1
|
Tamilselvi SM, Brindhavani PM, Thiyagarajan C, Uthandi S. Reclamation of Calcareous Sodic Soil by Brevibacterium sp. SOTI06, a Calcite Dissolving Bacteria. Curr Microbiol 2025; 82:230. [PMID: 40180652 DOI: 10.1007/s00284-025-04205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
Soil degradation due to sodicity is a major constraint to agricultural development in arid and semi-arid regions. The accumulation of exchangeable Na+ ions affects soil physicochemical properties, which subsequently increases pH, thus reducing crop yield and nutrient availability. Several practices have been followed for revitalizing salt-affected soils, such as the addition of inorganic or organic amendments. Since most of these soils are calcareous (CaCO3) in nature, they can serve as a cationic source to release Ca2+ to replace the Na+ from the clay-complex. Though CaCO3 is poorly soluble, dissolution can be easily achieved by calcite dissolving bacteria. The present study aimed to evaluate the efficiency of Brevibacterium sp. SOTI06, in reclaiming calcareous sodic soil, along with organic and inorganic inputs through a soil incubation study. The reduction in pH, Na+, ESP (Exchangeable sodium percent), and free CaCO3 during the incubation period confirms the efficiency of amendments. The pH was drastically reduced from 9.10 to 8.20 in gypsum-applied soils. The combined effect of bacterium and press mud reduced higher rates of CaCO3 in soil (16.6 to 14.5%), with a rise of Ca2+ ions (23.5 to 28.7 meq 100 g soil-1). The mean calcite dissolution was higher in bioinoculant and gypsum-applied soils (9.04%). The SEM (Scanning Electron Microscopy) images confirmed the colonization and calcite dissolution potential of Brevibacterium sp. SOTI06 by pit formation in calcite stones. Hence, this study revealed that the combined application of bioinoculants with organic and inorganic amendments can effectively reclaim calcareous sodic soils.
Collapse
Affiliation(s)
- S M Tamilselvi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - P M Brindhavani
- Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Chitdeshwari Thiyagarajan
- Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| |
Collapse
|
2
|
Catanzaro I, Gorbushina AA, Onofri S, Schumacher J. 1,8-Dihydroxynaphthalene (DHN) melanin provides unequal protection to black fungi Knufia petricola and Cryomyces antarcticus from UV-B radiation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70043. [PMID: 39548356 PMCID: PMC11567843 DOI: 10.1111/1758-2229.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Black fungi on rock surfaces endure a spectrum of abiotic stresses, including UV radiation. Their ability to tolerate extreme conditions is attributed to the convergent evolution of adaptive traits, primarily highly melanized cell walls. However, studies on fungal melanins have not provided univocal results on their photoprotective functions. Here, we investigated whether the black fungi Knufia petricola and Cryomyces antarcticus only use DHN melanin or may employ alternative mechanisms to counteract UV-induced damage. For this, melanized wild types and non-melanized Δpks1 mutants were exposed to different doses of UV-B (312 nm) followed by incubation in constant darkness or in light-dark cycles to allow light-dependent DNA repair by photolyases (photoreactivation). C. antarcticus could tolerate higher UV-B doses but was sensitive to white light, whereas K. petricola showed the opposite trend. DHN melanin provided UV-B protection in C. antarcticus, whereas the same pigment or even carotenoids proved ineffective in K. petricola. Both fungi demonstrated functional photoreactivation in agreement with the presence of photolyase-encoding genes. Our findings reveal that although the adaptive trait of DHN melanization commonly occurs across black fungi, it is not equally functional and that there are species-specific adaptations towards either UV-induced lesion avoidance or repair strategies.
Collapse
Affiliation(s)
- Ilaria Catanzaro
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Università degli Studi della TusciaViterboItaly
| | - Anna A. Gorbushina
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Freie Universität BerlinGermany
| | | | - Julia Schumacher
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Freie Universität BerlinGermany
| |
Collapse
|
3
|
Tenore A, Russo F, Jacob J, Grattepanche JD, Buttaro B, Klapper I. A Mathematical Model of Diel Activity and Long Time Survival in Phototrophic Mixed-Species Subaerial Biofilms. Bull Math Biol 2024; 86:123. [PMID: 39196435 PMCID: PMC11358337 DOI: 10.1007/s11538-024-01348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Subaerial biofilms (SAB) are intricate microbial communities living on terrestrial surfaces, of interest in a variety of contexts including cultural heritage preservation, microbial ecology, biogeochemical cycling, and biotechnology. Here we propose a mathematical model aimed at better understanding the interplay between cyanobacteria and heterotrophic bacteria, common microbial SAB constituents, and their mutual dependence on local environmental conditions. SABs are modeled as thin mixed biofilm-liquid water layers sitting on stone. A system of ordinary differential equations regulates the dynamics of key SAB components: cyanobacteria, heterotrophs, polysaccharides and decayed biomass, as well as cellular levels of organic carbon, nitrogen and energy. These components are interconnected through a network of energetically dominant metabolic pathways, modeled with limitation terms reflecting the impact of biotic and abiotic factors. Daily cylces of temperature, humidity, and light intensity are considered as input model variables that regulate microbial activity by influencing water availability and metabolic kinetics. Relevant physico-chemical processes, including pH regulation, further contribute to a description of the SAB ecology. Numerical simulations explore the dynamics of SABs in a real-world context, revealing distinct daily activity periods shaped by water activity and light availability, as well as longer time scale survivability conditions. Results also suggest that heterotrophs could play a substantial role in decomposing non-volatile carbon compounds and regulating pH, thus influencing the overall composition and stability of the biofilm.
Collapse
Affiliation(s)
- A Tenore
- Department of Mathematics and Applications, University of Naples Federico II, Naples, Italy.
| | - F Russo
- Department of Mathematics and Applications, University of Naples Federico II, Naples, Italy
| | - J Jacob
- U.S. National Park Service, North Atlantic-Appalachian Region, Historic Architecture, Conservation, and Engineering Program, New York, USA
| | | | - B Buttaro
- Sol Sherry Thrombosis Research Center, Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - I Klapper
- Department of Mathematics, Temple University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Erdmann EA, Brandhorst AKM, Gorbushina AA, Schumacher J. The Tet-on system for controllable gene expression in the rock-inhabiting black fungus Knufia petricola. Extremophiles 2024; 28:38. [PMID: 39105933 PMCID: PMC11303440 DOI: 10.1007/s00792-024-01354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Knufia petricola is a black fungus that colonizes sun-exposed surfaces as extreme and oligotrophic environments. As ecologically important heterotrophs and biofilm-formers on human-made surfaces, black fungi form one of the most resistant groups of biodeteriorating organisms. Due to its moderate growth rate in axenic culture and available protocols for its transformation and CRISPR/Cas9-mediated genome editing, K. petricola is used for studying the morpho-physiological adaptations shared by extremophilic and extremotolerant black fungi. In this study, the bacteria-derived tetracycline (TET)-dependent promoter (Tet-on) system was implemented to enable controllable gene expression in K. petricola. The functionality i.e., the dose-dependent inducibility of TET-regulated constructs was investigated by using GFP fluorescence, pigment synthesis (melanin and carotenoids) and restored uracil prototrophy as reporters. The newly generated cloning vectors containing the Tet-on construct, and the validated sites in the K. petricola genome for color-selectable or neutral insertion of expression constructs complete the reverse genetics toolbox. One or multiple genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides, e.g., for localizing proteins and protein complexes in the K. petricola cell or for using K. petricola as host for the expression of heterologous genes.
Collapse
Affiliation(s)
- Eileen A Erdmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Antonia K M Brandhorst
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Anna A Gorbushina
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Julia Schumacher
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany.
- Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Lai Z, Liu Z, Zhao Y, Qin S, Zhang W, Lang T, Zhu Z, Sun Y. Distinct microbial communities under different rock-associated microhabitats in the Qaidam Desert. ENVIRONMENTAL RESEARCH 2024; 250:118462. [PMID: 38367835 DOI: 10.1016/j.envres.2024.118462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Hypolithic communities, which occupy highly specialised microhabitats beneath translucent rocks in desert and arid environments, have assembly mechanisms and ecosystem functions are not fully understood. Thus, in this study, we aimed to examine the microbial community structure, assembly, and function of light-accessible (under quartz, calcite, and hypolithic lichen-dominated biocrusts) and light-inaccessible microhabitats (under basalt and adjacent soil) in the Qaidam Desert, China. The results showed that hypolithic communities have different characteristics compared with microbial communities of light-inaccessible microhabitats. Notably, hypolithic bacterial communities were dominated by Cyanobacteria, whereas light-inaccessible microhabitats showed a predominance of Bacteroidetes and Proteobacteria. Although the class Dothideomycetes (phylum: Ascomycota) dominated the fungal communities between the two microhabitat types, Sordariomycetes were more prevalent in light-accessible microhabitats. Network and robustness analyses showed that hypolithic communities were less complex and more resilient than microbial communities in light-inaccessible microhabitats. Our results indicated that deterministic processes, specifically homogeneous selection, govern the establishment of bacterial and fungal communities in light-accessible and light-inaccessible microhabitats. The hypolithic community showed an increased frequency of phylotypes that exhibited increased tolerance to functional stress response pathways. In contrast to light-inaccessible microhabitats, light-accessible microhabitats showed a slight decrease and a notable increase in the prevalence of carbon fixation pathways in prokaryotes and carbon fixation in photosynthetic organisms, respectively. For fungi, light-accessible microhabitats enriched saprotrophic and ectomycorrhizal groups. These results highlight the importance of complex and diverse microhabitats in desert regions, which serve as vital shelters for microbes. Combining future research on interactions between hypolithic communities and environments may enhance our current understanding of their pivotal roles in sustaining desert ecosystems. This knowledge then be applied to design and implement informed conservation efforts to preserve these unique rock-associated microhabitats in desert ecosystems.
Collapse
Affiliation(s)
- Zongrui Lai
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Zhen Liu
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Tao Lang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China; College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China.
| | - Zhengjie Zhu
- College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China
| | - Yanfei Sun
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
6
|
Gadd GM, Fomina M, Pinzari F. Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiol Mol Biol Rev 2024; 88:e0020022. [PMID: 38179930 PMCID: PMC10966957 DOI: 10.1128/mmbr.00200-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 01/06/2024] Open
Abstract
SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Reserve “Sophia of Kyiv”, Kyiv, Ukraine
| | - Flavia Pinzari
- Institute for Biological Systems (ISB), Council of National Research of Italy (CNR), Monterotondo (RM), Italy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
7
|
Sanjurjo-Sánchez J, Alves C, Freire-Lista DM. Biomineral deposits and coatings on stone monuments as biodeterioration fingerprints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168846. [PMID: 38036142 DOI: 10.1016/j.scitotenv.2023.168846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Biominerals deposition processes, also called biomineralisation, are intimately related to biodeterioration on stone surfaces. They include complex processes not always completely well understood. The study of biominerals implies the identification of organisms, their molecular mechanisms, and organism/rock/atmosphere interactions. Sampling restrictions of monument stones difficult the biominerals study and the in situ demonstrating of biodeterioration processes. Multidisciplinary works are required to understand the whole process. Thus, studies in heritage buildings have taken advantage of previous knowledge acquired thanks to laboratory experiments, investigations carried out on rock outcrops and within caves from some years ago. With the extrapolation of such knowledge to heritage buildings and the advances in laboratory techniques, there has been a huge increase of knowledge regarding biomineralisation and biodeterioration processes in stone monuments during the last 20 years. These advances have opened new debates about the implications on conservation interventions, and the organism's role in stone conservation and decay. This is a review of the existing studies of biominerals formation, biodeterioration on laboratory experiments, rocks, caves, and their application to building stones of monuments.
Collapse
Affiliation(s)
| | - Carlos Alves
- LandS/Lab2PT-Landscapes, Heritage and Territory Laboratory (FCT-UIDB/04509/2020) and Earth Sciences Department/School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - David M Freire-Lista
- Universidade de Trás-os-Montes e Alto Douro, UTAD, Escola de Ciências da Vida e do Ambiente, Quinta dos Prados, 5000-801 Vila Real, Portugal; Centro de Geociências, Universidade de Coimbra, Portugal
| |
Collapse
|
8
|
Cattò C, Mu A, Moreau JW, Wang N, Cappitelli F, Strugnell R. Biofilm colonization of stone materials from an Australian outdoor sculpture: Importance of geometry and exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117948. [PMID: 37080094 DOI: 10.1016/j.jenvman.2023.117948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
The safeguarding of Australian outdoor stone heritage is currently limited by a lack of information concerning mechanisms responsible for the degradation of the built heritage. In this study, the bacterial community colonizing the stone surface of an outdoor sculpture located at the Church of St. John the Evangelist in Melbourne was analysed, providing an overview of the patterns of microbial composition associated with stone in an anthropogenic context. Illumina MiSeq 16S rRNA gene sequencing together with confocal laser microscope investigations highlighted the bacterial community was composed of both phototrophic and chemotrophic microorganisms characteristic of stone and soil, and typical of arid, salty and urban environments. Cardinal exposure, position and surface geometry were the most important factors in determining the structure of the microbial community. The North-West exposed areas on the top of the sculpture with high light exposure gave back the highest number of sequences and were dominated by Cyanobacteria. The South and West facing in middle and lower parts of the sculpture received significantly lower levels of radiation and were dominated by Actinobacteria. Proteobacteria were observed as widespread on the sculpture. This pioneer research provided an in-depth investigation of the microbial community structure on a deteriorated artistic stone in the Australian continent and provides information for the identification of deterioration-associated microorganisms and/or bacteria beneficial for stone preservation.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università Degli Studi di Milano, Milano, Italy; Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - Andre Mu
- Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia; Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - John W Moreau
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom; School of Geographical, Atmospheric and Earth Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Nancy Wang
- Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Richard Strugnell
- Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Pinna D, Mazzotti V, Gualtieri S, Voyron S, Andreotti A, Favero-Longo SE. Damaging and protective interactions of lichens and biofilms on ceramic dolia and sculptures of the International Museum of Ceramics, Faenza, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162607. [PMID: 36906030 DOI: 10.1016/j.scitotenv.2023.162607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 05/06/2023]
Abstract
Although ceramic objects are an important part of the worldwide cultural heritage, few investigations on the effects of lithobiontic growth on their outdoor conservation are available in the literature. Many aspects of the interaction between lithobionts and stones are still unknown or strongly debated, as in the case of equilibria between biodeterioration and bioprotection. This paper describes research on the colonization by lithobionts on outdoor ceramic Roman dolia and contemporary sculptures of the International Museum of Ceramics, Faenza (Italy). Accordingly, the study i) characterized the mineralogical composition and petrographic structure of the artworks, ii) performed porosimetric measurements, iii) identified lichen and microbial diversity, iv) elucidated the interaction of the lithobionts with the substrates. Moreover, v) the measurements of variability in stone surface hardness and in water absorption of colonized and uncolonized areas were collected to assess damaging and/or protective effects by the lithobionts. The investigation showed how the biological colonization depends on physical properties of the substrates as well on climatic conditions of environments in which the ceramic artworks are located. The results indicated that lichens Protoparmeliopsis muralis and Lecanora campestris may have a bioprotective effect on ceramics with high total porosity and pores with very small diameters, as they poorly penetrate the substrate, do not negatively affect surface hardness and are able to reduce the amount of absorbed water limiting the water ingress. By contrast, Verrucaria nigrescens, here widely found in association with rock-dwelling fungi, deeply penetrate terracotta causing substrate disaggregation, with negative consequences on surface hardness and water absorption. Accordingly, a careful evaluation of the negative and positive effects of lichens must be carried out before deciding their removal. Regarding biofilms, their barrier efficacy is related to their thickness and composition. Even if thin, they can impact negatively on substrates enhancing the water absorption in comparison to uncolonized parts.
Collapse
Affiliation(s)
- Daniela Pinna
- Chemistry Department, University of Bologna, Ravenna Campus, via Guaccimanni 42, Ravenna, Italy.
| | - Valentina Mazzotti
- Museo Internazionale delle Ceramiche in Faenza, Viale Baccarini 19, 48018 Faenza, RA, Italy.
| | - Sabrina Gualtieri
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018 Faenza, RA, Italy.
| | - Samuele Voyron
- Dipartimento di Scienze della Vita e Biologia dei Sistemi (Life Sciences and Systems Biology), viale Mattioli 25, 10125 Torino, Italy.
| | - Alessia Andreotti
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, Pisa, Italy.
| | - Sergio Enrico Favero-Longo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi (Life Sciences and Systems Biology), viale Mattioli 25, 10125 Torino, Italy.
| |
Collapse
|
10
|
Chen J, Zhao Q, Li F, Zhao X, Wang Y, Zhang L, Liu J, Yan L, Yu L. Nutrient availability and acid erosion determine the early colonization of limestone by lithobiontic microorganisms. Front Microbiol 2023; 14:1194871. [PMID: 37362915 PMCID: PMC10289080 DOI: 10.3389/fmicb.2023.1194871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Microorganisms, including the pioneer microorganisms that play a role in the early colonization of rock, are extremely important biological factors in rock deterioration. The interaction of microorganisms with limestone leads to biodeterioration, accelerates soil formation, and plays an important role in the restoration of degraded ecosystems that cannot be ignored. However, the process of microbial colonization of sterile limestone in the early stages of ecological succession is unclear, as are the factors that affect the colonization. Acid erosion (both organic and inorganic), nutrient availability, and water availability are thought to be key factors affecting the colonization of lithobiontic microorganisms. Methods In this study, organic acid (Oa), inorganic acid (Ia), inorganic acid + nutrient solution (Ia + Nut), nutrient solution (Nut), and rain shade (RS) treatments were applied to sterilized limestone, and the interaction between microorganisms and limestone was investigated using high-throughput sequencing techniques to assess the microorganisms on the limestone after 60 days of natural placement. Results The results were as follows: (1) The abundance of fungi was higher than that of bacteria in the early colonization of limestone, and the dominant bacterial phyla were Proteobacteria, Bacteroidota, and Actinobacteriota, while the dominant fungal phyla were Ascomycota, Basidiomycota, and Chytridiomycota. (2) Acid erosion and nutrient availability shaped different microbial communities in different ways, with bacteria being more sensitive to the environmental stresses than fungi, and the higher the acidity (Ia and Oa)/nutrient concentration, the greater the differences in microbial communities compared to the control (based on principal coordinate analysis). (3) Fungal communities were highly resistant to environmental stress and competitive, while bacterial communities were highly resilient to environmental stress and stable. Discussion In conclusion, our results indicate that limestone exhibits high bioreceptivity and can be rapidly colonized by microorganisms within 60 days in its natural environment, and both nutrient availability and acid erosion of limestone are important determinants of early microbial colonization.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Qing Zhao
- School of Mathematical Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Fangbing Li
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Xiangwei Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Yang Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Limin Zhang
- Institute of Guizhou Mountain Resources, Guizhou Academy of Sciences, Guiyang, Guizhou, China
| | - Jinan Liu
- Garden Greening Center of Logistics Management Office, Guizhou University, Guiyang, Guizhou, China
| | - Lingbin Yan
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Lifei Yu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
11
|
Vimercati L, Bueno de Mesquita CP, Johnson BW, Mineart D, DeForce E, Vimercati Molano Y, Ducklow H, Schmidt SK. Dynamic trophic shifts in bacterial and eukaryotic communities during the first 30 years of microbial succession following retreat of an Antarctic glacier. FEMS Microbiol Ecol 2022; 98:6762214. [PMID: 36251461 DOI: 10.1093/femsec/fiac122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 01/21/2023] Open
Abstract
We examined microbial succession along a glacier forefront in the Antarctic Peninsula representing ∼30 years of deglaciation to contrast bacterial and eukaryotic successional dynamics and abiotic drivers of community assembly using sequencing and soil properties. Microbial communities changed most rapidly early along the chronosequence, and co-occurrence network analysis showed the most complex topology at the earliest stage. Initial microbial communities were dominated by microorganisms derived from the glacial environment, whereas later stages hosted a mixed community of taxa associated with soils. Eukaryotes became increasingly dominated by Cercozoa, particularly Vampyrellidae, indicating a previously unappreciated role for cercozoan predators during early stages of primary succession. Chlorophytes and Charophytes (rather than cyanobacteria) were the dominant primary producers and there was a spatio-temporal sequence in which major groups became abundant succeeding from simple ice Chlorophytes to Ochrophytes and Bryophytes. Time since deglaciation and pH were the main abiotic drivers structuring both bacterial and eukaryotic communities. Determinism was the dominant assembly mechanism for Bacteria, while the balance between stochastic/deterministic processes in eukaryotes varied along the distance from the glacier front. This study provides new insights into the unexpected dynamic changes and interactions across multiple trophic groups during primary succession in a rapidly changing polar ecosystem.
Collapse
Affiliation(s)
- Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, UCB 334, 1900 Pleasant St, Boulder, CO 80309, United States
| | - Clifton P Bueno de Mesquita
- DOE Joint Genome Institute Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Ben W Johnson
- Department of Geological and Atmospheric Sciences 253 Science Hall 2237 Osborn Drive Ames, Iowa 50011-3212, United States
| | - Dana Mineart
- Department of Geological and Atmospheric Sciences 253 Science Hall 2237 Osborn Drive Ames, Iowa 50011-3212, United States
| | - Emelia DeForce
- Integrative Oceanography Division Scripps Institution of Oceanography 9500 Gilman Drive La Jolla, CA 92093 5, United States
| | - Ylenia Vimercati Molano
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, UCB 334, 1900 Pleasant St, Boulder, CO 80309, United States
| | - Hugh Ducklow
- Lamont-Doherty Earth Observatory P.O. Box 1000 61 Route 9W Palisades, NY 10964-1000, United States
| | - Steven K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, UCB 334, 1900 Pleasant St, Boulder, CO 80309, United States
| |
Collapse
|
12
|
Pavlović J, Bosch-Roig P, Rusková M, Planý M, Pangallo D, Sanmartín P. Long-amplicon MinION-based sequencing study in a salt-contaminated twelfth century granite-built chapel. Appl Microbiol Biotechnol 2022; 106:4297-4314. [PMID: 35596787 PMCID: PMC9200699 DOI: 10.1007/s00253-022-11961-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
The irregular damp dark staining on the stonework of a salt-contaminated twelfth century granite-built chapel is thought to be related to a non-homogeneous distribution of salts and microbial communities. To enhance understanding of the role of microorganisms in the presence of salt and damp stains, we determined the salt content and identified the microbial ecosystem in several paving slabs and inner wall slabs (untreated and previously bio-desalinated) and in the exterior surrounding soil. Soluble salt analysis and culture-dependent approaches combined with archaeal and bacterial 16S rRNA and fungal ITS fragment as well as with the functional genes nirK, dsr, and soxB long-amplicon MinION-based sequencing were performed. State-of-the-art technology was used for microbial identification, providing information about the microbial diversity and phylogenetic groups present and enabling us to gain some insight into the biological cycles occurring in the community key genes involved in the different geomicrobiological cycles. A well-defined relationship between microbial data and soluble salts was identified, suggesting that poorly soluble salts (CaSO4) could fill the pores in the stone and lead to condensation and dissolution of highly soluble salts (Ca(NO3)2 and Mg(NO3)2) in the thin layer of water formed on the stonework. By contrast, no direct relationship between the damp staining and the salt content or related microbiota was established. Further analysis regarding organic matter and recalcitrant elements in the stonework should be carried out. KEY POINTS : • Poorly (CaSO4) and highly (Ca(NO3)2, Mg(NO3)2) soluble salts were detected • Halophilic and mineral weathering microorganisms reveal ecological impacts of salts • Microbial communities involved in nitrate and sulfate cycles were detected.
Collapse
Affiliation(s)
- Jelena Pavlović
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
| | - Pilar Bosch-Roig
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Magdalena Rusková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
| | - Matej Planý
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
- Caravella, s.r.o., Tupolevova 2, 851 01, Bratislava, Slovakia
| | - Patricia Sanmartín
- Departamento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Erdmann EA, Nitsche S, Gorbushina AA, Schumacher J. Genetic Engineering of the Rock Inhabitant Knufia petricola Provides Insight Into the Biology of Extremotolerant Black Fungi. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:862429. [PMID: 37746170 PMCID: PMC10512386 DOI: 10.3389/ffunb.2022.862429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 09/26/2023]
Abstract
Black microcolonial fungi (Ascomycetes from Arthonio-, Dothideo-, and Eurotiomycetes) are stress-tolerant and persistent dwellers of natural and anthropogenic extreme habitats. They exhibit slow yeast-like or meristematic growth, do not form specialized reproduction structures and accumulate the black pigment 1,8-dihydroxynaphthalene (DHN) melanin in the multilayered cell walls. To understand how black fungi live, survive, colonize mineral substrates, and interact with phototrophs genetic methods are needed to test these functions and interactions. We chose the rock inhabitant Knufia petricola of the Chaetothyriales as a model for developing methods for genetic manipulation. Here, we report on the expansion of the genetic toolkit by more efficient multiplex CRISPR/Cas9 using a plasmid-based system for expression of Cas9 and multiple sgRNAs and the implementation of the three resistance selection markers genR (geneticin/nptII), baR (glufosinate/bar), and suR (chlorimuron ethyl/sur). The targeted integration of expression constructs by replacement of essential genes for pigment synthesis allows for an additional color screening of the transformants. The black-pink screening due to the elimination of pks1 (melanin) was applied for promoter studies using GFP fluorescence as reporter. The black-white screening due to the concurrent elimination of pks1 and phs1 (carotenoids) allows to identify transformants that contain the two expression constructs for co-localization or bimolecular fluorescence complementation (BiFC) studies. The co-localization and interaction of the two K. petricola White Collar orthologs were demonstrated. Two intergenic regions (igr1, igr2) were identified in which expression constructs can be inserted without causing obvious phenotypes. Plasmids of the pNXR-XXX series and new compatible entry plasmids were used for fast and easy generation of expression constructs and are suitable for a broad implementation in other fungi. This variety of genetic tools is opening a completely new perspective for mechanistic and very detailed study of expression, functioning and regulation of the genes/proteins encoded by the genomes of black fungi.
Collapse
Affiliation(s)
- Eileen A. Erdmann
- Department of Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Sarah Nitsche
- Department of Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Anna A. Gorbushina
- Department of Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Julia Schumacher
- Department of Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
14
|
Liu B, Fu R, Wu B, Liu X, Xiang M. Rock-inhabiting fungi: terminology, diversity, evolution and adaptation mechanisms. Mycology 2022; 13:1-31. [PMID: 35186410 PMCID: PMC8856086 DOI: 10.1080/21501203.2021.2002452] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rock-inhabiting fungi (RIF) constitute an ecological group associated with terrestrial rocks. This association is generally restricted to the persistent colonisation of rocks and peculiar morphological features based on melanisation and slow growth, which endow RIF with significance in eukaryotic biology, special status in ecology, and exotic potential in biotechnology. There is a need to achieve a better understanding of the hidden biodiversity, antistress biology, origin and convergent evolution of RIF, which will facilitate cultural relic preservation, exploitation of the biogeochemical cycle of rock elements and biotechnology applications. This review focuses on summarising the current knowledge of rock-inhabiting fungi, with particular reference to terminology, biodiversity and geographic distribution, origin and evolution, and stress adaptation mechanisms. We especially teased out the definition through summing up the terms related to rock-inhabting fungi, and also provided a checklist of rock-inhabiting fungal taxa recorded following updated classification schemes.
Collapse
Affiliation(s)
- Bingjie Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Fu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
He J, Zhang N, Muhammad A, Shen X, Sun C, Li Q, Hu Y, Shao Y. From surviving to thriving, the assembly processes of microbial communities in stone biodeterioration: A case study of the West Lake UNESCO World Heritage area in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150395. [PMID: 34818768 DOI: 10.1016/j.scitotenv.2021.150395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 05/11/2023]
Abstract
Serious concerns regarding stone biodeterioration have been raised due to the loss of aesthetic value and hidden dangers in stone cultural heritages and buildings. Stone biodeterioration involves a complex ecological interplay among organisms, however, the ecological mechanisms (deterministic or stochastic processes) that determine the microbial community on stone remain poorly understood. Here, using both amplicon and shotgun metagenomic sequencing approaches, we comprehensively investigated the biodiversity, assembly, and function of communities (including prokaryotes, fungi, microfauna, and plants) on various types of deteriorating limestone across different habitats in Feilaifeng. By generalizing classic ecological models to stone habitats, we further uncovered and quantified the mechanisms underlying microbial community assembly processes and microbial interactions within the biodeteriorated limestone. Community profiling revealed stable ecosystem functional potential despite high taxonomic variation across different biodeterioration types, suggesting non-random community assembly. Increased niche differentiation occurred in prokaryotes and fungi but not in microfauna and plant during biodeterioration. Certain microbial groups such as nitrifying archaea and bacteria showed wider niche breadth and likely contributing to the initiation, succession and expansion of stone biodeterioration. Consistently, prokaryotes were more strongly structured by selection-based deterministic processes, while micro-eukaryotes were more influenced by dispersal and drift-based stochastic processes. Importantly, microbial coexistence maintains network robustness within stone microbiotas, highlighting mutual cooperation among functional microorganisms. These results provide new insights into microbial community assembly mechanisms in stone ecosystems and may aid in the sustainable conservation of stone materials of interest.
Collapse
Affiliation(s)
- Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Qiang Li
- Laboratory of Cultural Relics Conservation Materials, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yulan Hu
- School of Art and Archaeology, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, China.
| |
Collapse
|
16
|
Slow-growing fungi belonging to the unnamed lineage in Chaetothyriomycetidae form hyphal coils in vital ericaceous rhizodermal cells in vitro. Fungal Biol 2021; 125:1026-1035. [PMID: 34776230 DOI: 10.1016/j.funbio.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
The diversity and functionality of ericoid mycorrhizal (ErM) fungi are still being understudied. Members of Chaetothyriomycetidae evolved a specific lifestyle of inhabiting extreme, poor, or toxic environments. Some taxa in this subclass, especially in Chaetothyriales, are also putative ErM taxa, but their mycorrhizal ability is mostly unknown because the members are generally hard to isolate from roots. This study herein focused on eight root isolates and provided their phylogeny and morphology of root colonization. Phylogenetic analysis based on rRNA sequences clarified that the isolated strains were not classified into Chaetothyriales, but in an unnamed lineage in Chaetothyriomycetidae. This lineage also contains rock isolates, bryosymbionts, and a resinicolous species as well as various environmental sequences obtained from soil/root samples. All strains grew extremely slow by mycelia on cornmeal or malt extract agar (2.9-8.5 mm/month) and formed hyphal coils in vital rhizodermal cells of sterile blueberry seedlings in vitro. This study illustrated the presence of a novel putative ErM lineage in Chaetothyriomycetidae.
Collapse
|
17
|
Al-Atrash MK, Khadur ZK, Khadim AA. Soil yeast abundance and diversity assessment in a hot climatic region, semi-arid ecosystem. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:418-424. [PMID: 34540181 PMCID: PMC8416586 DOI: 10.18502/ijm.v13i3.6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives Yeasts are an important portion of microbial communities of soil due to their bioactivity for ecosystem safety. Soil yeast abundance and diversity are likely to be affected under harsh environmental and climatic conditions. In Iraq, human activity and climatic changes especially high temperature which may alter microbial communities in soil. Very little is known about yeast abundance and diversity in a hot climatic region. Materials and Methods By PCR technique, soil yeast abundance and diversity were investigated under extreme environmental and climatic conditions, as well as the effects of soil properties and vegetation cover in semi-arid lands. Results In all, 126 yeast strains were isolated and identified as belonging to 13 genera and 26 known species. The maximum quantity of yeast was 0.8 × 102 CFU g-1 of soil, with significantly varied in abundance and diversity depending on soil properties and presence of vegetation. Conclusion The results show that soil yeast abundance in these regions was significantly decreased. However, semi-arid lands are still rich in yeast diversity, and many species have adapted to survive in such conditions.
Collapse
Affiliation(s)
| | - Zwida K Khadur
- Department of Nursing, Baquba Technical Institute, Middle Technical University, Baghdad, Iraq
| | - Anwar A Khadim
- Department of Nursing, Baquba Technical Institute, Middle Technical University, Baghdad, Iraq
| |
Collapse
|
18
|
Sequence data from isolated lichen-associated melanized fungi enhance delimitation of two new lineages within Chaetothyriomycetidae. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01706-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractLichen thalli provide a long-lived and stable habitat for colonization by a wide range of microorganisms. Increased interest in these lichen-associated microbial communities has revealed an impressive diversity of fungi, including several novel lineages which still await formal taxonomic recognition. Among these, members of the Eurotiomycetes and Dothideomycetes usually occur asymptomatically in the lichen thalli, even if they share ancestry with fungi that may be parasitic on their host. Mycelia of the isolates are characterized by melanized cell walls and the fungi display exclusively asexual propagation. Their taxonomic placement requires, therefore, the use of DNA sequence data. Here, we consider recently published sequence data from lichen-associated fungi and characterize and formally describe two new, individually monophyletic lineages at family, genus, and species levels. The Pleostigmataceae fam. nov. and Melanina gen. nov. both comprise rock-inhabiting fungi that associate with epilithic, crust-forming lichens in subalpine habitats. The phylogenetic placement and the monophyly of Pleostigmataceae lack statistical support, but the family was resolved as sister to the order Verrucariales. This family comprises the species Pleostigma alpinum sp. nov., P. frigidum sp. nov., P. jungermannicola, and P. lichenophilum sp. nov. The placement of the genus Melanina is supported as a lineage within the Chaetothyriales. To date, this genus comprises the single species M. gunde-cimermaniae sp. nov. and forms a sister group to a large lineage including Herpotrichiellaceae, Chaetothyriaceae, Cyphellophoraceae, and Trichomeriaceae. The new phylogenetic analysis of the subclass Chaetothyiomycetidae provides new insight into genus and family level delimitation and classification of this ecologically diverse group of fungi.
Collapse
|
19
|
Etesami H, Jeong BR, Glick BR. Contribution of Arbuscular Mycorrhizal Fungi, Phosphate-Solubilizing Bacteria, and Silicon to P Uptake by Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:699618. [PMID: 34276750 PMCID: PMC8280758 DOI: 10.3389/fpls.2021.699618] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 05/22/2023]
Abstract
Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21+ Program), Graduate School, Gyeongsang National University, Jinju, South Korea
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
20
|
Role of Exposure on the Microbial Consortiums on Historical Rural Granite Buildings. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Local granite has been used throughout history in Galicia (NW Spain), forming the basis of much of the region’s architecture. Like any other rock, granite provides an ecological niche for a multitude of organisms that form biofilms that can affect the physical integrity of the stone. In this study, for the first time, characterization of the microbial consortium forming biofilms that developed on historical rural granite buildings is carried out using a combination of culture-dependent and next generation sequencing (NGS) techniques. Results pointed to differences in biofilm composition on the studied rural granite buildings and that of previously analyzed urban granite buildings, especially in terms of abundance of cyanobacteria and lichenized fungi. Exposure was corroborated as an important factor, controlling both the diversity and abundance of microorganisms on walls, with environmental factors associated with a northern orientation favoring a higher diversity of fungi and green algae, and environmental factors associated with the west orientation determining the abundance of lichenized fungi. The orientation also affected the distribution of green algae, with one of the two most abundant species, Trentepohlia cf. umbrina, colonizing north-facing walls, while the other, Desmococcus olivaceus, predominated on west-facing walls.
Collapse
|
21
|
An advanced genetic toolkit for exploring the biology of the rock-inhabiting black fungus Knufia petricola. Sci Rep 2020; 10:22021. [PMID: 33328531 PMCID: PMC7745021 DOI: 10.1038/s41598-020-79120-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/03/2020] [Indexed: 01/09/2023] Open
Abstract
Microcolonial black fungi are a group of ascomycetes that exhibit high stress tolerance, yeast-like growth and constitutive melanin formation. They dominate a range of hostile natural and man-made environments, from desert rocks and salterns to dishwashers, roofs and solar panels. Due to their slow growth and a lack of genetic tools, the underlying mechanisms of black fungi’s phenotypic traits have remained largely unexplored. We chose to address this gap by genetically engineering the rock-inhabiting fungus Knufia petricola (Eurotiomycetes, Chaetothyriales), a species that exhibits all characteristics of black fungi. A cell biological approach was taken by generating K. petricola strains expressing green or red fluorescent protein variants. By applying: (1) traditional gene replacement; (2) gene editing and replacement via plasmid-based or ribonucleoprotein (RNP)-based CRISPR/Cas9, and (3) silencing by RNA interference (RNAi), we constructed mutants in the pathways leading to melanin, carotenoids, uracil and adenine. Stable single and double mutants were generated with homologous recombination (HR) rates up to 100%. Efficient, partially cloning-free strategies to mutate multiple genes with or without resistance cassettes were developed. This state-of-the-art genetic toolkit, together with the annotated genome sequence of strain A95, firmly established K. petricola as a model for exploring microcolonial black fungi.
Collapse
|
22
|
Fatty Acid Methyl Esters of the Aerophytic Cave Alga Coccomyxa subglobosa as a Source for Biodiesel Production. ENERGIES 2020. [DOI: 10.3390/en13246494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The microscopic alga Coccomyxa subglobosa, collected from the Głowoniowa Nyża Cave (Tatra Mountains, Poland), is a source of fatty acids (FAs) that could be used for biodiesel production. FAs from subaerial algae have unlimited availability because of the ubiquity of algae in nature. Algal culture was carried out under laboratory conditions and algal biomass was measured during growth phase, resulting in 5 g of dry weight (32% oil). The fatty acid methyl ester (FAME) profile was analyzed by means of gas chromatography–mass spectrometry (GC–MS). The presence of lipids and chloroplasts in C. subglobosa was demonstrated using GC–MS and confocal laser microscopy. Naturally occurring FAMEs contained C12–C24 compounds, and methyl palmitate (28.5%) and methyl stearate (45%) were the predominant lipid species. Aerophytic algae could be an important component of biodiesel production, as they are omnipresent and environmentally friendly, contain more methyl esters than seaweed, and can be easily produced on a large scale.
Collapse
|
23
|
Favero-Longo SE, Viles HA. A review of the nature, role and control of lithobionts on stone cultural heritage: weighing-up and managing biodeterioration and bioprotection. World J Microbiol Biotechnol 2020; 36:100. [PMID: 32607867 DOI: 10.1007/s11274-020-02878-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
Lithobionts (rock-dwelling organisms) have been recognized as agents of aesthetic and physico-chemical deterioration of stonework. In consequence, their removal from cultural heritage stone surfaces (CHSS) is widely considered a necessary step in conservation interventions. On the other hand, lithobiontic communities, including microbial biofilms ('biological patinas'), can help integrate CHSS with their environmental setting and enhance biodiversity. Moreover, in some cases bioprotective effects have been reported and even interpreted as potential biotechnological solutions for conservation. This paper reviews the plethora of traditional and innovative methodologies to characterize lithobionts on CHSS in terms of biodiversity, interaction with the stone substrate and impacts on durability. In order to develop the best management and conservation strategies for CHSS, such diagnosis should be acquired on a case-by-case basis, as generalized approaches are unlikely to be suitable for all lithobionts, lithologies, environmental and cultural contexts or types of stonework. Strategies to control biodeteriogenic lithobionts on CHSS should similarly be based on experimental evaluation of their efficacy, including long-term monitoring of the effects on bioreceptivity, and of their environmental safety. This review examines what is known about the efficacy of control methods based on traditional-commercial biocides, as well as those based on innovative application of substances of plant and microbial origin, and physical techniques. A framework for providing a balanced scientific assessment of the role of lithobionts on CHSS and integrating this knowledge into management and conservation decision-making is presented.
Collapse
Affiliation(s)
- Sergio Enrico Favero-Longo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli 25, 10125, Torino, Italy.
| | - Heather A Viles
- School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK
| |
Collapse
|
24
|
Schumacher J, Gorbushina AA. Light sensing in plant- and rock-associated black fungi. Fungal Biol 2020; 124:407-417. [DOI: 10.1016/j.funbio.2020.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|
25
|
Villa F, Cappitelli F. The Ecology of Subaerial Biofilms in Dry and Inhospitable Terrestrial Environments. Microorganisms 2019; 7:microorganisms7100380. [PMID: 31547498 PMCID: PMC6843906 DOI: 10.3390/microorganisms7100380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/23/2022] Open
Abstract
The ecological relationship between minerals and microorganisms arguably represents one of the most important associations in dry terrestrial environments, since it strongly influences major biochemical cycles and regulates the productivity and stability of the Earth’s food webs. Despite being inhospitable ecosystems, mineral substrata exposed to air harbor form complex and self-sustaining communities called subaerial biofilms (SABs). Using life on air-exposed minerals as a model and taking inspiration from the mechanisms of some microorganisms that have adapted to inhospitable conditions, we illustrate the ecology of SABs inhabiting natural and built environments. Finally, we advocate the need for the convergence between the experimental and theoretical approaches that might be used to characterize and simulate the development of SABs on mineral substrates and SABs’ broader impacts on the dry terrestrial environment.
Collapse
Affiliation(s)
- Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
26
|
Banchi E, Candotto Carniel F, Montagner A, Bosi S, Bramini M, Crosera M, León V, Martín C, Pallavicini A, Vázquez E, Prato M, Tretiach M. Graphene-based materials do not impair physiology, gene expression and growth dynamics of the aeroterrestrial microalga Trebouxia gelatinosa. Nanotoxicology 2019; 13:492-509. [PMID: 31241384 DOI: 10.1080/17435390.2019.1570371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The effects of two graphene-based materials (GBMs), few-layers graphene (FLG) and graphene oxide (GO), were studied in the aeroterrestrial green microalga Trebouxia gelatinosa. Algae were subjected to short- and long-term exposure to GBMs at 0.01, 1 and 50 μg mL - 1. GBMs internalization after short-term exposures was investigated with confocal microscopy, Raman spectroscopy and TEM. Potential negative effects of GBMs, compared to the oxidative stress induced by H2O2, were verified by analyzing chlorophyl a fluorescence (ChlaF), expression of stress-related genes and membrane integrity. Effects of up to 4-week-long exposures were assessed analyzing growth dynamics, ChlaF and photosynthetic pigments. GBMs were not observed in cells but FLG was detected at the interface between the cell wall and plasma membrane, whereas GO was observed adherent to the external wall surface. FLG caused the down-regulation of the HSP70-1 gene, with the protein levels remaining stable, whereas GO had no effect. In comparison, H2O2 produced dose- and time-dependent effects on ChlaF, gene expression and HSP70 protein level. Long-term exposures to GBMs did not affect growth dynamics, ChlaF or photosynthetic pigment contents, indicating that the few observed short-term effects were not dangerous on the long-term. Results suggest that interactions between FLG and plasma membrane were harmless, activating a down-regulation of the HSP70-1 gene similar to that induced by H2O2. Our work shows that studying GBMs effects on non-model organisms is important since the results of model green microalgae are not representative of the whole taxonomic group.
Collapse
Affiliation(s)
- Elisa Banchi
- a Department of Life Sciences , University of Trieste , Trieste , Italy
| | | | - Alice Montagner
- a Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Susanna Bosi
- b Department of Chemical and Pharmaceutical Sciences , University of Trieste , Trieste , Italy
| | - Mattia Bramini
- c Center for Synaptic Neuroscience and Technology , Italian Institute of Technology , Genova , Italy
| | - Matteo Crosera
- b Department of Chemical and Pharmaceutical Sciences , University of Trieste , Trieste , Italy
| | - Verónica León
- d Department of Organic Chemistry , Faculty of Chemical Science and Technology, University of Castilla-La Mancha , Ciudad Real , Spain.,e Regional Institute of Applied Scientific Investigation (IRICA) , University of Castilla-La Mancha , Ciudad Real , Spain
| | - Cristina Martín
- d Department of Organic Chemistry , Faculty of Chemical Science and Technology, University of Castilla-La Mancha , Ciudad Real , Spain.,e Regional Institute of Applied Scientific Investigation (IRICA) , University of Castilla-La Mancha , Ciudad Real , Spain
| | | | - Ester Vázquez
- d Department of Organic Chemistry , Faculty of Chemical Science and Technology, University of Castilla-La Mancha , Ciudad Real , Spain.,e Regional Institute of Applied Scientific Investigation (IRICA) , University of Castilla-La Mancha , Ciudad Real , Spain
| | - Maurizio Prato
- b Department of Chemical and Pharmaceutical Sciences , University of Trieste , Trieste , Italy.,f Carbon Nanobiotechnology Laboratory , CIC biomaGUNE , San Sebastian , Spain
| | - Mauro Tretiach
- a Department of Life Sciences , University of Trieste , Trieste , Italy
| |
Collapse
|
27
|
|
28
|
Abstract
Bacterial biofilms are ubiquitous in natural environments and play an important role in many clinical, industrial, and ecological settings. Although much is known about the transcriptional regulatory networks that control biofilm formation in model bacteria such as Bacillus subtilis, very little is known about the role of metabolism in this complex developmental process. To address this important knowledge gap, we performed a time-resolved analysis of the metabolic changes associated with bacterial biofilm development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. Here, we report a widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. This report serves as a unique hypothesis-generating resource for future studies on bacterial biofilm physiology. Outside the biofilm research area, this work should also prove relevant to any investigators interested in microbial physiology and metabolism. Biofilms are structured communities of tightly associated cells that constitute the predominant state of bacterial growth in natural and human-made environments. Although the core genetic circuitry that controls biofilm formation in model bacteria such as Bacillus subtilis has been well characterized, little is known about the role that metabolism plays in this complex developmental process. Here, we performed a time-resolved analysis of the metabolic changes associated with pellicle biofilm formation and development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. We report surprisingly widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. Most of these metabolic alterations were hitherto unrecognized as biofilm associated. For example, we observed increased activity of the tricarboxylic acid (TCA) cycle during early biofilm growth, a shift from fatty acid biosynthesis to fatty acid degradation, reorganization of iron metabolism and transport, and a switch from acetate to acetoin fermentation. Close agreement between metabolomic, transcriptomic, and proteomic measurements indicated that remodeling of metabolism during biofilm development was largely controlled at the transcriptional level. Our results also provide insights into the transcription factors and regulatory networks involved in this complex metabolic remodeling. Following upon these results, we demonstrated that acetoin production via acetolactate synthase is essential for robust biofilm growth and has the dual role of conserving redox balance and maintaining extracellular pH. This report represents a comprehensive systems-level investigation of the metabolic remodeling occurring during B. subtilis biofilm development that will serve as a useful road map for future studies on biofilm physiology.
Collapse
|
29
|
Kaur S, Kurtz HD. Core bacterial community composition of a cryptoendolithic ecosystem in the Grand Staircase-Escalante National Monument, Utah. Microbiologyopen 2019; 8:e00707. [PMID: 30079546 PMCID: PMC6528646 DOI: 10.1002/mbo3.707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 11/21/2022] Open
Abstract
Cryptoendolithic bacterial communities in the Jurassic Navajo Sandstones play an important ecological role in this ecosystem. Developing a better understanding of the role of these cryptoendolithic communities required a deeper knowledge of the microbial diversity present. We analyzed the bacterial diversity in eight sandstones samples from several microgeological features associated with a large sandstone dome. Cryptoendolithic bacterial diversity is clustered into three distinct groups which correlated with topography, suggesting the duration of water retention might be a factor. Comparisons of diversity between each cluster showed that a core bacterial community exists in this habitat. The overall bacterial community structure was dominated by Cyanobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria. The most prevalent genera in cyanobacteria were Leptolyngbya, Chroococcidiopsis, and unclassified cyanobacteria accounting for the bulk of cyanobacterial sequences. Within the Proteobacteria, Alphaproteobacteria were the largest class detected, with members of the Acetobacteraceae, particularly the genus Acidiphilium, being the most abundant. Acidiphilium spp. are capable of aerobic ferric iron reduction under moderately acidic conditions, explaining the high levels of iron (II) in this system. This study highlights the extent of unexplored bacterial diversity in this habitat system and sets the premise for elaborating on the ecological function of cryptoendolithic communities.
Collapse
Affiliation(s)
- Sukhpreet Kaur
- Department of Biological SciencesClemson UniversityClemsonSouth Carolina
| | - HD Kurtz
- Department of Biological SciencesClemson UniversityClemsonSouth Carolina
| |
Collapse
|
30
|
Ametrano CG, Knudsen K, Kocourková J, Grube M, Selbmann L, Muggia L. Phylogenetic relationships of rock-inhabiting black fungi belonging to the widespread genera Lichenothelia and Saxomyces. Mycologia 2019; 111:127-160. [PMID: 30724710 DOI: 10.1080/00275514.2018.1543510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rock-inhabiting fungi (RIF) are adapted to thrive in oligotrophic environments and to survive under conditions of abiotic stress. Under these circumstances, they form biocoenoses with other tolerant organisms, such as lichens, or with less specific phototrophic consortia of aerial algae or cyanobacteria. RIF are phylogenetically diverse, and their plastic morphological characters hamper the straightforward species delimitation of many taxa. Here, we present a phylogenetic study of two RIF genera, Lichenothelia and Saxomyces. Representatives of both genera inhabit rather similar niches on rocks, but their phylogenetic relationships are unknown so far. The cosmopolitan genus Lichenothelia is recognized by characters of fertile ascomata and includes species with different life strategies. In contrast, Saxomyces species were described exclusively by mycelial characters found in cultured isolates from rock samples collected at high alpine elevations. Here, we use an extended taxon sampling of Dothideomycetes to study the phylogenetic relationships of both Lichenothelia and Saxomyces. We consider environmental samples, type species, and cultured isolates of both genera and demonstrate their paraphyly, as well as the occurrence of teleomorphs in Saxomyces. We applied three species delimitation methods to improve species recognition based on molecular data. We show the distinctiveness of the two main lineages of Lichenothelia (Lichenotheliales s. str.) and Saxomyces and discuss differences in species delimitation depending on molecular markers or methods. We revise the taxonomy of the two genera and describe three new taxa, Lichenothelia papilliformis, L. muriformis, and Saxomyces americanus, and the teleomorph of S. penninicus.
Collapse
Affiliation(s)
- Claudio G Ametrano
- a Department of Life Sciences , University of Trieste , via Giorgieri 10, 34127 Trieste , Italy
| | - Kerry Knudsen
- b Department of Ecology, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Czech Republic, Kamýcká 129, 16500 Praha 6 , Czech Republic
| | - Jana Kocourková
- b Department of Ecology, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Czech Republic, Kamýcká 129, 16500 Praha 6 , Czech Republic
| | - Martin Grube
- c Institute of Plant Science, Karl-Franzens University of Graz , Holteigasse 6, 8010 Graz , Austria
| | - Laura Selbmann
- d Department of Ecological and Biological Sciences , University of Tuscia, Largo dell' Università , 01100 Viterbo , Italy.,e Mycological Section , Italian Antarctic National Museum (MNA) , Genova , Italy
| | - Lucia Muggia
- a Department of Life Sciences , University of Trieste , via Giorgieri 10, 34127 Trieste , Italy
| |
Collapse
|
31
|
Flieger K, Knabe N, Toepel J. Development of an Improved Carotenoid Extraction Method to Characterize the Carotenoid Composition under Oxidative Stress and Cold Temperature in the Rock Inhabiting Fungus Knufia petricola A95. J Fungi (Basel) 2018; 4:E124. [PMID: 30424015 PMCID: PMC6308947 DOI: 10.3390/jof4040124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022] Open
Abstract
Black yeasts are a highly specified group of fungi, which are characterized by a high resistance against stress factors. There are several factors enabling the cells to survive harsh environmental conditions. One aspect is the pigmentation, the melanin black yeasts often display a highly diverse carotenoid spectrum. Determination and characterization of carotenoids depend on an efficient extraction and separation, especially for black yeast, which is characterized by thick cell walls. Therefore, specific protocols are needed to ensure reliable analyses regarding stress responses in these fungi. Here we present both. First, we present a method to extract and analyze carotenoids and secondly we present the unusual carotenoid composition of the black yeast Knufia petricola A95. Mechanical treatment combined with an acetonitrile extraction gave us very good extraction rates with a high reproducibility. The presented extraction and elution protocol separates the main carotenoids (7) in K. petricola A95 and can be extended for the detection of additional carotenoids in other species. K. petricola A95 displays an unusual carotenoid composition, with mainly didehydrolycopene, torulene, and lycopene. The pigment composition varied in dependency to oxidative stress but remained relatively constant if the cells were cultivated under low temperature. Future experiments have to be carried out to determine if didehydrolycopene functions as a protective agent itself or if it serves as a precursor for antioxidative pigments like torulene and torularhodin, which could be produced after induction under stress conditions. Black yeasts are a promising source for carotenoid production and other substances. To unravel the potential of these fungi, new methods and studies are needed. The established protocol allows the determination of carotenoid composition in black yeasts.
Collapse
Affiliation(s)
- Kerstin Flieger
- Department of Plant Physiology, Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany.
| | - Nicole Knabe
- Department of Materials & Environment, Bundesanstalt für Material-forschung und-prüfung, BAM, Unter den Eichen 87, 12205 Berlin, Germany.
| | - Jörg Toepel
- Department of Solar Materials, Applied Biocatalytics, Helmholtz Centre for Environmental Research, Permoser Strasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
32
|
Pokharel R, Gerrits R, Schuessler JA, Frings PJ, Sobotka R, Gorbushina AA, von Blanckenburg F. Magnesium Stable Isotope Fractionation on a Cellular Level Explored by Cyanobacteria and Black Fungi with Implications for Higher Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12216-12224. [PMID: 30351034 DOI: 10.1021/acs.est.8b02238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In a controlled growth experiment we found that the cyanobacterium Nostoc punctiforme has a bulk cell 26Mg/24Mg ratio (expressed as δ26Mg) that is -0.27‰ lower than the growth solution at a pH of ca. 5.9. This contrasts with a recently published δ26Mg value that was 0.65‰ higher than growth solution for the black fungus Knufia petricola at similar laboratory conditions, interpreted to reflect loss of 24Mg during cell growth. By a mass balance model constrained by δ26Mg in chlorophyll extract we inferred the δ26 Mg value of the main Mg compartments in a cyanobacteria cell: free cytosolic Mg (-2.64‰), chlorophyll (1.85‰), and the nonchlorophyll-bonded Mg compartments like ATP and ribosomes (-0.64‰). The lower δ26Mg found in Nostoc punctiforme would thus result from the absence of significant Mg efflux during cell growth in combination with either (a) discrimination against 26Mg during uptake by desolvation of Mg or transport across protein channels or (b) discrimination against 24Mg in the membrane transporter during efflux. The model predicts the preferential incorporation of 26Mg in cells and plant organs low in Mg and the absence of isotope fractionation in those high in Mg, corroborated by a compilation of Mg isotope ratios from fungi, bacteria, and higher plants.
Collapse
Affiliation(s)
- Rasesh Pokharel
- GFZ German Research Centre for Geosciences , Section 3.3, Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam , Germany
- Institute of Geological Sciences , Freie Universität Berlin , 12249 Berlin , Germany
| | - Ruben Gerrits
- Department 4, Materials & Environment , BAM Federal Institute for Materials Research & Testing , 12205 Berlin , Germany
- Department of Biology, Chemistry and Pharmacy , Freie Universität Berlin , 14195 Berlin , Germany
| | - Jan A Schuessler
- GFZ German Research Centre for Geosciences , Section 3.3, Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam , Germany
| | - Patrick J Frings
- GFZ German Research Centre for Geosciences , Section 3.3, Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam , Germany
| | - Roman Sobotka
- Institute of Microbiology , Centre Algatech , 379 81 Třebon , Czech Republic
| | - Anna A Gorbushina
- Institute of Geological Sciences , Freie Universität Berlin , 12249 Berlin , Germany
- Department 4, Materials & Environment , BAM Federal Institute for Materials Research & Testing , 12205 Berlin , Germany
- Department of Biology, Chemistry and Pharmacy , Freie Universität Berlin , 14195 Berlin , Germany
| | - Friedhelm von Blanckenburg
- GFZ German Research Centre for Geosciences , Section 3.3, Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam , Germany
- Institute of Geological Sciences , Freie Universität Berlin , 12249 Berlin , Germany
| |
Collapse
|
33
|
Q Mesquita M, J Dias C, P M S Neves MG, Almeida A, F Faustino MA. Revisiting Current Photoactive Materials for Antimicrobial Photodynamic Therapy. Molecules 2018; 23:E2424. [PMID: 30248888 PMCID: PMC6222430 DOI: 10.3390/molecules23102424] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Microbial infection is a severe concern, requiring the use of significant amounts of antimicrobials/biocides, not only in the hospital setting, but also in other environments. The increasing use of antimicrobial drugs and the rapid adaptability of microorganisms to these agents, have contributed to a sharp increase of antimicrobial resistance. It is obvious that the development of new strategies to combat planktonic and biofilm-embedded microorganisms is required. Photodynamic inactivation (PDI) is being recognized as an effective method to inactivate a broad spectrum of microorganisms, including those resistant to conventional antimicrobials. In the last few years, the development and biological assessment of new photosensitizers for PDI were accompanied by their immobilization in different supports having in mind the extension of the photodynamic principle to new applications, such as the disinfection of blood, water, and surfaces. In this review, we intended to cover a significant amount of recent work considering a diversity of photosensitizers and supports to achieve an effective photoinactivation. Special attention is devoted to the chemistry behind the preparation of the photomaterials by recurring to extensive examples, illustrating the design strategies. Additionally, we highlighted the biological challenges of each formulation expecting that the compiled information could motivate the development of other effective photoactive materials.
Collapse
Affiliation(s)
- Mariana Q Mesquita
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Biomedical Sciences and iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cristina J Dias
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria G P M S Neves
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Adelaide Almeida
- Department of Biology CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Amparo F Faustino
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
34
|
Abstract
The rotary motor of bacteria is a natural nano-technological marvel that enables cell locomotion by powering the rotation of semi-rigid helical flagellar filaments in fluid environments. It is well known that the motor operates essentially at constant torque in counter-clockwise direction but past work have reported a large range of values of this torque. Focusing on Escherichia coli cells that are swimming and cells that are stuck on a glass surface for which all geometrical and environmental parameters are known (N. C. Darnton et al., J. Bacteriol., 2007, 189, 1756-1764), we use two validated numerical methods to compute the value of the motor torque consistent with experiments. Specifically, we use (and compare) a numerical method based on the boundary integral representation of Stokes flow and also develop a hybrid method combining boundary element and slender body theory to model the cell body and flagellar filament, respectively. Using measured rotation speed of the motor, our computations predict a value of the motor torque in the range 440 pN nm to 829 pN nm, depending critically on the distance between the flagellar filaments and the nearby surface.
Collapse
Affiliation(s)
- Debasish Das
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.
| | | |
Collapse
|
35
|
Prieto B, Vázquez-Nion D, Silva B, Sanmartín P. Shaping colour changes in a biofilm-forming cyanobacterium by modifying the culture conditions. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
36
|
Rangel DE, Finlay RD, Hallsworth JE, Dadachova E, Gadd GM. Fungal strategies for dealing with environment- and agriculture-induced stresses. Fungal Biol 2018; 122:602-612. [DOI: 10.1016/j.funbio.2018.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 01/21/2023]
|
37
|
Fungal Diversity in Lichens: From Extremotolerance to Interactions with Algae. Life (Basel) 2018; 8:life8020015. [PMID: 29789469 PMCID: PMC6027233 DOI: 10.3390/life8020015] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022] Open
Abstract
Lichen symbioses develop long-living thallus structures even in the harshest environments on Earth. These structures are also habitats for many other microscopic organisms, including other fungi, which vary in their specificity and interaction with the whole symbiotic system. This contribution reviews the recent progress regarding the understanding of the lichen-inhabiting fungi that are achieved by multiphasic approaches (culturing, microscopy, and sequencing). The lichen mycobiome comprises a more or less specific pool of species that can develop symptoms on their hosts, a generalist environmental pool, and a pool of transient species. Typically, the fungal classes Dothideomycetes, Eurotiomycetes, Leotiomycetes, Sordariomycetes, and Tremellomycetes predominate the associated fungal communities. While symptomatic lichenicolous fungi belong to lichen-forming lineages, many of the other fungi that are found have close relatives that are known from different ecological niches, including both plant and animal pathogens, and rock colonizers. A significant fraction of yet unnamed melanized (‘black’) fungi belong to the classes Chaethothyriomycetes and Dothideomycetes. These lineages tolerate the stressful conditions and harsh environments that affect their hosts, and therefore are interpreted as extremotolerant fungi. Some of these taxa can also form lichen-like associations with the algae of the lichen system when they are enforced to symbiosis by co-culturing assays.
Collapse
|
38
|
Acid Rock Drainage or Not—Oxidative vs. Reductive Biofilms—A Microbial Question. MINERALS 2018. [DOI: 10.3390/min8050199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
|
40
|
Knabe N, Gorbushina AA. Territories of Rock-Inhabiting Fungi: Survival on and Alteration of Solid Air-Exposed Surfaces. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Brewer TE, Fierer N. Tales from the tomb: the microbial ecology of exposed rock surfaces. Environ Microbiol 2017; 20:958-970. [PMID: 29235707 DOI: 10.1111/1462-2920.14024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/25/2017] [Accepted: 12/06/2017] [Indexed: 11/29/2022]
Abstract
Although a broad diversity of eukaryotic and bacterial taxa reside on rock surfaces where they can influence the weathering of rocks and minerals, these communities and their contributions to mineral weathering remain poorly resolved. To build a more comprehensive understanding of the diversity, ecology and potential functional attributes of microbial communities living on rock, we sampled 149 tombstones across three continents and analysed their bacterial and eukaryotic communities via marker gene and shotgun metagenomic sequencing. We found that geographic location and climate were important factors structuring the composition of these communities. Moreover, the tombstone-associated microbial communities varied as a function of rock type, with granite and limestone tombstones from the same cemeteries harbouring taxonomically distinct microbial communities. The granite and limestone-associated communities also had distinct functional attributes, with granite-associated bacteria having more genes linked to acid tolerance and chemotaxis, while bacteria on limestone were more likely to be lichen associated and have genes involved in photosynthesis and radiation resistance. Together these results indicate that rock-dwelling microbes exhibit adaptations to survive the stresses of the rock surface, differ based on location, climate and rock type, and seem pre-disposed to different ecological strategies (symbiotic versus free-living lifestyles) depending on the rock type.
Collapse
Affiliation(s)
- Tess E Brewer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA.,Departments of Molecular, Cellular, and Developmental Biology
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
42
|
Breitenbach R, Silbernagl D, Toepel J, Sturm H, Broughton WJ, Sassaki GL, Gorbushina AA. Corrosive extracellular polysaccharides of the rock-inhabiting model fungus Knufia petricola. Extremophiles 2017; 22:165-175. [PMID: 29275441 PMCID: PMC5847175 DOI: 10.1007/s00792-017-0984-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/08/2017] [Indexed: 01/24/2023]
Abstract
Melanised cell walls and extracellular polymeric matrices protect rock-inhabiting microcolonial fungi from hostile environmental conditions. How extracellular polymeric substances (EPS) perform this protective role was investigated by following development of the model microcolonial black fungus Knufia petricola A95 grown as a sub-aerial biofilm. Extracellular substances were extracted with NaOH/formaldehyde and the structures of two excreted polymers studied by methylation as well as NMR analyses. The main polysaccharide (~ 80%) was pullulan, also known as α-1,4-; α-1,6-glucan, with different degrees of polymerisation. Αlpha-(1,4)-linked-Glcp and α-(1,6)-linked-Glcp were present in the molar ratios of 2:1. A branched galactofuromannan with an α-(1,2)-linked Manp main chain and a β-(1,6)-linked Galf side chain formed a minor fraction (~ 20%). To further understand the roles of EPS in the weathering of minerals and rocks, viscosity along with corrosive properties were studied using atomic force microscopy (AFM). The kinetic viscosity of extracellular K. petricola A95 polysaccharides (≈ 0.97 × 10−6 m2 s−1) ranged from the equivalent of 2% (w/v) to 5% glycerine, and could thus profoundly affect diffusion-dominated processes. The corrosive nature of rock-inhabiting fungal EPS was also demonstrated by its effects on the aluminium coating of the AFM cantilever and the silicon layer below.
Collapse
Affiliation(s)
- Romy Breitenbach
- Department 4 (Materials and Environment), Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Dorothee Silbernagl
- Division 6.6 (Nanotribology and Nano-Structuring), Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Jörg Toepel
- Department of Solar Materials, Applied Biocatalytics, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Heinz Sturm
- Division 6.6 (Nanotribology and Nano-Structuring), Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
- Institute of Machine Tools and Factory Management, TU Berlin, Pascalstr. 8-9, 10587, Berlin, Germany
| | - William J Broughton
- Department 4 (Materials and Environment), Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR, CP 19046, Brazil
| | - Guilherme L Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR, CP 19046, Brazil
| | - Anna A Gorbushina
- Department 4 (Materials and Environment), Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.
- Department of Earth Sciences, Freie Universität Berlin, Malteserstraße 74-100, 12249, Berlin, Germany.
| |
Collapse
|
43
|
Pokharel R, Gerrits R, Schuessler JA, Floor GH, Gorbushina AA, von Blanckenburg F. Mg Isotope Fractionation during Uptake by a Rock-Inhabiting, Model Microcolonial Fungus Knufia petricola at Acidic and Neutral pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9691-9699. [PMID: 28758385 DOI: 10.1021/acs.est.7b01798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The model rock-inhabiting microcolonial fungus Knufia petricola fractionates stable Mg isotopes in a time- and pH-dependent manner. During growth, the increase of 26Mg/24Mg in the fungal cells relative to the growth media amounted to 0.65 ± 0.14‰ at pH 6 and 1.11 ± 0.35‰ at pH 3. We suggest a constant equilibrium fractionation factor during incorporation of Mg into ribosomes and ATP as a cause of enrichment of 26Mg in the cells. We suggest too that the proton gradient across the cell wall and cytoplasmic membrane controls Mg2+ transport into the fungal cell. As the strength of this gradient is a function of extracellular solution pH, the pH-dependence on Mg isotope fractionation is thus due to differences in fungal cell mass fluxes. Through a mass balance model we show that Mg uptake into the fungal cell is not associated with a unique Mg isotope fractionation factor. This Mg isotope fractionation dependence on pH might also be observed in any organism with cells that follow similar Mg uptake and metabolic pathways and serves to reveal Mg cycling in ecosystems.
Collapse
Affiliation(s)
- Rasesh Pokharel
- Section 3.3, Earth Surface Geochemistry, GFZ German Research Centre for Geosciences , Telegrafenberg, 14473 Potsdam, Germany
- Institute of Geological Sciences, Freie Universität Berlin , 12249 Berlin, Germany
| | - Ruben Gerrits
- Department 4, Materials & Environment, BAM Federal Institute for Materials Research & Testing , 12205 Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin , 14195 Berlin, Germany
| | - Jan A Schuessler
- Section 3.3, Earth Surface Geochemistry, GFZ German Research Centre for Geosciences , Telegrafenberg, 14473 Potsdam, Germany
| | - Geerke H Floor
- Section 3.3, Earth Surface Geochemistry, GFZ German Research Centre for Geosciences , Telegrafenberg, 14473 Potsdam, Germany
| | - Anna A Gorbushina
- Institute of Geological Sciences, Freie Universität Berlin , 12249 Berlin, Germany
- Department 4, Materials & Environment, BAM Federal Institute for Materials Research & Testing , 12205 Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin , 14195 Berlin, Germany
| | - Friedhelm von Blanckenburg
- Section 3.3, Earth Surface Geochemistry, GFZ German Research Centre for Geosciences , Telegrafenberg, 14473 Potsdam, Germany
- Institute of Geological Sciences, Freie Universität Berlin , 12249 Berlin, Germany
| |
Collapse
|
44
|
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2017; 14:563-75. [PMID: 27510863 DOI: 10.1038/nrmicro.2016.94] [Citation(s) in RCA: 3124] [Impact Index Per Article: 390.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Jost Wingender
- University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Ulrich Szewzyk
- Technical University of Berlin, Department of Environmental Microbiology, Ernst-Reuter-Platz 1, D-10587 Berlin, Germany
| | - Peter Steinberg
- The School of Biological, Earth and Environmental Sciences and The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Scott A Rice
- The Singapore Centre for Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Staffan Kjelleberg
- The Singapore Centre for Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
45
|
Microbial succession dynamics along glacier forefield chronosequences in Tierra del Fuego (Chile). Polar Biol 2017. [DOI: 10.1007/s00300-017-2110-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Geomicrobiology of the built environment. Nat Microbiol 2017; 2:16275. [DOI: 10.1038/nmicrobiol.2016.275] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/21/2016] [Indexed: 01/28/2023]
|
47
|
Vázquez-Nion D, Silva B, Troiano F, Prieto B. Laboratory grown subaerial biofilms on granite: application to the study of bioreceptivity. BIOFOULING 2017; 33:24-35. [PMID: 27911078 DOI: 10.1080/08927014.2016.1261120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Simulated environmental colonisation of granite was induced under laboratory conditions in order to develop an experimental protocol for studying bioreceptivity. The experimental set-up proved suitable for producing subaerial biofilms by inoculating granite blocks with planktonic multi-species phototrophic cultures derived from natural biofilms. The ability of four different cultures to form biofilms was monitored over a three-month growth period via colour measurements, quantification of photosynthetic pigments and EPS, and CLSM observations. One of the cultures under study, which comprised several taxa including Bryophyta, Charophyta, Chlorophyta and Cyanobacteria, was particularly suitable as an inoculum, mainly because of its microbial richness, its rapid adaptability to the substratum and its high colonisation capacity. The use of this culture as an inoculum in the proposed experimental set-up to produce subaerial biofilms under laboratory conditions will contribute to standardising the protocols involved, thus enabling more objective assessment of the bioreceptivity of granite in further experiments.
Collapse
Affiliation(s)
- Daniel Vázquez-Nion
- a Facultade de Farmacia, Departamento de Edafoloxía e Química Agrícola , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Benita Silva
- a Facultade de Farmacia, Departamento de Edafoloxía e Química Agrícola , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Federica Troiano
- b Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente , Università degli Studi di Milano , Milan , Italy
| | - Beatriz Prieto
- a Facultade de Farmacia, Departamento de Edafoloxía e Química Agrícola , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| |
Collapse
|
48
|
Kirtzel J, Siegel D, Krause K, Kothe E. Stone-Eating Fungi: Mechanisms in Bioweathering and the Potential Role of Laccases in Black Slate Degradation With the Basidiomycete Schizophyllum commune. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:83-101. [PMID: 28438269 DOI: 10.1016/bs.aambs.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many enzymes, such as laccases, are involved in the saprotrophic lifestyle of fungi and the effects of those may be linked to enhanced bioweathering on stone surfaces. To test this hypothesis, we studied the decomposition of kerogen-enriched lithologies, especially with black slate containing up to 20% of Corg. Indeed, a formation of ditches with attached hyphal material could be observed. To address enzymes involved, proteomics was performed and one group of enzymes, the multicopper oxidase family members of laccases, was specifically investigated. A role in bioweathering of rocks containing high contents of organic carbon in the form of kerogen could be shown using the basidiomycete Schizophyllum commune, a white rot fungus that has been used as a model organism to study the role of filamentous basidiomycete fungi in bioweathering of black slate.
Collapse
Affiliation(s)
| | | | | | - Erika Kothe
- Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
49
|
Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Front Microbiol 2016; 7:1836. [PMID: 27917161 PMCID: PMC5116465 DOI: 10.3389/fmicb.2016.01836] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022] Open
Abstract
Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC contaminated soil in terms of overall cost and success rates for in situ implementation in a diversity of environments. Mechanistically, there remain biological unknowns that present challenges for applying bio- and phyto-remediation technologies without having a deep prior understanding of individual target sites. In this review, evidence from traditional and modern omics technologies is discussed to provide a framework for plant-microbe interactions during PHC remediation. The potential for integrating multiple molecular and computational techniques to evaluate linkages between microbial communities, plant communities and ecosystem processes is explored with an eye on improving phytoremediation of PHC contaminated sites.
Collapse
Affiliation(s)
- Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Matteo Daghio
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
- Department of Biological Sciences, Thompson Rivers University, KamloopsBC, Canada
| | - Andrea Franzetti
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
| | | | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| |
Collapse
|
50
|
Stone W, Kroukamp O, Korber DR, McKelvie J, Wolfaardt GM. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience. Front Microbiol 2016; 7:1563. [PMID: 27746774 PMCID: PMC5043023 DOI: 10.3389/fmicb.2016.01563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022] Open
Abstract
The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation.
Collapse
Affiliation(s)
- Wendy Stone
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| | - Otini Kroukamp
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| | - Darren R Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK Canada
| | - Jennifer McKelvie
- Environmental Geoscience, Nuclear Waste Management Organization, Toronto, ON Canada
| | - Gideon M Wolfaardt
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| |
Collapse
|