitalFukuokaJapan
| | - Kentaro Hata
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Keisuke Matsubara
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Kunihiro Suzuki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Kazuya Tsubouchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Satoshi Ikegame
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| |
Collapse
|
26
|
Hao YB, Xing J, Sheng XZ, Chi H, Tang XQ, Zhan WB. The Role of Fc Receptors in the Innate Immune System of Flounders Purported to Be Homologs of FcγRII and FcγRIII. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1196-1206. [PMID: 38380986 DOI: 10.4049/jimmunol.2300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
FcγR is a significant opsonin receptor located on the surface of immune cells, playing a crucial role in Ab-dependent cell-mediated immunity. Our previous work revealed opposite expression trends of FcγRII and FcγRIII in flounder mIgM+ B lymphocytes after phagocytosis of antiserum-opsonized Edwardsiella tarda. This observation suggests that FcγRII and FcγRIII might serve distinct functions in Ig-opsonized immune responses. In this study, we prepared rFcγRIII as well as its corresponding Abs to investigate the potential roles of FcγRII and FcγRIII in the Ab-dependent immune response of IgM+ B cells. Our findings indicate that, unlike FcγRII, FcγRIII does not participate in Ab-dependent cellular phagocytosis. Instead, it is involved in cytokine production and bacterial killing in mIgM+ B lymphocytes. Additionally, we identified platelet-derived ADAM17 as a key factor in regulating FcγRIII shedding and cytokine release in mIgM+ B lymphocytes. These results elucidate the functions of FcγRII and FcγRIII in the innate immunology of mIgM+ B lymphocytes and contribute to an improved understanding of the regulatory roles of FcγRs in the phagocytosis of teleost B lymphocytes.
Collapse
Affiliation(s)
- Yan-Bo Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Zhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Qian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wen-Bin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
27
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 PMCID: PMC10968988 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria;
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
28
|
Karlsen EA, Walpole E, Simpson F. Steroid Premedication and Monoclonal Antibody Therapy: Should We Reconsider? Curr Treat Options Oncol 2024; 25:275-283. [PMID: 38270799 PMCID: PMC10894762 DOI: 10.1007/s11864-023-01170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
OPINION STATEMENT Monoclonal antibody (mAb) therapy is now considered a main component of cancer therapy in Australia. Although traditionally thought of as pure signalling inhibitors, a large proponent of these medications function through antibody-dependent cell-mediated cytotoxicity (ADCC). Currently, most protocols and institutional guidelines for ADCC-mediated mAbs promote the use of corticosteroids as premedication: this is implemented to reduce infusion-related reactions (IRRs) and antiemesis prophylaxis and combat concurrently administered chemotherapy-related syndromes. Concerningly, the inhibitory effects of ADCC by corticosteroids are well documented; henceforth, it is possible the current standard of care is misaligned to the literature surrounding ADCC. Subsequently, clinicians' decisions to act in contrast to this literature may be reducing the efficacy of mAbs. The literature suggests that the redundant use of corticosteroids should be cautioned against when used in conjunction with ADCC-mediated mAbs-this is due to the consequent reduction in anti-tumour activity. Owing to the fact IRRs typically occur upon initial infusion, the authors advocate for individual clinicians and institutional protocols to considering augmenting their practice to corticosteroid premedication at the first dose only, unless clinically indicated. Additionally, product information (PI) and consumer medicine information (CMI) documents distributed by Australian and international regulatory agencies should consider disclosing the risk of concurrent steroids with these medications. Moreover, the authors suggest considering alternative medications for the management of side effects.
Collapse
Affiliation(s)
- Emma-Anne Karlsen
- Frazer Institute, The University of Queensland, Brisbane, Australia.
- Department of General Surgery, Mater Hospital Brisbane, Brisbane, Australia.
- School of Medicine, The University of Queensland, Brisbane, Australia.
- Simpson Laboratory - Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| | - Euan Walpole
- School of Medicine, The University of Queensland, Brisbane, Australia
- Division of Cancer Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Fiona Simpson
- Frazer Institute, The University of Queensland, Brisbane, Australia
- Simpson Laboratory - Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
29
|
Yan Q, Zhang X, Xie Y, Yang J, Liu C, Zhang M, Zheng W, Lin X, Huang HT, Liu X, Jiang Y, Zhan SF, Huang X. Bronchial epithelial transcriptomics and experimental validation reveal asthma severity-related neutrophilc signatures and potential treatments. Commun Biol 2024; 7:181. [PMID: 38351296 PMCID: PMC10864370 DOI: 10.1038/s42003-024-05837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Airway epithelial transcriptome analysis of asthma patients with different severity was used to disentangle the immune infiltration mechanisms affecting asthma exacerbation, which may be advantageous to asthma treatment. Here we introduce various bioinformatics methods and develop two models: an OVA/CFA-induced neutrophil asthma mouse model and an LPS-induced human bronchial epithelial cell damage model. Our objective is to investigate the molecular mechanisms, potential targets, and therapeutic strategies associated with asthma severity. Multiple bioinformatics methods identify meaningful differences in the degree of neutrophil infiltration in asthma patients with different severity. Then, PTPRC, TLR2, MMP9, FCGR3B, TYROBP, CXCR1, S100A12, FPR1, CCR1 and CXCR2 are identified as the hub genes. Furthermore, the mRNA expression of 10 hub genes is determined in vivo and in vitro models. Reperixin is identified as a pivotal drug targeting CXCR1, CXCR2 and MMP9. We further test the potential efficiency of Reperixin in 16HBE cells, and conclude that Reperixin can attenuate LPS-induced cellular damage and inhibit the expression of them. In this study, we successfully identify and validate several neutrophilic signatures and targets associated with asthma severity. Notably, Reperixin displays the ability to target CXCR1, CXCR2, and MMP9, suggesting its potential therapeutic value for managing deteriorating asthma.
Collapse
Affiliation(s)
- Qian Yan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Xinxin Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Yi Xie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Yang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Chengxin Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miaofen Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Wenjiang Zheng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueying Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China.
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiufang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
30
|
Uribe-Querol E, Rosales C. Phagocytosis. Methods Mol Biol 2024; 2813:39-64. [PMID: 38888769 DOI: 10.1007/978-1-0716-3890-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
One hundred years have passed since the death of Élie Metchnikoff (1845-1916). He was the first to observe the uptake of particles by cells and realized the importance of this process, named phagocytosis, for the host response to injury and infection. He also was a strong advocate of the role of phagocytosis in cellular immunity, and with this, he gave us the basis for our modern understanding of inflammation and the innate immune response. Phagocytosis is an elegant but complex process for the ingestion and elimination of pathogens, but it is also important for the elimination of apoptotic cells and hence fundamental for tissue homeostasis. Phagocytosis can be divided into four main steps: (i) recognition of the target particle, (ii) signaling to activate the internalization machinery, (iii) phagosome formation, and (iv) phagolysosome maturation. In this chapter, we present a general view of our current knowledge on phagocytosis performed mainly by professional phagocytes through antibody and complement receptors and discuss aspects that remain incompletely understood.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
31
|
Henry CM, Castellanos CA, Buck MD, Giampazolias E, Frederico B, Cardoso A, Rogers NC, Schulz O, Lee S, Canton J, Faull P, Snijders AP, Mohapatra B, Band H, Reis e Sousa C. SYK ubiquitination by CBL E3 ligases restrains cross-presentation of dead cell-associated antigens by type 1 dendritic cells. Cell Rep 2023; 42:113506. [PMID: 38019655 DOI: 10.1016/j.celrep.2023.113506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Cross-presentation of dead cell-associated antigens by conventional dendritic cells type 1 (cDC1s) is critical for CD8+ T cells response against many tumors and viral infections. It is facilitated by DNGR-1 (CLEC9A), an SYK-coupled cDC1 receptor that detects dead cell debris. Here, we report that DNGR-1 engagement leads to rapid activation of CBL and CBL-B E3 ligases to cause K63-linked ubiquitination of SYK and terminate signaling. Genetic deletion of CBL E3 ligases or charge-conserved mutation of target lysines within SYK abolishes SYK ubiquitination and results in enhanced DNGR-1-dependent antigen cross-presentation. We also find that cDC1 deficient in CBL E3 ligases are more efficient at cross-priming CD8+ T cells to dead cell-associated antigens and promoting host resistance to tumors. Our findings reveal a role for CBL-dependent ubiquitination in limiting cross-presentation of dead cell-associated antigens and highlight an axis of negative regulation of cDC1 activity that could be exploited to increase anti-tumor immunity.
Collapse
Affiliation(s)
- Conor M Henry
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carlos A Castellanos
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael D Buck
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Evangelos Giampazolias
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bruno Frederico
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Neil C Rogers
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Oliver Schulz
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sonia Lee
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Johnathan Canton
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Faull
- Protein Analysis and Proteomics Labaratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Labaratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bhopal Mohapatra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
32
|
Niazi SK. Anti-Idiotypic mRNA Vaccine to Treat Autoimmune Disorders. Vaccines (Basel) 2023; 12:9. [PMID: 38276668 PMCID: PMC10819008 DOI: 10.3390/vaccines12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The 80+ existing autoimmune disorders (ADs) affect billions with little prevention or treatment options, except for temporary symptomatic management, leading to enormous human suffering and a monumental financial burden. The autoantibodies formed in most ADs have been identified, allowing the development of novel anti-idiotypic antibodies to mute the autoantibodies using vaccines. Nucleoside vaccines have been successfully tested as antigen-specific immunotherapies (ASI), with mRNA technology offering multi-epitope targeting to mute multiple autoantibodies. This paper proposes using mRNA technology to produce anti-idiotypic antibodies with broad effectiveness in preventing and treating them. This paper delves into the state-of-the-art mRNA design strategies used to develop novel ASIs by selecting appropriate T cell and B cell epitopes to generate anti-idiotypic antibodies. The low cost and fast development of mRNA vaccines make this technology the most affordable for the global control of ADs.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60012, USA
| |
Collapse
|
33
|
Wang Z, Qu S, Yuan J, Tian W, Xu J, Tao R, Sun S, Lu T, Tang W, Zhu Y. Review and prospects of targeted therapies for Spleen tyrosine kinase (SYK). Bioorg Med Chem 2023; 96:117514. [PMID: 37984216 DOI: 10.1016/j.bmc.2023.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase. The dysregulation of SYK is closely related to the occurrence and development of allergic diseases, autoimmune diseases and cancer. SYK has become an attractive target for drug discovery due to its important biological functions. This article reviews the biological function of SYK, the relationship between SYK and disease, and therapies targeting SYK. In addition, inspired by new technologies such as proteolysis targeting chimeras (PROTACs) and phosphatase recruiting chimeras (PHORCs), we propose the development of new therapeutic approaches for targeting SYK, such as SYK PROTACs and SYK PHORCs, which may overcome deficiencies of existing methods.
Collapse
Affiliation(s)
- Zhaozhao Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shu Qu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jiahao Yuan
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Wen Tian
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jinglei Xu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Rui Tao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shilong Sun
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Weifang Tang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Yong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
34
|
Elkjaer ML, Waede MR, Kingo C, Damsbo K, Illes Z. Expression of Bruton´s tyrosine kinase in different type of brain lesions of multiple sclerosis patients and during experimental demyelination. Front Immunol 2023; 14:1264128. [PMID: 38022591 PMCID: PMC10679451 DOI: 10.3389/fimmu.2023.1264128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Inhibition of Bruton's tyrosine kinase (BTK) is an emerging multiple sclerosis (MS) therapy. BTK inhibitors (BTKi) cross the blood-brain barrier and modulate B cells and microglia, major cellular players in active and chronic active lesions. Objective To assess potential lesional and cellular targets of BTKi, we examined BTK expression in different type of MS white matter (WM) lesions, in unmanipulated CNS resident cells, and in a degenerative MS model associated with microglia activation in vivo. Methods We examined BTK expression by next-generation RNA-sequencing in postmortem 25 control WM, 19 NAWM, 6 remyelinating, 18 active, 13 inactive and 17 chronic active lesions. Presence of B cells and microglia were examined by immunohistochemistry. CNS resident cells were isolated from the mouse brain by magnetic sorting. BTK expression was examined by quantitative PCR in isolated cells and dissected corpus callosum from mice treated with cuprizone (CPZ). Results BTK expression was significantly increased in active and chronic active lesions with upregulated complement receptors and Fcγ receptors. Active lesions contained high number of perivascular B cells, microglia, and macrophages. Chronic active lesions were characterized by microglia/macrophages in the rim. Microglia expressed BTK at high level (120-fold) in contrast to other CNS cell types (2-4-fold). BTK expression was increasing during CPZ treatment reaching significance after stopping CPZ. Conclusion Considering BTK expression in MS lesions and resident cells, BTKi may exert effect on B cells, microglia/macrophages in active lesions, and limit microglia activation in chronic active lesions, where tissue damage propagates.
Collapse
Affiliation(s)
- Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mie R. Waede
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christina Kingo
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Karina Damsbo
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE – Brain Research Interdisciplinary Guided Ecxellence, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Jia H, Yang H, Xiong H, Luo KQ. NK cell exhaustion in the tumor microenvironment. Front Immunol 2023; 14:1303605. [PMID: 38022646 PMCID: PMC10653587 DOI: 10.3389/fimmu.2023.1303605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Natural killer (NK) cells kill mutant cells through death receptors and cytotoxic granules, playing an essential role in controlling cancer progression. However, in the tumor microenvironment (TME), NK cells frequently exhibit an exhausted status, which impairs their immunosurveillance function and contributes to tumor immune evasion. Emerging studies are ongoing to reveal the properties and mechanisms of NK cell exhaustion in the TME. In this review, we will briefly introduce the maturation, localization, homeostasis, and cytotoxicity of NK cells. We will then summarize the current understanding of the main mechanisms underlying NK cell exhaustion in the TME in four aspects: dysregulation of inhibitory and activating signaling, tumor cell-derived factors, immunosuppressive cells, and metabolism and exhaustion. We will also discuss the therapeutic approaches currently being developed to reverse NK cell exhaustion and enhance NK cell cytotoxicity in the TME.
Collapse
Affiliation(s)
- Hao Jia
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Hongmei Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Huaxing Xiong
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, China
| |
Collapse
|
36
|
Lee YH, Song GG. Association between functional FCGR3A F158V and FCGR2A R131H polymorphisms and responsiveness to rituximab in patients with autoimmune diseases: a meta-analysis. THE PHARMACOGENOMICS JOURNAL 2023; 23:210-216. [PMID: 37149714 DOI: 10.1038/s41397-023-00308-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVES To investigate the association between the functional Fc gamma receptor 3 A (FCGR3A) V158F and FCGR2A R131H polymorphisms and rituximab therapy in patients with autoimmune diseases. METHODS We searched the Medline, Embase, and Cochrane databases for relevant articles. We conducted a meta-analysis of the association between FCGR3A V158F and FCGR2A R131H polymorphisms and responsiveness to rituximab in patients with autoimmune diseases. RESULTS Eleven studies, consisting of 661 responders and 267 non-responders for FCGR3A V158F polymorphism and 156 responders and 89 non-responders for FCGR2A R131H polymorphism, were included. The meta-analysis revealed a significant association between the FCGR3A V allele and responsiveness to rituximab (odds ratio [OR] = 1.600, 95% confidence interval [CI] = 1.268-2.018, P < 0.001). Furthermore, associations were found using the dominant and homozygous contrast models. Subgroup analysis showed an association between the FCGR3A V allele and responsiveness to rituximab in European, RA, ITP, small (<50) and large (≥50) groups, and short- (≤6 months) and long-term follow-up periods (≥6 months). These associations were also found in recessive, dominant or homozygous contrast models. Meta-analysis revealed no association between the FCGR2A R allele and responsiveness to rituximab (OR = 1.243, 95% CI = 0.825-1.873, P = 0.229). CONCLUSIONS We demonstrated that the FCGR3A F158V polymorphism is associated with better responsiveness to rituximab therapy in patients with autoimmune diseases, indicating that individuals carrying the FCGR3A V allele will likely respond better to rituximab. However, FCGR2A R131H polymorphism was not associated with better response to rituximab.
Collapse
Affiliation(s)
- Young Ho Lee
- Department of Rheumatology, Korea University Medicine, Seoul, Korea.
| | - Gwan Gyu Song
- Department of Rheumatology, Korea University Medicine, Seoul, Korea
| |
Collapse
|
37
|
Gupta A, Skjefte M, Muppidi P, Sikka R, Pandey M, Bharti PK, Gupta H. Unravelling the Influence of Host Genetic Factors on Malaria Susceptibility in Asian Populations. Acta Trop 2023; 249:107055. [PMID: 39491156 DOI: 10.1016/j.actatropica.2023.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Malaria is a deadly blood-borne disease caused by a Plasmodium parasite. Infection results in various forms of malaria, including an asymptomatic state, uncomplicated disease, or severe disease. Severe malaria (SM) is particularly prevalent among young children and is a significant cause of mortality. SM is associated with the sequestration of parasitized erythrocytes in the microvasculature of vital host organs, disrupting the normal functioning of the immune system. Although the exact mechanisms of malaria pathogenesis are yet to be fully understood, researchers have been investigating the role of host genetics in determining the severity of the disease and the outcome of infection. The objective of this study is to identify specific host genes that have been examined for their association with malaria in Asian populations and pinpoint those most likely to influence susceptibility. Through an extensive screening process, a total of 982 articles were initially identified, and after careful review, 40 articles discussing 68 genes were included in this review. By constructing a network of protein-protein interactions (PPIs), we identified six key proteins (TNF, IL6, TLR4, IL1β, IL10, and IL8) that exhibited substantial interactions (more than 30 edges), suggesting their potential as significant targets for influencing malaria susceptibility. Notably, these six proteins have been previously identified as crucial components of the immune response, associated with malaria susceptibility, and capable of affecting different clinical forms of the disease. Identifying genes that contribute to malaria susceptibility or resistance holds the promise of enhancing the diagnosis and treatment of this debilitating illness. Such knowledge has the potential to pave the way for more targeted and effective strategies in combating malaria, particularly in Asian populations where controlling Plasmodium vivax is challenging, and India contributes the highest number of cases. By understanding the genetic factors underlying malaria vulnerability, we can develop interventions that are tailored to the specific needs of Asian populations, ultimately leading to better outcomes in the fight against this disease.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Malia Skjefte
- Population Services International, Malaria Department, Washington, DC, USA
| | - Pranavi Muppidi
- GKT School of Medical Education, King's College London, London, UK
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Manju Pandey
- Department of Medicine, K. D. Medical College Hospital & Research Center, Mathura, Uttar Pradesh, India
| | - Praveen Kumar Bharti
- ICMR- National Institute of Malaria Research (ICMR-NIMR), Dwarka, New Delhi, India
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
38
|
Jurczak A, Sandor K, Bersellini Farinotti A, Krock E, Hunt MA, Agalave NM, Barbier J, Simon N, Wang Z, Rudjito R, Vazquez-Mora JA, Martinez-Martinez A, Raoof R, Eijkelkamp N, Grönwall C, Klareskog L, Jimenéz-Andrade JM, Marchand F, Svensson CI. Insights into FcγR involvement in pain-like behavior induced by an RA-derived anti-modified protein autoantibody. Brain Behav Immun 2023; 113:212-227. [PMID: 37437817 DOI: 10.1016/j.bbi.2023.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Joint pain is one of the most debilitating symptoms of rheumatoid arthritis (RA) and patients frequently rate improvements in pain management as their priority. RA is hallmarked by the presence of anti-modified protein autoantibodies (AMPA) against post-translationally modified citrullinated, carbamylated and acetylated proteins. It has been suggested that autoantibody-mediated processes represent distinct mechanisms contributing to pain in RA. In this study, we investigated the pronociceptive properties of monoclonal AMPA 1325:01B09 (B09 mAb) derived from the plasma cell of an RA patient. We found that B09 mAb induces pain-like behavior in mice that is not associated with any visual, histological or transcriptional signs of inflammation in the joints, and not alleviated by non-steroidal anti-inflammatory drugs (NSAIDs). Instead, we found that B09 mAb is retained in dorsal root ganglia (DRG) and alters the expression of several satellite glia cell (SGC), neuron and macrophage-related factors in DRGs. Using mice that lack activating FcγRs, we uncovered that FcγRs are critical for the development of B09-induced pain-like behavior, and partially drive the transcriptional changes in the DRGs. Finally, we observed that B09 mAb binds SGC in vitro and in combination with external stimuli like ATP enhances transcriptional changes and protein release of pronociceptive factors from SGCs. We propose that certain RA antibodies bind epitopes in the DRG, here on SGCs, form immune complexes and activate resident macrophages via FcγR cross-linking. Our work supports the growing notion that autoantibodies can alter nociceptor signaling via mechanisms that are at large independent of local inflammatory processes in the joint.
Collapse
Affiliation(s)
- Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Alex Bersellini Farinotti
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Emerson Krock
- The Alan Edwards Centre for Research on Pain, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Matthew A Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Nilesh M Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Julie Barbier
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Zhenggang Wang
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Juan Antonio Vazquez-Mora
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Arisai Martinez-Martinez
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Juan Miguel Jimenéz-Andrade
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Fabien Marchand
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden.
| |
Collapse
|
39
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
40
|
Salvadori M. Update on Desensitization Strategies and Drugs on Hyperimmune Patients for Kidney Transplantation. TRANSPLANTOLOGY 2023; 4:139-150. [DOI: 10.3390/transplantology4030014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The presence in a recipient of antibodies directed against donor-specific antigens represents a major obstacle to transplantation. Removal of these antibodies represents a challenge for physicians dealing with kidney transplantation. Several strategies, techniques, and old and new drugs are currently used for desensitizing these patients. Desensitization may either occur before transplantation, at the time of transplantation, or after transplantation according to whether physicians are dealing with living or deceased donors. Different techniques may be used to reveal the presence of antibodies in the recipients; each technique has different sensitivities and specificities, and different advantages and drawbacks. The targets of the drugs used to desensitize are B cells, plasma cells, the antibodies themselves, and, finally, the complement that is the final actor causing tissue disruption. B cells are relatively easy to target; targeting the plasma cell is more difficult. Indeed, several new drugs are also used in randomized trials to defeat plasma cells. Antibodies may be removed easily, but their removal is often followed by antibody rebound. The complement is not easy to defeat and new drugs are currently used for this aim. Overall, despite difficulties, desensitization is currently possible in many cases, to obtain a safe and successful transplantation.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Renal Unit, Department of Transplantation, Careggi University Hospital, 50139 Florence, Italy
| |
Collapse
|
41
|
Bi W, Guo W, Fan G, Xie L, Jiang C. Identification and validation of a novel overall survival prediction model for immune-related genes in bone metastases of prostate cancer. Aging (Albany NY) 2023; 15:7161-7186. [PMID: 37494663 PMCID: PMC10415549 DOI: 10.18632/aging.204900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Immunotherapy has become a revolutionary treatment for cancer and brought new vitality to tumor immunity. Bone metastases are the most prevalent metastatic site for advanced prostate cancer (PCa). Therefore, finding new immunotherapy targets in PCa patients with bone metastasis is urgently needed. We conducted an elaborative bioinformatics study of immune-related genes (IRGs) and tumor-infiltrating immune cells (TIICs) in PCa bone metastases. Databases were integrated to obtain RNA-sequencing data and clinical prognostic information. Univariate and multivariate Cox regression analyses were conducted to construct an overall survival (OS) prediction model. GSE32269 was analyzed to acquire differentially expressed IRGs. The OS prediction model was established by employing six IRGs (MAVS, HSP90AA1, FCGR3A, CTSB, FCER1G, and CD4). The CIBERSORT algorithm was adopted to assess the proportion of TIICs in each group. Furthermore, Transwell, MTT, and wound healing assays were employed to determine the effect of MAVS on PCa cells. High-risk patients had worse OS compared to the low-risk patients in the training and validation cohorts. Meanwhile, clinically practical nomograms were generated using these identified IRGs to predict the 3- and 5-year survival rates of patients. The infiltration percentages of some TIICs were closely linked to the risk score of the OS prediction model. Some tumor-infiltrating immune cells were related to the OS. FCGR3A was closely correlated with some TIICs. In vitro experiments verified that up-regulation of MAVS suppressed the proliferation and metastatic abilities of PCa cells. Our work presented a thorough interpretation of TIICs and IRGs for illustrating and discovering new potential immune checkpoints in bone metastases of PCa.
Collapse
Affiliation(s)
- Wen Bi
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Weiming Guo
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lei Xie
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Changqing Jiang
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
42
|
Yang C, Li R, Su LC, Lan YY, Wang YQ, Xu WD, Huang AF. SHP2: its association and roles in systemic lupus erythematosus. Inflamm Res 2023:10.1007/s00011-023-01760-w. [PMID: 37351631 DOI: 10.1007/s00011-023-01760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease. Src homology 2 domain containing protein tyrosine phosphatase (SHP2) is a member of the protein tyrosine phosphatases (PTPs) family. To date, relationship between SHP2 and SLE pathogenesis is not elucidated. METHOD We measured plasma levels of SHP2 in 328 SLE patients, 78 RA patients, 80 SS patients and 79 healthy controls by ELISA, and discussed association of SHP2 in SLE patients, potential of plasma SHP2 as a SLE biomarker. Moreover, histological and serological changes were evaluated by flow cytometry, HE/Masson examination, immunofluorescence test in pristane-induced lupus mice after SHP2 inhibitor injection to reveal role of SHP2 in lupus development. RESULTS Results indicated that SHP2 plasma levels were upregulated in SLE patients and correlated with some clinical, laboratory characteristics such as proteinuria, pyuria, and may be a potential biomarker for SLE. After SHP2 inhibitor treatment, hepatosplenomegaly and histological severity of the kidney in lupus mice were improved. SHP2 inhibitor reversed DCs, Th1, and Th17 cells differentiation and downregulated inflammatory cytokines (IL-4, IL-6, IL-10, IL-17A, IFN-γ and TNF-α) and autoantibodies (ANA, anti-dsDNA) production in pristane-lupus mice. CONCLUSION In summary, SHP2 correlated with SLE pathogenesis and promoted the development of lupus.
Collapse
Affiliation(s)
- Chan Yang
- Department of Evidence-Based Medicine, Southwest Medical University, 1 Xianglin Road, Luzhou, 646000, Sichuan, China
| | - Rong Li
- Department of Evidence-Based Medicine, Southwest Medical University, 1 Xianglin Road, Luzhou, 646000, Sichuan, China
| | - Lin-Chong Su
- Department of Rheumatology and Immunology, Minda Hospital of Hubei Minzu University, 2 Wufengshan Road, Enshi, 445000, Hubei, China
| | - You-Yu Lan
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, 646000, Sichuan, China
| | - You-Qiang Wang
- Department of Laboratory Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, 1 Xianglin Road, Luzhou, 646000, Sichuan, China.
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
43
|
Lee YH, Song GG. Association between the functional FCGR3A F158V and FCGR2A R131H polymorphisms and responsiveness to biologics in rheumatoid arthritis patients: A meta-analysis. Int J Rheum Dis 2023. [PMID: 37114884 DOI: 10.1111/1756-185x.14719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVES This study aimed to investigate the association between functional Fc gamma receptor 3A (FCGR3A) V158F and FCGR2A R131H polymorphisms and biologic therapy in rheumatoid arthritis (RA) patients. METHODS We searched Medline, Embase, and Cochran databases for available articles. This study is a meta-analysis of the association between the FCGR3A V158F and FCGR2A R131H polymorphisms and their responsiveness to biologics in RA patients. RESULTS Seventeen studies involving RA patients with FCGR3A V158F (n = 1884) and FCGR2A R131H (n = 1118) polymorphisms were considered. This meta-analysis showed that the FCGR3A V allele was associated with responsiveness to rituximab (odds ratio [OR] = 1.431, 95% CI = 1.081-1.894, P = 0.012), but not with tumor necrosis factor (TNF) blockers, tocilizumab, or abatacept. A significant association was also found between the FCGR3A V158F polymorphism and responsiveness to biologics using the dominant-recessive model. Additionally, the FCGR3A V158F polymorphism was associated with responsiveness to TNF blockers in the homozygous contrast model. Meta-analysis revealed an association between the FCGR2A RR + RH genotype and responsiveness to biologics (OR = 1.385, 95% CI = 1.007-1.904, P = 0.045). CONCLUSIONS This meta-analysis demonstrates that FCGR3A V allele carriers show better responsiveness to rituximab, and FCGR2A R allele carriers may show a better response to biologics in RA treatment. Genotyping of these polymorphisms could be a useful tool to find associations with the responsiveness of personalized medicine to biologics.
Collapse
Affiliation(s)
- Young Ho Lee
- Department of Rheumatology, Korea University Medicine, Seoul, South Korea
| | - Gwan Gyu Song
- Department of Rheumatology, Korea University Medicine, Seoul, South Korea
| |
Collapse
|
44
|
Yang T, Kang L, Li D, Song Y. Immunotherapy for HER-2 positive breast cancer. Front Oncol 2023; 13:1097983. [PMID: 37007133 PMCID: PMC10061112 DOI: 10.3389/fonc.2023.1097983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Immunotherapy is a developing treatment for advanced breast cancer. Immunotherapy has clinical significance for the treatment of triple-negative breast cancers and human epidermal growth factor receptor-2 positive (HER2+) breast cancers. As a proved effective passive immunotherapy, clinical application of the monoclonal antibodies trastuzumab, pertuzumab and T-DM1 (ado-trastuzumab emtansine) has significantly improved the survival of patients with HER2+ breast cancers. Immune checkpoint inhibitors that block programmed death receptor-1 and its ligand (PD-1/PD-L1) have also shown benefits for breast cancer in various clinical trials. Adoptive T-cell immunotherapies and tumor vaccines are emerging as novel approaches to treating breast cancer, but require further study. This article reviews recent advances in immunotherapy for HER2+ breast cancers.
Collapse
|
45
|
Oh J, Cho JY, Kim D. Hyptis obtusiflora C. Presl ex Benth Methanolic Extract Exhibits Anti-Inflammatory and Anti-Gastritis Activities via Suppressing AKT/NF-κB Pathway. PLANTS (BASEL, SWITZERLAND) 2023; 12:1146. [PMID: 36904006 PMCID: PMC10005599 DOI: 10.3390/plants12051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Inflammation is an indispensable part of the human body's self-defense mechanism against external stimuli. The interactions between Toll-like receptors and microbial components trigger the innate immune system via NF-κB signaling, which regulates the overall cell signaling including inflammatory responses and immune modulations. The anti-inflammatory effects of Hyptis obtusiflora C. Presl ex Benth, which has been used as a home remedy for gastrointestinal disorders and skin disease in rural areas of Latin America, have not yet been studied. Here, we investigate the medicinal properties of Hyptis obtusiflora C. Presl ex Benth methanol extract (Ho-ME) for inflammatory response suppression. Nitric oxide secretion in RAW264.7 cells triggered by TLR2, 3, or 4 agonists was reduced by Ho-ME. Reduction of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and interleukin (IL)-1b mRNA expression was observed. Decreased transcriptional activity in TRIF- and MyD88-overexpressing HEK293T cells was detected with a luciferase assay. Additionally, serially downregulated phosphorylation of kinase in the NF-κB pathway by Ho-ME was discovered in lipopolysaccharide-treated RAW264.7 cells. Together with the overexpression of its constructs, AKT was identified as a target protein of Ho-ME, and its binding domains were reaffirmed. Moreover, Ho-ME exerted gastroprotective effects in an acute gastritis mouse model generated by the administration of HCl and EtOH. In conclusion, Ho-ME downregulates inflammation via AKT targeting in the NF-κB pathway, and the combined results support Hyptis obtusiflora as a new candidate anti-inflammatory drug.
Collapse
Affiliation(s)
- Jieun Oh
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daewon Kim
- Laboratory of Bio-Informatics, Department of Multimedia Engineering, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
46
|
How Is Arachidonic Acid Metabolism in the Uterus Connected with the Immune Status of Red Deer Females ( Cervus elaphus L.) in Different Reproductive Stages? Int J Mol Sci 2023; 24:ijms24054771. [PMID: 36902199 PMCID: PMC10003591 DOI: 10.3390/ijms24054771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Reproductive and condition parameters' dependency on immune status in seasonally reproducing ruminants such as red deer have not been outlined to date. We determined T and B blood lymphocytes; the concentration of IgG, cAMP, haptoglobulin, and 6-keto-PGF1α in blood plasma; and the mRNA and protein expression of PG endoperoxide synthase 2, 5-lipoxygenase, PGE2 synthase (PGES), PGF2α synthase (PGFS), PGI2 synthase (PGIS), leukotriene (LT)A4 hydrolase, and LTC4 synthase (LTC4S) in the uterine endo- and myometrium, on the 4th (N = 7) and 13th (N = 8) days of the estrous cycle, in anestrus (N = 6) and pregnancy (N = 8) in hinds. An increase in CD4+ T regulatory lymphocyte percentage during the estrous cycle and anestrus compared with pregnancy was recorded; the opposite effect was observed for CD21+ B cells (p < 0.05). cAMP and haptoglobin concentration were elevated during the cycle, as was IgG on the fourth day of the cycle, whereas 6-keto-PGF1α concentration was the highest in pregnancy, and the nearest in anestrus similarly were LTC4S, PGES, PGFS, and PGIS protein expression in the endometrium (p < 0.05). We showed an interaction between the immune system activation and AA-metabolite production in the uterus throughout different reproductive stages. IgG, cAMP, haptoglobin, and 6-keto-PGF1α concentrations are valuable candidates for markers of reproductive status in hinds. The results help expand our knowledge of the mechanisms underlying seasonal reproduction in ruminants.
Collapse
|
47
|
Bissa M, Kim S, Galli V, Fourati S, Sarkis S, Arakelyan A, de Castro IS, Rahman MA, Fujiwara S, Vaccari M, Tomalka JA, Stamos JD, Schifanella L, Gorini G, Moles R, Gutowska A, Ferrari G, Lobanov A, Montefiori DC, Nelson GW, Cam MC, Chakhtoura M, Haddad EK, Doster MN, McKinnon K, Brown S, Venzon DJ, Choo-Wosoba H, Breed MW, Killoran KE, Kramer J, Margolis L, Sekaly RP, Hager GL, Franchini G. HIV vaccine candidate efficacy in female macaques mediated by cAMP-dependent efferocytosis and V2-specific ADCC. Nat Commun 2023; 14:575. [PMID: 36732510 PMCID: PMC9894672 DOI: 10.1038/s41467-023-36109-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/15/2023] [Indexed: 02/04/2023] Open
Abstract
The development of an effective vaccine to protect against HIV acquisition will be greatly bolstered by in-depth understanding of the innate and adaptive responses to vaccination. We report here that the efficacy of DNA/ALVAC/gp120/alum vaccines, based on V2-specific antibodies mediating apoptosis of infected cells (V2-ADCC), is complemented by efferocytosis, a cyclic AMP (cAMP)-dependent antiphlogistic engulfment of apoptotic cells by CD14+ monocytes. Central to vaccine efficacy is the engagement of the CCL2/CCR2 axis and tolerogenic dendritic cells producing IL-10 (DC-10). Epigenetic reprogramming in CD14+ cells of the cyclic AMP/CREB pathway and increased systemic levels of miRNA-139-5p, a negative regulator of expression of the cAMP-specific phosphodiesterase PDE4D, correlated with vaccine efficacy. These data posit that efferocytosis, through the prompt and effective removal of apoptotic infected cells, contributes to vaccine efficacy by decreasing inflammation and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA.
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Saori Fujiwara
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Jeffrey A Tomalka
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - James D Stamos
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Guido Ferrari
- Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Alexei Lobanov
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David C Montefiori
- Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - George W Nelson
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Margaret C Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marita Chakhtoura
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Elias K Haddad
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, Bethesda, MD, USA
| | - Sophia Brown
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, Bethesda, MD, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Matthew W Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Kristin E Killoran
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Joshua Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rafick P Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
48
|
Wu J, Nie Y, Wang J, Feng G, Hao L, Ma Y, Li Y, Liu Z. Fcγ receptor-mediated phagocytosis pathway was involved in phagocytosis of mIgM + B lymphocytes from largemouth bass (Micropterus salmoides). JOURNAL OF FISH BIOLOGY 2023; 102:128-140. [PMID: 36222291 DOI: 10.1111/jfb.15246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The potential for phagocytosis has been proven in teleost B cells, but the research on the regulatory mechanism of phagocytosis remains lacking. In this study, three largemouth bass (Micropterus salmoides) (15 ± 5 g) were injected intraperitoneally with Nocardia seriolae (105 CFU/100 μl/fish) in vivo, and their spleen was collected at 72 h post-infection for mRNA-seq. After the de novo assembly of the paired-end reads, 73,622 unigenes were obtained. Gene expression profiling revealed that 2043 unigenes were differentially expressed after N. seriolae infection, comprising 1285 upregulated and 758 downregulated unigenes (q-value <0.05, log2FC > |2|) of which 181 genes were involved in phagocytosis. The Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis demonstrated that 12 differentially expressed genes (DEG) associated with phagocytosis were enriched in the Fcγ receptor-mediated phagocytosis signalling pathway. In vitro, the phagocytic ability of mIgM+ B lymphocytes was validated using indirect immunofluorescence assay (IIFA) and fluorescence activating cell sorter (FACS), and the phagocytosis rates of the mIgM+ B lymphocytes incubated with a Lyn inhibitor had decreased from 18.533 ± 6.00% to 11.610 ± 4.236% compared with the unblocked group. These results suggested that the Fcγ receptor-mediated phagocytosis signalling pathway had participated in the phagocytosis of B cells and provide further insight into the role of B cells in innate immunology.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yifan Nie
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jingya Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guoqing Feng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Collaborative Innovation Center of GDAAS, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Collaborative Innovation Center of GDAAS, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Collaborative Innovation Center of GDAAS, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Collaborative Innovation Center of GDAAS, China
| |
Collapse
|
49
|
Choi H, Yang SW, Joo JS, Park M, Jin Y, Kim JW, Lee SY, Lee SV, Yun TJ, Cho ML, Hwang HS, Kang YS. Sialylated IVIg binding to DC-SIGN + Hofbauer cells induces immune tolerance through the caveolin-1/NF-kB pathway and IL-10 secretion. Clin Immunol 2023; 246:109215. [PMID: 36581222 DOI: 10.1016/j.clim.2022.109215] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Although the use of IVIg has increased in various immune-driven diseases and even in pregnancy, the exact action mechanisms of IVIg are not fully understood. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) is a known receptor for α-2,6-sialylated IgG (sIVIg), which is responsible for the anti-inflammatory effect of IVIg. DC-SIGN is expressed on Hofbauer cells (HBCs) of the fetal villi of the placenta which act as an innate immune modulator at the maternal-fetal interface. Preeclampsia is a major complication in pregnancy and is related to IL-10, a cytokine with an important role in immune tolerance. DC-SIGN interaction with sIVIg in HBCs promoted IL-10 secretion through the activation of the caveolin-1/NF-κB pathway, especially in plasma lipid rafts. Consistent results were obtained for HBCs from patients with preeclampsia. Collectively, the stimulation of DC-SIGN+ HBCs with sIVIg enhanced immune tolerance in the feto-maternal environment, suggesting the therapeutic application of sIVIg to prevent preeclampsia.
Collapse
Affiliation(s)
- Hyeongjwa Choi
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seung-Woo Yang
- Department of Obstetrics and Gynecology, Sang-Gye Paik Hospital, Inje University School of Medicine; Seoul 01757, Republic of Korea
| | - Jin-Soo Joo
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University; 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Min Park
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Yihua Jin
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ji-Woon Kim
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seon-Yeong Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Vin Lee
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University; 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tae-Jin Yun
- Department of Pathology, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - Mi-La Cho
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, South Korea
| | - Han-Sung Hwang
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine; Seoul, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Young-Sun Kang
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University; 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; KU Research Center for Zoonosis, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
50
|
Adedeji AO, Zhong F, Getz JA, Zhong Z, Halpern W. Neutropenia in Cynomolgus Monkeys With Anti-Drug Antibodies Associated With Administration of Afucosylated Humanized Monoclonal Antibodies. Toxicol Pathol 2022; 50:910-919. [PMID: 36329562 PMCID: PMC9806483 DOI: 10.1177/01926233221131510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Removal of the core fucose from the Fc region of humanized monoclonal antibodies (afucosylated antibodies) enhances their antibody-dependent cell cytotoxicity activities in killing cancer cells. Based on the authors' experience and literature, administrations of afucosylated antibodies have been associated with neutropenia in cynomolgus monkeys. However, in a recent general toxicology study conducted with an afucosylated antibody in cynomolgus monkeys, transient neutropenia was observed and correlated with the emergence of anti-drug antibodies (ADAs) in the affected animals. To further explore the relationship between neutropenia, afucosylated antibodies, and ADAs in cynomolgus monkeys, we performed an investigational retrospective meta-analysis of data from general toxicology studies conducted with Genentech's therapeutic antibodies administered to cynomolgus monkeys between 2005 and 2021. In this analysis, transient neutropenia strongly correlated with ADA-induced inflammation in cynomolgus monkeys administered afucosylated antibodies. This may reflect the simultaneous occurrence of two distinct processes of neutrophil elimination and utilization, thus overwhelming bone marrow reserve capacity leading to transient neutropenia. The integrated analysis of immunogenicity, and anatomic and clinical pathology results from these studies highlights the correlation of transient neutropenia in cynomolgus monkeys with ADA-related inflammation, potentially exacerbated by enhanced effector function of afucosylated antibodies.
Collapse
Affiliation(s)
- Adeyemi O. Adedeji
- Genentech, South San Francisco,
California, USA,Adeyemi O. Adedeji, Safety Assessment,
Genentech (a member of the Roche Group), 1 DNA Way, South San Francisco, CA
94080, USA.
| | - Fiona Zhong
- Genentech, South San Francisco,
California, USA
| | | | - Zoe Zhong
- Genentech, South San Francisco,
California, USA
| | | |
Collapse
|