1
|
Larose C, Leduc C, Chevrier M. Napsin-A Immunohistochemistry in the Diagnosis of Pulmonary Alveolar Proteinosis. Arch Pathol Lab Med 2025; 149:568-572. [PMID: 39370148 DOI: 10.5858/arpa.2024-0136-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
CONTEXT.— The diagnosis of pulmonary alveolar proteinosis (PAP) relies on a limited set of stains, namely hematoxylin-eosin and periodic acid-Schiff-diastase (PAS-D), demonstrating abundant alveolar material representing mostly surfactant. As cells harboring surfactant also express Napsin-A (pneumocytes and macrophages), we hypothesized that it would also be expressed within alveoli in PAP. OBJECTIVE.— To evaluate the sensitivity and specificity of Napsin-A in the diagnosis of PAP. DESIGN.— A 12-year retrospective case control study was designed to identify cases of PAP and potential histologic mimics (intra-alveolar fibrin, pulmonary edema, diffuse alveolar damage, and alveolar mucinosis). PAS-D staining and Napsin-A immunohistochemistry were performed. Distribution and intensity were evaluated by using a semiquantitative 3-point scale. Positivity was defined as 2+ intensity score, regardless of distribution. RESULTS.— Eleven cases of PAP and 46 control cases were identified. Napsin-A showed positivity in all PAP cases and 3 of 12 cases of edema. Among positive cases, all those with a 2+ distribution were PAP cases, with heterogeneous (1+) staining in all cases of edema. PAS-D showed positivity in all cases of PAP and most controls, except cases of edema. Sensitivity and specificity of Napsin-A for PAP were 100% and 94%, respectively, and of PAS-D for PAP, 100% and 21%, respectively. Double positivity for Napsin-A and PAS-D was 100% specific and sensitive for PAP. CONCLUSIONS.— This study is the first to demonstrate that Napsin-A is highly specific for the diagnosis of PAP, more so than PAS-D. It also shows that the combined positivity of Napsin-A and PAS-D is 100% specific and sensitive for PAP.
Collapse
Affiliation(s)
- Catherine Larose
- From the Department of Pathology, University of Montreal Health Centre, Montréal, Québec, Canada (Larose, Leduc)
| | - Charles Leduc
- From the Department of Pathology, University of Montreal Health Centre, Montréal, Québec, Canada (Larose, Leduc)
| | - Martin Chevrier
- the Department of Pathology, University of Sherbrooke Health Centre, Sherbrooke, Québec, Canada (Chevrier)
| |
Collapse
|
2
|
Le Brun M, Nathan N, Louvrier C, Legendre M, Feuillet S, Frija-Masson J, Onanga M, Morer L, Debray MP, Fajac I, Burgel PR, Marchand-Adam S, Crestani B, Borie R. Efficacy and safety of CFTR modulators in patients with interstitial lung disease caused by ABCA3 transporter deficiency. ERJ Open Res 2025; 11:00701-2024. [PMID: 40040902 PMCID: PMC11874218 DOI: 10.1183/23120541.00701-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/06/2024] [Indexed: 03/06/2025] Open
Abstract
CFTR modulators may be valuable therapy for patients with ABCA3 pathogenic variants https://bit.ly/3TMWKK9.
Collapse
Affiliation(s)
- Mathilde Le Brun
- Service de Pneumologie A, Hôpital Bichat, Assistance Publique–Hôpitaux de Paris (APHP), Paris, France
- Université Paris Cité, Inserm, PHERE, Paris, France
| | - Nadia Nathan
- Sorbonne Université, APHP, Pediatric Pulmonology, Department and Reference Center for Rare Lung Diseases RespiRare, Armand Trousseau Hospital, Paris, France
- Département de Génétique Médicale, APHP, Hôpital Armand-Trousseau, Paris, France
- Inserm UMR_S933, Laboratory of Childhood Genetic Diseases, Sorbonne Université, Paris, France
| | - Camille Louvrier
- Sorbonne Université, APHP, Pediatric Pulmonology, Department and Reference Center for Rare Lung Diseases RespiRare, Armand Trousseau Hospital, Paris, France
- Département de Génétique Médicale, APHP, Hôpital Armand-Trousseau, Paris, France
- Inserm UMR_S933, Laboratory of Childhood Genetic Diseases, Sorbonne Université, Paris, France
- UF de Génétique moléculaire, Sorbonne Université, APHP, Hôpital Armand-Trousseau, Paris, France
| | - Marie Legendre
- Inserm UMR_S933, Laboratory of Childhood Genetic Diseases, Sorbonne Université, Paris, France
- UF de Génétique moléculaire, Sorbonne Université, APHP, Hôpital Armand-Trousseau, Paris, France
| | - Severine Feuillet
- Service de Pneumologie Cancérologie thoracique – hôpital Marie Lannelongue, Le Plessis-Robinson
| | - Justine Frija-Masson
- Université de Paris, NeuroDiderot, Inserm U1141 APHP, Hôpital Bichat, Explorations Fonctionnelles et Centre du Sommeil – Département de Physiologie Clinique, Paris, France
| | - Mwetty Onanga
- Service de Pneumologie A, Hôpital Bichat, Assistance Publique–Hôpitaux de Paris (APHP), Paris, France
| | - Lise Morer
- Service de Pneumologie B Hôpital Bichat, APHP, Paris, France
- Université Paris Cité, Inserm, Paris, France
| | - Marie-Pierre Debray
- Université Paris Cité, Inserm, Paris, France
- Service de Radiologie Hôpital Bichat, APHP, Paris, France
| | - Isabelle Fajac
- Université Paris Cité, Inserm, Paris, France
- Service de Physiologie-Explorations fonctionnelles Hôpital Cochin, APHP, Paris, France
| | - Pierre-Régis Burgel
- Université Paris Cité, Inserm, Paris, France
- Université Paris Cité, Inserm,Université Paris Cité, Paris, France
| | | | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, Assistance Publique–Hôpitaux de Paris (APHP), Paris, France
- Université Paris Cité, Inserm, PHERE, Paris, France
| | - Raphaël Borie
- Service de Pneumologie A, Hôpital Bichat, Assistance Publique–Hôpitaux de Paris (APHP), Paris, France
- Université Paris Cité, Inserm, PHERE, Paris, France
| |
Collapse
|
3
|
Cheminant JR, Deering-Rice CE, Massa CB, Adhikari U, Noll J, Reilly CA, Venosa A. Parenchymal and inflammatory responses to ozone exposure in the aging healthy and surfactant protein C mutant lung. Am J Physiol Lung Cell Mol Physiol 2025; 328:L334-L349. [PMID: 39832482 DOI: 10.1152/ajplung.00261.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Ozone (O3) is a ubiquitous pollutant known to produce acute, transient inflammation through oxidative injury and inflammation. These effects are exacerbated in susceptible populations, such as the elderly and those exhibiting genetic mutations in central nodes of pulmonary function. To comprehend the impact of these predisposing factors, the present study examines structural, mechanical, and immunological responses to single acute O3 exposure (0.8 ppm, 3 h) in young (8-14-wk old), middle-aged (44-52-wk old), and old (>80-wk old) mice. Furthermore, this work compares the impact of a clinically relevant mutation in the gene encoding for the alveolar epithelial type 2 specific surfactant protein C. Aging was associated with reduced lung resistance and increases in respiratory elastic properties, the latter of which was exacerbated in SP-C mutant mice. Ozone exposure produced focal injury localized at the terminal bronchiole-to-alveolar junctions and enlarged alveoli in aged SP-C mutant lungs. Flow cytometric analysis revealed increases in mononuclear myeloid abundance in aged SP-C mutant lungs, paired with a contraction in CD8+ expressing cells. Expansion of tertiary lymphoid tissues was also noted in aged groups, more evident in the mutant mice. Spatial transcriptomics of CD68+ macrophages and CD45- nonimmune parenchymal cells highlighted age-dependent shifts in inflammatory and extracellular matrix organization signaling, and enrichment in senescence and chromatin remodeling pathways. These results illustrate the structural and immunological impact of O3 in the aging wild-type and mutant lung and emphasize the significance of modeling environmental exposure in at-risk populations.NEW & NOTEWORTHY Environmental stress and genetic mutations in key functional nodes are linked to the pathogenesis and exacerbation of respiratory pathologies. These responses are exacerbated by aging, though the impact of these factors in combination is not clearly defined. Using a surfactant protein-C mutant line, our studies describe structural changes and phenotypic responses triggered by acute ozone exposure in the young/middle-aged/old lung. Spatial transcriptomics also found regionally distinct and enhanced activation in the aged lung.
Collapse
Affiliation(s)
- Jenna R Cheminant
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah, United States
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah, United States
| | - Christopher B Massa
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ujjwal Adhikari
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah, United States
| | - Jessica Noll
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah, United States
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah, United States
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah, United States
| |
Collapse
|
4
|
Fotook Kiaei SZ, Schwartz DA. Genetic underpinning of idiopathic pulmonary fibrosis: the role of mucin. Expert Rev Respir Med 2025:1-12. [PMID: 39912527 DOI: 10.1080/17476348.2025.2464035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by progressive scarring and reduced survival. The development of IPF is influenced by rare and common genetic variants, cigarette smoking, aging, and environmental exposures. Among the two dozen genetic contributors, the MUC5B promoter variant (rs35705950) is the dominant risk factor, increasing the risk of both familial and sporadic IPF and accounting for nearly 50% of the genetic predisposition to the disease. AREAS COVERED This review provides an expert perspective on the genetic underpinnings of IPF rather than a systematic analysis, emphasizing key insights into its genetic basis. The articles referenced in this review were identified through targeted searches in PubMed, Scopus, and Web of Science for studies published between 2000 and 2023, prioritizing influential research on the genetic factors contributing to IPF. Search terms included 'idiopathic pulmonary fibrosis,' 'genetics,' 'MUC5B,' 'telomere dysfunction,' and 'surfactant proteins.' The selection of studies was guided by the authors' expertise, focusing on the most relevant publications. EXPERT OPINION The identification of genetic variants not only highlights the complexity of IPF but also offers potential for earlier diagnosis and personalized treatment strategies targeting specific genetic pathways, ultimately aiming to improve patient outcomes.
Collapse
Affiliation(s)
| | - David A Schwartz
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, USA
| |
Collapse
|
5
|
Tiwari SK, Wong WJ, Moreira M, Pasqualini C, Ginhoux F. Induced pluripotent stem cell-derived macrophages as a platform for modelling human disease. Nat Rev Immunol 2025; 25:108-124. [PMID: 39333753 DOI: 10.1038/s41577-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/30/2024]
Abstract
Macrophages are innate immune cells that are present in essentially all tissues, where they have vital roles in tissue development, homeostasis and pathogenesis. The importance of macrophages in tissue function is reflected by their association with various human diseases, and studying macrophage functions in both homeostasis and pathological tissue settings is a promising avenue for new targeted therapies that will improve human health. The ability to generate macrophages from induced pluripotent stem (iPS) cells has revolutionized macrophage biology, with the generation of iPS cell-derived macrophages (iMacs) providing unlimited access to genotype-specific cells that can be used to model various human diseases involving macrophage dysregulation. Such disease modelling is achieved by generating iPS cells from patient-derived cells carrying disease-related mutations or by introducing mutations into iPS cells from healthy donors using CRISPR-Cas9 technology. These iMacs that carry disease-related mutations can be used to study the aetiology of the particular disease in vitro. To achieve more physiological relevance, iMacs can be co-cultured in 2D systems with iPS cell-derived cells or in 3D systems with iPS cell-derived organoids. Here, we discuss the studies that have attempted to model various human diseases using iMacs, highlighting how these have advanced our knowledge about the role of macrophages in health and disease.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Jie Wong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marco Moreira
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudia Pasqualini
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Malla S, Sajeevan KA, Acharya B, Chowdhury R, Saha R. Dissecting metabolic landscape of alveolar macrophage. Sci Rep 2024; 14:30383. [PMID: 39638830 PMCID: PMC11621776 DOI: 10.1038/s41598-024-81253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
The highly plastic nature of Alveolar Macrophage (AM) plays a crucial role in the defense against inhaled particulates and pathogens in the lungs. Depending on the signal, AM acquires either the classically activated M1 phenotype or the alternatively activated M2 phenotype. In this study, we investigate the metabolic shift in the activated phases of AM (M1 and M2 phases) by reconstructing context specific Genome-Scale Metabolic (GSM) models. Metabolic pathways such as pyruvate metabolism, arachidonic acid metabolism, chondroitin/heparan sulfate biosynthesis, and heparan sulfate degradation are found to be important driving forces in the development of the M1/M2 phenotypes. Additionally, we formulated a bilevel optimization framework named MetaShiftOptimizer to identify minimal modifications that shift one activated state (M1/M2) to the other. The identified reactions involve metabolites such as glycogenin, L-carnitine, 5-hydroperoxy eicosatetraenoic acid, and leukotriene B4, which show potential to be further investigated as significant factors for developing efficient therapy targets for severe respiratory disorders in the future. Overall, our study contributes to the understanding of the metabolic capabilities of the M1 and M2 phenotype of AM and identifies pathways and reactions that can be potential targets for polarization shift and also be used as therapeutic strategies against respiratory diseases.
Collapse
Affiliation(s)
- Sunayana Malla
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Bibek Acharya
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Ratul Chowdhury
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Rajib Saha
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
7
|
Du Y, Pang M, Chen H, Zhou X, Geng R, Zhang Y, Yang L, Li J, Han Y, Liu J, Zhang R, Bi H, Guo D. Inhibitory effect of Zhujing Pill on myopia progression: Mechanistic insights based on metabonomics and network pharmacology. PLoS One 2024; 19:e0312379. [PMID: 39625993 PMCID: PMC11614212 DOI: 10.1371/journal.pone.0312379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/02/2024] [Indexed: 12/06/2024] Open
Abstract
OBJECTIVES This study endeavored to uncover the mechanisms by which Zhujing pill (ZJP) slows myopia progression. METHODS We employed biometric analyses to track diopter and axial length changes in guinea pigs with negative lens-induced myopia (LIM). Through integrating metabonomics and network pharmacology, we aimed to predict the anti-myopic targets and active ingredients of ZJP. Subsequent analysis, including real-time fluorescent quantitative PCR (qPCR) and Western blotting (WB), assessed the expression levels of CHRNA7, LPCAT1, and NOS2 in retinal tissues. KEY FINDINGS Our findings demonstrate that ZJP significantly mitigates diopter increase and axial elongation in LIM guinea pigs. Metabonomic analysis revealed significant changes in 13 serum metabolites, with ZJP reversing the expression of 5 key metabolites. By integrating metabonomics with network pharmacology, we identified core targets of ZJP against myopia and constructed a compound-gene-disease-metabolite network. The expressions of LPCAT1 and CHRNA7 were found to decrease in the LIM group but increase with ZJP treatment, whereas NOS2 expression showed the opposite pattern. CONCLUSIONS This investigation provides the first evidence of ZJP's multifaceted effectiveness in managing myopia, highlighting its impact on multiple components, targets, and pathways, including the novel involvement of LPCAT1 and CHRNA7 in myopia pathogenesis.
Collapse
Affiliation(s)
- Yongle Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengran Pang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haoyu Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangkun Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruyue Geng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linqi Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawen Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufeng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Cerri S, Manzini E, Nori O, Pacchetti L, Rossi L, Turchiano MG, Samarelli AV, Raineri G, Andrisani D, Gozzi F, Beghè B, Clini E, Tonelli R. Genetic Risk Factors in Idiopathic and Non-Idiopathic Interstitial Lung Disease: Similarities and Differences. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1967. [PMID: 39768847 PMCID: PMC11677115 DOI: 10.3390/medicina60121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Recent advances in genetics and epigenetics have provided critical insights into the pathogenesis of both idiopathic and non-idiopathic interstitial lung diseases (ILDs). Mutations in telomere-related genes and surfactant proteins have been linked to familial pulmonary fibrosis, while variants in MUC5B and TOLLIP increase the risk of ILD, including idiopathic pulmonary fibrosis and rheumatoid arthritis-associated ILD. Epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs such as miR-21 and miR-29, regulate fibrotic pathways, influencing disease onset and progression. Although no standardized genetic panel for ILD exists, understanding the interplay of genetic mutations and epigenetic alterations could aid in the development of personalized therapeutic approaches. This review highlights the genetic and epigenetic factors driving ILD, emphasizing their potential for refining diagnosis and treatment.
Collapse
Affiliation(s)
- Stefania Cerri
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
- Laboratory of Experimental Pneumology, Department of Surgical and Medical Science, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Center for Rare Lung Diseases, University Hospital of Modena, 41124 Modena, Italy
| | - Elisa Manzini
- Post Doctoral School in Respiratory Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (E.M.); (O.N.); (L.P.); (L.R.)
- Respiratory Disease Unit, Hospital of Sassuolo, 41049 Sassuolo, Italy
| | - Ottavia Nori
- Post Doctoral School in Respiratory Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (E.M.); (O.N.); (L.P.); (L.R.)
- U.O. Pneumologia, Presidio Ospedaliero di Arco, APSS Provincia Autonoma di Trento, 38062 Trento, Italy
| | - Lucia Pacchetti
- Post Doctoral School in Respiratory Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (E.M.); (O.N.); (L.P.); (L.R.)
- Division of Pneumology, MultiMedica IRCCS, 20099 Milan, Italy
| | - Laura Rossi
- Post Doctoral School in Respiratory Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (E.M.); (O.N.); (L.P.); (L.R.)
- Respiratory Disease Unit, Arcispedale Santa Maria Nuova, 42123 Reggio Emilia, Italy
| | - Maria Giulia Turchiano
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
- Post Doctoral School in Respiratory Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (E.M.); (O.N.); (L.P.); (L.R.)
| | - Anna Valeria Samarelli
- Laboratory of Experimental Pneumology, Department of Surgical and Medical Science, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Center for Rare Lung Diseases, University Hospital of Modena, 41124 Modena, Italy
| | - Giulia Raineri
- Laboratory of Experimental Pneumology, Department of Surgical and Medical Science, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Dario Andrisani
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
- Center for Rare Lung Diseases, University Hospital of Modena, 41124 Modena, Italy
| | - Filippo Gozzi
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
- Center for Rare Lung Diseases, University Hospital of Modena, 41124 Modena, Italy
| | - Bianca Beghè
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
| | - Enrico Clini
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
- Laboratory of Experimental Pneumology, Department of Surgical and Medical Science, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Center for Rare Lung Diseases, University Hospital of Modena, 41124 Modena, Italy
| | - Roberto Tonelli
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
- Laboratory of Experimental Pneumology, Department of Surgical and Medical Science, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Center for Rare Lung Diseases, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
9
|
Tang X, Wei W, Sun Y, Weaver TE, Nakayasu ES, Clair G, Snowball JM, Na CL, Apsley KS, Martin EP, Kotton DN, Alysandratos KD, Huo J, Molkentin JD, Gower WA, Lin X, Whitsett JA. EMC3 regulates trafficking and pulmonary toxicity of the SFTPCI73T mutation associated with interstitial lung disease. J Clin Invest 2024; 134:e173861. [PMID: 39405113 PMCID: PMC11601914 DOI: 10.1172/jci173861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
The most common mutation in surfactant protein C gene (SFTPC), SFTPCI73T, causes interstitial lung disease with few therapeutic options. We previously demonstrated that EMC3, an important component of the multiprotein endoplasmic reticulum membrane complex (EMC), is required for surfactant homeostasis in alveolar type 2 epithelial (AT2) cells at birth. In the present study, we investigated the role of EMC3 in the control of SFTPCI73T metabolism and its associated alveolar dysfunction. Using a knock-in mouse model phenocopying the I73T mutation, we demonstrated that conditional deletion of Emc3 in AT2 cells rescued alveolar remodeling/simplification defects in neonatal and adult mice. Proteomic analysis revealed that Emc3 depletion reversed the disruption of vesicle trafficking pathways and rescued the mitochondrial dysfunction associated with I73T mutation. Affinity purification-mass spectrometry analysis identified potential EMC3 interacting proteins in lung AT2 cells, including Valosin Containing Protein (VCP) and its interactors. Treatment of SftpcI73T knock-in mice and SFTPCI73T expressing iAT2 cells derived from SFTPCI73T patient-specific iPSCs with the specific VCP inhibitor CB5083 restored alveolar structure and SFTPCI73T trafficking respectively. Taken together, the present work identifies the EMC complex and VCP in the metabolism of the disease-associated SFTPCI73T mutant, providing novel therapeutical targets for SFTPCI73T-associated interstitial lung disease.
Collapse
Affiliation(s)
- Xiaofang Tang
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqing Sun
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Timothy E. Weaver
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - John M. Snowball
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Cheng-Lun Na
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Karen S. Apsley
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emily P. Martin
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Darrell N. Kotton
- Department of Medicine, The Pulmonary Center, Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Konstantinos-Dionysios Alysandratos
- Department of Medicine, The Pulmonary Center, Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jiuzhou Huo
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jeffery D. Molkentin
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - William A. Gower
- Division of Pediatric Pulmonology and Program for Rare and Interstitial Lung Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jeffrey A. Whitsett
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Borie R, Berteloot L, Kannengiesser C, Griese M, Cazes A, Crestani B, Hadchouel A, Debray MP. Rare genetic interstitial lung diseases: a pictorial essay. Eur Respir Rev 2024; 33:240101. [PMID: 39537246 PMCID: PMC11558537 DOI: 10.1183/16000617.0101-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
The main monogenic causes of pulmonary fibrosis in adults are mutations in telomere-related genes. These mutations may be associated with extrapulmonary signs (hepatic, haematological and dermatological) and typically present radiologically as usual interstitial pneumonia or unclassifiable fibrosis. In children, the monogenic causes of pulmonary fibrosis are dominated by mutations in surfactant-related genes. These mutations are not associated with extrapulmonary signs and often manifest radiologically as unclassifiable fibrosis with cysts that can lead to chest wall deformities in adults. This review discusses these mutations, along with most of the monogenic causes of interstitial lung disease, including interferon-related genes, mutations in genes causing cystic lung disease, Hermansky-Pudlak syndrome, pulmonary alveolar proteinosis, lysinuric protein intolerance and lysosomal storage disorders, and their pulmonary and extrapulmonary manifestations.
Collapse
Affiliation(s)
- Raphael Borie
- Université Paris Cité, Inserm, PHERE, Paris, France
- Hôpital Bichat, APHP, Service de Pneumologie A, Centre constitutif du centre de référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | - Laureline Berteloot
- Service d'Imagerie Pédiatrique, Hôpital universitaire Necker-Enfants malades, Paris, France
- INSERM U1163, Paris, France
| | | | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Aurelie Cazes
- Département d'Anatomo-Pathologie, Hôpital Bichat, AP-HP, Paris, France
| | - Bruno Crestani
- Université Paris Cité, Inserm, PHERE, Paris, France
- Hôpital Bichat, APHP, Service de Pneumologie A, Centre constitutif du centre de référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | - Alice Hadchouel
- AP-HP, Hôpital Universitaire Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
- INSERM U1151, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Marie Pierre Debray
- Service de Radiologie, Hopital Bichat, APHP, Université Paris Cité, Paris, France
| |
Collapse
|
12
|
Zhu J, Pang K, Hu B, He R, Wang N, Jiang Z, Ji P, Zhao F. Custom microfluidic chip design enables cost-effective three-dimensional spatiotemporal transcriptomics with a wide field of view. Nat Genet 2024; 56:2259-2270. [PMID: 39256584 PMCID: PMC11525186 DOI: 10.1038/s41588-024-01906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024]
Abstract
Spatial transcriptomic techniques offer unprecedented insights into the molecular organization of complex tissues. However, integrating cost-effectiveness, high throughput, a wide field of view and compatibility with three-dimensional (3D) volumes has been challenging. Here we introduce microfluidics-assisted grid chips for spatial transcriptome sequencing (MAGIC-seq), a new method that combines carbodiimide chemistry, spatial combinatorial indexing and innovative microfluidics design. This technique allows sensitive and reproducible profiling of diverse tissue types, achieving an eightfold increase in throughput, minimal cost and reduced batch effects. MAGIC-seq breaks conventional microfluidics limits by enhancing barcoding efficiency and enables analysis of whole postnatal mouse sections, providing comprehensive cellular structure elucidation at near single-cell resolution, uncovering transcriptional variations and dynamic trajectories of mouse organogenesis. Our 3D transcriptomic atlas of the developing mouse brain, consisting of 93 sections, reveals the molecular and cellular landscape, serving as a valuable resource for neuroscience and developmental biology. Overall, MAGIC-seq is a high-throughput, cost-effective, large field of view and versatile method for spatial transcriptomic studies.
Collapse
Affiliation(s)
- Junjie Zhu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Kun Pang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Beiyu Hu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Ruiqiao He
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zewen Jiang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peifeng Ji
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Ahamed F, Eppler N, Jones E, Zhang Y. Understanding Macrophage Complexity in Metabolic Dysfunction-Associated Steatotic Liver Disease: Transitioning from the M1/M2 Paradigm to Spatial Dynamics. LIVERS 2024; 4:455-478. [PMID: 39328386 PMCID: PMC11426415 DOI: 10.3390/livers4030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses metabolic dysfunction-associated fatty liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), with MASH posing a risk of progression to cirrhosis and hepatocellular carcinoma (HCC). The global prevalence of MASLD is estimated at approximately a quarter of the population, with significant healthcare costs and implications for liver transplantation. The pathogenesis of MASLD involves intrahepatic liver cells, extrahepatic components, and immunological aspects, particularly the involvement of macrophages. Hepatic macrophages are a crucial cellular component of the liver and play important roles in liver function, contributing significantly to tissue homeostasis and swift responses during pathophysiological conditions. Recent advancements in technology have revealed the remarkable heterogeneity and plasticity of hepatic macrophage populations and their activation states in MASLD, challenging traditional classification methods like the M1/M2 paradigm and highlighting the coexistence of harmful and beneficial macrophage phenotypes that are dynamically regulated during MASLD progression. This complexity underscores the importance of considering macrophage heterogeneity in therapeutic targeting strategies, including their distinct ontogeny and functional phenotypes. This review provides an overview of macrophage involvement in MASLD progression, combining traditional paradigms with recent insights from single-cell analysis and spatial dynamics. It also addresses unresolved questions and challenges in this area.
Collapse
Affiliation(s)
- Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
14
|
Popa AE, Popescu SD, Tecuci A, Bot M, Vladareanu S. Current Trends in the Imaging Diagnosis of Neonatal Respiratory Distress Syndrome (NRDS): Chest X-ray Versus Lung Ultrasound. Cureus 2024; 16:e69787. [PMID: 39429372 PMCID: PMC11490972 DOI: 10.7759/cureus.69787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Neonatal respiratory distress syndrome (NRDS) is a major cause of morbidity and mortality in newborns, particularly in neonatal intensive care units (NICUs). Until recently, its diagnosis had been based on clinical signs, arterial blood gas analysis, and chest X-ray (CXR). However, the frequent use of CXR exposes newborns to ionizing radiation, which can have long-term negative effects, including an increased risk of cancer, especially among premature infants. Lung ultrasound (LUS) has been proposed as a promising alternative for diagnosing NRDS due to its many advantages: no exposure to radiation, the ability to be performed at the bedside, repeatability, and ease of use. This review compared the diagnostic accuracy of LUS with the reference standard, CXR, in evaluating NRDS in newborns admitted to the NICU. Studies have shown that LUS can identify specific signs of NRDS, such as bilateral "white lung," pleural line abnormalities, and lung consolidations. The method has high sensitivity and specificity for diagnosing this condition and offers several advantages over other diagnostic methods; it does not involve ionizing radiation, thereby eliminating the risk of radiation exposure; it is cost-effective, easy to use, and can be performed at the patient's bedside, making it a viable alternative to CXR for reducing ionizing radiation exposure. Additionally, LUS can be used to monitor the progression of respiratory diseases and guide clinical management, especially in determining the optimal timing for surfactant administration in newborns with respiratory distress syndrome (RDS). We conclude that LUS is an effective and non-invasive alternative method for diagnosing and managing NRDS, with the potential to improve the safety and quality of care in the NICU, where rapid and safe diagnostic tools are essential for managing the health of newborns.
Collapse
Affiliation(s)
- Alexandra E Popa
- Obstetrics and Gynaecology and Neonatology, Elias Emergency University Hospital, Bucharest, ROU
- Obstetrics and Gynaecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Simona D Popescu
- Obstetrics and Gynaecology and Neonatology, Elias Emergency University Hospital, Bucharest, ROU
- Obstetrics and Gynaecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Adriana Tecuci
- Obstetrics and Gynaecology and Neonatology, Elias Emergency University Hospital, Bucharest, ROU
- Obstetrics and Gynaecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Mihaela Bot
- Obstetrics and Gynaecology, Elias Emergency University Hospital, Bucharest, ROU
- Obstetrics and Gynaecology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Simona Vladareanu
- Obstetrics and Gynaecology and Neonatology, Elias Emergency University Hospital, Bucharest, ROU
- Obstetrics and Gynaecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| |
Collapse
|
15
|
Chung KP, Cheng CN, Chen YJ, Hsu CL, Huang YL, Hsieh MS, Kuo HC, Lin YT, Juan YH, Nakahira K, Chen YF, Liu WL, Ruan SY, Chien JY, Plataki M, Cloonan SM, Carmeliet P, Choi AMK, Kuo CH, Yu CJ. Alveolar epithelial cells mitigate neutrophilic inflammation in lung injury through regulating mitochondrial fatty acid oxidation. Nat Commun 2024; 15:7241. [PMID: 39174557 PMCID: PMC11341863 DOI: 10.1038/s41467-024-51683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Type 2 alveolar epithelial (AT2) cells of the lung are fundamental in regulating alveolar inflammation in response to injury. Impaired mitochondrial long-chain fatty acid β-oxidation (mtLCFAO) in AT2 cells is assumed to aggravate alveolar inflammation in acute lung injury (ALI), yet the importance of mtLCFAO to AT2 cell function needs to be defined. Here we show that expression of carnitine palmitoyltransferase 1a (CPT1a), a mtLCFAO rate limiting enzyme, in AT2 cells is significantly decreased in acute respiratory distress syndrome (ARDS). In mice, Cpt1a deletion in AT2 cells impairs mtLCFAO without reducing ATP production and alters surfactant phospholipid abundance in the alveoli. Impairing mtLCFAO in AT2 cells via deleting either Cpt1a or Acadl (acyl-CoA dehydrogenase long chain) restricts alveolar inflammation in ALI by hindering the production of the neutrophilic chemokine CXCL2 from AT2 cells. This study thus highlights mtLCFAO as immunometabolism to injury in AT2 cells and suggests impaired mtLCFAO in AT2 cells as an anti-inflammatory response in ARDS.
Collapse
Grants
- K08 HL157728 NHLBI NIH HHS
- 109-O04, 110-O07, 110-S4872, 111-S0075, 113-S0079 National Taiwan University Hospital (NTUH)
- NTUCDP-112L7745, NTUCDP-112L7746, 110T099, NTU-NFG-110L7422 National Taiwan University (NTU)
- National Science and Technology Council (Taiwan) (MOST-108-2628-B-002-017 [K.P.C.], MOST-109-2628-B-002-044 [K.P.C.], MOST-110-2628-B-002-029 [K.P.C.], MOST-110-2628-B-002-045-MY3 [K.P.C.], MOST-111-2628-B-002-030-MY3 [K.P.C.])
- National Science and Technology Council (Taiwan), MOST 107-2314-B-002-235-MY3
- National Science and Technology Council (Taiwan), MOST 110-2314-B-002-262
- National Taiwan University School of Pharmacy Endowment Fund in support of the Platform for Clinical Mass Spectrometry and NMR Structure Elucidation
- Research funding provided by Mr. Barry Lam, the chairman of Quanta Computer Inc
Collapse
Affiliation(s)
- Kuei-Pin Chung
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chih-Ning Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jung Chen
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Lin Huang
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Ting Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsiu Juan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kiichi Nakahira
- Department of Pharmacology, Nara Medical University, Kashihara, Nara, Japan
| | - Yen-Fu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- Department of Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan
| | - Sheng-Yuan Ruan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jung-Yien Chien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan.
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
16
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
17
|
Zhang C, Ma J, Zhang X, Zhou D, Cao Z, Qiao L, Chen G, Yang L, Ding BS. Processing of angiocrine alarmin IL-1α in endothelial cells promotes lung and liver fibrosis. Int Immunopharmacol 2024; 134:112176. [PMID: 38723369 DOI: 10.1016/j.intimp.2024.112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/21/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Fibrosis results from excessive scar formation after tissue injury. Injured cells release alarmins such as interleukin 1 (IL-1) α and β as primary mediators initiating tissue repair. However, how alarmins from different cell types differentially regulate fibrosis remains to be explored. METHODS Here, we used tissue specific knockout strategy to illustrate a unique contribution of endothelial cell-derived IL-1α to lung and liver fibrosis. The two fibrotic animal model triggered by bleomycin and CCl4 were used to study the effects of endothelial paracrine/angiocrine IL-1α in fibrotic progression. Human umbilical vein endothelial cells (HUVEC) were performed to explore the production of angiocrine IL-1α at both transcriptional and post-transcriptional levels in vitro. RESULTS We found that endothelial paracrine/angiocrine IL-1α primarily promotes lung and liver fibrosis during the early phase of organ repair. By contrast, myeloid cell-specific ablation of IL-1α in mice resulted in little influence on fibrosis, suggesting the specific pro-fibrotic role of IL-1α from endothelial cell but not macrophage. In vitro study revealed a coordinated regulation of IL-1α production in human primary endothelial cells at both transcriptional and post-transcriptional levels. Specifically, the transcription of IL-1α is regulated by RIPK1, and after caspase-8 (CASP8) cleaves the precursor form of IL-1α, its secretion is triggered by ion channel Pannexin 1 upon CASP8 cleavage. CONCLUSIONS Endothelial cell-produced IL-1α plays a unique role in promoting organ fibrosis. Furthermore, the release of this angiocrine alarmin relies on a unique molecular mechanism involving RIPK1, CASP8, and ion channel Pannexin 1.
Collapse
Affiliation(s)
- Chunxue Zhang
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Jie Ma
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China
| | - Dengcheng Zhou
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Zhongwei Cao
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Lina Qiao
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life Sciences, Sichuan University, Chengdu 610041, China.
| | - Guo Chen
- Department of Anesthesiology, The Research Units of West China(2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, China.
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life Sciences, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Bastani MN, Jalilian S. Unraveling the enigma: The emerging significance of pulmonary surfactant proteins in predicting, diagnosing, and managing COVID-19. Immun Inflamm Dis 2024; 12:e1302. [PMID: 38860749 PMCID: PMC11165688 DOI: 10.1002/iid3.1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Severe cases of COVID-19 often lead to the development of acute respiratory syndrome, a critical condition believed to be caused by the harmful effects of SARS-CoV-2 on type II alveolar cells. These cells play a crucial role in producing pulmonary surfactants, which are essential for proper lung function. Specifically focusing on surfactant proteins, including Surfactant protein A (SP-A), Surfactant protein B, Surfactant protein C, and Surfactant protein D (SP-D), changes in the levels of pulmonary surfactants may be a significant factor in the pathological changes seen in COVID-19 infection. OBJECTIVE This study aims to gain insights into surfactants, particularly their impacts and changes during COVID-19 infection, through a comprehensive review of current literature. The study focuses on the function of surfactants as prognostic markers, diagnostic factors, and essential components in the management and treatment of COVID-19. FINDING In general, pulmonary surfactants serve to reduce the surface tension at the gas-liquid interface, thereby significantly contributing to the regulation of respiratory mechanics. Additionally, these surfactants play a crucial role in the innate immune system within the pulmonary microenvironment. Within the spectrum of COVID-19 infections, a compelling association is observed, characterized by elevated levels of SP-D and SP-A across a range of manifestations from mild to severe pneumonia. The sudden decline in respiratory function observed in COVID-19 patients may be attributed to the decreased synthesis of surfactants by type II alveolar cells. CONCLUSION Collectin proteins such as SP-A and SP-D show promise as biomarkers, offering potential avenues for predicting and monitoring pulmonary alveolar injury in the context of COVID-19. This clarification enhances our understanding of the molecular complexities contributing to respiratory complications in severe COVID-19 cases, providing a foundation for targeted therapeutic approaches using surfactants and refined clinical management strategies.
Collapse
Affiliation(s)
- Mohammad Navid Bastani
- Department of Medical Virology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Shahram Jalilian
- Department of Medical Virology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
19
|
Pannu S, Exline MC, Bednash JS, Englert JA, Diaz P, Bartlett A, Brock G, Wu Q, Davis IC, Crouser ED. SCARLET (Supplemental Citicoline Administration to Reduce Lung injury Efficacy Trial): study protocol for a single-site, double-blinded, placebo-controlled, and randomized Phase 1/2 trial of i.v. citicoline (CDP-choline) in hospitalized SARS CoV-2-infected patients with hypoxemic acute respiratory failure. Trials 2024; 25:328. [PMID: 38760804 PMCID: PMC11102211 DOI: 10.1186/s13063-024-08155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The SARS CoV-2 pandemic has resulted in more than 1.1 million deaths in the USA alone. Therapeutic options for critically ill patients with COVID-19 are limited. Prior studies showed that post-infection treatment of influenza A virus-infected mice with the liponucleotide CDP-choline, which is an essential precursor for de novo phosphatidylcholine synthesis, improved gas exchange and reduced pulmonary inflammation without altering viral replication. In unpublished studies, we found that treatment of SARS CoV-2-infected K18-hACE2-transgenic mice with CDP-choline prevented development of hypoxemia. We hypothesize that administration of citicoline (the pharmaceutical form of CDP-choline) will be safe in hospitalized SARS CoV-2-infected patients with hypoxemic acute respiratory failure (HARF) and that we will obtain preliminary evidence of clinical benefit to support a larger Phase 3 trial using one or more citicoline doses. METHODS We will conduct a single-site, double-blinded, placebo-controlled, and randomized Phase 1/2 dose-ranging and safety study of Somazina® citicoline solution for injection in consented adults of any sex, gender, age, or ethnicity hospitalized for SARS CoV-2-associated HARF. The trial is named "SCARLET" (Supplemental Citicoline Administration to Reduce Lung injury Efficacy Trial). We hypothesize that SCARLET will show that i.v. citicoline is safe at one or more of three doses (0.5, 2.5, or 5 mg/kg, every 12 h for 5 days) in hospitalized SARS CoV-2-infected patients with HARF (20 per dose) and provide preliminary evidence that i.v. citicoline improves pulmonary outcomes in this population. The primary efficacy outcome will be the SpO2:FiO2 ratio on study day 3. Exploratory outcomes include Sequential Organ Failure Assessment (SOFA) scores, dead space ventilation index, and lung compliance. Citicoline effects on a panel of COVID-relevant lung and blood biomarkers will also be determined. DISCUSSION Citicoline has many characteristics that would be advantageous to any candidate COVID-19 therapeutic, including safety, low-cost, favorable chemical characteristics, and potentially pathogen-agnostic efficacy. Successful demonstration that citicoline is beneficial in severely ill patients with SARS CoV-2-induced HARF could transform management of severely ill COVID patients. TRIAL REGISTRATION The trial was registered at www. CLINICALTRIALS gov on 5/31/2023 (NCT05881135). TRIAL STATUS Currently enrolling.
Collapse
Affiliation(s)
- Sonal Pannu
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Matthew C Exline
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Joseph S Bednash
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Joshua A Englert
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Philip Diaz
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Amy Bartlett
- Center for Clinical and Translational Sciences, The Ohio State University, Columbus, OH, USA
| | - Guy Brock
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Qing Wu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Ian C Davis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
| | - Elliott D Crouser
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Pecoraro L, Peterle E, Dalla Benetta E, Piazza M, Chatziparasidis G, Kantar A. Well-Established and Traditional Use of Vegetal Extracts as an Approach to the "Deep Roots" of Cough. CHILDREN (BASEL, SWITZERLAND) 2024; 11:584. [PMID: 38790578 PMCID: PMC11120585 DOI: 10.3390/children11050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Cough is a common presenting symptom for patients in a primary care setting and significantly impacts a patient's quality of life. Cough involves a complex reflex arc beginning with the stimulation of sensory nerves that function as cough receptors that stimulate the cough center in the brain. This "cough center" functions to receive these impulses and produce a cough by activating efferent nervous pathways to the diaphragm and laryngeal, thoracic, and abdominal musculature. Drugs that suppress the neural activity of cough are non-specific as those treatments are not directed toward pathogenic causes such as inflammation and oxidative stress. Moreover, they block a reflex called the watchdog of the lung and have a defense mechanism. Acute respiratory infections of the upper and lower airways most commonly cause acute cough. In contrast, the most common causes of chronic cough are upper airway cough syndrome, asthma, and gastroesophageal reflux disease, all associated with an inflammatory reaction at the level of the cough receptors. The use of natural compounds or herbal drugs such as carob syrup, dry blackcurrant extract, dry extract of caraway fruit, dry extract of ginger rhizome, dry extract of marshmallow root, and dry extract of ivy leaves, to name a few, not only have anti-inflammatory and antioxidant activity, but also act as antimicrobials, bronchial muscle relaxants, and increase gastric motility and empty. For these reasons, these natural substances are widely used to control cough at its deep roots (i.e., contrasting its causes and not inhibiting the arch reflex). With this approach, the lung watchdog is not put to sleep, as with peripheral or central inhibition of the cough reflex, and by contrasting the causes, we may control cough that viruses use at self-advantage to increase transmission.
Collapse
Affiliation(s)
- Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | | | | | - Michele Piazza
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Grigorios Chatziparasidis
- Faculty of Nursing, University of Thessaly, 38221 Volos, Greece
- School of Physical Education, Sport Science & Dietetics, University of Thessaly, 38221 Volos, Greece
| | - Ahmad Kantar
- Pediatric Cough and Asthma Center, Istituti Ospedalieri Bergamaschi, University and Research Hospitals, 24036 Bergamo, Italy
| |
Collapse
|
21
|
Brudon A, Legendre M, Mageau A, Bermudez J, Bonniaud P, Bouvry D, Cadranel J, Cazes A, Crestani B, Dégot T, Delestrain C, Diesler R, Epaud R, Philippot Q, Théou-Anton N, Kannengiesser C, Ba I, Debray MP, Fanen P, Manali E, Papiris S, Nathan N, Amselem S, Gondouin A, Guillaumot A, Andréjak C, Jouneau S, Beltramo G, Uzunhan Y, Galodé F, Westeel V, Mehdaoui A, Hirschi S, Leroy S, Marchand-Adam S, Nunes H, Picard C, Prévot G, Reynaud-Gaubert M, De Vuyst P, Wemeau L, Defossez G, Zalcman G, Cottin V, Borie R. High risk of lung cancer in surfactant-related gene variant carriers. Eur Respir J 2024; 63:2301809. [PMID: 38575158 PMCID: PMC11063619 DOI: 10.1183/13993003.01809-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Several rare surfactant-related gene (SRG) variants associated with interstitial lung disease are suspected to be associated with lung cancer, but data are missing. We aimed to study the epidemiology and phenotype of lung cancer in an international cohort of SRG variant carriers. METHODS We conducted a cross-sectional study of all adults with SRG variants in the OrphaLung network and compared lung cancer risk with telomere-related gene (TRG) variant carriers. RESULTS We identified 99 SRG adult variant carriers (SFTPA1 (n=18), SFTPA2 (n=31), SFTPC (n=24), ABCA3 (n=14) and NKX2-1 (n=12)), including 20 (20.2%) with lung cancer (SFTPA1 (n=7), SFTPA2 (n=8), SFTPC (n=3), NKX2-1 (n=2) and ABCA3 (n=0)). Among SRG variant carriers, the odds of lung cancer was associated with age (OR 1.04, 95% CI 1.01-1.08), smoking (OR 20.7, 95% CI 6.60-76.2) and SFTPA1/SFTPA2 variants (OR 3.97, 95% CI 1.39-13.2). Adenocarcinoma was the only histological type reported, with programmed death ligand-1 expression ≥1% in tumour cells in three samples. Cancer staging was localised (I/II) in eight (40%) individuals, locally advanced (III) in two (10%) and metastatic (IV) in 10 (50%). We found no somatic variant eligible for targeted therapy. Seven cancers were surgically removed, 10 received systemic therapy, and three received the best supportive care according to their stage and performance status. The median overall survival was 24 months, with stage I/II cancers showing better survival. We identified 233 TRG variant carriers. The comparative risk (subdistribution hazard ratio) for lung cancer in SRG patients versus TRG patients was 18.1 (95% CI 7.1-44.7). CONCLUSIONS The high risk of lung cancer among SRG variant carriers suggests specific screening and diagnostic and therapeutic challenges. The benefit of regular computed tomography scan follow-up should be evaluated.
Collapse
Affiliation(s)
- Alexandre Brudon
- Service d'Oncologie Thoracique, Hôpital Bichat, AP-HP, Institut du Cancer AP-HP Nord, Paris, France
- Université Paris Cité, Inserm CIC-EC 1425, Paris, France
- A. Brudon and M. Legendre contributed equally to this work
| | - Marie Legendre
- UF de Génétique Moléculaire, Hôpital Armand Trousseau, AP-HP, Paris, France
- Sorbonne Université, Inserm UMR-S 933, Maladies Génétiques d'Expression Pédiatrique, Paris, France
- A. Brudon and M. Legendre contributed equally to this work
| | - Arthur Mageau
- Département de Médecine Interne, Hôpital Bichat, AP-HP, Paris, France
- Université Paris Cité, Inserm IAME UMR 1137 Team Descid, Paris, France
| | - Julien Bermudez
- Service de Pneumologie, Centre de Compétences de Maladies Pulmonaires Rares et de Transplantation Pulmonaire, CHU Nord, AP-HM, Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Philippe Bonniaud
- Department of Respiratory Diseases and Intensive Care, Reference Constitutive Center for Adult Rare Pulmonary Diseases, Dijon-Bourgogne University Hospital, University of Burgundy, Inserm UMR1231, Dijon, France
| | - Diane Bouvry
- Département de Pneumologie, Hôpital Avicenne, AP-HP, Bobigny, France
- Université Paris 13, Inserm UMR U1272, Bobigny, France
| | - Jacques Cadranel
- Service de Pneumologie et Oncologie Thoracique, DMU APPROCHES, Hôpital Tenon, AP-HP, Paris, France
- Sorbonne Université, GRC04 Theranoscan, Paris, France
| | - Aurélie Cazes
- Département d'Anatomie Pathologique, Hôpital Bichat, AP-HP, Paris, France
- Université Paris Cité, Inserm UMR-S 1152 PHERE, Paris, France
| | - Bruno Crestani
- Université Paris Cité, Inserm UMR-S 1152 PHERE, Paris, France
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France
| | - Tristan Dégot
- Centre de Référence pour les Maladies Respiratoires Rares RespiRare, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Céline Delestrain
- Université de Paris Est Créteil, Inserm IMRB, Créteil, France
- Service de Pneumologie, Centre National Coordinateur de Référence des Pathologies Pulmonaires Rares, ERN-LUNG, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Rémi Diesler
- Université Claude Bernard Lyon 1, Lyon, France
- Département de Génétique, Hôpital Bichat, AP-HP, Institut du Cancer AP-HP Nord, Paris, France
| | - Ralph Epaud
- Centre de Référence pour les Maladies Respiratoires Rares RespiRare, Centre Hospitalier Intercommunal de Créteil, Créteil, France
- Université de Paris Est Créteil, Inserm IMRB, Créteil, France
| | - Quentin Philippot
- Université Paris Cité, Inserm UMR-S 1152 PHERE, Paris, France
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France
| | - Nathalie Théou-Anton
- Université Paris Cité, Paris, France
- Service de Radiologie, Hôpital Bichat, AP-HP, Paris, France
| | - Caroline Kannengiesser
- Département de Génétique, Hôpital Bichat, AP-HP, Institut du Cancer AP-HP Nord, Paris, France
- Université Paris Cité, Paris, France
| | - Ibrahima Ba
- Département de Génétique, Hôpital Bichat, AP-HP, Institut du Cancer AP-HP Nord, Paris, France
- Université Paris Cité, Paris, France
| | - Marie-Pierre Debray
- Université Paris Cité, Paris, France
- Service de Radiologie, Hôpital Bichat, AP-HP, Paris, France
| | - Pascale Fanen
- Université de Paris Est Créteil, Inserm IMRB, Créteil, France
- Service de Radiologie, Hôpital Bichat, AP-HP, Paris, France
| | - Efrosine Manali
- Département de Pneumologie Pédiatrique, Centre de Référence des Maladies Respiratoires Rares RespiRare, Paris, France
| | - Spyros Papiris
- General University Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nadia Nathan
- Sorbonne Université, Inserm UMR-S 933, Maladies Génétiques d'Expression Pédiatrique, Paris, France
- Service de Pneumologie, Centre des Maladies Pulmonaires Rares, Hôpital de Besançon, Besançon, France
| | - Serge Amselem
- UF de Génétique Moléculaire, Hôpital Armand Trousseau, AP-HP, Paris, France
- Sorbonne Université, Inserm UMR-S 933, Maladies Génétiques d'Expression Pédiatrique, Paris, France
| | - Antoine Gondouin
- Service de Pneumologie, Hôpital de Brabois, Vandoeuvre-les-Nancy, France
| | - Anne Guillaumot
- Respiratory and Intensive Care Unit, University Hospital Amiens, Amiens, France
| | - Claire Andréjak
- EA 4294, AGIR, Jules Verne Picardy University, Amiens, France
- Service de Pneumologie, Centre de Référence Maladies Pulmonaires Rares, Hôpital Pontchaillou, CHU Rennes, Inserm UMR1085 IRSET, Université de Rennes 1, EHESP, Rennes, France
| | - Stephane Jouneau
- Pediatrics Department, Pediatric Pulmonology, CHU Bordeaux, Bordeaux, France
| | - Guillaume Beltramo
- Department of Respiratory Diseases and Intensive Care, Reference Constitutive Center for Adult Rare Pulmonary Diseases, Dijon-Bourgogne University Hospital, University of Burgundy, Inserm UMR1231, Dijon, France
| | - Yurdagul Uzunhan
- Département de Pneumologie, Hôpital Avicenne, AP-HP, Bobigny, France
| | - François Galodé
- Pneumonology and Thoracic Oncology Department, Eure-Seine Hospital Center, Évreux, France
| | - Virginie Westeel
- Service de Pneumologie, Centre des Maladies Pulmonaires Rares, Hôpital de Besançon, Besançon, France
| | - Anas Mehdaoui
- Service de pneumologie, FHU Oncoage, Hôpital Pasteur - CHU Nice, Nice, France
| | - Sandrine Hirschi
- Service de Pneumologie, Groupe de Transplantation Pulmonaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sylvie Leroy
- Université Nice Côte d'Azur, Nice, France
- Service de Pneumologie, Hôpital de Tours, Tours, France
| | - Sylvain Marchand-Adam
- Université de Tours, Inserm U1100, Tours, France
- Service de Pneumologie et de Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Hilario Nunes
- Département de Pneumologie, Hôpital Avicenne, AP-HP, Bobigny, France
- Université Paris 13, Inserm UMR U1272, Bobigny, France
| | - Clément Picard
- Service de Pneumologie, Hôpital Larrey, Toulouse, France
| | | | - Martine Reynaud-Gaubert
- Service de Pneumologie, Centre de Compétences de Maladies Pulmonaires Rares et de Transplantation Pulmonaire, CHU Nord, AP-HM, Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Paul De Vuyst
- Service de Pneumologie et Immuno-allergie, Institut Coeur-Poumon, Lille, France
| | | | | | - Gérard Zalcman
- Service d'Oncologie Thoracique, Hôpital Bichat, AP-HP, Institut du Cancer AP-HP Nord, Paris, France
- Université Paris Cité, Inserm CIC-EC 1425, Paris, France
| | - Vincent Cottin
- Service de Pneumologie, Centre National Coordinateur de Référence des Pathologies Pulmonaires Rares, ERN-LUNG, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Raphael Borie
- Université Paris Cité, Inserm UMR-S 1152 PHERE, Paris, France
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France
| |
Collapse
|
22
|
Chen K, Han Y, Wang Y, Zhou D, Wu F, Cai W, Zheng S, Xiao Q, Zhang H, Li W. scMoresDB: A comprehensive database of single-cell multi-omics data for human respiratory system. iScience 2024; 27:109567. [PMID: 38617561 PMCID: PMC11015448 DOI: 10.1016/j.isci.2024.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/26/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
The human respiratory system is a complex and important system that can suffer a variety of diseases. Single-cell sequencing technologies, applied in many respiratory disease studies, have enhanced our ability in characterizing molecular and phenotypic features at a single-cell resolution. The exponentially increasing data from these studies have consequently led to difficulties in data sharing and analysis. Here, we present scMoresDB, a single-cell multi-omics database platform with extensive omics types tailored for human respiratory diseases. scMoresDB re-analyzes single-cell multi-omics datasets, providing a user-friendly interface with cross-omics search capabilities, interactive visualizations, and analytical tools for comprehensive data sharing and integrative analysis. Our example applications highlight the potential significance of BSG receptor in SARS-CoV-2 infection as well as the involvement of HHIP and TGFB2 in the development and progression of chronic obstructive pulmonary disease. scMoresDB significantly increases accessibility and utility of single-cell data relevant to human respiratory system and associated diseases.
Collapse
Affiliation(s)
- Kang Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Yutong Han
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Yanni Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Dingli Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Fanjie Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Wenhao Cai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Shikang Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Qinyuan Xiao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Haiyue Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Weizhong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
23
|
Mitchell MI, Ben‐Dov IZ, Ye K, Liu C, Shi M, Sadoughi A, Shah C, Siddiqui T, Okorozo A, Gutierrez M, Unawane R, Biamonte L, Parikh K, Spivack S, Loudig O. Exhaled breath condensate contains extracellular vesicles (EVs) that carry miRNA cargos of lung tissue origin that can be selectively purified and analyzed. J Extracell Vesicles 2024; 13:e12440. [PMID: 38659349 PMCID: PMC11043690 DOI: 10.1002/jev2.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
Lung diseases, including lung cancer, are rising causes of global mortality. Despite novel imaging technologies and the development of biomarker assays, the detection of lung cancer remains a significant challenge. However, the lung communicates directly with the external environment and releases aerosolized droplets during normal tidal respiration, which can be collected, stored and analzsed as exhaled breath condensate (EBC). A few studies have suggested that EBC contains extracellular vesicles (EVs) whose microRNA (miRNA) cargos may be useful for evaluating different lung conditions, but the cellular origin of these EVs remains unknown. In this study, we used nanoparticle tracking, transmission electron microscopy, Western blot analyses and super resolution nanoimaging (ONi) to detect and validate the identity of exhaled EVs (exh-EVs). Using our customizable antibody-purification assay, EV-CATCHER, we initially determined that exh-EVs can be selectively enriched from EBC using antibodies against three tetraspanins (CD9, CD63 and CD81). Using ONi we also revealed that some exh-EVs harbour lung-specific proteins expressed in bronchiolar Clara cells (Clara Cell Secretory Protein [CCSP]) and Alveolar Type II cells (Surfactant protein C [SFTPC]). When conducting miRNA next generation sequencing (NGS) of airway samples collected at five different anatomic levels (i.e., mouth rinse, mouth wash, bronchial brush, bronchoalveolar lavage [BAL] and EBC) from 18 subjects, we determined that miRNA profiles of exh-EVs clustered closely to those of BAL EVs but not to those of other airway samples. When comparing the miRNA profiles of EVs purified from matched BAL and EBC samples with our three tetraspanins EV-CATCHER assay, we captured significant miRNA expression differences associated with smoking, asthma and lung tumor status of our subjects, which were also reproducibly detected in EVs selectively purified with our anti-CCSP/SFTPC EV-CATCHER assay from the same samples, but that confirmed their lung tissue origin. Our findings underscore that enriching exh-EV subpopulations from EBC allows non-invasive sampling of EVs produced by lung tissues.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Iddo Z. Ben‐Dov
- Laboratory of Medical Transcriptomics, Internal Medicine BHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Kenny Ye
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Christina Liu
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Miao Shi
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Ali Sadoughi
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Chirag Shah
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Taha Siddiqui
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Aham Okorozo
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Martin Gutierrez
- Department of Thoracic OncologyHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Rashmi Unawane
- Department of Thoracic OncologyHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Lisa Biamonte
- Department of Thoracic OncologyHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Kaushal Parikh
- Department of Thoracic OncologyThe Mayo ClinicRochesterMinnesotaUSA
| | - Simon Spivack
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Olivier Loudig
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| |
Collapse
|
24
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
25
|
Bhattacharya S, Myers JA, Baker C, Guo M, Danopoulos S, Myers JR, Bandyopadhyay G, Romas ST, Huyck HL, Misra RS, Dutra J, Holden-Wiltse J, McDavid AN, Ashton JM, Al Alam D, Potter SS, Whitsett JA, Xu Y, Pryhuber GS, Mariani TJ. Single-Cell Transcriptomic Profiling Identifies Molecular Phenotypes of Newborn Human Lung Cells. Genes (Basel) 2024; 15:298. [PMID: 38540357 PMCID: PMC10970229 DOI: 10.3390/genes15030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 05/01/2024] Open
Abstract
While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.
Collapse
Affiliation(s)
- Soumyaroop Bhattacharya
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Jacquelyn A. Myers
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Cameron Baker
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Minzhe Guo
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Soula Danopoulos
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, University of California Los Angeles, Los Angeles, CA 90024, USA; (S.D.)
| | - Jason R. Myers
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Gautam Bandyopadhyay
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Stephen T. Romas
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Heidie L. Huyck
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Ravi S. Misra
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Jennifer Dutra
- Clinical & Translational Science Institute, University of Rochester, Rochester, NY 14642, USA; (J.D.); (J.H.-W.)
| | - Jeanne Holden-Wiltse
- Clinical & Translational Science Institute, University of Rochester, Rochester, NY 14642, USA; (J.D.); (J.H.-W.)
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Andrew N. McDavid
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - John M. Ashton
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, University of California Los Angeles, Los Angeles, CA 90024, USA; (S.D.)
| | - S. Steven Potter
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Jeffrey A. Whitsett
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Yan Xu
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Gloria S. Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Thomas J. Mariani
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| |
Collapse
|
26
|
Elfstrum AK, Bapat AS, Schwertfeger KL. Defining and targeting macrophage heterogeneity in the mammary gland and breast cancer. Cancer Med 2024; 13:e7053. [PMID: 38426622 PMCID: PMC10905685 DOI: 10.1002/cam4.7053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Macrophages are innate immune cells that are associated with extensive phenotypic and functional plasticity and contribute to normal development, tissue homeostasis, and diseases such as cancer. In this review, we discuss the heterogeneity of tissue resident macrophages in the normal mammary gland and tumor-associated macrophages in breast cancer. Tissue resident macrophages are required for mammary gland development, where they have been implicated in promoting extracellular matrix remodeling, apoptotic clearance, and cellular crosstalk. In the context of cancer, tumor-associated macrophages are key drivers of growth and metastasis via their ability to promote matrix remodeling, angiogenesis, lymphangiogenesis, and immunosuppression. METHOD We identified and summarized studies in Pubmed that describe the phenotypic and functional heterogeneity of macrophages and the implications of targeting individual subsets, specifically in the context of mammary gland development and breast cancer. We also identified and summarized recent studies using single-cell RNA sequencing to identify and describe macrophage subsets in human breast cancer samples. RESULTS Advances in single-cell RNA sequencing technologies have yielded nuances in macrophage heterogeneity, with numerous macrophage subsets identified in both the normal mammary gland and breast cancer tissue. Macrophage subsets contribute to mammary gland development and breast cancer progression in differing ways, and emerging studies highlight a role for spatial localization in modulating their phenotype and function. CONCLUSION Understanding macrophage heterogeneity and the unique functions of each subset in both normal mammary gland development and breast cancer progression may lead to more promising targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Alexis K. Elfstrum
- Microbiology, Immunology, and Cancer Biology Graduate ProgramUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Aditi S. Bapat
- Molecular Pharmacology and Therapeutics Graduate ProgramUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Kathryn L. Schwertfeger
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
- Center for ImmunologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
27
|
Figarella K, Kim J, Ruan W, Mills T, Eltzschig HK, Yuan X. Hypoxia-adenosine axis as therapeutic targets for acute respiratory distress syndrome. Front Immunol 2024; 15:1328565. [PMID: 38312838 PMCID: PMC10835146 DOI: 10.3389/fimmu.2024.1328565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The human respiratory and circulatory systems collaborate intricately to ensure oxygen delivery to all cells, which is vital for ATP production and maintaining physiological functions and structures. During limited oxygen availability, hypoxia-inducible factors (HIFs) are stabilized and play a fundamental role in maintaining cellular processes for hypoxia adaptation. First discovered during investigations of erythropoietin production regulation, HIFs influence physiological and pathological processes, including development, inflammation, wound healing, and cancer. HIFs promote extracellular adenosine signaling by enhancing adenosine generation and receptor signaling, representing an endogenous feedback mechanism that curbs excessive inflammation, supports injury resolution, and enhances hypoxia tolerance. This is especially important for conditions that involve tissue hypoxia, such as acute respiratory distress syndrome (ARDS), which globally poses significant health challenges without specific treatment options. Consequently, pharmacological strategies to amplify HIF-mediated adenosine production and receptor signaling are of great importance.
Collapse
Affiliation(s)
- Katherine Figarella
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jieun Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger Klaus Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
28
|
Sun YL, Hennessey EE, Heins H, Yang P, Villacorta-Martin C, Kwan J, Gopalan K, James M, Emili A, Cole FS, Wambach JA, Kotton DN. Human pluripotent stem cell modeling of alveolar type 2 cell dysfunction caused by ABCA3 mutations. J Clin Invest 2024; 134:e164274. [PMID: 38226623 PMCID: PMC10786693 DOI: 10.1172/jci164274] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
Mutations in ATP-binding cassette A3 (ABCA3), a phospholipid transporter critical for surfactant homeostasis in pulmonary alveolar type II epithelial cells (AEC2s), are the most common genetic causes of childhood interstitial lung disease (chILD). Treatments for patients with pathological variants of ABCA3 mutations are limited, in part due to a lack of understanding of disease pathogenesis resulting from an inability to access primary AEC2s from affected children. Here, we report the generation of AEC2s from affected patient induced pluripotent stem cells (iPSCs) carrying homozygous versions of multiple ABCA3 mutations. We generated syngeneic CRISPR/Cas9 gene-corrected and uncorrected iPSCs and ABCA3-mutant knockin ABCA3:GFP fusion reporter lines for in vitro disease modeling. We observed an expected decreased capacity for surfactant secretion in ABCA3-mutant iPSC-derived AEC2s (iAEC2s), but we also found an unexpected epithelial-intrinsic aberrant phenotype in mutant iAEC2s, presenting as diminished progenitor potential, increased NFκB signaling, and the production of pro-inflammatory cytokines. The ABCA3:GFP fusion reporter permitted mutant-specific, quantifiable characterization of lamellar body size and ABCA3 protein trafficking, functional features that are perturbed depending on ABCA3 mutation type. Our disease model provides a platform for understanding ABCA3 mutation-mediated mechanisms of alveolar epithelial cell dysfunction that may trigger chILD pathogenesis.
Collapse
Affiliation(s)
- Yuliang L. Sun
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Erin E. Hennessey
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Hillary Heins
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri, USA
| | - Ping Yang
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Julian Kwan
- Departments of Biology and Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Krithi Gopalan
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Marianne James
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Andrew Emili
- Departments of Biology and Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - F. Sessions Cole
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri, USA
| | - Jennifer A. Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
29
|
He J, Cao Y, Zhu Q, Wang X, Cheng G, Wang Q, He R, Lu H, Weng Y, Mao G, Bao Y, Wang J, Liu X, Han F, Shi P, Shen XZ. Renal macrophages monitor and remove particles from urine to prevent tubule obstruction. Immunity 2024; 57:106-123.e7. [PMID: 38159573 DOI: 10.1016/j.immuni.2023.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
When the filtrate of the glomerulus flows through the renal tubular system, various microscopic sediment particles, including mineral crystals, are generated. Dislodging these particles is critical to ensuring the free flow of filtrate, whereas failure to remove them will result in kidney stone formation and obstruction. However, the underlying mechanism for the clearance is unclear. Here, using high-resolution microscopy, we found that the juxtatubular macrophages in the renal medulla constitutively formed transepithelial protrusions and "sampled" urine contents. They efficiently sequestered and phagocytosed intraluminal sediment particles and occasionally transmigrated to the tubule lumen to escort the excretion of urine particles. Mice with decreased renal macrophage numbers were prone to developing various intratubular sediments, including kidney stones. Mechanistically, the transepithelial behaviors of medulla macrophages required integrin β1-mediated ligation to the tubular epithelium. These findings indicate that medulla macrophages sample urine content and remove intratubular particles to keep the tubular system unobstructed.
Collapse
Affiliation(s)
- Jian He
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangyang Cao
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinge Wang
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guo Cheng
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rukun He
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoran Lu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, China
| | - Yuancheng Weng
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Shi
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiao Z Shen
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Bernardinello N, Griese M, Borie R, Spagnolo P. Emerging Treatments for Childhood Interstitial Lung Disease. Paediatr Drugs 2024; 26:19-30. [PMID: 37948041 PMCID: PMC10770003 DOI: 10.1007/s40272-023-00603-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Childhood interstitial lung disease (chILD) is a large and heterogeneous group of disorders characterized by diffuse lung parenchymal markings on chest imaging and clinical signs such as dyspnea and hypoxemia from functional impairment. While some children already present in the neonatal period with interstitial lung disease (ILD), others develop ILD during their childhood and adolescence. A timely and accurate diagnosis is essential to gauge treatment and improve prognosis. Supportive care can reduce symptoms and positively influence patients' quality of life; however, there is no cure for many of the chILDs. Current therapeutic options include anti-inflammatory or immunosuppressive drugs. Due to the rarity of the conditions and paucity of research in this field, most treatments are empirical and based on case series, and less than a handful of small, randomized trials have been conducted thus far. A trial on hydroxychloroquine yielded good safety but a much smaller effect size than anticipated. A trial in fibrotic disease with the multitargeted tyrosine kinase inhibitor nintedanib showed similar pharmacokinetics and safety as in adults. The unmet need for the treatment of chILDs remains high. This article summarizes current treatments and explores potential therapeutic options for patients suffering from chILD.
Collapse
Affiliation(s)
- Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Via N. Giustiniani n°2, 35128, Padua, Italy
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, German Center for Lung Research (DZL), Ludwig-Maximilians University, Munich, Germany
| | - Raphaël Borie
- Université de Paris, INSERM UMR 1152, Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, Hôpital Bichat-Claude Bernard, AP-HP, 75018, Paris, France
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Via N. Giustiniani n°2, 35128, Padua, Italy.
| |
Collapse
|
31
|
Wang B, Gao Y, Sun L, Xue M, Wang M, Zhang Z, Zhang L, Zhang H. Inhaled pulmonary surfactant biomimetic liposomes for reversing idiopathic pulmonary fibrosis through synergistic therapeutic strategy. Biomaterials 2023; 303:122404. [PMID: 37992600 DOI: 10.1016/j.biomaterials.2023.122404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) stands as a highly heterogeneous and deadly lung disease, yet the available treatment options remain limited. Combining myofibroblast inhibition with ROS modulation in damaged AECs offers a comprehensive strategy to halt IPF progression, but delivering drugs separately to these cell types is challenging. Inspired by the successful application of pulmonary surfactant (PS) replacement therapy in lung disease treatment, we have developed PS nano-biomimetic liposomes (PSBs) to utilize its natural transport pathway for targeting AECs while reducing lung tissue clearance. In this collaborative pulmonary drug delivery system, PSBs composed of DPPC/POPG/DPPG/CHO (20:9:5:4) were formulated for inhalation. These PSBs loaded with ROS-scavenger astaxanthin (AST) and anti-fibrosis drug pirfenidone (PFD) were aerosolized for precise quantification and mimicking patient inhalation. Through aerosol inhalation, the lipid membrane of PSBs gradually fused with natural PS, enabling AST delivery to AECs by hitchhiking with PS circulation. Simultaneously, PFD was released within the PS barrier, effectively penetrating lung tissue to exert therapeutic effects. In vivo results have shown that PSBs offer numerous therapeutic advantages in mice with IPF, particularly in terms of lung function recovery. This approach addresses the challenges of drug delivery to specific lung cells and offers potential benefits for IPF patients.
Collapse
Affiliation(s)
- Binghua Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, China
| | - Yiwen Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lulu Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Meng Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingjin Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, China.
| |
Collapse
|
32
|
Déciga-Alcaraz A, Tlazolteotl Gómez de León C, Morales Montor J, Poblano-Bata J, Martínez-Domínguez YM, Palacios-Arreola MI, Amador-Muñoz O, Rodríguez-Ibarra C, Vázquez-Zapién GJ, Mata-Miranda MM, Sánchez-Pérez Y, Chirino YI. Effects of solvent extracted organic matter from outdoor air pollution on human type II pneumocytes: Molecular and proteomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122551. [PMID: 37714400 DOI: 10.1016/j.envpol.2023.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Outdoor air pollution is responsible for the exacerbation of respiratory diseases in humans. Particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) is one of the main components of outdoor air pollution, and solvent extracted organic matter (SEOM) is adsorbed to the main PM2.5 core. Some of the biological effects of black carbon and polycyclic aromatic hydrocarbons, which are components of PM2.5, are known, but the response of respiratory cell lineages to SEOM exposure has not been described until now. The aim of this study was to obtain SEOM from PM2.5 and analyze the molecular and proteomic effects on human type II pneumocytes. PM2.5 was collected from Mexico City in the wildfire season and the SEOM was characterized to be exposed on human type II pneumocytes. The effects were compared with benzo [a] pyrene (B[a]P) and hydrogen peroxide (H2O2). The results showed that SEOM induced a decrease in surfactant and deregulation in the molecular protein and lipid pattern analyzed by reflection-Fourier transform infrared (ATR-FTIR) spectroscopy on human type II pneumocytes after 24 h. The molecular alterations induced by SEOM were not shared by those induced by B[a]P nor H2O2, which highlights specific SEOM effects. In addition, proteomic patterns by quantitative MS analysis revealed a downregulation of 171 proteins and upregulation of 134 proteins analyzed in the STRING database. The deregulation was associated with positive regulation of apoptotic clearance, removal of superoxide radicals, and positive regulation of heterotypic cell-cell adhesion processes, while ATP metabolism, nucleotide process, and cellular metabolism were also affected. Through this study, we conclude that SEOM extracted from PM2.5 exerts alterations in molecular patterns of protein and lipids, surfactant expression, and deregulation of metabolic pathways of type II pneumocytes after 24 h of exposure in absence of cytotoxicity, which warns about apparent SEOM silent effects.
Collapse
Affiliation(s)
- Alejandro Déciga-Alcaraz
- Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, CP, 04510, Ciudad de México, Mexico; Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP, 54090, Estado de México, Mexico.
| | - Carmen Tlazolteotl Gómez de León
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP, 04510, Ciudad de México, Mexico.
| | - Jorge Morales Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP, 04510, Ciudad de México, Mexico.
| | - Josefina Poblano-Bata
- Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, CP, 04510, Ciudad de México, Mexico.
| | - Yadira Margarita Martínez-Domínguez
- Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, CP, 04510, Ciudad de México, Mexico.
| | - M Isabel Palacios-Arreola
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP, 14080, Ciudad de México, Mexico.
| | - Omar Amador-Muñoz
- Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, CP, 04510, Ciudad de México, Mexico.
| | - Carolina Rodríguez-Ibarra
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP, 54090, Estado de México, Mexico.
| | - Gustavo J Vázquez-Zapién
- Laboratorio de Embriología, Escuela Militar de Medicina, Centro Militar de Ciencias de La Salud, Secretaría de La Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, C.P, 11200, Ciudad de México, Mexico.
| | - Mónica M Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Escuela Militar de Medicina, Centro Militar de Ciencias de La Salud, Secretaría de La Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, C.P, 11200, Ciudad de México, Mexico.
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de México, CP, 14080, Mexico.
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP, 54090, Estado de México, Mexico.
| |
Collapse
|
33
|
Zuo B, Wang L, Li X, Li X, Wang J, Xiong Y, Lei J, Zhang X, Chen Y, Liu Q, Jiao J, Sui M, Fan J, Wu N, Song Z, Li G. Abnormal low expression of SFTPC promotes the proliferation of lung adenocarcinoma by enhancing PI3K/AKT/mTOR signaling transduction. Aging (Albany NY) 2023; 15:12451-12475. [PMID: 37955668 PMCID: PMC10683597 DOI: 10.18632/aging.205191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
The abnormality of surfactant protein C (SFTPC) has been linked to the development of a number of interstitial lung diseases, according to mounting evidence. Nonetheless, the function and mechanism of SFTPC in the biological progression of lung adenocarcinoma (LUAD) remain unclear. Analysis of public datasets and testing of clinical samples suggested that SFTPC expression was abnormally low in LUAD, which was associated with the onset and poor prognosis of LUAD. The SFTPC-related risk score was derived using least absolute shrinkage and selection operator Cox regression as well as multivariate Cox regression. The risk score was highly correlated with tumor purity and tumor mutation burden, and it could serve as an independent prognostic indicator for LUAD. Low-risk LUAD patients may benefit more from CTLA-4 or/and PD-1 inhibitors. Overall, the risk score is useful for LUAD patient prognostication and treatment guidance. Moreover, in vitro and in vivo experiments demonstrated that SFTPC inhibits the proliferation of LUAD by inhibiting PI3K/AKT/mTOR signaling transduction. These results reveal the molecular mechanism by which SFTPC inhibits the proliferation of LUAD and suggest that SFTPC could be a new therapeutic target for LUAD.
Collapse
Affiliation(s)
- Baile Zuo
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Xiaoyan Li
- Department of Blood Transfusion, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xin Li
- Department of Geriatric Medicine, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinping Wang
- Department of Ultrasound, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jie Lei
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xi Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yifan Chen
- College of Management, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Qiongwen Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinke Jiao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Mengru Sui
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinhan Fan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Ningxue Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi’an, Shaanxi, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
34
|
Xu W, Ma X, Wang Q, Ye J, Wang N, Ye Z, Chen T. GCN5L1 regulates pulmonary surfactant production by modulating lamellar body biogenesis and trafficking in mouse alveolar epithelial cells. Cell Mol Biol Lett 2023; 28:90. [PMID: 37936104 PMCID: PMC10631113 DOI: 10.1186/s11658-023-00506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND The pulmonary surfactant that lines the air-liquid surface within alveoli is a protein-lipid mixture essential for gas exchange. Surfactant lipids and proteins are synthesized and stored in the lamellar body (LB) before being secreted from alveolar type II (AT2) cells. The molecular and cellular mechanisms that regulate these processes are incompletely understood. We previously identified an essential role of general control of amino acid synthesis 5 like 1 (GCN5L1) and the biogenesis of lysosome-related organelle complex 1 subunit 1 (BLOS1) in surfactant system development in zebrafish. Here, we explored the role of GCN5L1 in pulmonary surfactant regulation. METHOD GCN5L1 knockout cell lines were generated with the CRISPR/Cas9 system. Cell viability was analyzed by MTT assay. Released surfactant proteins were measured by ELISA. Released surfactant lipids were measured based on coupled enzymatic reactions. Gene overexpression was mediated through lentivirus. The RNA levels were detected through RNA-sequencing (RNA-seq) and quantitative reverse transcription (qRT)- polymerase chain reaction (PCR). The protein levels were detected through western blotting. The cellular localization was analyzed by immunofluorescence. Morphology of the lamellar body was analyzed through transmission electron microscopy (TEM), Lysotracker staining, and BODIPY phosphatidylcholine labeling. RESULTS Knocking out GCN5L1 in MLE-12 significantly decreased the release of surfactant proteins and lipids. We detected the downregulation of some surfactant-related genes and misregulation of the ROS-Erk-Foxo1-Cebpα axis in mutant cells. Modulating the activity of the axis or reconstructing the mitochondrial expression of GCN5L1 could partially restore the expression of these surfactant-related genes. We further showed that MLE-12 cells contained many LB-like organelles that were lipid enriched and positive for multiple LB markers. These organelles were smaller in size and accumulated in the absence of GCN5L1, indicating both biogenesis and trafficking defects. Accumulated endogenous surfactant protein (SP)-B or exogenously expressed SP-B/SP-C in adenosine triphosphate-binding cassette transporterA3 (ABCA3)-positive organelles was detected in mutant cells. GCN5L1 localized to the mitochondria and LBs. Reconstruction of mitochondrial GCN5L1 expression rescued the organelle morphology but failed to restore the trafficking defect and surfactant release, indicating specific roles associated with different subcellular localizations. CONCLUSIONS In summary, our study identified GCN5L1 as a new regulator of pulmonary surfactant that plays a role in the biogenesis and positioning/trafficking of surfactant-containing LBs.
Collapse
Affiliation(s)
- Wenqin Xu
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China
| | - Xiaocui Ma
- Henan Clinical Research Center of Childhood Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Qing Wang
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China
| | - Jingjing Ye
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China
| | - Nengqian Wang
- Department of Pediatrics, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zhenzhen Ye
- Department of Pediatrics, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Tianbing Chen
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China.
| |
Collapse
|
35
|
Tomos I, Roussis I, Matthaiou AM, Dimakou K. Molecular and Genetic Biomarkers in Idiopathic Pulmonary Fibrosis: Where Are We Now? Biomedicines 2023; 11:2796. [PMID: 37893169 PMCID: PMC10604739 DOI: 10.3390/biomedicines11102796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) represents a chronic progressive fibrotic interstitial lung disease of unknown cause with an ominous prognosis. It remains an unprecedent clinical challenge due to its delayed diagnosis and unpredictable clinical course. The need for accurate diagnostic, prognostic and predisposition biomarkers in everyday clinical practice becomes more necessary than ever to ensure prompt diagnoses and early treatment. The identification of such blood biomarkers may also unravel novel drug targets against IPF development and progression. So far, the role of diverse blood biomarkers, implicated in various pathogenetic pathways, such as in fibrogenesis (S100A4), extracellular matrix remodelling (YKL-40, MMP-7, ICAM-1, LOXL2, periostin), chemotaxis (CCL-18, IL-8), epithelial cell injury (KL-6, SP-A, SP-D), autophagy and unfolded protein response has been investigated in IPF with various results. Moreover, the recent progress in genetics in IPF allows for a better understanding of the underlying disease mechanisms. So far, the causative mutations in pulmonary fibrosis include mutations in telomere-related genes and in surfactant-related genes, markers that could act as predisposition biomarkers in IPF. The aim of this review is to provide a comprehensive overview from the bench to bedside of current knowledge and recent insights on biomarkers in IPF, and to suggest future directions for research. Large-scale studies are still needed to confirm the exact role of these biomarkers.
Collapse
Affiliation(s)
- Ioannis Tomos
- 5th Department of Respiratory Medicine, ‘SOTIRIA’ Chest Diseases Hospital of Athens, 11527 Athens, Greece; (I.R.); (A.M.M.); (K.D.)
| | - Ioannis Roussis
- 5th Department of Respiratory Medicine, ‘SOTIRIA’ Chest Diseases Hospital of Athens, 11527 Athens, Greece; (I.R.); (A.M.M.); (K.D.)
| | - Andreas M. Matthaiou
- 5th Department of Respiratory Medicine, ‘SOTIRIA’ Chest Diseases Hospital of Athens, 11527 Athens, Greece; (I.R.); (A.M.M.); (K.D.)
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 714 09 Heraklion, Greece
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia 2029, Cyprus
| | - Katerina Dimakou
- 5th Department of Respiratory Medicine, ‘SOTIRIA’ Chest Diseases Hospital of Athens, 11527 Athens, Greece; (I.R.); (A.M.M.); (K.D.)
| |
Collapse
|
36
|
Dushianthan A, Grocott MPW, Murugan GS, Wilkinson TMA, Postle AD. Pulmonary Surfactant in Adult ARDS: Current Perspectives and Future Directions. Diagnostics (Basel) 2023; 13:2964. [PMID: 37761330 PMCID: PMC10528901 DOI: 10.3390/diagnostics13182964] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of hypoxemic respiratory failure in adults, leading to the requirement for mechanical ventilation and poorer outcomes. Dysregulated surfactant metabolism and function are characteristic of ARDS. A combination of alveolar epithelial damage leading to altered surfactant synthesis, secretion, and breakdown with increased functional inhibition from overt alveolar inflammation contributes to the clinical features of poor alveolar compliance and alveolar collapse. Quantitative and qualitative alterations in the bronchoalveolar lavage and tracheal aspirate surfactant composition contribute to ARDS pathogenesis. Compared to neonatal respiratory distress syndrome (nRDS), replacement studies of exogenous surfactants in adult ARDS suggest no survival benefit. However, these studies are limited by disease heterogeneity, variations in surfactant preparations, doses, and delivery methods. More importantly, the lack of mechanistic understanding of the exact reasons for dysregulated surfactant remains a significant issue. Moreover, studies suggest an extremely short half-life of replaced surfactant, implying increased catabolism. Refining surfactant preparations and delivery methods with additional co-interventions to counteract surfactant inhibition and degradation has the potential to enhance the biophysical characteristics of surfactant in vivo.
Collapse
Affiliation(s)
- Ahilanandan Dushianthan
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, UK; (M.P.W.G.); (T.M.A.W.); (A.D.P.)
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Michael P. W. Grocott
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, UK; (M.P.W.G.); (T.M.A.W.); (A.D.P.)
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | | - Tom M. A. Wilkinson
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, UK; (M.P.W.G.); (T.M.A.W.); (A.D.P.)
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anthony D. Postle
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, UK; (M.P.W.G.); (T.M.A.W.); (A.D.P.)
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
37
|
Luyapan J, Bossé Y, Li Z, Xiao X, Rosenberger A, Hung RJ, Lam S, Zienolddiny S, Liu G, Kiemeney LA, Chen C, McKay J, Johansson M, Johansson M, Tardon A, Fernandez-Tardon G, Brennan P, Field JK, Davies MP, Woll PJ, Cox A, Taylor F, Arnold SM, Lazarus P, Grankvist K, Landi MT, Christiani DC, MacKenzie TA, Amos CI. Candidate pathway analysis of surfactant proteins identifies CTSH and SFTA2 that influences lung cancer risk. Hum Mol Genet 2023; 32:2842-2855. [PMID: 37471639 PMCID: PMC10481107 DOI: 10.1093/hmg/ddad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 07/22/2023] Open
Abstract
Pulmonary surfactant is a lipoprotein synthesized and secreted by alveolar type II cells in lung. We evaluated the associations between 200,139 single nucleotide polymorphisms (SNPs) of 40 surfactant-related genes and lung cancer risk using genotyped data from two independent lung cancer genome-wide association studies. Discovery data included 18,082 cases and 13,780 controls of European ancestry. Replication data included 1,914 cases and 3,065 controls of European descent. Using multivariate logistic regression, we found novel SNPs in surfactant-related genes CTSH [rs34577742 C > T, odds ratio (OR) = 0.90, 95% confidence interval (CI) = 0.89-0.93, P = 7.64 × 10-9] and SFTA2 (rs3095153 G > A, OR = 1.16, 95% CI = 1.10-1.21, P = 1.27 × 10-9) associated with overall lung cancer in the discovery data and validated in an independent replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.80-0.96, P = 5.76 × 10-3) and SFTA2 (rs3095153 G > A, OR = 1.14, 95% CI = 1.01-1.28, P = 3.25 × 10-2). Among ever smokers, we found SNPs in CTSH (rs34577742 C > T, OR = 0.89, 95% CI = 0.85-0.92, P = 1.94 × 10-7) and SFTA2 (rs3095152 G > A, OR = 1.20, 95% CI = 1.14-1.27, P = 4.25 × 10-11) associated with overall lung cancer in the discovery data and validated in the replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.79-0.97, P = 1.64 × 10-2) and SFTA2 (rs3095152 G > A, OR = 1.15, 95% CI = 1.01-1.30, P = 3.81 × 10-2). Subsequent transcriptome-wide association study using expression weights from a lung expression quantitative trait loci study revealed genes most strongly associated with lung cancer are CTSH (PTWAS = 2.44 × 10-4) and SFTA2 (PTWAS = 2.32 × 10-6).
Collapse
Affiliation(s)
- Jennifer Luyapan
- Quantitative Biomedical Science Program, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, G1V 0A6, Canada
- Department of Molecular Medicine, Laval University, Quebec City, G1V 0A6, Canada
| | - Zhonglin Li
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, G1V 0A6, Canada
| | - Xiangjun Xiao
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Albert Rosenberger
- Institut für Genetische Epidemiologie, Georg-August-Universität Göttingen, Gottingen, Niedersachsen, Germany
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbuaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - Shanbeh Zienolddiny
- Department of Toxicology, National Institute of Occupational Health, Oslo 0033, Norway
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Princess Margaret Research Institute, Epidemiology Division,Toronto, ON, M5G 1L7, Canada
| | - Lambertus A Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
| | - Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - James McKay
- International Agency for Research on Cancer (IARC/WHO), Genomic Epidemiology Branch Lyon 69008, France
| | - Mattias Johansson
- International Agency for Research on Cancer (IARC/WHO), Genomic Epidemiology Branch Lyon 69008, France
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, 901 87, Sweden
| | - Adonina Tardon
- Health Research Institute of the Principality of Asturias, University of Oviedo and CIBERSP, Oviedo, Asturias, 33071, Spain
| | - Guillermo Fernandez-Tardon
- Health Research Institute of the Principality of Asturias, University of Oviedo and CIBERSP, Oviedo, Asturias, 33071, Spain
| | - Paul Brennan
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig Maximillians University, Munich, Bavaria, 80539, Germany
| | - John K Field
- Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, The University of Liverpool Institute of Translational Medicine, Liverpool, L69 7ZX, UK
| | - Michael P Davies
- Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, The University of Liverpool Institute of Translational Medicine, Liverpool, L69 7ZX, UK
| | - Penella J Woll
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, S10 2AH, UK
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2AH, UK
| | - Fiona Taylor
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2AH, UK
| | - Susanne M Arnold
- Division of Medical Oncology, Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99163, USA
| | - Kjell Grankvist
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, 901 87, Sweden
| | - Maria T Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Todd A MacKenzie
- Quantitative Biomedical Science Program, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Christopher I Amos
- Quantitative Biomedical Science Program, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
38
|
Yao HC, Zhu Y, Lu HY, Ju HM, Xu SQ, Qiao Y, Wei SJ. Type 2 innate lymphoid cell-derived amphiregulin regulates type II alveolar epithelial cell transdifferentiation in a mouse model of bronchopulmonary dysplasia. Int Immunopharmacol 2023; 122:110672. [PMID: 37480752 DOI: 10.1016/j.intimp.2023.110672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication in preterm infants characterized by alveolar growth arrest. Interleukin (IL)-33 and type 2 innate lymphoid cell (ILC2) affect type II alveolar epithelial cell (AECII) differentiation in BPD mice and may cause increased lung epithelial-mesenchymal transition (EMT). Amphiregulin (AREG) can be produced by ILC2 and is associated with tissue repair. However, the action mechanism of AREG produced by ILC2 to alveolar development in BPD is unclear. In this study, we aimed to demonstrate the role and mechanism of AREG in influencing AECII transdifferentiation in the lung tissue of BPD mice. The effects of ILC2-derived AREG on AECII transdifferentiation were verified in vivo and in vitro, and the role of IL-33 on ILC2-derived AREG in AECII transdifferentiation in BPD mice and a preliminary investigation of the role of AREG's receptor-epidermal growth factor receptor (EGFR) on AECII transdifferentiation. The results showed that neonatal mice developed severe lung injury after hyperoxia, and IL-33 induced AREG production via ILC2 affected normal AECII differentiation and promoted EMT. In addition, the blockade of EGFR was found to alleviate the impaired AECII differentiation under hyperoxia in an in vitro study. In summary, our study demonstrates that AREG secreted by ILC2 affects AECII transdifferentiation in BPD mice, which provides a new idea for the clinical treatment of BPD.
Collapse
Affiliation(s)
- Hui-Ci Yao
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yue Zhu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hong-Yan Lu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Hui-Min Ju
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Su-Qing Xu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yu Qiao
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shan-Jie Wei
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
39
|
Das A, Meng W, Liu Z, Hasib MM, Galloway H, Ramos da Silva S, Chen L, Sica GL, Paniz-Mondolfi A, Bryce C, Grimes Z, Mia Sordillo E, Cordon-Cardo C, Paniagua Rivera K, Flores M, Chiu YC, Huang Y, Gao SJ. Molecular and immune signatures, and pathological trajectories of fatal COVID-19 lungs defined by in situ spatial single-cell transcriptome analysis. J Med Virol 2023; 95:e29009. [PMID: 37563850 PMCID: PMC10442191 DOI: 10.1002/jmv.29009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Despite intensive studies during the last 3 years, the pathology and underlying molecular mechanism of coronavirus disease 2019 (COVID-19) remain poorly defined. In this study, we investigated the spatial single-cell molecular and cellular features of postmortem COVID-19 lung tissues using in situ sequencing (ISS). We detected 10 414 863 transcripts of 221 genes in whole-slide tissues and segmented them into 1 719 459 cells that were mapped to 18 major parenchymal and immune cell types, all of which were infected by SARS-CoV-2. Compared with the non-COVID-19 control, COVID-19 lungs exhibited reduced alveolar cells (ACs) and increased innate and adaptive immune cells. We also identified 19 differentially expressed genes in both infected and uninfected cells across the tissues, which reflected the altered cellular compositions. Spatial analysis of local infection rates revealed regions with high infection rates that were correlated with high cell densities (HIHD). The HIHD regions expressed high levels of SARS-CoV-2 entry-related factors including ACE2, FURIN, TMPRSS2 and NRP1, and co-localized with organizing pneumonia (OP) and lymphocytic and immune infiltration, which exhibited increased ACs and fibroblasts but decreased vascular endothelial cells and epithelial cells, mirroring the tissue damage and wound healing processes. Sparse nonnegative matrix factorization (SNMF) analysis of niche features identified seven signatures that captured structure and immune niches in COVID-19 tissues. Trajectory inference based on immune niche signatures defined two pathological routes. Trajectory A primarily progressed with increased NK cells and granulocytes, likely reflecting the complication of microbial infections. Trajectory B was marked by increased HIHD and OP, possibly accounting for the increased immune infiltration. The OP regions were marked by high numbers of fibroblasts expressing extremely high levels of COL1A1 and COL1A2. Examination of single-cell RNA-seq data (scRNA-seq) from COVID-19 lung tissues and idiopathic pulmonary fibrosis (IPF) identified similar cell populations consisting mainly of myofibroblasts. Immunofluorescence staining revealed the activation of IL6-STAT3 and TGF-β-SMAD2/3 pathways in these cells, likely mediating the upregulation of COL1A1 and COL1A2 and excessive fibrosis in the lung tissues. Together, this study provides a spatial single-cell atlas of cellular and molecular signatures of fatal COVID-19 lungs, which reveals the complex spatial cellular heterogeneity, organization, and interactions that characterized the COVID-19 lung pathology.
Collapse
Affiliation(s)
- Arun Das
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wen Meng
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhentao Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Md Musaddaqul Hasib
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hugh Galloway
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Suzane Ramos da Silva
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Luping Chen
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gabriel L Sica
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Paniz-Mondolfi
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Clare Bryce
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zachary Grimes
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karla Paniagua Rivera
- Department of Electrical and Computer Engineering, KLESSE School of Engineering and Integrated Design, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mario Flores
- Department of Electrical and Computer Engineering, KLESSE School of Engineering and Integrated Design, University of Texas at San Antonio, San Antonio, TX, USA
| | - Yu-Chiao Chiu
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Shin H, Park S, Hong J, Baek AR, Lee J, Kim DJ, Jang AS, Chin SS, Jeong SH, Park SW. Overexpression of fatty acid synthase attenuates bleomycin induced lung fibrosis by restoring mitochondrial dysfunction in mice. Sci Rep 2023; 13:9044. [PMID: 37270622 DOI: 10.1038/s41598-023-36009-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Proper lipid metabolism is crucial to maintain alveolar epithelial cell (AEC) function, and excessive AEC death plays a role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). The mRNA expression of fatty acid synthase (FASN), a key enzyme in the production of palmitate and other fatty acids, is downregulated in the lungs of IPF patients. However, the precise role of FASN in IPF and its mechanism of action remain unclear. In this study, we showed that FASN expression is significantly reduced in the lungs of IPF patients and bleomycin (BLM)-treated mice. Overexpression of FASN significantly inhibited BLM-induced AEC death, which was significantly potentiated by FASN knockdown. Moreover, FASN overexpression reduced BLM-induced loss of mitochondrial membrane potential and the production of mitochondrial reactive oxygen species (ROS). Oleic acid, a fatty acid component increased by FASN overexpression, inhibited BLM-induced cell death in primary murine AECs and rescue BLM induced mouse lung injury/fibrosis. FASN transgenic mice exposed to BLM exhibited attenuated lung inflammation and collagen deposition compared to controls. Our findings suggest that defects in FASN production may be associated with the pathogenesis of IPF, especially mitochondrial dysfunction, and augmentation of FASN in the lung may have therapeutic potential in preventing lung fibrosis.
Collapse
Affiliation(s)
- Hyesun Shin
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Shinhee Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Jisu Hong
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Ae-Rin Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Junehyuk Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Do-Jin Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - An-Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea
| | - Su Sie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-do, South Korea
| | - Sung Hwan Jeong
- Department of Internal Medicine, Gachon University of Medicine and Science, Gil Medical Center, Incheon, Korea
| | - Sung-Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Korea.
| |
Collapse
|
41
|
Prabhu J, Singh AP, Vanni S. An in silico osmotic pressure approach allows characterization of pressure-area isotherms of lipid monolayers at low molecular areas. SOFT MATTER 2023; 19:3377-3385. [PMID: 37102755 PMCID: PMC10170484 DOI: 10.1039/d2sm01419j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Surface pressure-area isotherms of lipid monolayers at the air-water interface provide essential information about the structure and mechanical behaviour of lipid membranes. These curves can be readily obtained through Langmuir trough measurements and, as such, have been collected for decades in the field of membrane biochemistry. However, it is still challenging to directly observe and understand nanoscopic features of monolayers through such experiments, and molecular dynamics (MD) simulations are generally used to provide a molecular view of such interfaces. In MD simulations, the surface pressure-area (Π-A) isotherms are generally computed using the Kirkwood-Irving formula, that relies on the evaluation of the pressure tensor. This approach, however, has intrinsic limitations when the molecular area in the monolayer is low (typically < 60 Å2 per lipid). Recently, an alternative method to compute Π-A isotherms of surfactants, based on the calculation of the three-dimensional osmotic pressure via the implementation of semipermeable barriers was proposed. In this work, we investigate the feasibility of this approach for long-chain surfactants such as phospholipids. We identify some discrepancies between the computed values and experimental results, and we propose a semi-empirical correction based on the molecular structure of the surfactants at the monolayer interface. To validate the potential of this new approach, we simulate several phosphatidylcholine and phosphatidylethanolamine lipids at various temperatures using all-atom and coarse-grained force fields, and we compute the corresponding Π-A isotherms. Our results show that the Π-A isotherms obtained using the new method are in very good agreement with experiments and far superior to the canonical pressure tensor-based method at low molecular areas. This corrected osmotic pressure method allows for accurate characterization of the molecular packing in monolayers in various physical phases.
Collapse
Affiliation(s)
- Janak Prabhu
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Akhil Pratap Singh
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
42
|
Wang S, Rao W, Hoffman A, Lin J, Li J, Lin T, Liew AA, Vincent M, Mertens TCJ, Karmouty-Quintana H, Crum CP, Metersky ML, Schwartz DA, Davies PJA, Stephan C, Jyothula SSK, Sheshadri A, Suarez EE, Huang HJ, Engelhardt JF, Dickey BF, Parekh KR, McKeon FD, Xian W. Cloning a profibrotic stem cell variant in idiopathic pulmonary fibrosis. Sci Transl Med 2023; 15:eabp9528. [PMID: 37099633 PMCID: PMC10794039 DOI: 10.1126/scitranslmed.abp9528] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 02/28/2023] [Indexed: 04/28/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and rapidly fatal interstitial lung disease marked by the replacement of lung alveoli with dense fibrotic matrices. Although the mechanisms initiating IPF remain unclear, rare and common alleles of genes expressed in lung epithelia, combined with aging, contribute to the risk for this condition. Consistently, single-cell RNA sequencing (scRNA-seq) studies have identified lung basal cell heterogeneity in IPF that might be pathogenic. We used single-cell cloning technologies to generate "libraries" of basal stem cells from the distal lungs of 16 patients with IPF and 10 controls. We identified a major stem cell variant that was distinguished from normal stem cells by its ability to transform normal lung fibroblasts into pathogenic myofibroblasts in vitro and to activate and recruit myofibroblasts in clonal xenografts. This profibrotic stem cell variant, which was shown to preexist in low quantities in normal and even fetal lungs, expressed a broad network of genes implicated in organ fibrosis and showed overlap in gene expression with abnormal epithelial signatures identified in previously published scRNA-seq studies of IPF. Drug screens highlighted specific vulnerabilities of this profibrotic variant to inhibitors of epidermal growth factor and mammalian target of rapamycin signaling as prospective therapeutic targets. This profibrotic stem cell variant in IPF was distinct from recently identified profibrotic stem cell variants in chronic obstructive pulmonary disease and may extend the notion that inappropriate accrual of minor and preexisting stem cell variants contributes to chronic lung conditions.
Collapse
Affiliation(s)
- Shan Wang
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Wei Rao
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Ashley Hoffman
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Jennifer Lin
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Justin Li
- AccuraScience, Johnston, IA 50131, USA
| | - Tao Lin
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Audrey-Ann Liew
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | | | - Tinne C. J. Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Christopher P. Crum
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Mark L. Metersky
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - David A. Schwartz
- Departments of Medicine and Microbiology and Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Clifford Stephan
- Texas A&M Health Institute of Biotechnology, Houston, TX 77030, USA
| | - Soma S. K. Jyothula
- Lung Transplant Center at Memorial Hermann-Texas Medical Center, Houston, TX 77030, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erik Eddie Suarez
- Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Howard J. Huang
- Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kalpaj R. Parekh
- Department of Surgery, Division of Cardiothoracic Surgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Frank D. McKeon
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Wa Xian
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| |
Collapse
|
43
|
Li D, Shen L, Zhang D, Wang X, Wang Q, Qin W, Gao Y, Li X. Ammonia-induced oxidative stress triggered proinflammatory response and apoptosis in pig lungs. J Environ Sci (China) 2023; 126:683-696. [PMID: 36503793 DOI: 10.1016/j.jes.2022.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/17/2023]
Abstract
Ammonia, a common toxic gas, is not only one of the main causes of haze, but also can enter respiratory tract and directly affect the health of humans and animals. Pig was used as an animal model for exploring the molecular mechanism and dose effect of ammonia toxicity to lung. In this study, the apoptosis of type II alveolar epithelial cells was observed in high ammonia exposure group using transmission electron microscopy. Gene and protein expression analysis using transcriptome sequencing and western blot showed that low ammonia exposure induced T-cell-involved proinflammatory response, but high ammonia exposure repressed the expression of DNA repair-related genes and affected ion transport. Moreover, high ammonia exposure significantly increased 8-hydroxy-2-deoxyguanosine (8-OHdG) level, meaning DNA oxidative damage occurred. In addition, both low and high ammonia exposure caused oxidative stress in pig lungs. Integrated analysis of transcriptome and metabolome revealed that the up-regulation of LDHB and ND2 took part in high ammonia exposure-affected pyruvate metabolism and oxidative phosphorylation progress, respectively. Inclusion, oxidative stress mediated ammonia-induced proinflammatory response and apoptosis of porcine lungs. These findings may provide new insights for understanding the ammonia toxicity to workers in livestock farms and chemical fertilizer plants.
Collapse
Affiliation(s)
- Daojie Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Shen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaotong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiankun Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Qin
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Gao
- College of Engineering, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
44
|
Yanagihara T, Zhou Q, Tsubouchi K, Revill S, Ayoub A, Gholiof M, Chong SG, Dvorkin-Gheva A, Ask K, Shi W, Kolb MR. Intrinsic BMP inhibitor Gremlin regulates alveolar epithelial type II cell proliferation and differentiation. Biochem Biophys Res Commun 2023; 656:53-62. [PMID: 36958255 DOI: 10.1016/j.bbrc.2023.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Type 1 alveolar epithelial cells (AT1s) and type 2 alveolar epithelial cells (AT2s) regulate the structural integrity and function of alveoli. AT1s mediate gas exchange, whereas AT2s serve multiple functions, including surfactant secretion and alveolar repair through proliferation and differentiation into AT1s as progenitors. However, mechanisms regulating AT2 proliferation and differentiation remain unclear. Here we demonstrate that Gremlin, an intrinsic inhibitor of bone morphogenetic protein (BMP), induces AT2 proliferation and differentiation. Transient overexpression of Gremlin in rat lungs by adenovirus vector delivery suppressed BMP signaling, induced proliferation of AT2s and the production of Bmp2, which in turn led to the recovery of BMP signaling and induced AT2 differentiation into AT1s. Bleomycin-induced lung injury upregulated Gremlin and showed a similar time course of biomarker expression comparable to the adenovirus model. TGF-β and IL-1β induced Gremlin expression in fibroblasts. Taken together, our findings implicate that Gremlin expression during lung injury leads to precisely timed inhibition of BMP signaling and activates AT2s, leading to alveolar repair.
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada; Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Quan Zhou
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kazuya Tsubouchi
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada; Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Spencer Revill
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Anmar Ayoub
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Mahsa Gholiof
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sy Giin Chong
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Wei Shi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Martin Rj Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
45
|
Borie R, Kannengiesser C, Antoniou K, Bonella F, Crestani B, Fabre A, Froidure A, Galvin L, Griese M, Grutters JC, Molina-Molina M, Poletti V, Prasse A, Renzoni E, van der Smagt J, van Moorsel CHM. European Respiratory Society statement on familial pulmonary fibrosis. Eur Respir J 2023; 61:13993003.01383-2022. [PMID: 36549714 DOI: 10.1183/13993003.01383-2022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Genetic predisposition to pulmonary fibrosis has been confirmed by the discovery of several gene mutations that cause pulmonary fibrosis. Although genetic sequencing of familial pulmonary fibrosis (FPF) cases is embedded in routine clinical practice in several countries, many centres have yet to incorporate genetic sequencing within interstitial lung disease (ILD) services and proper international consensus has not yet been established. An international and multidisciplinary expert Task Force (pulmonologists, geneticists, paediatrician, pathologist, genetic counsellor, patient representative and librarian) reviewed the literature between 1945 and 2022, and reached consensus for all of the following questions: 1) Which patients may benefit from genetic sequencing and clinical counselling? 2) What is known of the natural history of FPF? 3) Which genes are usually tested? 4) What is the evidence for telomere length measurement? 5) What is the role of common genetic variants (polymorphisms) in the diagnostic workup? 6) What are the optimal treatment options for FPF? 7) Which family members are eligible for genetic sequencing? 8) Which clinical screening and follow-up parameters may be considered in family members? Through a robust review of the literature, the Task Force offers a statement on genetic sequencing, clinical management and screening of patients with FPF and their relatives. This proposal may serve as a basis for a prospective evaluation and future international recommendations.
Collapse
Affiliation(s)
- Raphael Borie
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | | | - Katerina Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, University of Essen, European Reference Network (ERN)-LUNG, ILD Core Network, Essen, Germany
| | - Bruno Crestani
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | - Aurélie Fabre
- Department of Histopathology, St Vincent's University Hospital and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Antoine Froidure
- Pulmonology Department, Cliniques Universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Liam Galvin
- European Pulmonary Fibrosis Federation, Blackrock, Ireland
| | - Matthias Griese
- Dr von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Jan C Grutters
- ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands
- Division of Heart and Lungs, UMC Utrecht, Utrecht, The Netherlands
| | - Maria Molina-Molina
- Interstitial Lung Disease Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat (Barcelona), CIBERES, Barcelona, Spain
| | - Venerino Poletti
- Department of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
- Department of Experimental, Diagnostics and Speciality Medicine, University of Bologna, Bologna, Italy
| | - Antje Prasse
- Department of Pulmonology, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Fraunhofer ITEM, Hannover, Germany
| | - Elisabetta Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jasper van der Smagt
- Division of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
46
|
Tian Y, Duan C, Feng J, Liao J, Yang Y, Sun W. Roles of lipid metabolism and its regulatory mechanism in idiopathic pulmonary fibrosis: A review. Int J Biochem Cell Biol 2023; 155:106361. [PMID: 36592687 DOI: 10.1016/j.biocel.2022.106361] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. Several lung cell types, including alveolar epithelial cells and fibroblasts, have been implicated in the development and progression of fibrosis. However, the pathogenesis of idiopathic pulmonary fibrosis is still incompletely understood. The latest research has found that dysregulation of lipid metabolism plays an important role in idiopathic pulmonary fibrosis. The changes in the synthesis and activity of fatty acids, cholesterol and other lipids seriously affect the regenerative function of alveolar epithelial cells and promote the transformation of fibroblasts into myofibroblasts. Mitochondrial function is the key to regulating the metabolic needs of a variety of cells, including alveolar epithelial cells. Sirtuins located in mitochondria are essential to maintain mitochondrial function and cellular metabolic homeostasis. Sirtuins can maintain normal lipid metabolism by regulating respiratory enzyme activity, resisting oxidative stress, and protecting mitochondrial function. In this review, we aimed to discuss the difference between normal and idiopathic pulmonary fibrosis lungs in terms of lipid metabolism. Additionally, we highlight recent breakthroughs on the effect of abnormal lipid metabolism on idiopathic pulmonary fibrosis, including the effects of sirtuins. Idiopathic pulmonary fibrosis has its high mortality and limited therapeutic options; therefore, we believe that this review will help to develop a new therapeutic direction from the aspect of lipid metabolism in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yunchuan Tian
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunyan Duan
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jiayue Feng
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Jie Liao
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Yang Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
47
|
Lasky JA, Thannickal VJ. NOTCH-ing up Surface Tension in the Fibrotic Lung. Am J Respir Crit Care Med 2023; 207:235-236. [PMID: 36351003 PMCID: PMC9896643 DOI: 10.1164/rccm.202210-1901ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Joseph A Lasky
- School of Medicine Tulane University New Orleans, Louisiana
| | | |
Collapse
|
48
|
Wang X, Hou X, Zhao Y, Zhao R, Dai J, Dai H, Wang C. The early and late intervention effects of collagen-binding FGF2 on elastase-induced lung injury. Biomed Pharmacother 2023; 158:114147. [PMID: 36584430 DOI: 10.1016/j.biopha.2022.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) has high morbidity and mortality, with no effective treatment at present. Emphysema, a major component of COPD, is a leading cause of human death worldwide. Fibroblast growth factor 2 (FGF2) is implicated in the pathogenesis of pulmonary emphysema and may play an important role in the lung repair process after injury, but concerns remain with respect to its effectiveness. OBJECTIVE In the present work, we sought to determine how the timing (early and late intervention) of sustained-release FGF2 system administration impacted its effectiveness on a porcine pancreatic elastase (PPE)-induced lung injury mouse model. METHODS To examine the early intervention efficiency of collagen-binding FGF2 (CBD-FGF2), mice received intratracheally nebulized CBD-FGF2 with concurrent intratracheal injection of PPE. To explore the late intervention effect, CBD-FGF2 was intratracheally aerosolized after PPE administration, and lungs were collected after CBD-FGF2 treatment for subsequent analysis. RESULT In response to PPE, mice had significantly increased alveolar diameter, collagen deposition and expression of inflammatory factors and decreased lung function indices and expression of alveolar epithelium markers. Our results indicate that CBD-FGF2 administration was able to prevent and repair elastase-induced lung injury partly through the suppression of the inflammatory response and recovery of the alveolar epithelium. The early use of CBD-FGF2 for the prevention of PPE-induced emphysema showed better results than late therapeutic administration against established emphysema. CONCLUSION These data provide insight regarding the prospective role of a drug-based option (CBD-FGF2) for preventing and curing emphysema.
Collapse
Affiliation(s)
- Xin Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruiming Zhao
- Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.
| |
Collapse
|
49
|
Ding X, Pu Y, Tang M, Zhang T. Pulmonary hazard identifications of Graphene family nanomaterials: Adverse outcome pathways framework based on toxicity mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159329. [PMID: 36216050 DOI: 10.1016/j.scitotenv.2022.159329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Graphene-family nanomaterials (GFNs) are revolutionary new nanomaterials that have attracted significant attention in the field of nanomaterials, but the ensuing problems lie in the potential threats to public health and the ecosystem caused by these nanomaterials. From the perspective of GFN-related health risk assessments, this study reviews the current status of GFN-induced pathological lung events with a focus on the damage caused to different biological moieties (molecular, cellular, tissue, and organ) and the mechanistic relationships between different toxic endpoints. These multiple sites of damage were matched with existing adverse outcome pathways (AOPs) in an online knowledge base to obtain available molecular initiation events (MIEs), key events (KEs), and adverse outcomes (AOs). Among them, the MIEs were discussed in combination with the structure-activity relationship due to the correlation between toxicity and physical and chemical properties of GFNs. Based on the collection of information regarding MIEs, Kes, and AOs in addition to upstream and downstream causal extrapolation, the AOP framework for GFN-induced pulmonary toxicity was developed, highlighting the possible mechanisms of GFN-induced lung damage. This review intended to combine AOP with classic toxicological methods with a view to rapidly and accurately establishing a nanotoxicology infrastructure so as to contribute to public health risk assessment strategies through iteration from and animal models up to the population level.
Collapse
Affiliation(s)
- Xiaomeng Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
50
|
Nawawi YS, Soewondo W. A Case Report of Pulmonary Alveolar Microlithiasis: Focus on Radiologic Findings. AMERICAN JOURNAL OF CASE REPORTS 2023; 24:e938456. [PMID: 36609435 PMCID: PMC9832394 DOI: 10.12659/ajcr.938456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pulmonary alveolar microlithiasis (PAM) is an uncommon pulmonary disease characterized by deposition of microliths in the alveoli. In this report, we describe the first ever documented case from the Indonesian population of an adult patient who was diagnosed with PAM based on clinical and pathognomonic radiological findings. CASE REPORT A 57-year-old man with a 12-year history of progressive shortness of breath on exertion was admitted to our center. When the lungs were listened to, there were coarse crackles and wheezing during inspiration, and the vesicular sound was lower in all thoracic regions. Cardiac auscultation was unremarkable, with fingers having a clubbed drumstick appearance. Bronchoscopy revealed all patent branches of the bronchial tree. Unfortunately, the microliths were absent, and the histology findings from bronchoalveolar lavage and transbronchial lung biopsy were inconclusive. Radiologic features of a chest radiograph show the characteristic finding of multiple diffuse micronodules with a high density in both lungs. A high-resolution computed tomography (HRCT) scan corroborated the typical findings of extensive intraparenchymal calcified micronodules with diffuse ground-glass attenuation areas. Black pleural line signs were also seen. CONCLUSIONS PAM is a rare disease with a chronic clinical course and varying manifestations according to phase, but progressive deterioration may result in a poor prognosis. It is particularly important for clinicians to be able to narrow down the differential diagnosis of multiple diffuse micronodules of the lungs. When a non-invasive method of diagnosis is preferred, chest X-rays and, even better, HRCT should be used to find the characteristic features of alveolar microlithiasis.
Collapse
|