1
|
Askarizadeh F, Butler AE, Kesharwani P, Sahebkar A. Regulatory effect of curcumin on CD40:CD40L interaction and therapeutic implications. Food Chem Toxicol 2025; 200:115369. [PMID: 40043936 DOI: 10.1016/j.fct.2025.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 03/02/2025] [Indexed: 04/21/2025]
Abstract
Natural compounds have garnered significant attention as potential therapeutic agents due to their inherent properties. Their notable qualities, including safety, efficacy, favorable pharmacokinetic properties, and heightened effectiveness against certain diseases, particularly inflammatory conditions, make them particularly appealing. Among these compounds, curcumin has attracted considerable interest for its unique therapeutic properties and has therefore been extensively studied as a potential therapeutic agent for treating various diseases. Curcumin exhibits diverse anti-inflammatory, antioxidant, and antimicrobial effects. Curcumin's immune system regulatory ability has made it a promising compound for treatment of various inflammatory diseases, such as psoriasis, atherosclerosis, asthma, colitis, IBD, and arthritis. Among the signaling pathways implicated in these conditions, the CD40 receptor together with its ligand, CD40L, are recognized as central players. Studies have demonstrated that the interaction between CD40 and CD40L interaction acts as the primary mediator of the immune response in inflammatory diseases. Numerous studies have explored the impact of curcumin on the CD40:CD40L pathway, highlighting its regulatory effects on this inflammatory pathway and its potential therapeutic use in related inflammatory conditions. In this review, we will consider the evidence concerning curcumin's modulatory effects in inflammatory disease and its potential therapeutic role in regulating the CD40:CD40L pathway.
Collapse
Affiliation(s)
- Fatemeh Askarizadeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Li S, Yin X, Ren W, Zheng J, Li S, Zhi K, Gao L. Protein O-GlcNAcylation reprograms macrophage-mediated bone remodeling in medication-related osteonecrosis of the jaw. Int J Biol Macromol 2025; 313:144342. [PMID: 40393602 DOI: 10.1016/j.ijbiomac.2025.144342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/18/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
O-Linked N-acetylglucosamine (O-GlcNAcylation) is an essential nutrient-sensitive post-translational modification (PTM) that has emerged as a critical regulator bridging immunometabolic reprogramming and skeletal homeostasis. Medication-related osteonecrosis of the jaw (MRONJ) is a severe complication of anti-resorptive therapy, with limited effective treatments available. Despite four decades of research since its discovery, the therapeutic potential of targeting O-GlcNAcylation in MRONJ remains underexplored. Macrophages orchestrate a pro-inflammatory/anti-inflammatory milieu by polarization and paracrine signaling to promote bone resorption/formation. However, during MRONJ progression, metabolic alterations reshape macrophage function, leading to immune dysregulation and impaired bone remodeling. O-GlcNAcylation serves as a metabolic sensor of nutritional status and cellular stress, influences macrophage phenotype and function, making it a potential target for therapeutic intervention. Currently, extensive research on biomaterials for bone regeneration primarily focuses on enhancing osteogenesis or inhibiting osteoclast activity, often overlooking the impact of PTMs on bone remodeling. In this review, we highlight the emerging role of O-GlcNAcylation in macrophage regulation, discuss its implications in MRONJ pathogenesis, and explore its potential applications in macrophage-targeted biomaterials and nanotherapeutics.
Collapse
Affiliation(s)
- Shengqian Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Xiaopeng Yin
- Department of Oral and Maxillofacial Surgery, Central Laboratory of Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Jinan 250001, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Jingjing Zheng
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology of Qingdao University, Qingdao 266003, China; Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| |
Collapse
|
3
|
Huang P, Gao L, Guan J, Li Y, Jia Y, Zeng Z, Chen Y, Wang L, Li W, Wang Y, Yang B. IL7-IL7R Interaction Mediates Fibroblast-Driven Macrophage-to-Osteoclast Differentiation in Periodontitis. J Inflamm Res 2025; 18:6105-6122. [PMID: 40386183 PMCID: PMC12081953 DOI: 10.2147/jir.s524284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/03/2025] [Indexed: 05/20/2025] Open
Abstract
Aim To identify osteoclastogenic macrophage subsets and their regulatory mechanisms in periodontitis. Methods We integrated single-cell RNA sequencing datasets from human and murine periodontitis to construct a comprehensive macrophage and monocyte atlas. Employing functional enrichment, cell-cell communication, pseudotime, transcription factor, and machine learning analyses, we characterized and selected the specific macrophage subset involved in cell interactions. In vitro and in vivo experiments, including enzyme-linked immunosorbent assay, TRAP staining, micro-CT, qPCR, flow cytometry, and immunofluorescence staining, were performed to dissect the osteoclastogenic potential of specific macrophage subsets and to identify the key pathways. Results We discovered that the IL7R+ macrophage subset possesses significant osteoclast differentiation potential. Our findings indicate that the IL7/IL7R signaling axis facilitates osteoclast differentiation. Genes highly expressed in IL7R+ macrophages were identified as strong predictors for periodontitis by machine learning models. In vivo and in vitro experimental validation confirmed an increase in IL7R+ macrophages, along with their enhanced osteoclastogenic capacity. confirmed an increase in IL7R+ macrophages, along with their osteoclastogenic capacity. The inhibition of the IL7/IL7R signaling pathway was found to mitigate periodontitis progression by impeding osteoclast differentiation. Furthermore, fibroblasts were found to secret IL7 interacting with IL7 receptors on macrophages. Conclusion Our study identifies IL7R+ macrophages as potential osteoclast precursors in periodontitis. We demonstrate that the IL7/IL7R signaling pathway is a critical driver of osteoclast differentiation. Moreover, targeting IL7R is a potential therapeutic strategy to curb periodontitis bone resorption.
Collapse
Affiliation(s)
- Pengjie Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Li Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Jiezhong Guan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yijiao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yibing Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Zixiang Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yurun Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Linge Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, People’s Republic of China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Muggeo P, Grassi M, D’Ascanio V, Forte J, Brescia V, Di Serio F, Piacente L, Giordano P, Santoro N, Faienza MF. Bone Remodeling in Children with Acute Lymphoblastic Leukemia: A Two-Year Prospective Longitudinal Study. Int J Mol Sci 2025; 26:4307. [PMID: 40362542 PMCID: PMC12072470 DOI: 10.3390/ijms26094307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Childhood leukemia survivors are at risk of long-term complications. Data on bone remodeling in childhood acute lymphoblastic leukemia (ALL) are limited. This 2-year prospective longitudinal study investigated bone remodeling and bone turnover markers at diagnosis, during treatment, and until stopping treatment, in ALL patients < 18 years, to clarify the influence of leukemia itself and/or chemotherapy on bone. METHODS A total of 22 ALL children (12 males, age 5.5 ± 3.6 years) underwent blood sampling at the 5 time point (T0-T4). Osteoprotegerin (OPG), receptor-activator-NF-B-ligand (RANKL), osteocalcin (OC), C-terminal-telopeptide-type-I-collagen (CTX), bone-alkaline-phosphatase (bALP), tartrate-resistant acid-phosphatase-5b (TRACP5b), procollagen-type-I-N-terminal-propeptide (P1NP), Dickkopf-1 (DKK-1), and sclerostin were assessed. Data from patients at T0 were compared to a control group of healthy children. We used the principal component analysis (PCA) for statistics. RESULTS Levels of CTX, OC, P1NP, and bALP resulted lower in ALL children than controls (p = 0.009 for CTX and p < 0.001 for the others), also DKK1 and sclerostin (p < 0.0001 and p = 0.023). RANKL ed OPG were higher in patients. During T0-T4, CTX, OC, P1NP, TRACP5b, and bALP showed a significant increase, in particular at T0-T1 (end-of-induction). Less evident changes were detected onwards. CONCLUSIONS The onset of leukemia has been revealed as a key point in determining a slowing of bone remodeling in ALL children.
Collapse
Affiliation(s)
- Paola Muggeo
- Department of Pediatric Oncology and Hematology, University Hospital of Policlinico, 70124 Bari, Italy; (M.G.); (N.S.)
| | - Massimo Grassi
- Department of Pediatric Oncology and Hematology, University Hospital of Policlinico, 70124 Bari, Italy; (M.G.); (N.S.)
| | - Vito D’Ascanio
- Institute of Sciences of Food Production (ISPA), Italian National Research Council (CNR), 70126 Bari, Italy;
| | - Jessica Forte
- Pediatric Department, Ospedale Della Murgia “F. Perinei”, 70022 Altamura, Italy;
| | - Vincenzo Brescia
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy; (V.B.); (F.D.S.)
| | - Francesca Di Serio
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy; (V.B.); (F.D.S.)
| | - Laura Piacente
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy; (L.P.); (M.F.F.)
| | - Paola Giordano
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Nicola Santoro
- Department of Pediatric Oncology and Hematology, University Hospital of Policlinico, 70124 Bari, Italy; (M.G.); (N.S.)
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy; (L.P.); (M.F.F.)
| |
Collapse
|
5
|
Shi D, Li Y, Tian M, Xue M, Wang J, An H. Nanomaterials-Based Drug Delivery Systems for Therapeutic Applications in Osteoporosis. Adv Biol (Weinh) 2025:e2400721. [PMID: 40195930 DOI: 10.1002/adbi.202400721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/04/2025] [Indexed: 04/09/2025]
Abstract
The etiology of osteoporosis is rooted in the disruption of the intricate equilibrium between bone formation and bone resorption processes. Nevertheless, the conventional anti-osteoporotic medications and hormonal therapeutic regimens currently employed in clinical practice are associated with a multitude of adverse effects, thereby constraining their overall therapeutic efficacy and potential. Recently, nanomaterials have emerged as a promising alternative due to their minimal side effects, efficient drug delivery, and ability to enhance bone formation, aiding in restoring bone balance. This review delves into the fundamental principles of bone remodeling and the bone microenvironment, as well as current clinical treatment approaches for osteoporosis. It subsequently explores the research status of nanomaterial-based drug delivery systems for osteoporosis treatment, encompassing inorganic nanomaterials, organic nanomaterials, cell-mimicking carriers and exosomes mimics and emerging therapies targeting the osteoporosis microenvironment. Finally, the review discusses the potential of nanomedicine in treating osteoporosis and outlines the future trajectory of this burgeoning field. The aim is to provide a comprehensive reference for the application of nanomaterial-based drug delivery strategies in osteoporosis therapy, thereby fostering further advancements and innovations in this critical area of medical research.
Collapse
Affiliation(s)
- Donghong Shi
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yuling Li
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Meng Tian
- Hebei Tourism College, Hebei, Chengde, 067000, P. R. China
| | - Mengge Xue
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
6
|
Sangtarash F, Shadmehr A, Choobsaz H, Fereydounnia S, Sadeghi A, Jung F, Sarfraz M. Effects of resistance training on microcirculation of bone tissue and bone turnover markers in postmenopausal women with osteopenia or osteoporosis: A systematic review. Clin Hemorheol Microcirc 2025; 89:171-180. [PMID: 39973439 DOI: 10.1177/13860291241291411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
After menopause, there is an imbalance between bone formation and resorption activity, which could lead to postmenopausal osteopenia or osteoporosis. Resistance training (RT) can induce mechanical stress on bone which is necessary for bone remodeling and angiogenic-osteogenic response. This systematic review aims to assess the effects of RT on bone microcirculation and bone turnover markers (BTMs) in postmenopausal women with osteopenia or osteoporosis. We conducted a comprehensive search for related studies published up to April 2023 to identify eligible articles. Out of 316 articles identified, the full texts of 69 articles were screened. There is not any study which consider the effect of resistance exercises on bone microcirculation in PMOP women, but four articles aseess the effect of RT on BTMs and were reviewed. The quality of the articles was assessed by using the Physiotherapy Evidence Database (PEDro) scale. In one study, after 6- and 12 -months RT, bone formation and bone resorption biomarkers decreased not significantly. According to another study, bone formation and resorption biomarkers increased significantly after 3-months RT. Two other studies reported increases in biomarkers of bone formation along with decreases of biomarkers in bone resorption after 6-months of RT, but these were not significant. However, these results suggest that RT had some beneficial effects on BTMs but it is not an effective tool for modifying BTMs in women with osteoporosis or osteopenia. This may be due to the site-specific skeletal stimulation that RT provides. In addition considering the effect of RT on microcirculation of bone are important . So, there is a need for further, high-quality studies in this field.
Collapse
Affiliation(s)
- Fatemeh Sangtarash
- Physical Therapy Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Shadmehr
- Physical Therapy Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Choobsaz
- Physical Therapy Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Fereydounnia
- Physical Therapy Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Sadeghi
- Department of Rheumatology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Friedrich Jung
- Faculty of Health Sciences Brandenburg, Branderburg University of Technology Cottbus-Senftenberg, Sentenberg, Germany
| | | |
Collapse
|
7
|
Gebauer D, Schimmele T, Mazzari G, Krüger BT, Zemui M, Ignatius A, Langgartner D, Haffner-Luntzer M, Reber SO. The Sex-Specific Effects of Early Life Adversity and Chronic Psychosocial Stress during Adulthood on Bone Are Mitigated by Mycobacterium vaccae NCTC 11659 in Mice. Neuroimmunomodulation 2025; 32:49-66. [PMID: 39799942 DOI: 10.1159/000543507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
INTRODUCTION Chronic stress is a major burden in our society and increases the risk for various somatic and mental diseases, in part via promoting chronic low-grade inflammation. Interestingly, the vulnerability for chronic stress during adulthood varies widely among individuals, with some being more resilient than others. For instance, women, relative to men, are at higher risk for developing typical stress-related diseases, including depression and post-traumatic stress disorder (PTSD). Moreover, the experience of early life adversity (ELA) may increase an individuals' vulnerability for chronic stress during adulthood (CAS), possibly due to its association with chronic inflammation. Because severe consequences of stress-induced immune activation are a dysregulated endochondral ossification, delayed long-bone growth, and bone regeneration following fracture, the aim of this study was to investigate the sex-specific effects of ELA alone or in combination with CAS on bone. As enhancement of an individuals' immunoregulatory potential by repeated administrations of a heat-inactivated preparation of Mycobacterium vaccae NCTC (National Collection of Type Cultures) 11659 has been shown to promote stress resilience in mice, we further aimed to investigate if M. vaccae NCTC 11659 also protects against the negative effects of ELA/CAS on bone. METHODS Male and female C57BL/6N mice were subjected to ELA using a maternal separation (MS) model. CAS was induced by either using the chronic subordinate colony housing (CSC) paradigm in males or the social instability paradigm (SIP) in females. The effects on bone were evaluated by µCT, histological, and gene expression analysis. M. vaccae NCTC 11659 was administered repeatedly s.c. prior to CAS. RESULTS No cumulative impact of ELA and CAS on bone could be detected. Female mice seem to be more susceptible to ELA while male mice to CAS. Importantly, repeated M. vaccae NCTC 11659 administrations were able to mitigate the negative consequences of stress on bone in both sexes. CONCLUSION Our results support the hypotheses that the negative effects of ELA and CAS on bone are highly sex-dependent. Moreover, repeated s.c. administrations with immunoregulatory microorganisms might be a future therapeutic option for stress-related bone disorders.
Collapse
Affiliation(s)
- Dorothea Gebauer
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany,
| | - Tamara Schimmele
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Giulia Mazzari
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Benjamin T Krüger
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Msgana Zemui
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
8
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
9
|
Pérez-Chacón G, Santamaría PG, Redondo-Pedraza J, González-Suárez E. RANK/RANKL Signaling Pathway in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:309-345. [PMID: 39821032 DOI: 10.1007/978-3-031-70875-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
RANK pathway has attracted increasing interest as a promising target in breast cancer, given the availability of denosumab, an anti-RANKL drug. RANK signaling mediates progesterone-driven regulation of mammary gland development and favors breast cancer initiation by controlling mammary cell proliferation and stem cell fate. RANK activation promotes luminal mammary epithelial cell senescence, acting as an initial barrier to tumorigenesis but ultimately facilitating tumor progression and metastasis. Comprehensive analyses have demonstrated that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and estrogen receptor-negative breast cancer patients. RANK pathway also has multiple roles in immunity and inflammation, regulating innate and adaptive responses. In the tumor microenvironment, RANK and RANKL are expressed by different immune cell populations and contribute to the regulation of tumor immune surveillance, mainly driving immunosuppressive effects.Herein, we discuss the preventive and therapeutic potential of targeting RANK signaling in breast cancer given its tumor cell intrinsic and extrinsic effects. RANKL inhibition has been shown to induce mammary tumor cell differentiation and an antitumor immune response. Moreover, loss of RANK signaling increases sensitivity of breast cancer cells to chemotherapy, targeted therapies such as HER2 and CDK4/6 inhibitors, and immunotherapy. Finally, we describe clinical trials of denosumab for breast cancer prevention, such as those ongoing in women with high risk of developing breast cancer, large phase III clinical trials where the impact of adjuvant denosumab on disease-free survival has been assessed, and window trials to evaluate the immunomodulatory effects of denosumab in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Gema Pérez-Chacón
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Eva González-Suárez
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
10
|
España-Pamplona P, Bernés-Martínez L, Andrés-Castelló C, Bolás-Colveé B, Adobes-Martín M, Garcovich D. Changes in the Oral Microbiota with the Use of Aligners vs. Braces: A Systematic Review. J Clin Med 2024; 13:7435. [PMID: 39685893 DOI: 10.3390/jcm13237435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Orthodontic treatments have evolved significantly, with clear aligners becoming increasingly popular due to their aesthetic appeal and ease of use. This study systematically reviewed the impact of clear aligners in the changes in the oral microbiota compared to traditional fixed appliances. Methods: Following PRISMA guidelines, a systematic review was conducted using two databases such as Scopus, Web of Science, and the PubMed search engine. The studies included were those published between 2010 and 2023, involving adults over 18 years using clear aligners and fixed appliances. The data on oral microbiota changes were extracted and analyzed. Results: The review included eight studies, highlighting the differences in microbial changes associated with clear aligners versus fixed appliances. Clear aligners were associated with fewer detrimental changes in the oral microbiota, potentially due to their removable nature allowing for better hygiene. Fixed appliances showed a tendency to harbor more pathogenic bacteria, which is likely due to their difficulty to clean. Conclusions: Clear aligners may offer a better alternative to fixed appliances in terms of maintaining a healthier oral microbiota. Their design and ease of hygiene contribute to less accumulation of pathogenic bacteria, showing a more positive impact on maintaining a balanced oral microbiota when compared to fixed appliances.
Collapse
Affiliation(s)
- Pilar España-Pamplona
- Department of Dentistry, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain
| | - Laura Bernés-Martínez
- Department of Dentistry, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain
| | - Carolina Andrés-Castelló
- Department of Dentistry, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain
| | - Belén Bolás-Colveé
- Department of Dentistry, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain
| | - Milagros Adobes-Martín
- Department of Dentistry, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain
| | - Daniele Garcovich
- Department of Dentistry, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain
| |
Collapse
|
11
|
Yang L, Xiao L, Gao W, Huang X, Wei F, Zhang Q, Xiao Y. Macrophages at Low-Inflammatory Status Improved Osteogenesis via Autophagy Regulation. Tissue Eng Part A 2024; 30:e766-e779. [PMID: 33678009 DOI: 10.1089/ten.tea.2021.0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence indicates that the interaction between immune and skeletal systems is vital in bone homeostasis. However, the detailed mechanisms between macrophage polarization and osteogenic differentiation of mesenchymal stromal cells (bone marrow-derived stromal cells [BMSCs]) remain largely unknown. We observed enhanced macrophage infiltration along with bone formation in vivo, which showed a transition from early-stage M1 phenotype to later stage M2 phenotype, cells at the transitional stage expressed both M1 and M2 markers that actively participated in osteogenesis, which was mimicked by stimulating macrophages with lower inflammatory stimulus (compared with typical M1). Using conditioned medium (CM) from M0, typical M1, low-inflammatory M1 (M1semi), and M2 macrophages, it was found that BMSCs treated with M1semi CM showed significantly induced migration, osteogenic differentiation, and mineralization, compared with others. Along with the induced osteogenesis, the autophagy level was the highest in M1semi CM-treated BMSCs, which was responsible for BMSC migration and osteogenic differentiation, as autophagy interruption significantly abolished this effect. This study indicated that low-inflammatory macrophages could activate autophagy in BMSCs to improve osteogenesis.
Collapse
Affiliation(s)
- Lan Yang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
| | - Wendong Gao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Xin Huang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Fei Wei
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Qing Zhang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yin Xiao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
12
|
Zhang Y, Jiang Z, Li X. Chronic toxic effects of chloroxylenol exposure on Rana chensinensis: Insights from endochondral ossfication. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107140. [PMID: 39489103 DOI: 10.1016/j.aquatox.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Chloroxylenol (para‑chloro-meta-xylenol, PCMX), is a widely used antimicrobial agent and can remain in the aquatic environment. Although toxicity studies related to PCMX on the aquatic animals like zebrafish and Brachionus koreanus have been reported, there are few reports in the ecological risk of amphibians. In this study, the toxicity of different concentration (143, 14.3, 1.43 μg/L) of PCMX treatments on the endochondral ossification and body condition of Rana chensiensis tadpoles was investigated at environmentally relevant concentrations during metamorphosis. The chronic exposure of PCMX decreased bone length and ossification of limbs, caused changes of thyroid gland structure and ossification related gene expression levels. Besides, we found that R. chensiensis developed rheumatoid arthritis. Therefore, these results provided valuable evidence that the ecological risk of PCMX that will negatively affect the body condition, thyroid hormones homeostasis and skeletal development of R. chensiensis tadpoles.
Collapse
Affiliation(s)
- Yue Zhang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, PR China
| | - Zhaoyang Jiang
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, PR China.
| |
Collapse
|
13
|
Song C, Tong T, Dai B, Zhu Y, Chen E, Zhang M, Zhang W. Osteoimmunology in bone malignancies: a symphony with evil. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:354-368. [PMID: 39735445 PMCID: PMC11674455 DOI: 10.1016/j.jncc.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 12/31/2024] Open
Abstract
Bone marrow is pivotal for normal hematopoiesis and immune responses, yet it is often compromised by malignancies. The bone microenvironment (BME), composed of bone and immune cells, maintains skeletal integrity and blood production. The emergence of primary or metastatic tumors in the skeletal system results in severe complications and contributes significantly to cancer-related mortality. These tumors set off a series of interactions among cancer, bone, and immune cells, and disrupt the BME locally or distantly. However, the drivers, participants, and underlying molecules of these interactions are not fully understood. This review explores the crosstalk between bone metabolism and immune responses, synthesizing current knowledge on the intersection of cancer and osteoimmune biology. It outlines how bone marrow immune cells can either facilitate or hinder tumor progression by interacting with bone cells and pinpoints the molecules responsible for immunosuppression within bone tumors. Moreover, it discusses how primary tumors remotely alter the BME, leading to systemic immune suppression in cancer patients. This knowledge provides critical rationales for emerging immunotherapies in the treatment of bone-related tumors. Taken together, by summarizing the intricate relationship between tumor cells and the BME, this review aims to deepen the understanding of the diversity, complexity, and dynamics at play during bone tumor progression. Ultimately, it highlights the potential of targeting bone-tumor interactions to correct aberrant immune functions, thereby inhibiting tumor growth and metastasis.
Collapse
Affiliation(s)
- Churui Song
- Department of Breast Surgery and Oncology, Cancer Institute, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tie Tong
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Biqi Dai
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yue Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Elina Chen
- College of Natural Sciences, University of Texas at Austin, 110 Inner Campus Drive, Austin, USA
| | - Min Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijie Zhang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, and Department of Orthopaedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Peng B, Wang L, Han G, Cheng Y. Mesenchymal stem cell-derived exosomes: a potential cell-free therapy for orthodontic tooth stability management. Stem Cell Res Ther 2024; 15:342. [PMID: 39354604 PMCID: PMC11446149 DOI: 10.1186/s13287-024-03962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
Orthodontic relapse (OR) occurs at a rate of over 70%. Retention is the current attempt at prevention, but it requires a considerable amount of time and cannot fully block OR. It's imperative to find a safe and effective method for managing post-orthodontic tooth stability. Periodontal bone remodeling is one crucial biological foundation of OR. Mesenchymal stem cell-derived exosomes (MSC-Exo) show promise in relapse management by regulating periodontal bone remodeling. MSC-Exo can prevent relapse by regulating periodontal ligament function, osteoclast activity, osteoblast differentiation, macrophage polarization, and periodontal microcirculation. In recent years, exosome-loaded hydrogels, which achieve controlled exosome release, have demonstrated efficacy in promoting bone regeneration and remodeling, offering promising prospects for OR management. This review aims to highlight the use of MSC-Exo-based therapy for preventing OR, offering new insights for future research focused on improving tooth stability and enhancing orthodontic anchorage.
Collapse
Affiliation(s)
- Boyuan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Lianhao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Guangli Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Orthodontics Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Yong Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
15
|
Deng H, Guan Y, Dong Q, An R, Wang J. Chitosan-based biomaterials promote bone regeneration by regulating macrophage fate. J Mater Chem B 2024; 12:7480-7496. [PMID: 39016095 DOI: 10.1039/d3tb02563b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of various osteogenic biomaterials has not only promoted the development of bone tissue engineering but also provided more possibilities for bone defect repair. However, most previous studies have focused on the interaction of biomaterials on endogenous or exogenous stem cells involved in the bone regeneration process while neglecting the effect of changes in the immune microenvironment of bone defect sites on bone regeneration after biomaterial implantation into the host. With the development of bone immunology, the role of various immune cells, especially macrophages, in bone regeneration has gradually attracted the attention of researchers. An increasing number of studies have begun to target macrophages to better promote bone regeneration by modulating the fate of macrophages in a spatiotemporally ordered manner to mimic the changes in the immune microenvironment of bone defect sites during the natural repair process of bone tissue. Chitosan is one of the most abundant natural polysaccharides in the world. In recent years, various chitosan-based biomaterials have been widely used in macrophage fate modulation and bone regeneration. In this review, we review the interaction between macrophages and scaffold materials, general information about chitosan, the modulation of macrophage fate by chitosan-based biomaterials, and their application in bone regeneration.
Collapse
Affiliation(s)
- Huiling Deng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Yuanyuan Guan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Quping Dong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| |
Collapse
|
16
|
Das UN. Is there a role for essential fatty acids in osteoporosis? Eur J Clin Nutr 2024; 78:659-662. [PMID: 38840032 DOI: 10.1038/s41430-024-01456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Inflammatory markers are inversely associated with bone density, geometry, and strength in postmenopausal women, and elderly subjects suggesting that osteoporosis is a low-grade systemic inflammatory condition. But glucocorticoids that are potent anti-inflammatory compounds instead of arresting/preventing osteoporosis induce osteoporosis. These results indicate that IL-6 and TNF-α, post-menopausal state, and steroids produce osteoporosis by an unidentified mechanism. Pro-inflammatory cytokines, estrogen, and steroids bring about their actions by influencing the metabolism of essential fatty acids (EFAs). I propose that EFAs and their metabolites act as second messengers of actions of corticosteroids, cytokines, and estrogen. This implies that EFAs are of benefit in the prevention and management of osteoporosis. This argument is supported by the observation that plasma phospholipid content of unsaturated fatty acids is decreased in those with osteoporosis. The reports that long-chain metabolites of EFAs including arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid, and lipoxin A4 are of benefit in the prevention and management of osteoporosis lends further support to this proposal.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA, 98604, USA.
| |
Collapse
|
17
|
Xuan Z, Chen X, Zhou W, Shen Y, Sun Z, Zhang H, Yao Z. Exploring causal correlations between circulating cytokines and atopic dermatitis: a bidirectional two-sample Mendelian randomization study. Front Immunol 2024; 15:1367958. [PMID: 39055710 PMCID: PMC11269137 DOI: 10.3389/fimmu.2024.1367958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Objectives Numerous observational studies have reported associations between circulating cytokines and atopic dermatitis (AD); however, the causal relationships between them remain unclear. To explore the causal correlations and direction of causal effects between AD and levels of 91 circulating cytokines. Methods Two-sample Mendelian randomization (MR) analyses were conducted to examine the causal relationships between 91 circulating cytokines and AD using summary statistics from genome-wide association studies (GWAS). Reverse MR analyses were performed to investigate reverse causation. Pleiotropy and heterogeneity tests were conducted to assess the robustness of the findings. Additional transcriptome database and clinical peripheral blood mononuclear cells (PBMCs) samples were utilized to validate the results of MR analyses. Results Levels of interleukin (IL)-13, IL-18 Receptor 1, Tumor necrosis factor ligand superfamily member 14 (TNFSF14), TNF-related activation-induced cytokine (TRANCE), C-X-C motif chemokine (CXCL)11, IL-33, TNF-beta and CD5 were suggestively associated with the risk of AD (odds ratio, OR: 1.202, 95% CI: 1.018-1.422, p = 0.030; OR: 1.029, 95% CI: 1.029-1.157, p = 0.004; OR: 1.159, 95% CI: 1.018-1.320, p = 0.026; OR: 1.111, 95% CI: 1.016-1.214, p = 0.020; OR: 0.878, 95% CI: 0.783-0.984, p = 0.025; OR: 0.809, 95% CI: 0.661-0.991, p = 0.041; OR: 0.945, 95% CI: 0.896-0.997, p = 0.038; OR: 0.764, 95% CI: 0.652-0.895, p = 8.26e-04). In addition, levels of cytokines including Axin-1, CXCL5, CXCL10, Oncostatin-M (OSM), Sulfotransferase 1A1 (SULT1A1) and TNFSF14 were suggested to be consequences of AD (Beta: -0.080, p = 0.016; Beta: -0.062, p = 0.036; Beta: -0.066, p = 0.049; Beta: -0.073, p = 0.013; Beta: -0.089, p = 0.008; Beta: -0.079, p = 0.031). IL-13, IL-18R1, TNFSF14, and TRANCE were upregulated in both lesional skin biopsies and PBMCs from AD patients. Conclusion The study indicates that several cytokines, including IL-13, IL-18R1, TNFSF14, TRANCE, CXCL11, IL-33, TNF-beta, and CD5, are upstream of AD development, whereas a few circulating cytokines are potentially downstream in the development of AD.
Collapse
Affiliation(s)
- Zhenquan Xuan
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuanyi Chen
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weinan Zhou
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yihang Shen
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Sun
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Zhang M, Huang Y, Bai J, Xu W, Shan H, Sheng L, Gao X, Han Y, Wang S, Bai C, Tian B, Ni Y, Dong Q, Ma F, Zhou X. XAF1 promotes osteoclast apoptosis by antagonizing the XIAP-caspase axis. J Orthop Translat 2024; 47:15-28. [PMID: 38957269 PMCID: PMC11217565 DOI: 10.1016/j.jot.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Background Over-activated osteoclast (OC) is a major cause of diseases related to bone loss and bone metabolism. Both bone resorption inhibition and apoptosis induction of osteoclast are crucial in treating these diseases. X-linked inhibitor of apoptosis protein (XIAP)-associated factor 1 (XAF1) is an important interferon-stimulated and apoptotic gene. However, how XAF1 regulates bone formation and remodeling is unknown. Methods We generate global and chimeric Xaf1 knockout mouse models and utilize these models to explore the function and mechanism of XAF1 in regulating bone formation and remodeling in vivo and in vitro. Results We show that XAF1 depletion enhances osteoclast generation in vitro. XAF1 knockout increases osteoclast number and bone resorption, thereby exacerbating bone loss in both OVX and osteolysis models. Activation of XAF1 with BV6 (a potent XIAP inhibitor) suppresses osteoclast formation. Mechanistically, XAF1 deletion decreases osteoclast apoptosis by facilitating the interaction between XIAP and caspase-3/7. Conclusions Our data illustrates an essential role of XAF1 in controlling osteoclastogenesis in both osteoporosis and osteolysis mouse models and highlights its underlying mechanism, indicating a potential role in clinical treatment.The translational potential of this article: The translation potential of this article is that we first indicated that osteoclast apoptosis induced by XAF1 contribute to the progression of osteoporosis and osteolysis, which provides a novel strategy in the prevention of osteoporosis and osteolysis.
Collapse
Affiliation(s)
- Mingchao Zhang
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- National Key Laboratory of Immunity and Inflammation, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Yingkang Huang
- National Key Laboratory of Immunity and Inflammation, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Jinyu Bai
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Wushuang Xu
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Huajian Shan
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Lei Sheng
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xiang Gao
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yu Han
- National Key Laboratory of Immunity and Inflammation, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Shiyou Wang
- National Key Laboratory of Immunity and Inflammation, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Chaowen Bai
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Bo Tian
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yichao Ni
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Qirong Dong
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammation, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Xiaozhong Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| |
Collapse
|
19
|
Hong J, Luo F, Du X, Xian F, Li X. The immune cells in modulating osteoclast formation and bone metabolism. Int Immunopharmacol 2024; 133:112151. [PMID: 38685175 DOI: 10.1016/j.intimp.2024.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Osteoclasts are pivotal in regulating bone metabolism, with immune cells significantly influencing both physiological and pathological processes by modulating osteoclast functions. This is particularly evident in conditions of inflammatory bone resorption, such as rheumatoid arthritis and periodontitis. This review summarizes and comprehensively analyzes the research progress on the regulation of osteoclast formation by immune cells, aiming to unveil the underlying mechanisms and pathways through which diseases, such as rheumatoid arthritis and periodontitis, impact bone metabolism.
Collapse
Affiliation(s)
- Jiale Hong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xingyue Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fa Xian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
20
|
Rattajak P, Aroonkesorn A, Smythe C, Wititsuwannakul R, Pitakpornpreecha T. Pleurotus sajor-caju (Fr.) Singer β-1,3-Glucanoligosaccharide (Ps-GOS) Suppresses RANKL-Induced Osteoclast Differentiation and Function in Pre-Osteoclastic RAW 264.7 Cells by Inhibiting the RANK/NFκB/cFOS/NFATc1 Signalling Pathway. Molecules 2024; 29:2113. [PMID: 38731604 PMCID: PMC11085266 DOI: 10.3390/molecules29092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Edible grey oyster mushroom, Pleurotus sajor-caju, β (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom β-glucan using Hevea β-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.
Collapse
Affiliation(s)
- Purithat Rattajak
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
| | - Aratee Aroonkesorn
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| | - Carl Smythe
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
| | - Rapepun Wititsuwannakul
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| | - Thanawat Pitakpornpreecha
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| |
Collapse
|
21
|
Chen W, Wang Q, Tao H, Lu L, Zhou J, Wang Q, Huang W, Yang X. Subchondral osteoclasts and osteoarthritis: new insights and potential therapeutic avenues. Acta Biochim Biophys Sin (Shanghai) 2024; 56:499-512. [PMID: 38439665 DOI: 10.3724/abbs.2024017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, and good therapeutic results are often difficult to obtain due to its complex pathogenesis and diverse causative factors. After decades of research and exploration of OA, it has been progressively found that subchondral bone is essential for its pathogenesis, and pathological changes in subchondral bone can be observed even before cartilage lesions develop. Osteoclasts, the main cells regulating bone resorption, play a crucial role in the pathogenesis of subchondral bone. Subchondral osteoclasts regulate the homeostasis of subchondral bone through the secretion of degradative enzymes, immunomodulation, and cell signaling pathways. In OA, osteoclasts are overactivated by autophagy, ncRNAs, and Rankl/Rank/OPG signaling pathways. Excessive bone resorption disrupts the balance of bone remodeling, leading to increased subchondral bone loss, decreased bone mineral density and consequent structural damage to articular cartilage and joint pain. With increased understanding of bone biology and targeted therapies, researchers have found that the activity and function of subchondral osteoclasts are affected by multiple pathways. In this review, we summarize the roles and mechanisms of subchondral osteoclasts in OA, enumerate the latest advances in subchondral osteoclast-targeted therapy for OA, and look forward to the future trends of subchondral osteoclast-targeted therapies in clinical applications to fill the gaps in the current knowledge of OA treatment and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Wenlong Chen
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiufei Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Huaqiang Tao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Lingfeng Lu
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiang Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Wei Huang
- Department of Orthopaedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| |
Collapse
|
22
|
Guimarães GC, Coelho JBC, Silva JGO, de Sant'Ana ACC, de Sá CAC, Moreno JM, Reis LM, de Oliveira Guimarães CS. Obesity, diabetes and risk of bone fragility: How BMAT behavior is affected by metabolic disturbances and its influence on bone health. Osteoporos Int 2024; 35:575-588. [PMID: 38055051 DOI: 10.1007/s00198-023-06991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Osteoporosis is a metabolic bone disease characterized by decreased bone strength and mass, which predisposes patients to fractures and is associated with high morbidity and mortality. Like osteoporosis, obesity and diabetes are systemic metabolic diseases associated with modifiable risk factors and lifestyle, and their prevalence is increasing. They are related to decreased quality of life, functional loss and increased mortality, generating high costs for health systems and representing a worldwide public health problem. Growing evidence reinforces the role of bone marrow adipose tissue (BMAT) as an influential factor in the bone microenvironment and systemic metabolism. Given the impact of obesity and diabetes on metabolism and their possible effect on the bone microenvironment, changes in BMAT behavior may explain the risk of developing osteoporosis in the presence of these comorbidities. METHODS This study reviewed the scientific literature on the behavior of BMAT in pathological metabolic conditions, such as obesity and diabetes, and its potential involvement in the pathogenesis of bone fragility. RESULTS Published data strongly suggest a relationship between increased BMAT adiposity and the risk of bone fragility in the context of obesity and diabetes. CONCLUSION By secreting a broad range of factors, BMAT modulates the bone microenvironment and metabolism, ultimately affecting skeletal health. A better understanding of the relationship between BMAT expansion and metabolic disturbances observed in diabetic and obese patients will help to identify regulatory pathways and new targets for the treatment of bone-related diseases, with BMAT as a potential therapeutic target.
Collapse
Affiliation(s)
| | - João Bosco Costa Coelho
- Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | | | | | | - Júlia Marques Moreno
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Lívia Marçal Reis
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Camila Souza de Oliveira Guimarães
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil.
- Departamento de Medicina, Universidade Federal de Lavras, Câmpus Universitário, Caixa Postal 3037, CEP 37200-900, Lavras, Minas Gerais, Brasil.
| |
Collapse
|
23
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Marlétaz F, Timoshevskaya N, Timoshevskiy VA, Parey E, Simakov O, Gavriouchkina D, Suzuki M, Kubokawa K, Brenner S, Smith JJ, Rokhsar DS. The hagfish genome and the evolution of vertebrates. Nature 2024; 627:811-820. [PMID: 38262590 PMCID: PMC10972751 DOI: 10.1038/s41586-024-07070-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | | | | | - Elise Parey
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- UK Dementia Research Institute, University College London, London, UK
| | - Masakazu Suzuki
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kaoru Kubokawa
- Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Sydney Brenner
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA.
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
25
|
Liu YCG, Teng AY. Distinct cross talk of IL-17 & TGF-β with the immature CD11c + TRAF6 (-/-) -null myeloid dendritic cell-derived osteoclast precursor (mDDOCp) may engage signaling toward an alternative pathway of osteoclastogenesis for arthritic bone loss in vivo. Immun Inflamm Dis 2024; 12:e1173. [PMID: 38415924 PMCID: PMC10851637 DOI: 10.1002/iid3.1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Dendritic cells (DCs), though borne heterogeneous, are the most potent antigen-presenting cells, whose critical functions include triggering antigen-specific naïve T-cell responses and fine-tuning the innate versus adaptive immunity at the osteo-immune and/or mucosal mesenchyme interface. We previously reported that immature myeloid-CD11c+ DCs/mDCs may act like osteoclast (OC) precursors (OCp/mDDOCp) capable of developing into functional OCs via an alternative pathway of inflammation-induced osteoclastogenesis; however, what are their contribution and signaling interactions with key osteotropic cytokines (i.e., interleukin-17 [IL-17] and transforming growth factor-β [TGF-β]) to bearing such inflammatory bone loss in vivo remain unclear to date. METHODS Herein, we employed mature adult bone marrow-reconstituted C57BL/6 TRAF6(-/-) -null chimeras without the classical monocyte/macrophage (Mo/Mϕ)-derived OCs to address their potential contribution to OCp/mDDOCp-mediated osteoclastogenesis in the chicken type-II-collagen (CC-II)-induced joint inflammation versus arthritic bone loss and parallel associations with the double-positive CD11c+ TRAP+ TRAF6-null(-/-) DC-like OCs detected in vivo via the quantitative dual-immunohistochemistry and digital histomorphometry for analyses. RESULTS The resulting findings revealed the unrecognized novel insight that (i) immature myeloid-CD11c+ TRAF6(-/-) TRAP+ DC-like OCs were involved, co-localized, and strongly associated with joint inflammation and bone loss, independent of the Mo/Mϕ-derived classical OCs, in CC-II-immunized TRAF6(-/-) -null chimeras, and (ii) the osteotropic IL-17 may engage distinct crosstalk with CD11c+ mDCs/mDDOCp before developing the CD11c+ TRAP+ TRAF6(-/-) OCs via a TGF-β-dependent interaction toward inflammation-induced arthritic bone loss in vivo. CONCLUSION These results confirm and substantiate the validity of TRAF6(-/-) -null chimeras to address the significance of immature mCD11c+ TRAP+ DC-like OCs/mDDOCp subset for an alternative pathway of arthritic bone loss in vivo. Such CD11c+ mDCs/mDDOCp-associated osteoclastogenesis through the step-wise twist-in-turns osteo-immune cross talks are thereby theme highlighted to depict a summative re-visitation proposed.
Collapse
Affiliation(s)
- Yen Chun G. Liu
- Department of Oral HygieneCenter for Osteo‐immunology & Biotechnology Research (COBR), College of Dental Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
- School of Oral Hygiene & Nursing, and School of DentistryKanagawa Dental University (KDU)YokosukaKanagawaJapan
| | - Andy Yen‐Tung Teng
- The Eastman Institute for Oral Health (EIOH), School of Medicine & Dentistry, University of RochesterRochesterNew YorkUSA
- Center for Osteo‐immunology & Biotechnology Research (COBR), School of Dentistry, College of Dental Medicine, Kaohsiung Medical University (KMU) and KMU‐HospitalKaohsiungTaiwan
| |
Collapse
|
26
|
Zhao S, Qiao Z, Pfeifer R, Pape HC, Mao K, Tang H, Meng B, Chen S, Liu H. Modulation of fracture healing by senescence-associated secretory phenotype (SASP): a narrative review of the current literature. Eur J Med Res 2024; 29:38. [PMID: 38195489 PMCID: PMC10775505 DOI: 10.1186/s40001-023-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
The senescence-associated secretory phenotype (SASP) is a generic term for the secretion of cytokines, such as pro-inflammatory factors and proteases. It is a crucial feature of senescent cells. SASP factors induce tissue remodeling and immune cell recruitment. Previous studies have focused on the beneficial role of SASP during embryonic development, wound healing, tissue healing in general, immunoregulation properties, and cancer. However, some recent studies have identified several negative effects of SASP on fracture healing. Senolytics is a drug that selectively eliminates senescent cells. Senolytics can inhibit the function of senescent cells and SASP, which has been found to have positive effects on a variety of aging-related diseases. At the same time, recent data suggest that removing senescent cells may promote fracture healing. Here, we reviewed the latest research progress about SASP and illustrated the inflammatory response and the influence of SASP on fracture healing. This review aims to understand the role of SASP in fracture healing, aiming to provide an important clinical prevention and treatment strategy for fracture. Clinical trials of some senolytics agents are underway and are expected to clarify the effectiveness of their targeted therapy in the clinic in the future. Meanwhile, the adverse effects of this treatment method still need further study.
Collapse
Affiliation(s)
- Shangkun Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Qiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Roman Pfeifer
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Hans-Christoph Pape
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Keya Mao
- Chinese PLA General Hospital Beijing, Beijing, 100853, China
| | - Hai Tang
- Beijing Friendship Hospital, Beijing, 100050, China
| | - Bin Meng
- First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Songfeng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
27
|
Joseph GJ, Johnson DB, Johnson RW. Immune checkpoint inhibitors in bone metastasis: Clinical challenges, toxicities, and mechanisms. J Bone Oncol 2023; 43:100505. [PMID: 37842554 PMCID: PMC10568292 DOI: 10.1016/j.jbo.2023.100505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the field of anti-cancer therapy over the last decade; they provide durable clinical responses against tumors by inhibiting immune checkpoint proteins that canonically regulate the T cell-mediated immune response. Despite their success in many primary tumors and soft tissue metastases, ICIs function poorly in patients with bone metastases, and these patients do not have the same survival benefit as patients with the same primary tumor type (e.g., non-small cell lung cancer [NSCLC], urothelial, renal cell carcinoma [RCC], etc.) that has not metastasized to the bone. Additionally, immune-related adverse events including rheumatologic and musculoskeletal toxicities, bone loss, and increased fracture risk develop after treatment with ICIs. There are few preclinical studies that investigate the interplay of the immune system in bone metastases; however, the current literature suggests a role for CD8+ T cells and myeloid cell subsets in bone homeostasis. As such, this review focuses on findings from the clinical and pre-clinical studies that have investigated immune checkpoint blockade in the bone metastatic setting and highlights the need for more comprehensive investigations into the relationship between immune cell subsets, ICIs, and the bone-tumor microenvironment.
Collapse
Affiliation(s)
- Gwenyth J. Joseph
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Douglas B. Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
28
|
Hao S, Wang M, Yin Z, Jing Y, Bai L, Su J. Microenvironment-targeted strategy steers advanced bone regeneration. Mater Today Bio 2023; 22:100741. [PMID: 37576867 PMCID: PMC10413201 DOI: 10.1016/j.mtbio.2023.100741] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Traditional strategies in bone tissue engineering have focused primarily on mimicking the extracellular matrix (ECM) of bone in terms of structure and composition. However, the synergistic effects of other cues from the microenvironment during bone regeneration are often neglected. The bone microenvironment is a sophisticated system that includes physiological (e.g., neighboring cells such as macrophages), chemical (e.g., oxygen, pH), and physical factors (e.g., mechanics, acoustics) that dynamically interact with each other. Microenvironment-targeted strategies are increasingly recognized as crucial for successful bone regeneration and offer promising solutions for advancing bone tissue engineering. This review provides a comprehensive overview of current microenvironment-targeted strategies and challenges for bone regeneration and further outlines prospective directions of the approaches in construction of bone organoids.
Collapse
Affiliation(s)
- Shuyue Hao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200444, China
| |
Collapse
|
29
|
Wang M, Gao M, Yi Z. Biological effects of IL-33/ST2 axis on oral diseases: autoimmune diseases and periodontal diseases. Int Immunopharmacol 2023; 122:110524. [PMID: 37393839 DOI: 10.1016/j.intimp.2023.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
IL-33 is a relatively new member of the IL-1 cytokine family, which plays a unique role in autoimmune diseases, particularly some oral diseases dominated by immune factors. The IL-33/ST2 axis is the main pathway by which IL-33 signals affect downstream cells to produce an inflammatory response or tissue repair. As a newly discovered pro-inflammatory cytokine, IL-33 can participate in the pathogenesis of autoimmune oral diseases such as Sjogren's syndrome and Behcet's disease. Moreover, the IL-33/ST2 axis also recruits and activates mast cells in periodontitis, producing inflammatory chemokines and mediating gingival inflammation and alveolar bone destruction. Interestingly, the high expression of IL-33 in the alveolar bone, which exhibits anti-osteoclast effects under appropriate mechanical loading, also confirms its dual role of destruction and repair in an immune-mediated periodontal environment. This study reviewed the biological effects of IL-33 in autoimmune oral diseases, periodontitis and periodontal bone metabolism, and elaborated its potential role and impact as a disease enhancer or a repair factor.
Collapse
Affiliation(s)
- Mingfeng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Mingcen Gao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
30
|
Li GF, Gao Y, Weinberg ED, Huang X, Xu YJ. Role of Iron Accumulation in Osteoporosis and the Underlying Mechanisms. Curr Med Sci 2023; 43:647-654. [PMID: 37326889 DOI: 10.1007/s11596-023-2764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/09/2021] [Indexed: 06/17/2023]
Abstract
Osteoporosis is prevalent in postmenopausal women. The underlying reason is mainly estrogen deficiency, but recent studies have indicated that osteoporosis is also associated with iron accumulation after menopause. It has been confirmed that some methods of decreasing iron accumulation can improve the abnormal bone metabolism associated with postmenopausal osteoporosis. However, the mechanism of iron accumulation-induced osteoporosis is still unclear. Iron accumulation may inhibit the canonical Wnt/β-catenin pathway via oxidative stress, leading to osteoporosis by decreasing bone formation and increasing bone resorption via the osteoprotegerin (OPG)/receptor activator of nuclear factor kappa-B ligand (RANKL)/receptor activator of nuclear factor kappa-B (RANK) system. In addition to oxidative stress, iron accumulation also has been reported to inhibit either osteoblastogenesis or osteoblastic function as well as to stimulate either osteoclastogenesis or osteoclastic function directly. Furthermore, serum ferritin has been widely used for the prediction of bone status, and nontraumatic measurement of iron content by magnetic resonance imaging may be a promising early indicator of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Guang-Fei Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 2015004, China
- Osteoporosis Institute of Soochow University, Suzhou, 215004, China
| | - Yan Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 2015004, China
- Osteoporosis Institute of Soochow University, Suzhou, 215004, China
| | - E D Weinberg
- Department of Biology & Program in Medical Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Xi Huang
- Department of Environmental Medicine, New York University, School of Medicine, New York, NY, 10016, USA
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 2015004, China.
- Osteoporosis Institute of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
31
|
Hild V, Mellert K, Möller P, Barth TFE. Giant Cells of Various Lesions Are Characterised by Different Expression Patterns of HLA-Molecules and Molecules Involved in the Cell Cycle, Bone Metabolism, and Lineage Affiliation: An Immunohistochemical Study with a Review of the Literature. Cancers (Basel) 2023; 15:3702. [PMID: 37509363 PMCID: PMC10377796 DOI: 10.3390/cancers15143702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Giant cells (GCs) are thought to originate from the fusion of monocytic lineage cells and arise amid multiple backgrounds. To compare GCs of different origins, we immunohistochemically characterised the GCs of reactive and neoplastic lesions (n = 47). We studied the expression of 15 molecules including HLA class II molecules those relevant to the cell cycle, bone metabolism and lineage affiliation. HLA-DR was detectable in the GCs of sarcoidosis, sarcoid-like lesions, tuberculosis, and foreign body granuloma. Cyclin D1 was expressed by the GCs of neoplastic lesions as well as the GCs of bony callus, fibroid epulis, and brown tumours. While cyclin E was detected in the GCs of all lesions, p16 and p21 showed a heterogeneous expression pattern. RANK was expressed by the GCs of all lesions except sarcoid-like lesions and xanthogranuloma. All GCs were RANK-L-negative, and the GCs of all lesions were osteoprotegerin-positive. Osteonectin was limited to the GCs of chondroblastoma. Osteopontin and TRAP were detected in the GCs of all lesions except xanthogranuloma. RUNX2 was heterogeneously expressed in the reactive and neoplastic cohort. The GCs of all lesions except foreign body granuloma expressed CD68, and all GCs were CD163- and langerin-negative. This profiling points to a functional diversity of GCs despite their similar morphology.
Collapse
Affiliation(s)
- Vivien Hild
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Thomas F E Barth
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
32
|
Wei H, Zhao Y, Xiang L. Bone health in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2023; 17:921-935. [PMID: 37589220 DOI: 10.1080/17474124.2023.2248874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is a chronic disease characterized by the presence of systemic inflammation, manifesting not only as gastrointestinal symptoms but also as extraintestinal bone complications, including osteopenia and osteoporosis. However, the association between IBD and osteoporosis is complex, and the presence of multifactorial participants in the development of osteoporosis is increasingly recognized. Unlike in adults, delayed puberty and growth hormone/insulin-like growth factor-1 axis abnormalities are essential risk factors for osteoporosis in pediatric patients with IBD. AREAS COVERED This article reviews the potential pathophysiological mechanisms contributing to osteoporosis in adult and pediatric patients with IBD and provides evidence for effective prevention and treatment, focusing on pediatric patients with IBD. A search was performed from PubMed and Web of Science inception to February 2023 to identify articles on IBD, osteoporosis, pediatric, and fracture risk. EXPERT OPINION A comprehensive treatment pattern based on individualized principles can be used to manage pediatric IBD-related osteoporosis.
Collapse
Affiliation(s)
- Hao Wei
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yihan Zhao
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lisha Xiang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Feng M, Liu L, Wang J, Zhang J, Qu Z, Wang Y, He B. The Molecular Mechanisms Study of Engeletin Suppresses RANKL-Induced Osteoclastogenesis and Inhibits Ovariectomized Murine Model Bone Loss. J Inflamm Res 2023; 16:2255-2270. [PMID: 37250105 PMCID: PMC10225148 DOI: 10.2147/jir.s401519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Osteoclastogenesis, the process of osteoclast differentiation, plays a critical role in bone homeostasis. Overexpression of osteoclastogenesis can lead to pathological conditions, such as osteoporosis and osteolysis. This study aims to investigate the role of Engelitin in the process of RAW264.7 cell differentiation into osteoclasts induced by RANKL, as well as in a mouse model of bone loss following ovariectomy. Methods We used RANKL-stimulated RAW264.7 cells as an in vitro osteoclast differentiation model. The effects of Eng on morphological changes during osteoclast differentiation were evaluated using TRAP and F-actin staining. The effects of Eng on the molecular level of osteoclast differentiation were evaluated using Western blot and q-PCR. The level of reactive oxygen species was evaluated using the DCFH-DA staining method. We then used ovariectomized mice as a bone loss animal model. The effects of Eng on changes in bone loss in vivo were evaluated using micro-CT and histological analysis staining. Results In the in vitro experiments, Eng exhibited dose-dependent inhibition of osteoclast formation and F-actin formation. At the molecular level, Eng dose-dependently suppressed the expression of specific RNAs (NFATc1, c-Fos, TRAP, Cathepsin K, MMP-9) involved in osteoclast differentiation, and inhibited the phosphorylation of proteins such as IκBα, P65, ERK, JNK, and P38. Additionally, Eng dose-dependently suppressed ROS levels and promoted the expression of antioxidant enzymes such as Nrf2, HO-1, and NQO1. In the in vivo experiments, Eng improved bone loss in ovariectomized mice. Conclusion Our study found that Eng inhibited RANKL-induced osteoclast differentiation through multiple signaling pathways, including MAPKs, NF-κB, and ROS aggregation. Furthermore, Eng improved bone loss in ovariectomized mice.
Collapse
Affiliation(s)
- Mingzhe Feng
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Lin Liu
- Department of Critical Care Medicine, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Jiang Wang
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Jialang Zhang
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Zechao Qu
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Yanjun Wang
- Department of Emergency, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| |
Collapse
|
34
|
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J, Geng D. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:202. [PMID: 37198232 DOI: 10.1038/s41392-023-01467-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Since the proposal of Paul Ehrlich's magic bullet concept over 100 years ago, tremendous advances have occurred in targeted therapy. From the initial selective antibody, antitoxin to targeted drug delivery that emerged in the past decades, more precise therapeutic efficacy is realized in specific pathological sites of clinical diseases. As a highly pyknotic mineralized tissue with lessened blood flow, bone is characterized by a complex remodeling and homeostatic regulation mechanism, which makes drug therapy for skeletal diseases more challenging than other tissues. Bone-targeted therapy has been considered a promising therapeutic approach for handling such drawbacks. With the deepening understanding of bone biology, improvements in some established bone-targeted drugs and novel therapeutic targets for drugs and deliveries have emerged on the horizon. In this review, we provide a panoramic summary of recent advances in therapeutic strategies based on bone targeting. We highlight targeting strategies based on bone structure and remodeling biology. For bone-targeted therapeutic agents, in addition to improvements of the classic denosumab, romosozumab, and PTH1R ligands, potential regulation of the remodeling process targeting other key membrane expressions, cellular crosstalk, and gene expression, of all bone cells has been exploited. For bone-targeted drug delivery, different delivery strategies targeting bone matrix, bone marrow, and specific bone cells are summarized with a comparison between different targeting ligands. Ultimately, this review will summarize recent advances in the clinical translation of bone-targeted therapies and provide a perspective on the challenges for the application of bone-targeted therapy in the clinic and future trends in this area.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Xin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
35
|
Onji M, Penninger JM. RANKL and RANK in Cancer Therapy. Physiology (Bethesda) 2023; 38:0. [PMID: 36473204 DOI: 10.1152/physiol.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Receptor activator of nuclear factor-κB (RANK) and its ligand (RANKL) are key regulators of mammalian physiology such as bone metabolism, immune tolerance and antitumor immunity, and mammary gland biology. Here, we explore the multiple functions of RANKL/RANK in physiology and pathophysiology and discuss underlying principles and strategies to modulate the RANKL/RANK pathway as a therapeutic target in immune-mediated cancer treatment.
Collapse
Affiliation(s)
- Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Muggeo P, Grassi M, D'Ascanio V, Brescia V, Fontana A, Piacente L, Di Serio F, Giordano P, Faienza MF, Santoro N. Bone Remodeling Markers in Children with Acute Lymphoblastic Leukemia after Intensive Chemotherapy: The Screenshot of a Biochemical Signature. Cancers (Basel) 2023; 15:cancers15092554. [PMID: 37174020 PMCID: PMC10177249 DOI: 10.3390/cancers15092554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
PURPOSE to investigate the effects of intensive chemotherapy and glucocorticoid (GC) treatment on bone remodeling markers in children with acute lymphoblastic leukemia (ALL). METHODS A cross-sectional study was carried out in 39 ALL children (aged 7.64 ± 4.47) and 49 controls (aged 8.7 ± 4.7 years). Osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), osteocalcin (OC), C-terminal telopeptide of type I collagen (CTX), bone alkaline phosphatase (bALP), tartrate-resistant acid phosphatase 5b (TRACP5b), procollagen type I N-terminal propeptide (P1NP), Dickkopf-1 (DKK-1), and sclerostin were assessed. Statistical analysis was conducted using the principal component analysis (PCA) to study patterns of associations in bone markers. RESULTS ALL patients showed significantly higher OPG, RANKL, OC, CTX, and TRACP5b than the controls (p ≤ 0.02). Considering ALL group, we found a strong positive correlation among OC, TRACP5b, P1NP, CTX, and PTH (r = 0.43-0.69; p < 0.001); between CTX and P1NP (r = 0.5; p = 0.001); and between P1NP and TRAcP (r = 0.63; p < 0.001). The PCA revealed OC, CTX, and P1NP as the main markers explaining the variability of the ALL cohort. CONCLUSIONS Children with ALL showed a signature of bone resorption. The assessment of bone biomarkers could help identify ALL individuals who are most at risk of developing bone damage and who need preventive interventions.
Collapse
Affiliation(s)
- Paola Muggeo
- Department of Pediatric Oncology and Hematology, University Hospital of Policlinic, 70124 Bari, Italy
| | - Massimo Grassi
- Department of Pediatric Oncology and Hematology, University Hospital of Policlinic, 70124 Bari, Italy
| | - Vito D'Ascanio
- Institute of Sciences of Food Production (ISPA), Italian National Research Council (CNR), 70126 Bari, Italy
| | - Vincenzo Brescia
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy
| | - Antonietta Fontana
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy
| | - Laura Piacente
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University "A. Moro", 70124 Bari, Italy
| | - Francesca Di Serio
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy
| | - Paola Giordano
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University "A. Moro", 70124 Bari, Italy
| | - Nicola Santoro
- Department of Pediatric Oncology and Hematology, University Hospital of Policlinic, 70124 Bari, Italy
| |
Collapse
|
37
|
Marlétaz F, Timoshevskaya N, Timoshevskiy V, Simakov O, Parey E, Gavriouchkina D, Suzuki M, Kubokawa K, Brenner S, Smith J, Rokhsar DS. The hagfish genome and the evolution of vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537254. [PMID: 37131617 PMCID: PMC10153176 DOI: 10.1101/2023.04.17.537254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a critical window into early vertebrate evolution. Here, we investigate the complex history, timing, and functional role of genome-wide duplications in vertebrates in the light of a chromosome-scale genome of the brown hagfish Eptatretus atami. Using robust chromosome-scale (paralogon-based) phylogenetic methods, we confirm the monophyly of cyclostomes, document an auto-tetraploidization (1RV) that predated the origin of crown group vertebrates ~517 Mya, and establish the timing of subsequent independent duplications in the gnathostome and cyclostome lineages. Some 1RV gene duplications can be linked to key vertebrate innovations, suggesting that this early genomewide event contributed to the emergence of pan-vertebrate features such as neural crest. The hagfish karyotype is derived by numerous fusions relative to the ancestral cyclostome arrangement preserved by lampreys. These genomic changes were accompanied by the loss of genes essential for organ systems (eyes, osteoclast) that are absent in hagfish, accounting in part for the simplification of the hagfish body plan; other gene family expansions account for hagfishes' capacity to produce slime. Finally, we characterise programmed DNA elimination in somatic cells of hagfish, identifying protein-coding and repetitive elements that are deleted during development. As in lampreys, the elimination of these genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline/pluripotency functions. Reconstruction of the early genomic history of vertebrates provides a framework for further exploration of vertebrate novelties.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | | | - Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Elise Parey
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Present address: UK Dementia Research Institute, University College London, London, UK
| | - Masakazu Suzuki
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kaoru Kubokawa
- Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Sydney Brenner
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
- Deceased
| | - Jeramiah Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
38
|
Weivoda MM, Bradley EW. Macrophages and Bone Remodeling. J Bone Miner Res 2023; 38:359-369. [PMID: 36651575 PMCID: PMC10023335 DOI: 10.1002/jbmr.4773] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Bone remodeling in the adult skeleton facilitates the removal and replacement of damaged and old bone to maintain bone quality. Tight coordination of bone resorption and bone formation during remodeling crucially maintains skeletal mass. Increasing evidence suggests that many cell types beyond osteoclasts and osteoblasts support bone remodeling, including macrophages and other myeloid lineage cells. Herein, we discuss the origin and functions for macrophages in the bone microenvironment, tissue resident macrophages, osteomacs, as well as newly identified osteomorphs that result from osteoclast fission. We also touch on the role of macrophages during inflammatory bone resorption. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Elizabeth W. Bradley
- Department of Orthopedics and Stem Cell Institute, University of Minnesota, Minneapolis, MN
| |
Collapse
|
39
|
Torres-Monjarás AP, Sánchez-Gutiérrez R, Hernández-Castro B, González-Baranda L, Alvarado-Hernández DL, Pozos-Guillén A, Muñoz-Ruiz A, Méndez-González V, González-Amaro R, Vitales-Noyola M. Bacteria associated with apical periodontitis promotes in vitro the differentiation of macrophages to osteoclasts. Clin Oral Investig 2023:10.1007/s00784-023-04920-8. [PMID: 36800026 DOI: 10.1007/s00784-023-04920-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE To analyze the possible in vitro effect of the cytokine RANKL and bacteria involved in apical periodontitis on the differentiation of macrophages into osteoclasts. MATERIAL AND METHODS Bacteria were isolated (mainly E. faecium and E. faecalis) from the root canal of fifty patients with apical periodontitis, the possible effect of these bacteria on the phagocytic activity of the monocyte cell line THP-1 was analyzed by flow cytometry. Furthermore, the effect of these bacteria (alone or in combination with the cytokine RANKL) on the differentiation of THP-1 macrophages into osteoclasts was analyzed through the expression of the receptor RANK and the tartrate-resistant acid phosphatase TRAP. Finally, the release of different cytokines (IL-1β, TNF-α, IL-6, IL-8, IL-10, and IL-12p70) by THP-1 cells induced to differentiate into osteoclasts was also analyzed. RESULTS We observed a significant proportion of THP-1 cells were able to internalize E. faecium and E. faecalis. Furthermore, these bacteria were able to induce (alone or in combination with RANKL) a significant expression of RANK by THP-1 macrophages; accordingly, E. faecium and E. faecalis induced very significant levels of TRAP in these cells. Finally, during the differentiation of THP-1 macrophages induced by RANKL or bacteria, a significant release of the pro-inflammatory cytokines IL-6 and TNF-α was observed. CONCLUSIONS AND CLINICAL RELEVANCE Our data suggest that the causative agents of apical periodontitis can induce the differentiation of osteoclasts as well as the release of pro-inflammatory cytokines, phenomena that may have an important role in the bone damage observed in this condition.
Collapse
Affiliation(s)
- A P Torres-Monjarás
- Endodontics Postgraduate Program, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México
| | - R Sánchez-Gutiérrez
- Research Center for Health Sciences and Biomedicine, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - B Hernández-Castro
- Research Center for Health Sciences and Biomedicine, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, México.,School of Medicine UASLP, San Luis Potosí, SLP, México
| | - L González-Baranda
- Research Center for Health Sciences and Biomedicine, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - D L Alvarado-Hernández
- Research Center for Health Sciences and Biomedicine, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, México.,School of Medicine UASLP, San Luis Potosí, SLP, México
| | - A Pozos-Guillén
- Basic Sciences Laboratory, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México
| | - A Muñoz-Ruiz
- Postgraduate Dental Science Program, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México
| | - V Méndez-González
- Endodontics Postgraduate Program, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México
| | - R González-Amaro
- Research Center for Health Sciences and Biomedicine, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, México.,School of Medicine UASLP, San Luis Potosí, SLP, México
| | - M Vitales-Noyola
- Endodontics Postgraduate Program, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México. .,Research Center for Health Sciences and Biomedicine, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, México.
| |
Collapse
|
40
|
Meng B, Yang B, Qu Y, Liu Y, Wu D, Fu C, He Y, Chen X, Liu C, Kou X, Cao Y. Dual Role of Interleukin-20 in Different Stages of Osteoclast Differentiation and Its Osteoimmune Regulation during Alveolar Bone Remodeling. Int J Mol Sci 2023; 24:ijms24043810. [PMID: 36835229 PMCID: PMC9961846 DOI: 10.3390/ijms24043810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Osteoimmunology mediators are critical to balance osteoblastogenesis and osteoclastogenesis to maintain bone homeostasis. A lot of the osteoimmunology mediators are regulated by interleukin-20 (IL-20). However, little is known about the role of IL-20 in bone remodeling. Here, we showed that IL-20 expression was correlated with osteoclast (OC) activity in remodeled alveolar bone during orthodontic tooth movement (OTM). Ovariectomize (OVX) in rats promoted OC activity and enhanced IL-20 expression, while blocking OC inhibited IL-20 expression in osteoclasts. In vitro, IL-20 treatment promoted survival, inhibited apoptosis of the preosteoclast at the early stages of osteoclast differentiation, and boosted the formation of osteoclasts and their bone resorption function at the late stages. More importantly, anti-IL-20 antibody treatment blocked IL-20-induced osteoclastogenesis and the subsequent bone resorption function. Mechanistically, we showed that IL-20 synergistically acts with RANKL to activate the NF-κB signaling pathway to promote the expression of c-Fos and NFATc1 to promote osteoclastogenesis. Moreover, we found that local injection of IL-20 or anti-IL-20 antibody enhanced osteoclast activity and accelerated OTM in rats, while blocking IL-20 reversed this phenomenon. This study revealed a previously unknown role of IL-20 in regulating alveolar bone remodeling and implies the application of IL-20 to accelerated OTM.
Collapse
Affiliation(s)
- Bowen Meng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Benyi Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yan Qu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yuanbo Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Dongle Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chaoran Fu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xi Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510260, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.K.); (Y.C.)
| | - Yang Cao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.K.); (Y.C.)
| |
Collapse
|
41
|
Lai ZZ, Zhou WJ, Shi JW, Meng YH, Wu JN, Ye JF, Peng T, Xu CE, Li MQ. RANKL up-regulated by progesterone aggravates lipopolysaccharide-induced acute lung injury during pregnancy. J Reprod Immunol 2023; 155:103788. [PMID: 36580846 DOI: 10.1016/j.jri.2022.103788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Acute lung injury (ALI) is a common acute respiratory disease with high morbidity and mortality rate in pregnant women. Receptor activator of NF-κB ligand (TNFSF11, also known as RANKL) exerts either pro-inflammatory or anti-inflammatory effects on the immune response. LPS administration reduced the survival time (n = 10, p < 0.01), increased wet/dry ratio (n = 10, p < 0.001) and lung injury score (n = 10, p < 0.001), the elevated proportions of plasmacytoid dendritic cells (pDCs) (n = 10, p < 0.0001), tissue-resident DCs (resDCs) (n = 10, p < 0.0001), macrophages (n = 10, p < 0.0001), and neutrophils (n = 10, p < 0.0001), and the expressions of costimulatory molecules and inflammation cytokines (n = 10, p < 0.05) in lungs of pregnant mice, compared with non-pregnant mice. In vitro, progesterone up-regulated the expression of RANKL (n > 6, p < 0.05) on pulmonary fibroblasts. The results of cytokine arrays showed that the cytokines associated with inflammatory response and leukocyte differentiation were decreased in pulmonary fibroblasts after treatment with anti-RANKL neutralizing antibody, compared with control pulmonary fibroblasts. More notably, we found that Tnfsf11-/- pregnant mice had longer survival durations (n = 10, p < 0.01), lower lung injury scores (n = 10, p < 0.05), and lower immune cell infiltration (n = 10, p < 0.05). These data imply that the RANKL/RANK axis plays an essential role in LPS-induced ALI during pregnancy possibly through a variety of pathways.
Collapse
Affiliation(s)
- Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China; NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jia-Wei Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang 261035, People's Republic of China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Jiang-Feng Ye
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Ting Peng
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China.
| | - Chang-En Xu
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China.
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China; NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
42
|
Chemical durability of strontium-contaminated soil vitrified by microwave sintering. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Abid S, Lee M, Rodich B, Hook JS, Moreland JG, Towler D, Maalouf NM, Keller A, Ratti G, Jain R. Evaluation of an association between RANKL and OPG with bone disease in people with cystic fibrosis. J Cyst Fibros 2023; 22:140-145. [PMID: 36041886 DOI: 10.1016/j.jcf.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND As people with Cystic Fibrosis (CF) live longer, extra-pulmonary complications such as CF-related bone disease (CFBD) are becoming increasingly important. The etiology of CFBD is poorly understood but is likely multifactorial. Bones undergo continuous remodeling via pathways including RANK (receptor activator of NF-κB)/sRANKL (soluble ligand)/OPG (osteoprotegerin). We sought to examine the association between sRANKL (stimulant of osteoclastogenesis) and OPG levels (inhibitor of osteoclast formation) and CFBD to investigate their potential utility as biomarkers of bone turnover in people with CF. METHODS We evaluated sRANKL and OPG in plasma from people with CF and healthy controls (HC) and compared levels in those with CF to bone mineral density results. We used univariable and multivariable analysis to account for factors that may impact sRANKL and OPG. RESULTS We found a higher median [IQR] sRANKL 10,896pg/mL [5,781-24,243] CF; 2,406pg.mL [659.50-5,042] HC; p= 0.0009), lower OPG 56.68pg/mL [36.28-124.70] CF; 583.20pg/mL [421.30-675.10] HC; p < 0.0001), and higher RANKL/OPG in people with CF no BD than in HC (p < 0.0001). Furthermore, we found a higher RANKL/OPG ratio 407.50pg/mL [214.40-602.60] CFBD; 177.70pg/mL [131.50-239.70] CF no BD; p = 0.007) in people with CFBD versus CF without bone disease. This difference persisted after adjusting for variables thought to impact bone health. CONCLUSIONS The current screening recommendations of imaging for CFBD may miss important markers of bone turnover such as the RANKL/OPG ratio. These findings support the investigation of therapies that modulate the RANK/RANKL/OPG pathway as potential therapeutic targets for bone disease in CF.
Collapse
Affiliation(s)
- Shadaan Abid
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - MinJae Lee
- Department of Population & Data Sciences, Division of Biostatistics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bailey Rodich
- Department of Anesthesiology, Baylor Scott and White, Temple, TX
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Dwight Towler
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Naim M Maalouf
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ashley Keller
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gregory Ratti
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Raksha Jain
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
44
|
Sun J, Cai G, Shen J, Cheng P, Zhang J, Jiang D, Xu X, Lu F, Chen L, Chen H. AS-605240 Blunts Osteoporosis by Inhibition of Bone Resorption. Drug Des Devel Ther 2023; 17:1275-1288. [PMID: 37138583 PMCID: PMC10150757 DOI: 10.2147/dddt.s403231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Background Osteoporosis is a metabolic bone disease. Osteoclasts are significantly involved in the pathogenesis of osteoporosis. AS-605240 (AS) is a small molecule PI3K-γ inhibitor and is less toxic compared to pan-PI3K inhibitors. AS also exerts multiple biological effects including anti-inflammatory, anti-tumor, and myocardial remodeling promotion. However, the involvement of AS in the differentiation and functions of osteoclasts and the effect of AS in treating patients with osteoporosis is still unclear. Purpose This study aimed to investigate if AS inhibits the differentiation of osteoclasts and resorption of the bones induced by M-CSF and RANKL. Next, we evaluated the therapeutic effects of AS on bone loss in ovariectomy (OVX)-induced osteoporosis mice models. Methods We stimulated bone marrow-derived macrophages with an osteoclast differentiation medium containing different AS concentrations for 6 days or 5μM AS at different times. Next, we performed tartrate-resistant acid phosphatase (TRAP) staining, bone resorption assay, F-actin ring fluorescence, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting (WB). Next, MC3T3-E1s (pre-osteoblast cells) were differentiated to osteoblast by stimulating the cells with varying AS concentrations. Next, we performed alkaline phosphatase (ALP) staining, RT-qPCR, and WB on these cells. We established an OVX-induced osteoporosis mice model and treated the mice with 20mg/kg of AS. Finally, we extracted the femurs and performed micro-CT scanning, H&E, and TRAP staining. Results AS inhibits the formation of osteoclasts and resorption of bone triggered by RANKL by inhibiting the PI3K/Akt signaling pathway. Furthermore, AS enhances the differentiation of osteoblasts and inhibits bone loss due to OVX in vivo. Conclusion AS inhibits osteoclast production and enhances osteoblast differentiation in mice, thus providing a new therapeutic approach for treating patients with osteoporosis.
Collapse
Affiliation(s)
- Jiacheng Sun
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Guoping Cai
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Jinlong Shen
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Pu Cheng
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Jiapeng Zhang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Dengteng Jiang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Xianquan Xu
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Fangying Lu
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Lihua Chen
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Haixiao Chen
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
- Correspondence: Haixiao Chen; Lihua Chen, Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, N.150 Ximen Road of Linhai City, Taizhou, Zhejiang Province, People’s Republic of China, Tel +86 15268400288, +86 13757624851, Email ;
| |
Collapse
|
45
|
Yuan W, Wu Y, Huang M, Zhou X, Liu J, Yi Y, Wang J, Liu J. A new frontier in temporomandibular joint osteoarthritis treatment: Exosome-based therapeutic strategy. Front Bioeng Biotechnol 2022; 10:1074536. [PMID: 36507254 PMCID: PMC9732036 DOI: 10.3389/fbioe.2022.1074536] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a debilitating degenerative disease with high incidence, deteriorating quality of patient life. Currently, due to ambiguous etiology, the traditional clinical strategies of TMJOA emphasize on symptomatic treatments such as pain relief and inflammation alleviation, which are unable to halt or reverse the destruction of cartilage or subchondral bone. A number of studies have suggested the potential application prospect of mesenchymal stem cells (MSCs)-based therapy in TMJOA and other cartilage injury. Worthy of note, exosomes are increasingly being considered the principal efficacious agent of MSC secretions for TMJOA management. The extensive study of exosomes (derived from MSCs, synoviocytes, chondrocytes or adipose tissue et al.) on arthritis recently, has indicated exosomes and their specific miRNA components to be potential therapeutic agents for TMJOA. In this review, we aim to systematically summarize therapeutic properties and underlying mechanisms of MSCs and exosomes from different sources in TMJOA, also analyze and discuss the approaches to optimization, challenges, and prospects of exosome-based therapeutic strategy.
Collapse
Affiliation(s)
- Wenxiu Yuan
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yange Wu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xueman Zhou
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaqi Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yating Yi
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Jin Liu, ; Jun Wang,
| | - Jin Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jin Liu, ; Jun Wang,
| |
Collapse
|
46
|
Cheng X, Song X, Li Z, Yuan C, Lei X, Feng M, Hong Z, Zhang L, Hong D. Acyloxyacyl hydrolase deficiency induces chronic inflammation and bone loss in male mice. J Mol Med (Berl) 2022; 100:1599-1616. [PMID: 36112153 DOI: 10.1007/s00109-022-02252-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Hormonal homeostasis is essential in bone remodeling. Recent studies have shown that the treatment of intestinal inflammation can result in the regulation of bone resorption in distant bones. Increased intestinal permeability may lead to systemic inflammation and bone loss, also known as gut-bone axis. However, the underlying mechanism remains to be elucidated. Lipopolysaccharide (LPS) is a component of gram-negative bacteria that can increase osteoclastic differentiation in vitro. Acyloxyacyl hydrolase (AOAH) is a specific degrading enzyme of LPS, but little is known about the role of AOAH in bone metabolism. In this study, adult Aoah-/- mice showed a chronic inflammatory state and osteopenic phenotype analyzed by micro-CT and HE staining. Tartrate-resistant acid phosphatase (TRAP) staining of femurs showed an increase in TRAP-positive cells from Aoah-/- mice. AOAH depletion enhanced the osteoclast differentiation and bone resorption capacity of bone marrow-derived macrophages (BMMs). The enhanced osteoclast differentiation and bone resorption capacity of Aoah-/- BMMs were reversed by rAOAH. In conclusion, the chronic inflammatory state of adult Aoah-/- mice promotes bone resorption. AOAH participates in bone metabolism, which is mainly mediated by inhibiting osteoclast differentiation. LPS may be a key mediator of the gut-bone axis, and targeting AOAH may represent a feasible strategy for the treatment of chronic inflammatory bone resorption. KEY MESSAGES : AOAH knockout mice exhibited chronic inflammation mediated by LPS, and LPS may also serve as an important mediator in the regulation of bone metabolism in the gut-bone axis. AOAH regulated bone resorption by blocking the osteoclast differentiation via classical ERK and JNK pathways. rAOAH could rescue the enhanced osteoclast differentiation caused by AOAH deficiency.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaoting Song
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhiyan Li
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Chiting Yuan
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Xinhuan Lei
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Mingxuan Feng
- Department of Orthopedics, Taizhou Central Hospital Affiliated to Taizhou College, Taizhou, Zhejiang, China
| | - Zhenghua Hong
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Liwei Zhang
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China. .,Enze Medical Center, Taizhou, China. .,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.
| | - Dun Hong
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China. .,Enze Medical Center, Taizhou, China. .,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.
| |
Collapse
|
47
|
Zhang R, Peng S, Zhu G. The role of secreted osteoclastogenic factor of activated T cells in bone remodeling. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:227-232. [PMID: 35898473 PMCID: PMC9309401 DOI: 10.1016/j.jdsr.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/05/2022] [Accepted: 07/10/2022] [Indexed: 12/23/2022] Open
Abstract
The process of bone remodeling is connected with the regulated balance between bone cell populations (including bone-forming osteoblasts, bone-resorbing osteoclasts, and the osteocyte). And the mechanism of bone remodeling activity is related to the major pathway, receptor activator of nuclear factor kappaB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) signaling axis. Recently, researchers have found a novel cytokine secreted by activated T cells, which is related to osteoclastogenesis in the absence of osteoblasts or RANKL, leading to bone destruction. They name it the secreted osteoclastogenic factor of activated T cells (SOFAT). SOFAT has been proven to play an essential role in bone remodeling, like mediating the bone resorption in rheumatoid arthritis (RA) and periodontitis. In this review, we outline the latest research concerning SOFAT and discuss the characteristics, location, and regulation of SOFAT. We also summarize the clinical progress of SOFAT and assume the future therapeutic target in some diseases related to bone remodeling.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Peng
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Cao RR, Yu XH, Xiong MF, Li XT, Deng FY, Lei SF. The immune factors have complex causal regulation effects on bone mineral density. Front Immunol 2022; 13:959417. [PMID: 36341399 PMCID: PMC9630477 DOI: 10.3389/fimmu.2022.959417] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/03/2022] [Indexed: 10/18/2023] Open
Abstract
Recent evidence has gradually recognized that the immune and skeletal systems are two closely correlated systems, but the specific immune factors on bone mineral density (BMD) are largely unknown. Based on the summary-level data of genome-wide association studies (GWASs), we performed a series of analyses including two-sample Mendelian randomization (MR) analysis to test potential causal links between 731 immune traits [including median fluorescence intensities (MFIs), absolute cell (AC) counts, relative cell (RC) counts, and morphological parameters (MP)] and BMD. After false discovery rate (FDR) correction, 9 MFI-BMD, 16 AC-BMD, 22 RC-BMD, and 5 MP-BMD pairs reached the level of significance (FDR-adjusted p< 0.05). For MFI traits, the T- and B-cell panels had the largest number of significant immune trait pairs than other panels. CD40, as a molecule expressed by four subsets of monocytes, was highlighted due to its consistently positive correlation with BMD at four sites. For both AC and RC traits, immune traits from the T-cell panel were also highlighted, with CD39-positive T-cell subsets being the most frequently observed feature. For MP traits, the most significant association immune trait with BMD was SSC-A on CD14+ monocyte. Sensitivity analyses suggested that the identified immune factors were robust to pleiotropy. Multivariable MR analysis confirmed the independent causal effect of several immune traits on BMD. Mediation analyses showed that CD40 on monocytes could mediate multiple immune traits, especially the suggestive associations of CD27 on several memory B cells with BMD mediated by CD40 on CD14+ CD16- monocyte. Our study represents the first comprehensive evaluation of the causal effects of immune traits on the risk of osteoporosis. The findings highlighted the complex and important role of immune-derived factors in the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Rong-Rong Cao
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Xing-Hao Yu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Meng-Fei Xiong
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Xue-Ting Li
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| |
Collapse
|
49
|
Wang H, Cao X, Guo J, Yang X, Sun X, Fu Z, Qin A, Wu Y, Zhao J. BNTA alleviates inflammatory osteolysis by the SOD mediated anti-oxidation and anti-inflammation effect on inhibiting osteoclastogenesis. Front Pharmacol 2022; 13:939929. [PMID: 36249770 PMCID: PMC9559729 DOI: 10.3389/fphar.2022.939929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Abnormal activation and overproliferation of osteoclast in inflammatory bone diseases lead to osteolysis and bone mass loss. Although current pharmacological treatments have made extensive advances, limitations still exist. N-[2-bromo-4-(phenylsulfonyl)-3-thienyl]-2-chlorobenzamide (BNTA) is an artificially synthesized molecule compound that has antioxidant and anti-inflammatory properties. In this study, we presented that BNTA can suppress intracellular ROS levels through increasing ROS scavenging enzymes SOD1 and SOD2, subsequently attenuating the MARK signaling pathway and the transcription of NFATc1, leading to the inhibition of osteoclast formation and osteolytic resorption. Moreover, the results also showed an obvious restrained effect of BNTA on RANKL-stimulated proinflammatory cytokines, which indirectly mediated osteoclastogenesis. In line with the in vitro results, BNTA protected LPS-induced severe bone loss in vivo by enhancing scavenging enzymes, reducing proinflammatory cytokines, and decreasing osteoclast formation. Taken together, all of the results demonstrate that BNTA effectively represses oxidation, regulates inflammatory activity, and inhibits osteolytic bone resorption, and it may be a potential and exploitable drug to prevent inflammatory osteolytic bone diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yujie Wu
- *Correspondence: Yujie Wu, ; Jie Zhao,
| | - Jie Zhao
- *Correspondence: Yujie Wu, ; Jie Zhao,
| |
Collapse
|
50
|
Oat Seedlings Extract Inhibits RANKL-Induced c-Fos/NFATc1 Transcription Factors in the Early Stage of Osteoclast Differentiation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5372459. [PMID: 36193131 PMCID: PMC9525779 DOI: 10.1155/2022/5372459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
Osteoporosis is a common disease that increases the risk of fractures due to decreased bone density and weakens the bone microstructure. Preventing and diagnosing osteoporosis using the available drugs can be a costly affair with possible side effects. Therefore, natural product-derived therapeutics are promising alternatives. Our study demonstrated that the oat seedlings' extract (OSE) inhibited the receptor activator of the nuclear factor κB ligand (RANKL)-induced osteoclastogenesis from the bone marrow-derived macrophages (BMMs). The OSE treatment significantly attenuated the RANKL-mediated induction of the tartrate-resistant acid phosphatase (TRAP) activity as well as the number of TRAP-positive (TRAP+) multinucleated cells (MNCs) counted through the TRAP staining in a dose-dependent manner. It was also confirmed that the OSE suppressed the formation of the TRAP + MNCs in the early stage of differentiation and not in the middle and late stages. The results of the real-time quantitative polymerase chain reaction (qPCR) and the western blotting showed that the OSE dramatically inhibited the mRNA and protein expressions of the osteoclastogenesis-mediated transcription factors such as the c-Fos and the nuclear factor-activated T cells c1 (NFATc1). In addition, the OSE strongly attenuated the mRNA induction of the c-Fos/NFATc1-dependent molecules such as the TRAP, the osteoclast-associatedimmunoglobulin-like receptor (OSCAR), the dendritic cell-specific transmembrane protein (DC-STAMP), and the cathepsin K. These results suggest that the naturally derived OSE may be useful for preventing bone diseases.
Collapse
|