1
|
Sogard AS, Emerson TS, Chandler CA, Cobb EA, Shei RJ, Paris HL, Lindley MR, Mickleborough TD. The role of nutritional factors in exercise-induced bronchoconstriction: a narrative review. Am J Physiol Regul Integr Comp Physiol 2025; 328:R651-R684. [PMID: 40257056 DOI: 10.1152/ajpregu.00249.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 04/12/2025] [Indexed: 04/22/2025]
Abstract
Exercise-induced bronchoconstriction (EIB) describes an acute narrowing of the airways that develops following vigorous physical activity. Clinical responses to current asthma therapy, such as leukotriene antagonists and corticosteroids, are heterogeneous, even with optimal treatment. Epidemiological studies indicate an increasing use of complementary and alternative medicine therapy in asthma patients due to the lack of efficacy of conventional treatment, concerns about potentially harmful side effects of pharmacological treatment, cost barriers to asthma care, and the accessibility of complementary and alternative medicine therapy. Plausible physiological mechanisms now exist for many nutrients as potential modifiers of EIB severity, primarily because of their role in inflammatory processes, airway smooth muscle function, and modulation of lung microvascular volume and pressure. Dietary supplementation as a treatment for EIB has generally shown evidence of significant yet incomplete inhibition of EIB with low-salt diets, omega-3 fatty acids, and vitamin C when supplemented for up to 3 weeks. However, larger, randomized, placebo-controlled, double-blinded trials are needed to clarify the effectiveness of nutritional intervention in individuals with EIB. Additionally, many studies have focused on nonathletes with EIB, and therefore, more studies are required to evaluate the efficacy of nutritional intervention on EIB in elite athletes. In conclusion, if dietary supplementation or restriction is prescribed, it should be seen as an option to lessen the reliance on pharmaceutical interventions and not as an alternative to established pharmacotherapies.
Collapse
Affiliation(s)
- Abigail S Sogard
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Travis S Emerson
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Christopher A Chandler
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Emily A Cobb
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, Indiana, United States
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, California, United States
| | - Martin R Lindley
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
2
|
Liao W, Hu R, Ji Y, Zhong Z, Huang X, Cai T, Zhou C, Wang Y, Ye Z, Yang P. Oleic acid regulates CD4+ T cells differentiation by targeting ODC1-mediated STAT5A phosphorylation in Vogt-Koyanagi-Harada disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156660. [PMID: 40203473 DOI: 10.1016/j.phymed.2025.156660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Vogt-Koyanagi-Harada (VKH) is a multisystemic autoimmune disorder characterized by bilateral panuveitis frequently accompanied by neurologic manifestations. While metabolic dysregulation is increasingly recognized in the context of autoimmune diseases, the role of specific metabolites in VKH disease remains unexplored. METHODS Non-targeted and targeted metabolomics analysis, phospho-antibody array, proteome microarray, surface plasmon resonance, and molecular simulation were used to identify molecular target of OA. RESULTS We investigated metabolic profile of VKH disease and found that oleic acid (OA) was enriched in this disease. A series of functional assays showed that OA could exacerbate experimental autoimmune uveitis (EAU) in association with increased frequency of Th1 and Th17 cells and decreased proportion of Treg cells in vitro. However, the specific molecular target of OA remains elusive. Through proteome microarrays, molecular simulations and surface plasmon resonance assays, Ornithine decarboxylase 1 (ODC1) was identified as target protein of OA. OA could bind to ODC1, increase ODC1 protein expression in both a time- and concentration-dependent manner and promote subsequently putrescine production. Phospho-antibody array analysis revealed that OA inhibited phosphorylation of STAT5A (Y694) in CD4+T cells, leading to imbalance of Th1/Th17 and Treg cells and decreased transcription of IL-10. OA upregulated ODC1 protein and putrescine levels through binding to LYS-78, inhibited phosphorylation of STAT5A protein and subsequently decreased binding of STAT5A at IL-10 promoter. CONCLUSION These results reveals that OA could be a crucial metabolite for modulation of CD4+T cell differentiation and that ODC1-mediated phosphorylation and transcriptional activity of STAT5A contributes to development of VKH disease progression, highlighting ODC1 as a novel therapeutic target in VKH disease.
Collapse
Affiliation(s)
- Weiting Liao
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Ruixue Hu
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Yan Ji
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Zhenyu Zhong
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Xinyue Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Jinfeng Laboratory, Chongqing, China
| | - Tao Cai
- The First Affiliated Hospital of Chongqing Medical University, department of Dermatology, Chongqing, China
| | - Chunjiang Zhou
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Yao Wang
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Zi Ye
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China.
| | - Peizeng Yang
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China.
| |
Collapse
|
3
|
Koçyiğit E, Gövez NE, Arslan S, Ağagündüz D. A narrative review on dietary components and patterns and age-related macular degeneration. Nutr Res Rev 2025; 38:143-170. [PMID: 38221852 DOI: 10.1017/s0954422424000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Age-related macular degeneration (AMD) is one of the most prevalent eye diseases among the ageing population worldwide. It is a leading cause of blindness in individuals over 55, particularly in industrialised Western countries. The prevalence of AMD increases with age, and genetic factors and environmental influences are believed to contribute to its development. Among the environmental factors, diet plays a significant role in AMD. This review explores the association between dietary components, dietary patterns and AMD. Various nutrients, non-nutrient substances and dietary models that have the potential to counteract oxidative stress and inflammation, which are underlying mechanisms of AMD, are discussed. Consuming fruits, vegetables, fish and seafood, whole grains, olive oil, nuts and low-glycaemic-index foods has been highlighted as beneficial for reducing the risk of AMD. Adhering to the Mediterranean diet, which encompasses these elements, can be recommended as a dietary pattern for AMD. Furthermore, the modulation of the gut microbiota through dietary interventions and probiotics has shown promise in managing AMD.
Collapse
Affiliation(s)
- Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Ordu, Türkiye
| | - Nazlıcan Erdoğan Gövez
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Sabriye Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| |
Collapse
|
4
|
Wang H, Li Y, Zhang L, Lu M, Li C, Li Y. Anti-Inflammatory Lipid Mediators from Polyunsaturated Fatty Acids: Insights into their Role in Atherosclerosis Microenvironments. Curr Atheroscler Rep 2025; 27:48. [PMID: 40198469 DOI: 10.1007/s11883-025-01285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Inflammation has become a major residual risk factor for atherosclerotic cardiovascular disease (ASCVD). Certain lipid mediators, known as specialized proresolving mediators (SPMs), are mainly derived from polyunsaturated fatty acids (PUFAs) and can promote inflammation resolution while maintaining host autoimmunity. This review investigates the synthesis and ligand action pathways of these lipid mediators, as well as their regulatory mechanisms in the microenvironment of atherosclerotic plaques. Furthermore, it explores their clinical therapeutic potential, aiming to offer new insights into novel anti-inflammatory drug targets for the treatment of ASCVD. RECENT FINDINGS Reduced levels of SPMs are associated with the progression of atherosclerosis. SPMs inhibit inflammatory responses in the plaque microenvironment by limiting immune cell infiltration, reducing oxidative stress, and promoting the clearance of apoptotic cells, all of which contribute to plaque stabilization. Tyrosine-protein kinase Mer (MerTK), TRIF-related adaptor molecule (TRAM), and high mobility group box 1 (HMGB1) play crucial roles in the modulation of SPM production. Clinical use of ω-3 PUFAs has been shown to reduce the incidence of fatal cardiovascular events. Furthermore, aspirin not only initiates the synthesis of specific SPMs but also extends their activity within the body. The enhanced production of SPMs promotes inflammation resolution in the plaque microenvironment without inducing immunosuppression. This characteristic highlights MerTK, TRAM, and HMGB1 as potential targets for the development of anti-inflammatory drugs. Investigating targets and compounds that enhance the production of SPMs presents a promising strategy for developing future anti-inflammatory agents.
Collapse
Affiliation(s)
- Hongqin Wang
- Post-doctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Yuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Lei Zhang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China.
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
5
|
Leite CBG, Fricke HP, Tavares LP, Nshimiyimana R, Mekhail J, Kilgallen E, Killick F, Whalen JD, Lehoczky JA, Serhan CN, Charles JF, Lattermann C. Maresin 1-LGR6 axis mitigates inflammation and posttraumatic osteoarthritis after transection of the anterior cruciate ligament in mice. Osteoarthritis Cartilage 2025:S1063-4584(25)00869-6. [PMID: 40139646 DOI: 10.1016/j.joca.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Anterior cruciate ligament (ACL) tears frequently cause chronic inflammation and posttraumatic osteoarthritis (PTOA), with therapies failing to resolve persistent post-injury inflammation. Specialized pro-resolving mediators (SPMs), including Maresin1 (MaR1), show promise in resolving inflammation and promoting tissue repair. However, their role in PTOA remains underexplored. This study investigated inflammatory markers and MaR1 dynamics post-ACL injury, the role of the MaR1 receptor Leucine-rich Repeat-containing G protein-coupled receptor 6 (LGR6) in PTOA, and MaR1's therapeutic potential in a mouse ACL transection (ACLT) model. DESIGN Eight-week-old C57BL6/J male mice underwent ACLT, and synovial fluid, periarticular tissue, and tibiofemoral joints were collected at various time points post-surgery for analysis. LGR6-deficient mice were utilized to investigate the role of MaR1 signaling in inflammation resolution. Additionally, the effect of intraarticular MaR1 administration on PTOA progression was assessed. RESULTS ACLT induced joint inflammation with leukocyte infiltration and elevated pro-inflammatory cytokines. MaR1 levels peaked early post-injury and were associated with a six-fold increase in LGR6 expression. LGR6 deficiency worsened inflammation and PTOA severity with higher histological Osteoarthritis Research Society International (OARSI) scores (mean difference 5.6[95%CI: 2.5-8.6], p<0.001) and microCT OA severity scores (mean difference 4.3[95%CI: 0.7-7.9], p=0.018). Intraarticular MaR1 treatment reduced leukocyte recruitment, suppressed pro-inflammatory gene expression, and ameliorated PTOA development, improving histological OARSI scores (mean difference -3.9[95%CI: -6.9 to -1.0], p=0.012) and microCT scores (mean difference -6.7[95%CI: -10.3 to -3.0], p=0.012). CONCLUSION This study suggests a critical role of MaR1 in resolving inflammation post-ACL injury and mitigating PTOA in mice. Targeting SPM pathways, particularly MaR1 and/or MaR1 mimetics, offers a promising strategy to prevent chronic joint inflammation and degeneration after ACL injury.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hannah P Fricke
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Luciana P Tavares
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julie Mekhail
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Elliott Kilgallen
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Felix Killick
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Janey D Whalen
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Yanoshita M, Hirose N, Nishiyama S, Tsuboi E, Kubo N, Kita D, Tanimoto K. Resolvin D1 suppresses inflammation in human fibroblast-like synoviocytes via the p-38, NF-κB, and AKT signaling pathways. In Vitro Cell Dev Biol Anim 2025; 61:331-339. [PMID: 40064746 PMCID: PMC11978709 DOI: 10.1007/s11626-024-01008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/19/2024] [Indexed: 04/09/2025]
Abstract
Synovitis represents the initial pathological change in osteoarthritis and contributes to its progression. Resolvin D1 (RV-D1) is a novel and endogenous docosahexaenoic acid-derived lipid mediator, which regulates the duration and magnitude of inflammation by downregulating pro-inflammatory genes and mediators. However, the effects of RV-D1 on synovitis remain unknown. The aim of the present study was to investigate the anti-inflammatory effects of RV-D1 in human fibroblast-like synoviocytes (HFLSs) and the underlying mechanisms. The expression of the HFLS formyl peptide receptor 2 (ALX/FPR) was examined via immunocytochemical analysis. HFLSs were treated with 1 ng/mL recombinant human interleukin-1β (IL-1β) and RV-D1. The gene expression of interleukin-1β (IL1B), matrix metalloproteinase 3 (MMP3), and MMP13 was examined using real-time reverse transcription-polymerase chain reaction after treatment with IL-1β and RV-D1. The effect of RV-D1 on apoptosis was examined based on fluorescence intensity. Phosphorylation of p-38, extracellular signal-regulated kinase, c-Jun N-terminal kinase, nuclear factor kappa B (NF-κB), and AKT was analyzed via western blotting. ALX/FPR staining was observed on the cell surface. RV-D1 significantly suppressed the IL-1β-induced increase in gene and protein expression of IL-1β, MMP-3, and MMP-13. Pretreatment with 100 nM RV-D1 significantly increased the fluorescence intensity compared to that in the non-treatment group. Furthermore, pretreatment with RV-D1 significantly suppressed the phosphorylation of p-38, NF-κB, and AKT. Whereas WRW4, an antagonist of ALX/ FPR2, treatment weakened the effect of RV-D1, resulting in p-38, NF-κB, and AKT phosphorylation and the protein expression of MMP-13 at levels comparable to those in the IL-1β without RV-D1. In conclusion, RV-D1 suppressed IL-1β and MMP expression by inhibiting the phosphorylation of p-38, NF-κB, and AKT in inflammation in HFLSs. RV-D1 can be used to develop treatments for osteoarthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Makoto Yanoshita
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-Ku, Hiroshima-Shi, Hiroshima Prefecture, Japan
| | - Naoto Hirose
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-Ku, Hiroshima-Shi, Hiroshima Prefecture, Japan.
| | - Sayuri Nishiyama
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-Ku, Hiroshima-Shi, Hiroshima Prefecture, Japan
| | - Eri Tsuboi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-Ku, Hiroshima-Shi, Hiroshima Prefecture, Japan
| | - Naoki Kubo
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-Ku, Hiroshima-Shi, Hiroshima Prefecture, Japan
| | - Daiki Kita
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-Ku, Hiroshima-Shi, Hiroshima Prefecture, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-Ku, Hiroshima-Shi, Hiroshima Prefecture, Japan
| |
Collapse
|
7
|
Sui G, Jiang W, Guan L. Gardenoside attenuates Staphylococcus aureus-induced mastitis by inhibiting inflammation and ferroptosis through Nrf2/SLC7A11/GPX4 signaling pathway. Microbiol Spectr 2025; 13:e0226224. [PMID: 39612214 PMCID: PMC11705956 DOI: 10.1128/spectrum.02262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024] Open
Abstract
The occurrence of mastitis is mainly due to the infection of mammary tissue by pathogens, which causes the inflammation of mammary tissue. Gardenoside (GAD), an iridoid active ingredient extracted from Gardenia Jasminoides Ellis, has been revealed to exhibit anti-inflammatory and anti-oxidative roles. However, the therapeutic effect of GAD on mastitis remains unclear. Our aim was to identify the therapeutic effect of GAD on Staphylococcus aureus (S. aureus)-induced mastitis and clarify its mechanism. To carry out this work, S. aureus-induced mastitis of mice model was established. Enzyme-Linked Immunosorbent Assay (ELISA) was conducted to detect the production of Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). The biochemical method was used to detect the antioxidant factors glutathione (GSH), malondialdehyde (MDA), and iron content. Western blot was used to detect the expression of Nrf2/SLC7A11/GPX4 signal-related proteins. The results demonstrated that GAD alleviated Myeloperoxidase (MPO) activity, IL-1β and TNF-α production, and NF-κB activation. MDA and iron contents were also inhibited by GAD. Meanwhile, GSH level and GPX4, SLC7A11, and ferritin expressions were increased by GAD treatment. In addition, the expressions of Nrf2 and HO-1 were upregulated by GAD. In conclusion, GAP may inhibit S. aureus-induced mastitis in mice by triggering the Nrf2/SLC7A11/GPX4 signaling pathway and alleviating inflammation and ferroptosis. IMPORTANCE Mastitis, as an important disease that endangers the development of the dairy industry, causes huge economic losses to the breeding industry. Staphylococcus aureus is one of the important pathogenic bacteria that cause mastitis. Antibiotics are considered to be the first choice in the treatment of the S. aureus-induced mastitis. However, the overuse of antibiotics leads to bacterial resistance and antibiotic residues. Therefore, this study explored whether effective extracts of traditional herbs could be used as alternatives to antibiotics.
Collapse
Affiliation(s)
- Guoqing Sui
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Jiang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lianyue Guan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Yip KL, Zhou C, Anderson LL, Hawkins NA, Kearney JA, Arnold JC. A high seizure burden increases brain concentrations of specialized pro-resolving mediators in the Scn1a +/- mouse model of Dravet syndrome. Prostaglandins Other Lipid Mediat 2025; 176:106943. [PMID: 39701411 DOI: 10.1016/j.prostaglandins.2024.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Dravet syndrome is a severe, intractable epilepsy in which 80 % of patients have a de novo mutation in the gene SCN1A. We recently reported that a high seizure burden increased hippocampal concentrations of an array of pro-inflammatory prostaglandins in the Scn1a+/- mouse model of Dravet syndrome. This raised the possibility that a high seizure burden might also trigger the accumulation of specialized pro-resolving mediators that facilitate the resolution of neuroinflammation and brain repair. The present study therefore aimed to examine whether a high seizure burden increased hippocampal concentrations of various specialized pro-resolving mediators in the Scn1a+/- mouse model of Dravet syndrome. METHODS Scn1a+/- mice at postnatal day 21 (P21) were primed with a single hyperthermia-induced seizure event to induce a high seizure burden. On P24 primed Scn1a+/- mice with a high seizure burden, unprimed naïve Scn1a+/- mice and wild-type (WT) mice were euthanized and hippocampal tissue was collected for analysis of various specialized pro-resolving mediators using liquid chromatography mass spectrometry. RESULTS Scn1a+/- mice with a high seizure burden showed increased hippocampal concentrations of the pro-inflammatory leukotrienes B4 and E4. Further, a high seizure burden increased hippocampal concentrations of various special pro-resolving mediators, including the maresins (maresin1), D-series resolvins (RVD1 and RVD4), and protectin (PCTR1). To further characterize these changes, we determined the mRNA expression of lipoxygenase genes, as these synthetic enzymes are common across classes of specialized pro-resolving mediators. However, hippocampal expression of Alox5, Alox12 and Alox15 were not influenced by a high seizure burden. SIGNIFICANCE We report for the first time that a high seizure burden increases the hippocampal concentrations of various specialized pro-resolving mediators in Scn1a+/- mice. This provides a platform for future studies to examine whether modulation of these mediators might be exploited to reduce seizures and facilitate brain repair in intractable epilepsy syndromes.
Collapse
Affiliation(s)
- Ka Lai Yip
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2050, Australia; Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia; Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Cilla Zhou
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2050, Australia; Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia; Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Lyndsey L Anderson
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2050, Australia; Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia; Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Nicole A Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Jennifer A Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Jonathon C Arnold
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2050, Australia; Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia; Brain and Mind Centre, The University of Sydney, NSW 2050, Australia.
| |
Collapse
|
9
|
Regidor PA, Eiblwieser J, Steeb T, Rizo JM. Omega-3 long chain fatty acids and their metabolites in pregnancy outcomes for the modulation of maternal inflammatory- associated causes of preterm delivery, chorioamnionitis and preeclampsia. F1000Res 2024; 13:882. [PMID: 39931317 PMCID: PMC11809487 DOI: 10.12688/f1000research.153569.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 02/13/2025] Open
Abstract
Preterm birth is a major cause of perinatal complications and neonatal deaths. Furthermore, in the field of obstetrics many clinical entities like uterine contractions or the occurrence of pre- eclampsia remain to be serious complications during pregnancy and represent a major psychological, financial, and economic burden for society. Several published guidelines, studies and recommendations have highlighted the importance of supplementation of omega-3 long chain polyunsaturated fatty acids (PUFAs) during pregnancy. This narrative review aims at giving an overview on the modern perception of inflammatory processes and the role of specialized pro-resolving mediators (SPMs) in their resolution, especially in obstetrics. Additionally, we highlight the possible role of SPMs in the prevention of obstetric complications through oral supplementation using enriched marine oil nutritional's. The intake of PUFAs may result in an overall improvement of pregnancy outcomes by contributing to fetal brain growth and neurological development but more importantly though modulation of inflammation-associated pathologies. Especially the use of SPMs represents a promising approach for the management of obstetric and perinatal complications. SPMs are monohydroxylates derived from enriched marine oil nutritional's that involve certain pro-resolutive metabolites of omega-3 long chains PUFAs and may contribute to an attenuation of inflammatory diseases. This may be obtained through various mechanisms necessary for a proper resolution of inflammation such as the termination of neutrophil tissue infiltration, initiation of phagocytosis, downregulation of pro-inflammatory cytokines or tissue regeneration. In this way, acute and chronic inflammatory diseases associated with serious obstetrical complications can be modulated, which might contribute to an improved pregnancy outcome.
Collapse
Affiliation(s)
| | - Johanna Eiblwieser
- Medical Department, Exeltis Germany, Ismaning, Adalperostr. 84, 85737, Germany
| | - Theresa Steeb
- Medical Department, Exeltis Germany, Ismaning, Adalperostr. 84, 85737, Germany
| | | |
Collapse
|
10
|
Kacprzak B, Stańczak M, Surmacz J, Hagner-Derengowska M. Biophysics of ACL Injuries. Orthop Rev (Pavia) 2024; 16:126041. [PMID: 39911284 PMCID: PMC11798646 DOI: 10.52965/001c.126041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 02/07/2025] Open
Abstract
Anterior Cruciate Ligament (ACL) injuries rank among the most prevalent and severe types of injuries, significantly impacting both athletes and non-athletes alike. These injuries not only result in immediate physical impairment, such as intense pain, substantial swelling, and a marked loss of mobility, but also carry long-term health consequences that can alter a person's quality of life. Chronic pain, persistent instability, and an increased risk of developing osteoarthritis are among the lasting effects that can follow an ACL injury. An in-depth understanding of the biophysics behind ACL injuries is paramount for devising effective prevention and treatment protocols. Biophysics, which combines principles from physics with biological systems, provides crucial insights into the mechanical and structural integrity of the ACL and its susceptibility to injury under various conditions. This systematic review aims to collate and synthesize the current knowledge surrounding the biophysical mechanisms that underlie ACL injuries.
Collapse
Affiliation(s)
| | - Mikołaj Stańczak
- AECC University College, Bournemouth, UK
- Rehab Performance, Lublin, Poland
| | | | | |
Collapse
|
11
|
Fredman G, Serhan CN. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:808-823. [PMID: 38216693 DOI: 10.1038/s41569-023-00984-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/14/2024]
Abstract
Timely resolution of the acute inflammatory response (or inflammation resolution) is an active, highly coordinated process that is essential to optimal health. Inflammation resolution is regulated by specific endogenous signalling molecules that function as 'stop signals' to terminate the inflammatory response when it is no longer needed; to actively promote healing, regeneration and tissue repair; and to limit pain. Specialized pro-resolving mediators are a superfamily of signalling molecules that initiate anti-inflammatory and pro-resolving actions. Without an effective and timely resolution response, inflammation can become chronic, a pathological state that is associated with many widely occurring human diseases, including atherosclerotic cardiovascular disease. Uncovering the mechanisms of inflammation resolution failure in cardiovascular diseases and identifying useful biomarkers for non-resolving inflammation are unmet needs. In this Review, we discuss the accumulating evidence that supports the role of non-resolving inflammation in atherosclerosis and the use of specialized pro-resolving mediators as therapeutic tools for the treatment of atherosclerotic cardiovascular disease. We highlight open questions about therapeutic strategies and mechanisms of disease to provide a framework for future studies on the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Hayashi D, Dennis EA. Differentiating human phospholipase A 2's activity toward phosphatidylinositol, phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159527. [PMID: 38917952 PMCID: PMC11521320 DOI: 10.1016/j.bbalip.2024.159527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Phospholipase A2's (PLA2's) constitute a superfamily of enzymes that hydrolyze the sn-2 fatty acyl chain on glycerophospholipids. We have previously reported that each PLA2 Type shows a unique substrate specificity for the molecular species it hydrolyzes, especially the acyl chain that is cleaved from the sn-2 position and to some extent the polar group. However, phosphatidylinositol (PI) and PI phosphates (PIPs) have not been as well studied as substrates as other phospholipids because the PIPs require adaptation of the standard analysis methods, but they are important in vivo. We determined the in vitro activity of the three major types of human PLA2's, namely the cytosolic (c), calcium-independent (i), and secreted (s) PLA2's toward PI, PI-4-phosphate (PI(4)P), and PI-4,5-bisphosphate (PI(4,5)P2). The in vitro assay revealed that Group IVA cPLA2 (GIVA cPLA2) showed relatively high activity toward PI and PI(4)P among the tested PLA2's; nevertheless, the highly hydrophilic headgroup disrupted the interaction between the lipid surface and the enzyme. GIVA cPLA2 and GVIA iPLA2 showed detectable activity toward PI(4,5)P2, but it appeared to be a poorer substrate for all of the PLA2's tested. Furthermore, molecular dynamics (MD) simulations demonstrated that Thr416 and Glu418 of GIVA cPLA2 contribute significantly to accommodating the hydrophilic head groups of PI and PI(4)P, which could explain some selectivity for PI and PI(4)P. These results indicated that GIVA cPLA2 can accommodate PI and PI(4)P in its active site and hydrolyze them, suggesting that the GIVA cPLA2 may best account for the PI and PIP hydrolysis in living cells.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe 657-8501, Japan; Department of Pharmacology and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Edward A Dennis
- Department of Pharmacology and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Serhan CN, Chiang N, Nshimiyimana R. Low-dose pro-resolving mediators temporally reset the resolution response to microbial inflammation. Mol Med 2024; 30:153. [PMID: 39294573 PMCID: PMC11411770 DOI: 10.1186/s10020-024-00877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Specialized pro-resolving mediators (SPMs) promote resolution of inflammation, clear infections and stimulate tissue regeneration. These include resolvins, protectins, and maresins. During self-resolving acute inflammation, SPMs are produced and have key functions activating endogenous resolution response for returning to homeostasis. Herein, we addressed whether infections initiated with ongoing inflammation alter resolution programs, and if low-dose repetitive SPM regimen re-programs the resolution response. METHODS Inflammation was initiated with zymosan (1 mg/mouse) followed by E. coli (105 CFU/mouse) infections carried out in murine peritonitis, and exudates collected at 4-72 h. Leukocytes were enumerated using light microscopy, percentages of PMN, monocytes and macrophages were determined using flow cytometry, and resolution indices calculated. Lipid mediators and SPM profiles were established using mass spectrometry-based metabololipidomics. Repetitive dosing with a SPM panel consisting of RvD1, RvD2, RvD5, MaR1 and RvE2 (0.1 ng/mouse each, i.p.) was given to mice, followed by zymosan challenge. Leukocyte composition, resolution indices and RNA-sequencing were carried out for the repetitive SPM treatments. RESULTS E. coli infections initiated acute inflammation-resolution programs with temporal SPM production in the infectious exudates. Zymosan-induced inflammation prior to E. coli peritonitis shifted exudate resolution indices and delayed E. coli clearance. Lipid mediator metabololipidomics demonstrated that E. coli infection with ongoing zymosan-induced inflammation shifted the time course of exudate SPMs, activating a SPM cluster that included RvD1, RvD5 and MaR1 during the initiation phase of infectious inflammation (0-4 h); RvD5 and MaR1 were present also in the resolution phase (24-48 h). To emulate daily SPM regimens used in humans, a repetitive subthreshold dosing of the SPM panel RvD1, RvD2, RvD5, MaR1 and RvE2 each at 0.1 ng per mouse was administered. This low-dose SPM regimen accelerated exudate PMN clearance following zymosan-induced inflammation, and shortened the resolution interval by > 70%. These low-dose SPMs regulated genes and pathways related to immune response, chemokine clearance and tissue repair, as demonstrated by using RNA-sequencing. CONCLUSIONS Infections encountered during ongoing inflammation in mice reset the resolution mechanisms of inflammation via SPM clusters. Low-dose SPMs activate innate immune responses and pathways towards the resolution response that can be reprogrammed.
Collapse
Affiliation(s)
- Charles N Serhan
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Mass General Brigham and Harvard Medical School, 60 Fenwood Rd., Hale Building for Transformative Medicine 3-016, Boston, MA, 02115, USA.
| | - Nan Chiang
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Mass General Brigham and Harvard Medical School, 60 Fenwood Rd., Hale Building for Transformative Medicine 3-016, Boston, MA, 02115, USA
| | - Robert Nshimiyimana
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Mass General Brigham and Harvard Medical School, 60 Fenwood Rd., Hale Building for Transformative Medicine 3-016, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Chiluveru S, Gundelly M, Pusuluri SV, Tummanepally M, Chandaka M, Koduganti RR. Resolvins in Periodontitis and Possible Periodontal Regeneration: A Literature Review. Cureus 2024; 16:e68187. [PMID: 39347277 PMCID: PMC11439191 DOI: 10.7759/cureus.68187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Periodontitis is a rampant global disease with multifactorial etiology. The main harbinger of periodontitis is the plaque biofilm. The mature biofilm in turn interacts with the micro-organisms and the host, with environmental and genetic factors as additional initiators to cause disease. There are several strategies of preventive periodontics which include host modulation therapy to ameliorate the disease. Recently a lot of research has been done related to the role of resolvins in periodontitis. This article showcases the role of resolvins in periodontal health and disease.
Collapse
Affiliation(s)
- Sneha Chiluveru
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, IND
| | - Mrunalini Gundelly
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, IND
| | - Santosh V Pusuluri
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, IND
| | - Manasa Tummanepally
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, IND
| | - Meenakshi Chandaka
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, IND
| | - Rekha R Koduganti
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, IND
| |
Collapse
|
15
|
Mönki J, Mykkänen A. Lipids in Equine Airway Inflammation: An Overview of Current Knowledge. Animals (Basel) 2024; 14:1812. [PMID: 38929431 PMCID: PMC11200544 DOI: 10.3390/ani14121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Mild-moderate and severe equine asthma (MEA and SEA) are prevalent inflammatory airway conditions affecting horses of numerous breeds and disciplines. Despite extensive research, detailed disease pathophysiology and the differences between MEA and SEA are still not completely understood. Bronchoalveolar lavage fluid cytology, broadly used in clinical practice and in equine asthma research, has limited means to represent the inflammatory status in the lower airways. Lipidomics is a field of science that can be utilized in investigating cellular mechanisms and cell-to-cell interactions. Studies in lipidomics have a broad variety of foci, of which fatty acid and lipid mediator profile analyses and global lipidomics have been implemented in veterinary medicine. As many crucial proinflammatory and proresolving mediators are lipids, lipidomic studies offer an interesting yet largely unexplored means to investigate inflammatory reactions in equine airways. The aim of this review article is to collect and summarize the findings of recent lipidomic studies on equine airway inflammation.
Collapse
Affiliation(s)
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014 Helsinki, Finland;
| |
Collapse
|
16
|
Hossain Hrithik MT, Shahmohammadi N, Jin G, Lee DH, Singh N, Vik A, Hammock BD, Kim Y. Insect immune resolution with EpOME/DiHOME and its dysregulation by their analogs leading to pathogen hypersensitivity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104104. [PMID: 38494144 PMCID: PMC11062637 DOI: 10.1016/j.ibmb.2024.104104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/16/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Upon immune challenge, recognition signals trigger insect immunity to remove the pathogens through cellular and humoral responses. Various immune mediators propagate the immune signals to nearby tissues, in which polyunsaturated fatty acid (PUFA) derivatives play crucial roles. However, little was known on how the insects terminate the activated immune responses after pathogen neutralization. Interestingly, C20 PUFA was detected at the early infection stage and later C18 PUFAs were induced in a lepidopteran insect, Spodoptera exigua. This study showed the role of epoxyoctadecamonoenoic acids (EpOMEs) in the immune resolution at the late infection stage to quench the excessive and unnecessary immune responses. In contrast, dihydroxy-octadecamonoenoates (DiHOMEs) were the hydrolyzed and inactive forms of EpOMEs. The hydrolysis is catalyzed by soluble epoxide hydrolase (sEH). Inhibitors specific to sEH mimicked the immunosuppression induced by EpOMEs. Furthermore, the inhibitor treatments significantly enhanced the bacterial virulence of Bacillus thuringiensis against S. exigua. This study proposes a negative control of the immune responses using EpOME/DiHOME in insects.
Collapse
Affiliation(s)
| | - Niayesh Shahmohammadi
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Gahyeon Jin
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Dong-Hee Lee
- Industry Academy Cooperation Foundation, Andong National University, Andong, 36729, South Korea
| | - Nalin Singh
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA; UCD Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Anders Vik
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316, Oslo, Norway
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA; UCD Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
17
|
Li JL, Jain N, Tamayo LI, Tong L, Jasmine F, Kibriya MG, Demanelis K, Oliva M, Chen LS, Pierce BL. The association of cigarette smoking with DNA methylation and gene expression in human tissue samples. Am J Hum Genet 2024; 111:636-653. [PMID: 38490207 PMCID: PMC11023923 DOI: 10.1016/j.ajhg.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Cigarette smoking adversely affects many aspects of human health, and epigenetic responses to smoking may reflect mechanisms that mediate or defend against these effects. Prior studies of smoking and DNA methylation (DNAm), typically measured in leukocytes, have identified numerous smoking-associated regions (e.g., AHRR). To identify smoking-associated DNAm features in typically inaccessible tissues, we generated array-based DNAm data for 916 tissue samples from the GTEx (Genotype-Tissue Expression) project representing 9 tissue types (lung, colon, ovary, prostate, blood, breast, testis, kidney, and muscle). We identified 6,350 smoking-associated CpGs in lung tissue (n = 212) and 2,735 in colon tissue (n = 210), most not reported previously. For all 7 other tissue types (sample sizes 38-153), no clear associations were observed (false discovery rate 0.05), but some tissues showed enrichment for smoking-associated CpGs reported previously. For 1,646 loci (in lung) and 22 (in colon), smoking was associated with both DNAm and local gene expression. For loci detected in both lung and colon (e.g., AHRR, CYP1B1, CYP1A1), top CpGs often differed between tissues, but similar clusters of hyper- or hypomethylated CpGs were observed, with hypomethylation at regulatory elements corresponding to increased expression. For lung tissue, 17 hallmark gene sets were enriched for smoking-associated CpGs, including xenobiotic- and cancer-related gene sets. At least four smoking-associated regions in lung were impacted by lung methylation quantitative trait loci (QTLs) that co-localize with genome-wide association study (GWAS) signals for lung function (FEV1/FVC), suggesting epigenetic alterations can mediate the effects of smoking on lung health. Our multi-tissue approach has identified smoking-associated regions in disease-relevant tissues, including effects that are shared across tissue types.
Collapse
Affiliation(s)
- James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Niyati Jain
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Committee on Genetics, Genomics, Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Lizeth I Tamayo
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Farzana Jasmine
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Kathryn Demanelis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Genomics Research Center, AbbVie, North Chicago, IL 60064, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; Comprehensive Cancer Center, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
19
|
Harauma A, Enomoto Y, Endo S, Hariya H, Moriguchi T. Omega-3 fatty acids mitigate skin damage caused by ultraviolet-B radiation. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102641. [PMID: 39299174 DOI: 10.1016/j.plefa.2024.102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Mice fed a diet containing an adequate amount of ω-3 fatty acids (ω-3 Adq) or a deficient diet (ω-3 Def) were irradiated with ultraviolet-B (UV-B) and were measured daily changes in transepidermal water loss (TEWL). TEWL was significantly increased in ω-3 Def mice with repeated UV-B irradiation, but this increase was significantly reduced in ω-3 Adq mice. The epidermal layers revealed thickening of the spinous and basal layers induced by UV-B irradiation in both groups. Moreover, the ω-3 Def mice had a disturbed epidermal structure and a coarser stratum corneum. And the granule cell layer is significantly reduced, and abnormal layer formation (parakeratosis) occurred in the stratum corneum. These results suggest that continuous UV-B irradiation promotes epidermal turnover and leads to epidermal thickening, but ω-3 fatty acids protect the body from UV-B-induced stress.
Collapse
Affiliation(s)
- Akiko Harauma
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Yui Enomoto
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Sayaka Endo
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Himeka Hariya
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Toru Moriguchi
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan; Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan.
| |
Collapse
|
20
|
Albert HB, Sayari AJ, Barajas JN, Hornung AL, Harada G, Nolte MT, Chee AV, Samartzis D, Tkachev A. The impact of novel inflammation-preserving treatment towards lumbar disc herniation resorption in symptomatic patients: a prospective, multi-imaging and clinical outcomes study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:964-973. [PMID: 38099946 DOI: 10.1007/s00586-023-08064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 03/19/2024]
Abstract
PURPOSE We performed a prospective one-year multi-imaging study to assess the clinical outcomes and rate of disc resorption in acute lumbar disc herniation (LDH) patients undergoing inflammation-preserving treatment (i.e. no NSAIDS, steroids). METHODS All patients received gabapentin to relieve leg pain, 12 sessions of acupuncture. Repeat MRI was performed, every 3 months, after 12 sessions of treatment continued for those without 40% reduction in herniated disc sagittal area. Disc herniations sizes were measured on sagittal T2W MRI sequences, pre-treatment and at post-treatment intervals. Patients were stratified to fast, medium, slow, and prolonged recovery groups in relation to symptom resolution and disc resorption. RESULTS Ninety patients (51% females; mean age: 48.6 years) were assessed. Mean size of disc herniation was 119.54 ± 54.34 mm2, and the mean VAS-Leg score was 6.12 ± 1.13 at initial presentation. A total of 19 patients (21.1%) improved at the time of the repeat MRI (i.e. within first 3 months post-treatment). 100% of all patient had LDH resorption within one year (mean: 4.4. months). There was no significant difference at baseline LDH between fast, medium, slow, and prolonged resorption groups. Initial LDH size was weakly associated with degree of leg pain at baseline and initial gabapentin levels. Surgery was avoided in all cases. CONCLUSION This is the first study to note inflammation-preserving treatment, without conventional anti-inflammatory and steroid medications, as safe and effective for patients with an acute LDH. Rate of disc resorption (100%) was higher than comparative recent meta-analysis findings (66.7%) and no patient underwent surgery.
Collapse
Affiliation(s)
- Hanne B Albert
- Department of Orthopedic Surgery, Rush University Medical Center, Orthopedic Building, 1611 W. Harrison St., 2nd Floor, Chicago, IL, 60612, USA.
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA.
| | - Arash J Sayari
- Department of Orthopedic Surgery, Rush University Medical Center, Orthopedic Building, 1611 W. Harrison St., 2nd Floor, Chicago, IL, 60612, USA
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - J Nicolas Barajas
- Department of Orthopedic Surgery, Rush University Medical Center, Orthopedic Building, 1611 W. Harrison St., 2nd Floor, Chicago, IL, 60612, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Alexander L Hornung
- Department of Orthopedic Surgery, Rush University Medical Center, Orthopedic Building, 1611 W. Harrison St., 2nd Floor, Chicago, IL, 60612, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Garrett Harada
- Department of Orthopedic Surgery, Rush University Medical Center, Orthopedic Building, 1611 W. Harrison St., 2nd Floor, Chicago, IL, 60612, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Michael T Nolte
- Department of Orthopedic Surgery, Rush University Medical Center, Orthopedic Building, 1611 W. Harrison St., 2nd Floor, Chicago, IL, 60612, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Ana V Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Orthopedic Building, 1611 W. Harrison St., 2nd Floor, Chicago, IL, 60612, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Center, Orthopedic Building, 1611 W. Harrison St., 2nd Floor, Chicago, IL, 60612, USA.
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA.
| | | |
Collapse
|
21
|
Mohammad-Rafiei F, Negahdari S, Tahershamsi Z, Gheibihayat SM. Interface between Resolvins and Efferocytosis in Health and Disease. Cell Biochem Biophys 2024; 82:53-65. [PMID: 37794303 DOI: 10.1007/s12013-023-01187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Acute inflammation resolution acts as a vital process for active host response, tissue support, and homeostasis maintenance, during which resolvin D (RvD) and E (RvE) as mediators derived from omega-3 polyunsaturated fatty acids display specific and stereoselective anti-inflammations like restricting neutrophil infiltration and pro-resolving activities. On the other side of the coin, potent macrophage-mediated apoptotic cell clearance, namely efferocytosis, is essential for successful inflammation resolution. Further studies mentioned a linkage between efferocytosis and resolvins. For instance, resolvin D1 (RvD1), which is endogenously formed from docosahexaenoic acid within the inflammation resolution, thereby provoking efferocytosis. There is still limited information regarding the mechanism of action of RvD1-related efferocytosis enhancement at the molecular level. The current review article was conducted to explore recent data on how the efferocytosis process and resolvins relate to each other during the inflammation resolution in illness and health. Understanding different aspects of this connection sheds light on new curative approaches for medical conditions caused by defective efferocytosis and disrupted inflammation resolution.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samira Negahdari
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany.
| |
Collapse
|
22
|
Liu S, He M, Jiang J, Duan X, Chai B, Zhang J, Tao Q, Chen H. Triggers for the onset and recurrence of psoriasis: a review and update. Cell Commun Signal 2024; 22:108. [PMID: 38347543 PMCID: PMC10860266 DOI: 10.1186/s12964-023-01381-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease, involving a complex interplay between genetic and environmental factors. Previous studies have demonstrated that genetic factors play a major role in the pathogenesis of psoriasis. However, non-genetic factors are also necessary to trigger the onset and recurrence of psoriasis in genetically predisposed individuals, which include infections, microbiota dysbiosis of the skin and gut, dysregulated lipid metabolism, dysregulated sex hormones, and mental illness. Psoriasis can also be induced by other environmental triggers, such as skin trauma, unhealthy lifestyles, and medications. Understanding how these triggers play a role in the onset and recurrence of psoriasis provides insights into psoriasis pathogenesis, as well as better clinical administration. In this review, we summarize the triggers for the onset and recurrence of psoriasis and update the current evidence on the underlying mechanism of how these factors elicit the disease. Video Abstract.
Collapse
Grants
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
Collapse
Affiliation(s)
- Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengwen He
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoru Duan
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Jingyu Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Qingxiao Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
23
|
Liu HH, Cullen PF, Sivak JM, Gronert K, Flanagan JG. Protective Effects of Lipoxin A 4 and B 4 Signaling on the Inner Retina in a Mouse Model of Experimental Glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.575414. [PMID: 38293224 PMCID: PMC10827219 DOI: 10.1101/2024.01.17.575414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Glaucoma is a common neurodegenerative disease characterized by progressive degeneration of retinal ganglion cells (RGCs) and the retinal nerve fiber layer (RNFL), resulting in a gradual decline of vision. A recent study by our groups indicated that the levels of lipoxins A4 (LXA4) and B4 (LXB4) in the retina and optic nerve decrease following acute injury, and that restoring their function is neuroprotective. Lipoxins are members of the specialized pro-resolving mediator (SPM) family and play key roles to mitigate and resolve chronic inflammation and tissue damage. Yet, knowledge about lipoxin neuroprotective activity remains limited. Here we investigate the in vivo efficacy of exogenous LXA4 and LXB4 administration on the inner retina in a mouse model of chronic experimental glaucoma. To investigate the contribution of LXA4 signaling we used transgenic knockout (KO) mice lacking the two mouse LXA4 receptors (Fpr2/Fpr3-/-). Functional and structural changes of inner retinal neurons were assessed longitudinally using electroretinogram (ERG) and optical coherence tomography (OCT). At the end of the experiment, retinal samples were harvested for immunohistological assessment. While both lipoxins generated protective trends, only LXB4 treatment was significant, and consistently more efficacious than LXA4 in all endpoints. Both lipoxins also appeared to dramatically reduce Müller glial reactivity following injury. In comparison, Fpr2/Fpr3 deletion significantly worsened inner retinal injury and function, consistent with an essential protective role for endogenous LXA4. Together, these results support further exploration of lipoxin signaling as a treatment for glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Hsin-Hua Liu
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, California, United States
| | - Paul F. Cullen
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, California, United States
| | - Jeremy M. Sivak
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Karsten Gronert
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, California, United States
| | - John G. Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, California, United States
| |
Collapse
|
24
|
Li X, Qiao Q, Liu X, Hu Q, Yu Y, Qin X, Tian T, Tian Y, Ou X, Niu B, Yang C, Kong L, Zhang Z. Engineered Biomimetic Nanovesicles Based on Neutrophils for Hierarchical Targeting Therapy of Acute Respiratory Distress Syndrome. ACS NANO 2024; 18:1658-1677. [PMID: 38166370 DOI: 10.1021/acsnano.3c09848] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a clinically severe respiratory disease that causes severe medical and economic burden. To improve therapeutic efficacy, effectively targeting delivery to the inflamed lungs and inflamed cells remains an ongoing challenge. Herein, we designed engineered biomimetic nanovesicles (DHA@ANeu-DDAB) by fusion of lung-targeting functional lipid, neutrophil membrane containing activated β2 integrins, and the therapeutic lipid, docosahexaenoic acid (DHA). By the advantage of lung targeting lipid and β2 integrin targeting adhesion, DHA@ANeu-DDAB can first target lung tissue and further target inflammatory vascular endothelial cells, to achieve "tissue first, cell second" hierarchical delivery. In addition, the β2 integrins in DHA@ANeu-DDAB could bind to the intercellular cell adhesion molecule-1/2 (ICAM-1/2) ligand on the endothelium in the inflamed blood vessels, thus inhibiting neutrophils' infiltration in the blood circulation. DHA administration to inflamed lungs could effectively regulate macrophage phenotype and promote its anti-inflammatory activity via enhanced biosynthesis of specialized pro-resolving mediators. In the lipopolysaccharide-induced ARDS mouse model, DHA@ANeu-DDAB afforded a comprehensive and efficient inhibition of lung inflammation and promoted acute lung damage repair. Through mimicking physiological processes, these engineered biomimetic vesicles as a delivery system possess good potential in targeting therapy for ARDS.
Collapse
Affiliation(s)
- Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Qiao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulin Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianya Qin
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Ou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
25
|
Tajbakhsh A, Yousefi F, Farahani N, Savardashtaki A, Reiner Ž, Jamialahmadi T, Sahebkar A. Molecular Mechanisms and Therapeutic Potential of Resolvins in Cancer - Current Status and Perspectives. Curr Med Chem 2024; 31:5898-5917. [PMID: 37497711 DOI: 10.2174/0929867331666230727100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
Resolvins are specialized pro-resolving mediators derived from omega-3 fatty acids that can suppress several cancer-related molecular pathways, including important activation of transcription parameters in the tumor cells and their microenvironment, inflammatory cell infiltration, cytokines as well as chemokines. Recently, an association between resolvins and an important anti-inflammatory process in apoptotic tumor cell clearance (efferocytosis) was shown. The inflammation status or the oncogene activation increases the risk of cancer development via triggering the transcriptional agents, including nuclear factor kappa-light-chain-enhancer of activated B cells by generating the pro-inflammatory lipid molecules and infiltrating the tumor cells along with the high level of pro-inflammatory signaling. These events can cause an inflammatory microenvironment. Resolvins might decrease the leukocyte influx into the inflamed tissues. It is widely accepted that resolvins prohibit the development of debris-triggered cancer via increasing the clearance of debris, especially by macrophage phagocytosis in tumors without any side effects. Resolvins D2, D1, and E1 might suppress tumor-growing inflammation by activation of macrophages clearance of cell debris in the tumor. Resolvin D5 can assist patients with pain during treatment. However, the effects of resolvins as anti-inflammatory mediators in cancers are not completely explained. Thus, based on the most recent studies, we tried to summarize the most recent knowledge on resolvins in cancers.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Liu H, Li N, Kuang G, Gong X, Wang T, Hu J, Du H, Zhong M, Guo J, Xie Y, Xiang Y, Wu S, Yuan Y, Yin X, Wan J, Li K. Protectin D1 inhibits TLR4 signaling pathway to alleviate non-alcoholic steatohepatitis via upregulating IRAK-M. Free Radic Biol Med 2024; 210:42-53. [PMID: 37984750 DOI: 10.1016/j.freeradbiomed.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a prevalent metabolic disease, characterized by the hepatic steatosis, inflammation, and fibrosis, which is lack of effective treatment currently. Protectin D1 (PTD1), a lipid mediator from omega-3 fatty acid docosahexaenoic acid (DHA), has displayed wide pharmacological actions including anti-inflammation in a variety of diseases, but the role of PTD1 on NASH remains unclear. In this study, using the methionine and choline deficient (MCD) fed NASH model, we explored the effect and underlying mechanism of PTD1 on NASH in mice. Our results showed PTD1 improved MCD-induced steatosis, hepatocellular injury, inflammation and fibrosis. Furthermore, PTD1 inhibited MCD-induced activation of TLR4 downstream molecules (TAK1, p38 and p65) without affecting the levels of TLR4 and phosphorylated IRAK-1. Notably, the levels of IRAK-M protein and the binding between IRAK-M and TRAF6 in the liver were also increased by PTD1 in NASH mice. Moreover, IRAK-M knockout remarkedly reverted the beneficial effects of PTD1 on the NASH in mice. Thus, these results demonstrated that PTD1 could protect mice from NASH by inhibiting the activation of TLR4 downstream signaling pathway, which might be related to the upregulation of IRAK-M, indicating that PTD1 may provide a new treatment for NASH.
Collapse
Affiliation(s)
- Hao Liu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Nana Li
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Ge Kuang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Ting Wang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Hu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Hui Du
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Minxuan Zhong
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Jiashi Guo
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yao Xie
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yang Xiang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Shengwang Wu
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yiling Yuan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinru Yin
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, Chongqing Medical University, Chongqing, China.
| | - Ke Li
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
Reinertsen AF, Libreros S, Nshimiyimana R, Serhan CN, Hansen TV. Metabolization of Resolvin E4 by ω-Oxidation in Human Neutrophils: Synthesis and Biological Evaluation of 20-Hydroxy-Resolvin E4 (20-OH-RvE4). ACS Pharmacol Transl Sci 2023; 6:1898-1908. [PMID: 38093843 PMCID: PMC10714428 DOI: 10.1021/acsptsci.3c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Resolvin E4 (RvE4) belongs to the resolvin family of specialized pro-resolving mediators (SPMs). The resolvins are endogenously formed mediators with both potent pro-resolving and anti-inflammatory biological activities and have attracted considerable attention in both inflammation research and drug discovery. Hence, further metabolism of the resolvins is of interest. Gaining knowledge about the structure-function of further metabolites of the resolvins is important due to their interest in drug-discovery efforts. For the first time, the total synthesis and biological evaluations of the ω-20 hydroxylated metabolite of RvE4, named herein 20-OH-RvE4, are presented. RvE4 was converted to 20-OH-RvE4 by human polymorphonuclear leukocytes. LC-MS/MS analysis and UV spectrophotometry reveal that the synthetic 20-OH-RvE4 matched RvE4-converted product 20-OH-RvE4 by human neutrophils. Cellular studies have revealed that RvE4 is formed from eicosapentaenoic acid in physiologic hypoxia by human neutrophils and macrophages, and we herein established that 20-OH-RvE4 is a secondary metabolite formed by the ω-oxidation of RvE4 in human neutrophils. A direct comparison of the biological actions between RvE4 and its metabolic product suggested that 20-OH-RvE4 displayed reduced bioactions in stimulating the efferocytosis of human senescent erythrocytes by human M2-like macrophages. At concentrations down to 0.1 nM, RvE4 increased macrophage erythrophagocytosis, an important pro-resolving function that was diminished due to metabolic transformation. The results provided herein contribute to a novel molecular insight on the further local metabolization of RvE4, the newest member among the SPM superfamily.
Collapse
Affiliation(s)
- Amalie Føreid Reinertsen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Charles Nicholas Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| |
Collapse
|
28
|
Leite CBG, Merkely G, Charles JF, Lattermann C. From Inflammation to Resolution: Specialized Pro-resolving Mediators in Posttraumatic Osteoarthritis. Curr Osteoporos Rep 2023; 21:758-770. [PMID: 37615856 DOI: 10.1007/s11914-023-00817-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE OF REVIEW To provide a comprehensive overview of the inflammatory response following anterior cruciate ligament (ACL) injury and to highlight the relationship between specialized pro-resolving mediators (SPMs) and inflammatory joint conditions, emphasizing the therapeutic potential of modulating the post-injury resolution of inflammation to prevent posttraumatic osteoarthritis (PTOA). RECENT FINDINGS The inflammatory response triggered after joint injuries such as ACL tear plays a critical role in posttraumatic osteoarthritis development. Inflammation is a necessary process for tissue healing, but unresolved or overactivated inflammation can lead to chronic diseases. SPMs, a family of lipid molecules derived from essential fatty acids, have emerged as active players in the resolution of inflammation and tissue repair. While their role in other inflammatory conditions has been studied, their relationship with PTOA remains underexplored. Proinflammatory mediators contribute to cartilage degradation and PTOA pathogenesis, while anti-inflammatory and pro-resolving mediators may have chondroprotective effects. Therapies aimed at suppressing inflammation in PTOA have limitations, as inflammation is crucial for tissue healing. SPMs offer a pro-resolving response without causing immunosuppression, making them a promising therapeutic option. The known onset date of PTOA makes it amenable to early interventions, and activating pro-resolving pathways may provide new possibilities for preventing PTOA progression. Harnessing the pro-resolving potential of SPMs may hold promise for preventing PTOA and restoring tissue homeostasis and function after joint injuries.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Gergo Merkely
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA.
| |
Collapse
|
29
|
Alghamdi A, Wani K, Alnaami AM, Al-Daghri NM. Dose Intervals and Time since Final Dose on Changes in Metabolic Indices after COVID-19 Vaccination. Vaccines (Basel) 2023; 11:1746. [PMID: 38140151 PMCID: PMC10748310 DOI: 10.3390/vaccines11121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The rapid development and implementation of COVID-19 vaccines merit understanding its effects on metabolic indices. This retrospective longitudinal study investigated the influence of first-to-second-dose intervals and time since the final dose on the metabolic indices of individuals receiving COVID-19 vaccinations. A total of 318 Saudi subjects (59.7% females) aged 12-60 years received COVID-19 vaccines via the national vaccination program. We collected the anthropometric data and fasting blood samples at specific time points before vaccination and after the final vaccination dose, and biochemical metabolic indices, including glucose and lipid profile, were measured. We also collected the dates of vaccination and COVID-19 history during the study period. The participants were stratified into groups based on first-to-second-dose intervals and time since the final dose to compare pre-and post-vaccination changes in metabolic indices between the groups. Logistic regression analysis revealed no differences in pre- to post-vaccination metabolic status between groups based on first-to-second-dose intervals in either adolescents or adults. However, shorter intervals (≤6 months) between the final dose and follow-up were associated with a decrease in total cardiometabolic components, especially triglyceride levels (OR = 0.39, 95% CI: (0.22-0.68), p < 0.001) than longer intervals (>6 months) in adults. In conclusion, time duration since final dose was associated with pre- to post-vaccination changes in metabolic indices, especially triglyceride levels, indicating that post-vaccination improvements wane over time. Further research is needed to validate the observed relationship, as it may contribute to optimizing vaccine effectiveness and safety in the future.
Collapse
Affiliation(s)
- Amani Alghamdi
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Alnaami
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser M. Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Gong Z, Yang C, Dai W, Miao S, Liu Y, Jiao Z, Li B, Xie W, Zhao W, Han X, Yu S, Dong Z. Annexin A1 exerts analgesic effect in a mouse model of medication overuse headache. iScience 2023; 26:108153. [PMID: 37867938 PMCID: PMC10587614 DOI: 10.1016/j.isci.2023.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Medication overuse headache (MOH) is a serious global condition. The interaction between headache attacks and medication overuse complicates the understanding of its pathophysiology. In this study, we developed a preclinical MOH model that incorporates these two key factors by overusing rizatriptan benzoate (RIZ, 4 mg/kg, i.g.) in a glyceryl trinitrate (GTN, 10 mg/kg, i.p.) induced chronic migraine mouse model. We observed that RIZ overuse aggravated GTN-induced cutaneous allodynia and caused a prolonged state of latent sensitization. We also detected a significant upregulation of Annexin-A1 (ANXA1), a protein mainly expressed in the microglia of the spinal trigeminal nucleus caudalis (SPVC), in GTN+RIZ mice. Intracerebroventricular injection of ANXA1-derived peptide Ac2-26 trifluoroacetic acid (TFA) (5 μg/mouse) inhibited bright light stress (BLS) induced acute allodynia via the formyl peptide receptor (FPR) in GTN+RIZ mice. These results suggest that ANXA1 may have an analgesic effect in triptan-associated MOH and could potentially serve as a therapeutic target.
Collapse
Affiliation(s)
- Zihua Gong
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Medical Oncology, Bethune International peace Hospital, Shijiazhuang, Hebei 050082, China
| | - Chunxiao Yang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Wei Dai
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuai Miao
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingyuan Liu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Zhiyang Jiao
- Department of Outpatient, Shijiazhuang Fourth Retired Cadre Sanatorium of Hebei province Military Region, Shijiazhuang, Hebei 050082, China
| | - Bozhi Li
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Xie
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Wei Zhao
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Xun Han
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Zhao Dong
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| |
Collapse
|
31
|
Monge P, Astudillo AM, Pereira L, Balboa MA, Balsinde J. Dynamics of Docosahexaenoic Acid Utilization by Mouse Peritoneal Macrophages. Biomolecules 2023; 13:1635. [PMID: 38002317 PMCID: PMC10669016 DOI: 10.3390/biom13111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
In this work, the incorporation of docosahexaenoic acid (DHA) in mouse resident peritoneal macrophages and its redistribution within the various phospholipid classes were investigated. Choline glycerophospholipids (PC) behaved as the major initial acceptors of DHA. Prolonged incubation with the fatty acid resulted in the transfer of DHA from PC to ethanolamine glycerophospholipids (PE), reflecting phospholipid remodeling. This process resulted in the cells containing similar amounts of DHA in PC and PE in the resting state. Mass spectrometry-based lipidomic analyses of phospholipid molecular species indicated a marked abundance of DHA in ether phospholipids. Stimulation of the macrophages with yeast-derived zymosan resulted in significant decreases in the levels of all DHA-containing PC and PI species; however, no PE or PS molecular species were found to decrease. In contrast, the levels of an unusual DHA-containing species, namely PI(20:4/22:6), which was barely present in resting cells, were found to markedly increase under zymosan stimulation. The levels of this phospholipid also significantly increased when the calcium-ionophore A23187 or platelet-activating factor were used instead of zymosan to stimulate the macrophages. The study of the route involved in the synthesis of PI(20:4/22:6) suggested that this species is produced through deacylation/reacylation reactions. These results define the increases in PI(20:4/22:6) as a novel lipid metabolic marker of mouse macrophage activation, and provide novel information to understand the regulation of phospholipid fatty acid turnover in activated macrophages.
Collapse
Affiliation(s)
- Patricia Monge
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alma M. Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Pereira
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
32
|
Santos CBR, Lobato CC, Ota SSB, Silva RC, Bittencourt RCVS, Freitas JJS, Ferreira EFB, Ferreira MB, Silva RC, De Lima AB, Campos JM, Borges RS, Bittencourt JAHM. Analgesic Activity of 5-Acetamido-2-Hydroxy Benzoic Acid Derivatives and an In-Vivo and In-Silico Analysis of Their Target Interactions. Pharmaceuticals (Basel) 2023; 16:1584. [PMID: 38004449 PMCID: PMC10674373 DOI: 10.3390/ph16111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The design, synthesis, and evaluation of novel non-steroidal anti-inflammatory drugs (NSAIDs) with better activity and lower side effects are big challenges today. In this work, two 5-acetamido-2-hydroxy benzoic acid derivatives were proposed, increasing the alkyl position (methyl) in an acetamide moiety, and synthesized, and their structural elucidation was performed using 1H NMR and 13C NMR. The changes in methyl in larger groups such as phenyl and benzyl aim to increase their selectivity over cyclooxygenase 2 (COX-2). These 5-acetamido-2-hydroxy benzoic acid derivatives were prepared using classic methods of acylation reactions with anhydride or acyl chloride. Pharmacokinetics and toxicological properties were predicted using computational tools, and their binding affinity (kcal/mol) with COX-2 receptors (Mus musculus and Homo sapiens) was analyzed using docking studies (PDB ID 4PH9, 5KIR, 1PXX and 5F1A). An in-silico study showed that 5-acetamido-2-hydroxy benzoic acid derivates have a better bioavailability and binding affinity with the COX-2 receptor, and in-vivo anti-nociceptive activity was investigated by means of a writhing test induced by acetic acid and a hot plate. PS3, at doses of 20 and 50 mg/kg, reduced painful activity by 74% and 75%, respectively, when compared to the control group (20 mg/kg). Regarding the anti-nociceptive activity, the benzyl showed reductions in painful activity when compared to acetaminophen and 5-acetamido-2-hydroxy benzoic acid. However, the proposed derivatives are potentially more active than 5-acetamido-2-hydroxy benzoic acid and they support the design of novel and safer derivative candidates. Consequently, more studies need to be conducted to evaluate the different pharmacological actions, the toxicity of possible metabolites that can be generated, and their potential use in inflammation and pain therapy.
Collapse
Affiliation(s)
- Cleydson B. R. Santos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (C.C.L.); (R.C.S.); (R.C.V.S.B.); (M.B.F.)
- Graduate Program on Medicinal Chemistry and Molecular Modeling, Institute of Health Science, Federal University of Pará, Belém 66075-110, PA, Brazil; (S.S.B.O.); (R.S.B.)
| | - Cleison C. Lobato
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (C.C.L.); (R.C.S.); (R.C.V.S.B.); (M.B.F.)
- Graduate Program on Medicinal Chemistry and Molecular Modeling, Institute of Health Science, Federal University of Pará, Belém 66075-110, PA, Brazil; (S.S.B.O.); (R.S.B.)
| | - Sirlene S. B. Ota
- Graduate Program on Medicinal Chemistry and Molecular Modeling, Institute of Health Science, Federal University of Pará, Belém 66075-110, PA, Brazil; (S.S.B.O.); (R.S.B.)
| | - Rai C. Silva
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (C.C.L.); (R.C.S.); (R.C.V.S.B.); (M.B.F.)
- Graduate Program on Medicinal Chemistry and Molecular Modeling, Institute of Health Science, Federal University of Pará, Belém 66075-110, PA, Brazil; (S.S.B.O.); (R.S.B.)
| | - Renata C. V. S. Bittencourt
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (C.C.L.); (R.C.S.); (R.C.V.S.B.); (M.B.F.)
| | - Jofre J. S. Freitas
- Laboratory of Morphophysiology Applied to Health, State University of Pará, Belém 66095-662, PA, Brazil; (J.J.S.F.); (R.C.S.); (A.B.D.L.)
| | - Elenilze F. B. Ferreira
- Laboratory of Organic Chemistry and Biochemistry, University of the State of Amapá, Macapá 68900-070, AP, Brazil;
| | - Marília B. Ferreira
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (C.C.L.); (R.C.S.); (R.C.V.S.B.); (M.B.F.)
- Laboratory of Morphophysiology Applied to Health, State University of Pará, Belém 66095-662, PA, Brazil; (J.J.S.F.); (R.C.S.); (A.B.D.L.)
| | - Renata C. Silva
- Laboratory of Morphophysiology Applied to Health, State University of Pará, Belém 66095-662, PA, Brazil; (J.J.S.F.); (R.C.S.); (A.B.D.L.)
| | - Anderson B. De Lima
- Laboratory of Morphophysiology Applied to Health, State University of Pará, Belém 66095-662, PA, Brazil; (J.J.S.F.); (R.C.S.); (A.B.D.L.)
| | - Joaquín M. Campos
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
| | - Rosivaldo S. Borges
- Graduate Program on Medicinal Chemistry and Molecular Modeling, Institute of Health Science, Federal University of Pará, Belém 66075-110, PA, Brazil; (S.S.B.O.); (R.S.B.)
| | - José A. H. M. Bittencourt
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (C.C.L.); (R.C.S.); (R.C.V.S.B.); (M.B.F.)
| |
Collapse
|
33
|
Lyngstadaas AV, Olsen MV, Bair J, Yang M, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Anti-Inflammatory and Pro-Resolving Actions of the N-Terminal Peptides Ac2-26, Ac2-12, and Ac9-25 of Annexin A1 on Conjunctival Goblet Cell Function. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1817-1832. [PMID: 37423551 PMCID: PMC10616711 DOI: 10.1016/j.ajpath.2023.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023]
Abstract
Annexin A1 (AnxA1) is the primary mediator of the anti-inflammatory actions of glucocorticoids. AnxA1 functions as a pro-resolving mediator in cultured rat conjunctival goblet cells to ensure tissue homeostasis through stimulation of intracellular [Ca2+] ([Ca2+]i) and mucin secretion. AnxA1 has several N-terminal peptides with anti-inflammatory properties of their own, including Ac2-26, Ac2-12, and Ac9-25. The increase in [Ca2+]i caused by AnxA1 and its N-terminal peptides in goblet cells was measured to determine the formyl peptide receptors used by the compounds and the action of the peptides on histamine stimulation. Changes in [Ca2+]i were determined by using a fluorescent Ca2+ indicator. AnxA1 and its peptides each activated formyl peptide receptors in goblet cells. AnxA1 and Ac2-26 at 10-12 mol/L and Ac2-12 at 10-9 mol/L inhibited the histamine-stimulated increase in [Ca2+]i, as did resolvin D1 and lipoxin A4 at 10-12 mol/L, whereas Ac9-25 did not. AnxA1 and Ac2-26 counter-regulated the H1 receptor through the p42/p44 mitogen-activated protein kinase/extracellular regulated kinase 1/2, β-adrenergic receptor kinase, and protein kinase C pathways, whereas Ac2-12 counter-regulated only through β-adrenergic receptor kinase. In conclusion, current data show that the N-terminal peptides Ac2-26 and Ac2-12, but not Ac9-25, share multiple functions with the full-length AnxA1 in goblet cells, including inhibition of histamine-stimulated increase in [Ca2+]i and counter-regulation of the H1 receptor. These actions suggest a potential pharmaceutical application of the AnxA1 N-terminal peptides Ac2-26 and Ac2-12 in homeostasis and ocular inflammatory diseases.
Collapse
Affiliation(s)
- Anne V Lyngstadaas
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Markus V Olsen
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Jeffrey Bair
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Menglu Yang
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Tor P Utheim
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway.
| |
Collapse
|
34
|
Sahni V, Van Dyke TE. Immunomodulation of periodontitis with SPMs. FRONTIERS IN ORAL HEALTH 2023; 4:1288722. [PMID: 37927821 PMCID: PMC10623003 DOI: 10.3389/froh.2023.1288722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Inflammation is a critical component in the pathophysiology of numerous disease processes, with most therapeutic modalities focusing on its inhibition in order to achieve treatment outcomes. The resolution of inflammation is a separate, distinct pathway that entails the reversal of the inflammatory process to a state of homoeostasis rather than selective inhibition of specific components of the inflammatory cascade. The discovery of specialized pro-resolving mediators (SPMs) resulted in a paradigm shift in our understanding of disease etiopathology. Periodontal disease, traditionally considered as one of microbial etiology, is now understood to be an inflammation-driven process associated with dysbiosis of the oral microbiome that may be modulated with SPMs to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Vaibhav Sahni
- Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | - Thomas E. Van Dyke
- Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
- Faculty of Medicine, Harvard University, Boston, MA, United States
| |
Collapse
|
35
|
Levy ES, Kim AS, Werlin E, Chen M, Sansbury BE, Spite M, Desai TA, Conte MS. Tissue factor targeting peptide enhances nanoparticle binding and delivery of a synthetic specialized pro-resolving lipid mediator to injured arteries. JVS Vasc Sci 2023; 4:100126. [PMID: 38045567 PMCID: PMC10692706 DOI: 10.1016/j.jvssci.2023.100126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/17/2023] [Indexed: 12/05/2023] Open
Abstract
Background Specialized pro-resolving lipid mediators (SPM) such as resolvin D1 (RvD1) attenuate inflammation and exhibit vasculo-protective properties. Methods We investigated poly-lactic-co-glycolic acid (PLGA)-based nanoparticles (NP), containing a peptide targeted to tissue factor (TF) for delivery of 17R-RvD1 and a synthetic analog 17-R/S-benzo-RvD1 (benzo-RvD1) using in vitro and in vivo models of acute vascular injury. NPs were characterized in vitro by size, drug loading, drug release, TF binding, and vascular smooth muscle cell migration assays. NPs were also characterized in a rat model of carotid angioplasty. Results PLGA NPs based on a 75/25 lactic to glycolic acid ratio demonstrated optimal loading (507.3 pg 17R-RvD1/mg NP; P = ns) and release of RvD1 (153.1 pg 17R-RvD1/mg NP; P < .05). NPs incorporating the targeting peptide adhered to immobilized TF with greater avidity than NPs with scrambled peptide (50 nM: 41.6 ± 0.52 vs 32.66 ± 0.34; 100 nM: 35.67 ± 0.95 vs 23.5 ± 0.39; P < .05). NPs loaded with 17R-RvD1 resulted in a trend toward blunted vascular smooth muscle cell migration in a scratch assay. In a rat model of carotid angioplasty, 16-fold more NPs were present after treatment with TF-targeted NPs compared with scrambled NPs (P < .01), with a corresponding trend toward higher tissue levels of 17R-RvD1 (P = .06). Benzo-RvD1 was also detectable in arteries treated with targeted NP delivery and accumulated at 10 times higher levels than NP loaded with 17R-RvD1. There was a trend toward decreased CD45 immunostaining in vessels treated with NP containing benzo-RvD1 (0.76 ± 0.38 cells/mm2 vs 122.1 ± 22.26 cells/mm2; P = .06). There were no significant differences in early arterial inflammatory and cytokine gene expression by reverse transcription-polymerase chain reaction. Conclusions TF-targeting peptides enhanced NP-mediated delivery of SPM to injured artery. TF-targeted delivery of SPMs may be a promising therapeutic approach to attenuate the vascular injury response.
Collapse
Affiliation(s)
- Elizabeth S. Levy
- Department of Bioengineering and Therapeutics, University of California San Francisco, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham, San Francisco, CA
- Small Molecules Pharmaceutics, Genentech, South San Francisco, CA
| | - Alexander S. Kim
- Department of Surgery and Cardiovascular Institute, University of California San Francisco, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham, San Francisco, CA
| | - Evan Werlin
- Department of Surgery and Cardiovascular Institute, University of California San Francisco, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham, San Francisco, CA
| | - Mian Chen
- Department of Surgery and Cardiovascular Institute, University of California San Francisco, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham, San Francisco, CA
| | | | - Matthew Spite
- Women's Hospital and Harvard Medical School, Boston, MA
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutics, University of California San Francisco, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham, San Francisco, CA
- School of Engineering, Brown University, Providence, RI
| | - Michael S. Conte
- Department of Surgery and Cardiovascular Institute, University of California San Francisco, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham, San Francisco, CA
| |
Collapse
|
36
|
Edwards-Glenn JM, Fontes MT, Waigi EW, Costa TJ, Maiseyeu A, Webb RC, McCarthy CG, Wenceslau CF. Specialized Pro-resolving Mediator Improves Vascular Relaxation via Formyl Peptide Receptor-2. Am J Hypertens 2023; 36:542-550. [PMID: 37439351 PMCID: PMC10502783 DOI: 10.1093/ajh/hpad062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The resolution of inflammation is an active phenomenon important for switching off inflammatory processes once the harmful stimuli are removed and facilitate the return to homeostasis. Specialized pro-resolving mediators (SPMs), such as lipoxin A4, resolvin D1, and resolvin E1, derived from ω-3 or ω-6 polyunsaturated fatty acids, are crucial for the resolution of inflammation. We hypothesized that SPMs are decreased in hypertension which contributes to the acetylcholine-induced contraction in resistance arteries, which are well known to be mediated by leukotrienes and prostaglandins. Moreover, treatment with SPMs will decrease this contraction via formyl peptide receptor-2 (FPR-2) in resistance arteries from spontaneously hypertensive rats (SHR). METHODS AND RESULTS We performed a comprehensive eicosanoid lipid panel analysis, and our data showed for the first time that precursors of SPMs are decreased in SHR, limiting the production of SPMs and resolution of inflammation in vivo. This phenomenon was associated with an increase in lipid peroxidation in resistance arteries. Although SPMs did not abolish acetylcholine-induced contraction, these lipid mediators improved endothelial function in arteries from SHR via FPR-2 activation at nanomolar concentrations. SPMs also buffered TNF-α-induced reactive oxygen species generation in endothelial cells from C57Bl/6 mice. CONCLUSIONS We suggest that FPR-2 and SPMs could be revealed as a new target or therapeutic agent to improve vascular function in arteries from hypertensive rats.
Collapse
Affiliation(s)
- Jonnelle M Edwards-Glenn
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Milene T Fontes
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Emily W Waigi
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Tiago J Costa
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Camilla F Wenceslau
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
37
|
Morin S, Bélanger S, Cortez Ghio S, Pouliot R. Eicosapentaenoic acid reduces the proportion of IL-17A-producing T cells in a 3D psoriatic skin model. J Lipid Res 2023; 64:100428. [PMID: 37597582 PMCID: PMC10509711 DOI: 10.1016/j.jlr.2023.100428] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023] Open
Abstract
Psoriasis is a skin disease presenting as erythematous lesions with accentuated proliferation of epidermal keratinocytes, infiltration of leukocytes, and dysregulated lipid metabolism. T cells play essential roles in the disease. n-3 polyunsaturated fatty acids are anti-inflammatory metabolites, which exert an immunosuppressive effect on healthy T cells. However, the precise mechanistic processes of n-3 polyunsaturated fatty acids on T cells in psoriasis are still unrevealed. In this study, we aimed to evaluate the action of eicosapentaenoic acid (EPA) on T cells in a psoriatic skin model produced with T cells. A coculture of psoriatic keratinocytes and polarized T cells was prepared using culture media, which was either supplemented with 10 μM EPA or left unsupplemented. Healthy and psoriatic skin substitutes were produced according to the self-assembly method. In the coculture model, EPA reduced the proportion of IL-17A-positive cells, while increasing that of FOXP3-positive cells, suggesting an increase in the polarization of regulatory T cells. In the 3D psoriatic skin model, EPA normalized the proliferation of psoriatic keratinocytes and diminished the levels of IL-17A. The expression of the proteins of the signal transducer and activator of transcription was influenced following EPA supplementation with downregulation of the phosphorylation levels of signal transducer and activator of transcription 3 in the dermis. Finally, the NFκB signaling pathway was modified in the EPA-supplemented substitutes with an increase in Fas amounts. Ultimately, our results suggest that in this psoriatic model, EPA exerts its anti-inflammatory action by decreasing the proportion of IL-17A-producing T cells.
Collapse
Affiliation(s)
- Sophie Morin
- Center for Research in Experimental Organogenesis of Laval University/LOEX, Regenerative Medicine Axis, CHU of Quebec/Laval University Research Center, Qu ebec, QC, Canada; Faculty of Pharmacy, Laval University, Quebec, QC, Canada
| | - Sarah Bélanger
- Center for Research in Experimental Organogenesis of Laval University/LOEX, Regenerative Medicine Axis, CHU of Quebec/Laval University Research Center, Qu ebec, QC, Canada; Faculty of Pharmacy, Laval University, Quebec, QC, Canada
| | | | - Roxane Pouliot
- Center for Research in Experimental Organogenesis of Laval University/LOEX, Regenerative Medicine Axis, CHU of Quebec/Laval University Research Center, Qu ebec, QC, Canada; Faculty of Pharmacy, Laval University, Quebec, QC, Canada.
| |
Collapse
|
38
|
Libreros S, Nshimiyimana R, Lee B, Serhan CN. Infectious neutrophil deployment is regulated by resolvin D4. Blood 2023; 142:589-606. [PMID: 37295018 PMCID: PMC10447623 DOI: 10.1182/blood.2022019145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 06/11/2023] Open
Abstract
Neutrophils reside in the bone marrow (BM), ready for deployment to sites of injury/infection, initiating inflammation and its resolution. Here, we report that distal infections signal to the BM via resolvins to regulate granulopoiesis and BM neutrophil deployment. Emergency granulopoiesis during peritonitis evoked changes in BM resolvin D1 (RvD1) and BM RvD4. We found that leukotriene B4 stimulates neutrophil deployment. RvD1 and RvD4 each limited neutrophilic infiltration to infections, and differently regulated BM myeloid populations: RvD1 increased reparative monocytes, and RvD4 regulated granulocytes. RvD4 disengaged emergency granulopoiesis, prevented excess BM neutrophil deployment, and acted on granulocyte progenitors. RvD4 also stimulated exudate neutrophil, monocyte, and macrophage phagocytosis, and enhanced bacterial clearance. This mediator accelerated both neutrophil apoptosis and clearance by macrophages, thus expediting the resolution phase of inflammation. RvD4 stimulated phosphorylation of ERK1/2 and STAT3 in human BM-aspirate-derived granulocytes. RvD4 in the 1 to 100 nM range stimulated whole-blood neutrophil phagocytosis of Escherichia coli. RvD4 increased BM macrophage efferocytosis of neutrophils. Together, these results demonstrate the novel functions of resolvins in granulopoiesis and neutrophil deployment, contributing to the resolution of infectious inflammation.
Collapse
Affiliation(s)
- Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Brendon Lee
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
39
|
Perazza LR, Gower AC, Brown-Borg HM, Pajevic PD, Thompson LV. Protectin DX as a therapeutic strategy against frailty in mice. GeroScience 2023; 45:2601-2627. [PMID: 37059838 PMCID: PMC10651819 DOI: 10.1007/s11357-023-00789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Frailty in aging is driven by the dysregulation of multiple biological pathways. Protectin DX (PDX) is a docosahexaenoic acid (DHA)-derived molecule that alleviates many chronic inflammatory disorders, but its potential effects on frailty remain unknown. Our goal is to identify age-related impairments in metabolic systems and to evaluate the therapeutic potential of PDX on frailty, physical performance, and health parameters. A set of 22-month-old C57BL/6 male and female mice were assigned to vehicle (Old) or PDX daily gavage treatment for 9 weeks, whereas 6-month-old (Adult) mice received only vehicle. Forelimb and hindlimb strength, endurance, voluntary wheel activity and walking speed determined physical performance and were combined with a frailty index score and body weight loss to determine frailty status. Our data shows that old vehicle-treated mice from both sexes had body weight loss paralleling visceromegaly, and Old females also had impaired insulin clearance as compared to the Adult group. Aging was associated with physical performance decline together with higher odds of frailty development. There was also age-driven mesangial expansion and glomerular hypertrophy as well as bone mineral density loss. All of the in vivo and in vitro impairments observed with aging co-occurred with upregulation of inflammatory pathways and Myc signaling as well as downregulation of genes related to adipogenesis and oxidative phosphorylation in liver. PDX attenuated the age-driven physical performance (strength, exhaustion, walking speed) decline, promoted robustness, prevented bone losses and partially reversed changes in hepatic expression of Myc targets and metabolic genes. In conclusion, our data provides evidence of the beneficial therapeutic effect of PDX against features of frailty in mice. Further studies are warranted to investigate the mechanisms of action and the potential for human translation.
Collapse
Affiliation(s)
- Laís R Perazza
- Department of Physical Therapy, Boston University, Boston, MA, USA.
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA, USA
| | - Holly M Brown-Borg
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | | |
Collapse
|
40
|
Raby KL, Michaeloudes C, Tonkin J, Chung KF, Bhavsar PK. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD. Front Immunol 2023; 14:1201658. [PMID: 37520564 PMCID: PMC10374037 DOI: 10.3389/fimmu.2023.1201658] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
The airway epithelium comprises of different cell types and acts as a physical barrier preventing pathogens, including inhaled particles and microbes, from entering the lungs. Goblet cells and submucosal glands produce mucus that traps pathogens, which are expelled from the respiratory tract by ciliated cells. Basal cells act as progenitor cells, differentiating into different epithelial cell types, to maintain homeostasis following injury. Adherens and tight junctions between cells maintain the epithelial barrier function and regulate the movement of molecules across it. In this review we discuss how abnormal epithelial structure and function, caused by chronic injury and abnormal repair, drives airway disease and specifically asthma and chronic obstructive pulmonary disease (COPD). In both diseases, inhaled allergens, pollutants and microbes disrupt junctional complexes and promote cell death, impairing the barrier function and leading to increased penetration of pathogens and a constant airway immune response. In asthma, the inflammatory response precipitates the epithelial injury and drives abnormal basal cell differentiation. This leads to reduced ciliated cells, goblet cell hyperplasia and increased epithelial mesenchymal transition, which contribute to impaired mucociliary clearance and airway remodelling. In COPD, chronic oxidative stress and inflammation trigger premature epithelial cell senescence, which contributes to loss of epithelial integrity and airway inflammation and remodelling. Increased numbers of basal cells showing deregulated differentiation, contributes to ciliary dysfunction and mucous hyperproduction in COPD airways. Defective antioxidant, antiviral and damage repair mechanisms, possibly due to genetic or epigenetic factors, may confer susceptibility to airway epithelial dysfunction in these diseases. The current evidence suggests that a constant cycle of injury and abnormal repair of the epithelium drives chronic airway inflammation and remodelling in asthma and COPD. Mechanistic understanding of injury susceptibility and damage response may lead to improved therapies for these diseases.
Collapse
Affiliation(s)
- Katie Louise Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - James Tonkin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Pankaj Kumar Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| |
Collapse
|
41
|
Hrithrik TH, Lee DH, Singh N, Vik A, Hammock BD, Kim Y. Insect immune resolution with EpOME/DiHOME and its dysregulation by their analogs leading to pathogen hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548078. [PMID: 37461499 PMCID: PMC10350063 DOI: 10.1101/2023.07.07.548078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Epoxyoctadecamonoenoic acids (EpOMEs) are epoxide derivatives of linoleic acid (9,12-octadecadienoic acid: LA). They are metabolized into dihydroxyoctadecamonoenoic acids (DiHOMEs) in mammals. Unlike in mammals where they act as adipokines or lipokines, EpOMEs act as immunosuppressants in insects. However, the functional link between EpOMEs and pro-immune mediators such as PGE2 is not known. In addition, the physiological significance of DiHOMEs is not clear in insects. This study analyzed the physiological role of these C18 oxylipins using a lepidopteran insect pest, Spodoptera exigua. Immune challenge of S. exigua rapidly upregulated the expression of the phospholipase A2 gene to trigger C20 oxylipin biosynthesis, followed by the upregulation of genes encoding EpOME synthase (SE51385) and a soluble epoxide hydrolase (Se-sEH). The sequential gene expression resulted in the upregulations of the corresponding gene products such as PGE2, EpOMEs, and DiHOMEs. Interestingly, only PGE2 injection without the immune challenge significantly upregulated the gene expression of SE51825 and Se-sEH. The elevated levels of EpOMEs acted as immunosuppressants by inhibiting cellular and humoral immune responses induced by the bacterial challenge, in which 12,13-EpOME was more potent than 9,10-EpOME. However, DiHOMEs did not inhibit the cellular immune responses but upregulated the expression of antimicrobial peptides selectively suppressed by EpOMEs. The negative regulation of insect immunity by EpOMEs and their inactive DiHOMEs were further validated by synthetic analogs of the linoleate epoxide and corresponding diol. Furthermore, inhibitors specific to Se-sEH used to prevent EpOME degradation significantly suppressed the immune responses. The data suggest a physiological role of C18 oxylipins in resolving insect immune response. Any immune dysregulation induced by EpOME analogs or sEH inhibitors significantly enhanced insect susceptibility to the entomopathogen, Bacillus thuringiensis.
Collapse
Affiliation(s)
| | - Dong-Hee Lee
- Industry Academy Cooperation Foundation, Andong National University, Andong 36729, Korea
| | - Nalin Singh
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA
- UCD Comprehensive Cancer Center, University of California, Sacramento, CA 95817, USA
| | - Anders Vik
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA
- UCD Comprehensive Cancer Center, University of California, Sacramento, CA 95817, USA
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| |
Collapse
|
42
|
Burgess V, Maya JD. Statin and aspirin use in parasitic infections as a potential therapeutic strategy: A narrative review. Rev Argent Microbiol 2023; 55:278-288. [PMID: 37019801 DOI: 10.1016/j.ram.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/13/2022] [Accepted: 01/26/2023] [Indexed: 04/05/2023] Open
Abstract
Infections, including zoonoses, constitute a threat to human health due to the spread of resistant pathogens. These diseases generate an inflammatory response controlled by a resolving mechanism involving specialized membrane lipid-derived molecules called lipoxins, resolvins, maresins, and protectins. The production of some of these molecules can be triggered by aspirin or statins. Thus, it is proposed that modulation of the host response could be a useful therapeutic strategy, contributing to the management of resistance to antiparasitic agents or preventing drift to chronic, host-damaging courses. Therefore, the present work presents the state of the art on the use of statins or aspirin for the experimental management of parasitic infections such as Chagas disease, leishmaniasis, toxoplasmosis or malaria. The methodology used was a narrative review covering original articles from the last seven years, 38 of which met the inclusion criteria. Based on the publications consulted, modulation of the resolution of inflammation using statins may be feasible as an adjuvant in the therapy of parasitic diseases. However, there was no strong experimental evidence on the use of aspirin; therefore, further studies are needed to evaluate its role inflammation resolution process in infectious diseases.
Collapse
Affiliation(s)
- Valentina Burgess
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile.
| |
Collapse
|
43
|
Aziz T, Khan AA, Tzora A, Voidarou CC, Skoufos I. Dietary Implications of the Bidirectional Relationship between the Gut Microflora and Inflammatory Diseases with Special Emphasis on Irritable Bowel Disease: Current and Future Perspective. Nutrients 2023; 15:2956. [PMID: 37447285 DOI: 10.3390/nu15132956] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The immune system is vital for safeguarding the human body against infections and inflammatory diseases. The role of diet and meal patterns in modulating immune function is complex, and highlighting this topic is crucial for identifying potential ways to improve immune health. In Europe, the Mediterranean diet and Western diet are the most common dietary patterns, and gaining an understanding of how they affect immune function is essential for public health. There are numerous inflammatory diseases that are observed in younger and older people. Some of the common diseases include polymyalgia rheumatica (PMR), spinal muscular atrophy (SMA), vasculitis, sarcopenia, cirrhosis, cancer, and fibromyalgia, but the main focus in this review article is on irritable bowel disease (IBD). In general, dietary choices can have an immense impact on the microbial flora of the gut in people with inflammatory diseases. The intake of Mediterranean-style foods promotes the growth of healthy bacteria that enhances the function of the immune system. On the other hand, it is mostly seen that the intake of Western-style foods leads to the growth of harmful gut bacteria that contributes to inflammation and disease development by weakening the immune system. Additionally, inflammation in the gut can impact brain function, leading to mood disorders, such as anxiety and depression. Rare inflammatory diseases, such as psoriasis and sarcoidosis, are of main interest in this article. All the above-mentioned common and rare inflammatory diseases have a certain relationship with the microbiota of the gut. The gut microbiome plays a significant role in IBD; fiber and prebiotic interventions may represent promising adjunct therapies for pediatric IBD by targeting the gut microbiome. By advancing a good overall arrangement of microorganisms in the stomach through dietary mediations, working on the side effects and alleviating of diseases might be conceivable. The gut microbiota can be affected differently by various dietary fatty acid types. There is also an involvement of genetics in the progression of IBD, such as transcriptional factors, and one gene of interest is the LCT gene, which encodes for lactase, an enzyme responsible for digesting lactose in the gut.
Collapse
Affiliation(s)
- Tariq Aziz
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Chrysoula Chrysa Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| |
Collapse
|
44
|
Almogy M, Moses O, Schiffmann N, Weinberg E, Nemcovsky CE, Weinreb M. Addition of Resolvins D1 or E1 to Collagen Membranes Mitigates Their Resorption in Diabetic Rats. J Funct Biomater 2023; 14:jfb14050283. [PMID: 37233393 DOI: 10.3390/jfb14050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Uncontrolled diabetes is characterized by aberrant inflammatory reactions and increased collagenolysis. We have reported that it accelerates the degradation of implanted collagen membranes (CM), thus compromising their function in regenerative procedures. In recent years, a group of physiological anti-inflammatory agents called specialized pro-resolving lipid mediators (SPMs) have been tested as a treatment for various inflammatory conditions, either systemically or locally, via medical devices. Yet, no study has tested their effect on the fate of the biodegradable material itself. Here, we measured the in vitro release over time of 100 or 800 ng resolvin D1 (RvD1) incorporated into CM discs. In vivo, diabetes was induced in rats with streptozotocin, while buffer-injected (normoglycemic) rats served as controls. Resolvins (100 or 800 ng of RvD1 or RvE1) were added to biotin-labeled CM discs, which were implanted sub-periosteally over the calvaria of rats. Membrane thickness, density, and uniformity were determined by quantitative histology after 3 weeks. In vitro, significant amounts of RvD1 were released over 1-8 days, depending on the amount loaded. In vivo, CMs from diabetic animals were thinner, more porous, and more variable in thickness and density. The addition of RvD1 or RvE1 improved their regularity, increased their density, and reduced their invasion by the host tissue significantly. We conclude that addition of resolvins to biodegradable medical devices can protect them from excessive degradation in systemic conditions characterized by high degree of collagenolysis.
Collapse
Affiliation(s)
- Michal Almogy
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ofer Moses
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Nathan Schiffmann
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Carlos E Nemcovsky
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| |
Collapse
|
45
|
Gao J, Su Y, Wang Z. Lung Inflammation Resolution by RvD1 and RvD2 in a Receptor-Dependent Manner. Pharmaceutics 2023; 15:pharmaceutics15051527. [PMID: 37242769 DOI: 10.3390/pharmaceutics15051527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammation resolution is an active process via specialized pro-resolving mediators (SPMs) to fight invading microbes and repair tissue injury. RvD1 and RvD2 are SPMs produced from DHA during inflammation responses and show a benefit in treating inflammation disorders, but it is not completely understood how they act on vasculature and immune cells in the lung to promote inflammation resolution programs. Here, we studied how RvD1 and RvD2 regulated the interactions between endothelial cells and neutrophils in vitro and in vivo. In an acute lung inflammation (ALI) mouse model, we found that RvD1 and RvD2 resolved lung inflammation via their receptors (ALX/GPR32 or GPR18) and enhanced the macrophage phagocytosis of apoptotic neutrophils, which may be the molecular mechanism of lung inflammation resolution. Interestingly, we observed the higher potency of RvD1 over RvD2, which may be associated with unique downstream signaling pathways. Together, our studies suggest that the targeted delivery of these SPMs into inflammatory sites may be novel strategies with which to treat a wide range of inflammatory diseases.
Collapse
Affiliation(s)
- Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| | - Yujie Su
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| |
Collapse
|
46
|
He J, Pham TL, Kakazu AH, Ponnath A, Do KV, Bazan HEP. Lipoxin A4 (LXA4) Reduces Alkali-Induced Corneal Inflammation and Neovascularization and Upregulates a Repair Transcriptome. Biomolecules 2023; 13:831. [PMID: 37238701 PMCID: PMC10216426 DOI: 10.3390/biom13050831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE To investigate the anti-inflammatory and anti-angiogenic effects of the bioactive lipid mediator LXA4 on a rat model of severe corneal alkali injury. METHODS To induce a corneal alkali injury in the right eyes of anesthetized Sprague Dawley rats. They were injured with a Φ 4 mm filter paper disc soaked in 1 N NaOH placed on the center of the cornea. After injury, the rats were treated topically with LXA4 (65 ng/20 μL) or vehicle three times a day for 14 days. Corneal opacity, neovascularization (NV), and hyphema were recorded and evaluated in a blind manner. Pro-inflammatory cytokine expression and genes involved in cornel repair were assayed by RNA sequencing and capillary Western blot. Cornea cell infiltration and monocytes isolated from the blood were analyzed by immunofluorescence and by flow cytometry. RESULTS Topical treatment with LXA4 for two weeks significantly reduced corneal opacity, NV, and hyphema compared to the vehicle treatment. RNA-seq and Western blot results showed that LXA4 decreased the gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1β and IL-6 and pro-angiogenic mediators matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGFA). It also induces genes involved in keratinization and ErbB signaling and downregulates immune pathways to stimulate wound healing. Flow cytometry and immunohistochemistry showed significantly less infiltration of neutrophils in the corneas treated with LXA4 compared to vehicle treatment. It also revealed that LXA4 treatment increases the proportion of type 2 macrophages (M2) compared to M1 in blood-isolated monocytes. CONCLUSIONS LXA4 decreases corneal inflammation and NV induced by a strong alkali burn. Its mechanism of action includes inhibition of inflammatory leukocyte infiltration, reduction in cytokine release, suppression of angiogenic factors, and promotion of corneal repair gene expression and macrophage polarization in blood from alkali burn corneas. LXA4 has potential as a therapeutic candidate for severe corneal chemical injuries.
Collapse
Affiliation(s)
- Jiucheng He
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA; (J.H.)
- Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA
| | - Thang L. Pham
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA; (J.H.)
- HENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, Hanoi 11313, Vietnam
| | - Azucena H. Kakazu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA; (J.H.)
| | - Abhilash Ponnath
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA; (J.H.)
| | - Khanh V. Do
- Faculty of Medicine, PHENIKAA University, Hanoi 12116, Vietnam
| | - Haydee E. P. Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA; (J.H.)
- Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA
| |
Collapse
|
47
|
Filiberto AC, Leroy V, Ladd Z, Su G, Elder CT, Pruitt EY, Lu G, Hartman J, Zarrinpar A, Garrett TJ, Sharma AK, Upchurch GR. Sex differences in specialized pro-resolving lipid mediators and their receptors in abdominal aortic aneurysms. JVS Vasc Sci 2023; 4:100107. [PMID: 37292185 PMCID: PMC10245328 DOI: 10.1016/j.jvssci.2023.100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/08/2023] [Indexed: 06/10/2023] Open
Abstract
Objective In this study, we tested the hypothesis that endogenous expression of specialized pro-resolving lipid mediators (SPMs) that facilitate the resolution of inflammation, specifically Resolvin D1and -D2, as well as Maresin1 (MaR1), can impact abdominal aortic aneurysm (AAA) formation and progression in a sex-specific manner. Methods SPM expression was quantified in aortic tissue from human AAA samples and from a murine in vivo AAA model via liquid chromatography-tandem mass spectrometry. mRNA expression for SPM receptors FPR2, LGR6, and GPR18 were quantified by real-time polymerase chain reaction. A Student t test with nonparametric Mann-Whitney or Wilcoxon test was used for pair-wise comparisons of groups. One-way analysis of variance after post hoc Tukey test was used to determine the differences among multiple comparative groups. Results Human aortic tissue analysis revealed a significant decrease in RvD1 levels in male AAAs compared with controls, whereas FPR2 and LGR6 receptor expressions were downregulated in male AAAs compared with male controls. In vivo studies of elastase-treated mice showed higher levels of RvD2 and MaR1 as well as the SPM precursors, omega-3 fatty acids DHA and EPA, in aortic tissue from males compared with females. FPR2 expression was increased in elastase-treated females compared with males. Conclusions Our findings demonstrate that specific differences in SPMs and their associated G-protein coupled receptors exist between sexes. These results indicate the relevance of SPM-mediated signaling pathways in sex differences impacting the pathogenesis of AAAs.
Collapse
Affiliation(s)
| | - Victoria Leroy
- Department of Surgery, University of Florida, Gainesville, FL
| | - Zachary Ladd
- Department of Surgery, University of Florida, Gainesville, FL
| | - Gang Su
- Department of Surgery, University of Florida, Gainesville, FL
| | - Craig T. Elder
- Department of Surgery, University of Florida, Gainesville, FL
| | - Eric Y. Pruitt
- Department of Surgery, University of Florida, Gainesville, FL
| | - Guanyi Lu
- Department of Surgery, University of Florida, Gainesville, FL
| | - Joseph Hartman
- Department of Surgery, University of Florida, Gainesville, FL
| | - Ali Zarrinpar
- Department of Surgery, University of Florida, Gainesville, FL
| | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Ashish K. Sharma
- Department of Surgery, University of Florida, Gainesville, FL
- Aortic Disease Center, University of Florida, Gainesville, FL
| | - Gilbert R. Upchurch
- Department of Surgery, University of Florida, Gainesville, FL
- Aortic Disease Center, University of Florida, Gainesville, FL
| |
Collapse
|
48
|
Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5:735-759. [PMID: 37142787 DOI: 10.1038/s42255-023-00786-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
49
|
Hayashi D, Dennis EA. Molecular basis of unique specificity and regulation of group VIA calcium-independent phospholipase A 2 (PNPLA9) and its role in neurodegenerative diseases. Pharmacol Ther 2023; 245:108395. [PMID: 36990122 PMCID: PMC10174669 DOI: 10.1016/j.pharmthera.2023.108395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Glycerophospholipids are major components of cell membranes and consist of a glycerol backbone esterified with one of over 30 unique fatty acids at each of the sn-1 and sn-2 positions. In addition, in some human cells and tissues as much as 20% of the glycerophospholipids contain a fatty alcohol rather than an ester in the sn-1 position, although it can also occur in the sn-2 position. The sn-3 position of the glycerol backbone contains a phosphodiester bond linked to one of more than 10 unique polar head-groups. Hence, humans contain thousands of unique individual molecular species of phospholipids given the heterogeneity of the sn-1 and sn-2 linkage and carbon chains and the sn-3 polar groups. Phospholipase A2 (PLA2) is a superfamily of enzymes that hydrolyze the sn-2 fatty acyl chain resulting in lyso-phospholipids and free fatty acids that then undergo further metabolism. PLA2's play a critical role in lipid-mediated biological responses and membrane phospholipid remodeling. Among the PLA2 enzymes, the Group VIA calcium-independent PLA2 (GVIA iPLA2), also referred to as PNPLA9, is a fascinating enzyme with broad substrate specificity and it is implicated in a wide variety of diseases. Especially notable, the GVIA iPLA2 is implicated in the sequelae of several neurodegenerative diseases termed "phospholipase A2-associated neurodegeneration" (PLAN) diseases. Despite many reports on the physiological role of the GVIA iPLA2, the molecular basis of its enzymatic specificity was unclear. Recently, we employed state-of-the-art lipidomics and molecular dynamics techniques to elucidate the detailed molecular basis of its substrate specificity and regulation. In this review, we summarize the molecular basis of the enzymatic action of GVIA iPLA2 and provide a perspective on future therapeutic strategies for PLAN diseases targeting GVIA iPLA2.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe 657-8501, Japan.
| | - Edward A Dennis
- Department of Pharmacology, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0601, USA
| |
Collapse
|
50
|
Sousa AB, Barbosa JN. The Use of Specialized Pro-Resolving Mediators in Biomaterial-Based Immunomodulation. J Funct Biomater 2023; 14:jfb14040223. [PMID: 37103313 PMCID: PMC10145769 DOI: 10.3390/jfb14040223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
The implantation of a biomaterial will lead to the immediate onset of an acute inflammatory response, which is of key importance in shaping the quality of the repair process. However, the return to homeostasis is critical to prevent a chronic inflammatory response that may impair the healing process. The resolution of the inflammatory response is now recognized as an active and highly regulated process, being described as specialized immunoresolvents that have a fundamental role in the termination of the acute inflammatory response. These mediators collectively coined as specialized pro-resolving mediators (SPMs) are a family of endogenous molecules that include lipoxins (Lx), resolvins (Rv), protectins (PD), maresins (Mar), Cysteinyl-SPMs (Cys-SPMs) and n-3 docosapentaenoic acid-derived SPMs (n-3 DPA-derived SPMs). SPMs have important anti-inflammatory and pro-resolutive actions such as decreasing the recruitment of polymorphonuclear leukocytes (PMNs), inducing the recruitment of anti-inflammatory macrophages, and increasing macrophage clearance of apoptotic cells through a process known as efferocytosis. Over the last years, the trend in biomaterials research has shifted towards the engineering of materials that are able to modulate the inflammatory response and thus stimulate appropriate immune responses, the so-called immunomodulatory biomaterials. These materials should be able to modulate the host immune response with the aim of creating a pro-regenerative microenvironment. In this review, we explore the potential of using of SPMs in the development of new immunomodulatory biomaterials and we propose insights for future research in this field.
Collapse
Affiliation(s)
- Ana Beatriz Sousa
- i3S-Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Judite N Barbosa
- i3S-Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|