1
|
Lozano D, Chinarro A, Yanguas L, Morona R, Moreno N, López JM. Pax6 and Pax7 in the Central Nervous System of Cladistian Fishes: A Comprehensive Expression Analysis. J Comp Neurol 2025; 533:e70053. [PMID: 40275424 DOI: 10.1002/cne.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025]
Abstract
Among actinopterygian fishes, cladistians stand as the more basal extant species in the group, holding a key phylogenetic position close to the common ancestor of Osteichthyes. Despite the recent publication of studies regarding the neurochemical organization of their central nervous system (CNS), there is still a significant lack of genoarchitectonic data that may prove essential to fully understand the patterning of the brain of these fishes. The paired box genes Pax6 and Pax7 are known to determine several boundaries in the CNS and are indispensable, for instance, for the survival of neurons and the change from cell proliferation to cell differentiation. By means of immunohistofluorescence methods, we analyzed the expression patterns of the transcription factors Pax6 and Pax7 in the CNS of three representative species of cladistian fishes, with a particular focus on their evolutionary implications. Thus, conserved Pax6 immunoreactive cell groups were present in the olfactory bulb, subpallial areas, the prethalamus, the basal prosomere 3, the pretectum, the mesencephalic tegmentum, the cerebellum, the basal rhombencephalon, the spinal cord, and the retina. A number of exclusive features were identified, including the almost total absence of expression in the pallium, which was observed only in cladistians, and its absence in the hypothalamus, which is a primitive anamniote trait. Likewise, the Pax7 expression pattern was generally conserved, with traits like the absence of labeling in the telencephalon and the expression in the retromamillary hypothalamic domain, the basal prosomere 3, the pretectum, the optic tectum, and the alar part of the first rhombomere. Additionally, no Pax7 labeling was detected in the spinal cord, comprising a specific cladistian feature.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Adrián Chinarro
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Lucía Yanguas
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| |
Collapse
|
2
|
Sali S, Azzam L, Jaro T, Ali AAG, Mardini A, Al-Dajani O, Khattak S, Butler AE, Azeez JM, Nandakumar M. A perfect islet: reviewing recent protocol developments and proposing strategies for stem cell derived functional pancreatic islets. Stem Cell Res Ther 2025; 16:160. [PMID: 40165291 PMCID: PMC11959787 DOI: 10.1186/s13287-025-04293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The search for an effective cell replacement therapy for diabetes has driven the development of "perfect" pancreatic islets from human pluripotent stem cells (hPSCs). These hPSC-derived pancreatic islet-like β cells can overcome the limitations for disease modelling, drug development and transplantation therapies in diabetes. Nevertheless, challenges remain in generating fully functional and mature β cells from hPSCs. This review underscores the significant efforts made by researchers to optimize various differentiation protocols aimed at enhancing the efficiency and quality of hPSC-derived pancreatic islets and proposes methods for their improvement. By emulating the natural developmental processes of pancreatic embryogenesis, specific growth factors, signaling molecules and culture conditions are employed to guide hPSCs towards the formation of mature β cells capable of secreting insulin in response to glucose. However, the efficiency of these protocols varies greatly among different human embryonic stem cell (hESC) and induced pluripotent stem cell (hiPSC) lines. This variability poses a particular challenge for generating patient-specific β cells. Despite recent advancements, the ultimate goal remains to develop a highly efficient directed differentiation protocol that is applicable across all genetic backgrounds of hPSCs. Although progress has been made, further research is required to optimize the protocols and characterization methods that could ensure the safety and efficacy of hPSC-derived pancreatic islets before they can be utilized in clinical settings.
Collapse
Affiliation(s)
- Sujitha Sali
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Leen Azzam
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Taraf Jaro
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ahmed Ali Gebril Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ali Mardini
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Omar Al-Dajani
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Shahryar Khattak
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Alexandra E Butler
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain.
| | - Juberiya M Azeez
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Manjula Nandakumar
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| |
Collapse
|
3
|
Daems C, Baz ES, D'Hooge R, Callaerts-Végh Z, Callaerts P. Gene expression differences in the olfactory bulb associated with differential social interactions and olfactory deficits in Pax6 heterozygous mice. Biol Open 2025; 14:BIO061647. [PMID: 39902612 PMCID: PMC11832127 DOI: 10.1242/bio.061647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/28/2024] [Indexed: 02/05/2025] Open
Abstract
Mutations in the highly conserved Pax6 transcription factor have been implicated in neurodevelopmental disorders and behavioral abnormalities, yet the mechanistic basis of the latter remain poorly understood. Our study, using behavioral phenotyping, has identified aberrant social interactions, characterized by withdrawal behavior, and olfactory deficits in Pax6 heterozygous mutant mice. The molecular mechanisms underlying the observed phenotypes were characterized by means of RNA-sequencing on isolated olfactory bulbs followed by validation with qRT-PCR. Comparative analysis of olfactory bulb transcriptomes further reveals an imbalance between neuronal excitation and inhibition, synaptic dysfunction, and alterations in epigenetic regulation as possible mechanisms underlying the abnormal social behavior. We observe a considerable overlap with autism-associated genes and suggest that studying Pax6-dependent gene regulatory networks may further our insight into molecular mechanisms implicated in autistic-like behaviors in Pax6 mutations, thereby paving the way for future research in this area.
Collapse
Affiliation(s)
- Carmen Daems
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - El-Sayed Baz
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Zoology Department, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - Zsuzsanna Callaerts-Végh
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- Mouse behavior core facility mINT, KU Leuven, Leuven, Belgium
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Azuma N, Tadokoro K, Yamada M, Nakafuku M, Nishina H. Sonic Hedgehog Determines Early Retinal Development and Adjusts Eyeball Architecture. Int J Mol Sci 2025; 26:496. [PMID: 39859210 PMCID: PMC11764597 DOI: 10.3390/ijms26020496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The eye primordium of vertebrates initially forms exactly at the side of the head. Later, the eyeball architecture is tuned to see ahead with better visual acuity, but its molecular basis is unknown. The position of both eyes in the face alters in patients with holoprosencephaly due to Sonic hedgehog (Shh) mutations that disturb the development of the ventral midline of the neural tube. However, patient phenotypes vary extensively, and microforms without a brain anomaly relate instead to alternation of gene expression of the Shh signaling center in the facial primordia. We identified novel missense mutations of the Shh gene in two patients with a dislocated fovea, where the photoreceptor cells are condensed. Functional assays showed that Shh upregulates Patched and Gli and downregulates Pax6, and that Shh mutations alter these activities. Gain of function of Shh in a chick embryo retards retinal development and eyeball growth depending on the location of Shh expression, while loss of function of Shh promotes these features. We postulate that a signaling molecule like Shh that emanates from the face controls the extent of differentiation of the neural retina in a position-specific manner and that this may result in the formation of the fovea at the correct location.
Collapse
Affiliation(s)
- Noriyuki Azuma
- Department of Ophthalmology and Laboratory for Visual Science, National Centre for Child Health and Development, Tokyo 157-8535, Japan
- Department of Developmental and Regenerative Biology, Medical Research Institute, Institute of Science Tokyo, Tokyo 113-8510, Japan;
| | - Keiko Tadokoro
- Department of Genetics, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (K.T.); (M.Y.)
| | - Masao Yamada
- Department of Genetics, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (K.T.); (M.Y.)
| | - Masato Nakafuku
- Department of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Institute of Science Tokyo, Tokyo 113-8510, Japan;
| |
Collapse
|
5
|
Dresch JM, Nourie LL, Conrad RD, Carlson LT, Tchantouridze EI, Tesfaye B, Verhagen E, Gupta M, Borges-Rivera D, Drewell RA. Two coacting shadow enhancers regulate twin of eyeless expression during early Drosophila development. Genetics 2025; 229:1-43. [PMID: 39607769 PMCID: PMC11708921 DOI: 10.1093/genetics/iyae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
The Drosophila PAX6 homolog twin of eyeless (toy) sits at the pinnacle of the genetic pathway controlling eye development, the retinal determination network. Expression of toy in the embryo is first detectable at cellular blastoderm stage 5 in an anterior-dorsal band in the presumptive procephalic neuroectoderm, which gives rise to the primordia of the visual system and brain. Although several maternal and gap transcription factors that generate positional information in the embryo have been implicated in controlling toy, the regulation of toy expression in the early embryo is currently not well characterized. In this study, we adopt an integrated experimental approach utilizing bioinformatics, molecular genetic testing of putative enhancers in transgenic reporter gene assays and quantitative analysis of expression patterns in the early embryo, to identify 2 novel coacting enhancers at the toy gene. In addition, we apply mathematical modeling to dissect the regulatory landscape for toy. We demonstrate that relatively simple thermodynamic-based models, incorporating only 5 TF binding sites, can accurately predict gene expression from the 2 coacting enhancers and that the HUNCHBACK TF plays a critical regulatory role through a dual-modality function as an activator and repressor. Our analysis also reveals that the molecular architecture of the 2 enhancers is very different, indicating that the underlying regulatory logic they employ is distinct.
Collapse
Affiliation(s)
- Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Luke L Nourie
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Regan D Conrad
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Lindsay T Carlson
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | | | - Biruck Tesfaye
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Eleanor Verhagen
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Mahima Gupta
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Diego Borges-Rivera
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| |
Collapse
|
6
|
Gao K, Donati A, Ainsworth J, Wu D, Terner ER, Perry MW. Deep conservation complemented by novelty and innovation in the insect eye ground plan. Proc Natl Acad Sci U S A 2025; 122:e2416562122. [PMID: 39793041 PMCID: PMC11725883 DOI: 10.1073/pnas.2416562122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/09/2024] [Indexed: 01/12/2025] Open
Abstract
A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function. We find that flies, mosquitos, butterflies, moths, beetles, wasps, honeybees, and crickets use homologous developmental programs to pattern their retinas. Transcription factor expression can be used to establish homology of different photoreceptor (PR) types across the insects: Prospero (Pros) for R7, Spalt (Sal) for R7+R8, and Defective proventriculus (Dve) for R1-6. Using gene knockout (CRISPR/Cas9) in houseflies, butterflies, and crickets and gene knockdown (RNAi) in beetles, we found that like Drosophila, EGFR and Sevenless (Sev) signaling pathways are required to recruit motion and color vision PRs, though Drosophila have a decreased reliance on Sev signaling relative to other insects. Despite morphological and physiological variation across species, retina development passes through a highly conserved phylotypic stage when the unit eyes (ommatidia) are first patterned. This patterning process likely represents an "insect eye ground plan" that is established by an ancient developmental program. We identify three types of developmental patterning modifications (ground plan modification, nonstochastic patterns, and specialized regions) that allow for the diversification of insect eyes. We suggest that developmental divergence after the ground plan is established is responsible for the exceptional diversity observed across insect visual systems.
Collapse
Affiliation(s)
- Ke Gao
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Antoine Donati
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Julia Ainsworth
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Di Wu
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Eleanor R. Terner
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Michael W. Perry
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
7
|
Kozmik Z, Kozmikova I. Ancestral role of Pax6 in chordate brain regionalization. Front Cell Dev Biol 2024; 12:1431337. [PMID: 39119036 PMCID: PMC11306081 DOI: 10.3389/fcell.2024.1431337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The Pax6 gene is essential for eye and brain development across various animal species. Here, we investigate the function of Pax6 in the development of the anterior central nervous system (CNS) of the invertebrate chordate amphioxus using CRISPR/Cas9-induced genome editing. Specifically, we examined Pax6 mutants featuring a 6 bp deletion encompassing two invariant amino acids in the conserved paired domain, hypothesized to impair Pax6 DNA-binding capacity and gene regulatory functions. Although this mutation did not result in gross morphological changes in amphioxus larvae, it demonstrated a reduced ability to activate Pax6-responsive reporter gene, suggesting a hypomorphic effect. Expression analysis in mutant larvae revealed changes in gene expression within the anterior CNS, supporting the conserved role of Pax6 gene in brain regionalization across chordates. Additionally, our findings lend support to the hypothesis of a zona limitans intrathalamica (ZLI)-like region in amphioxus, suggesting evolutionary continuity in brain patterning mechanisms. ZLI region, found in both hemichordates and vertebrates, functions as a key signaling center and serves as a restrictive boundary between major thalamic regions.
Collapse
Affiliation(s)
| | - Iryna Kozmikova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
Elagoz AM, Van Dijck M, Lassnig M, Seuntjens E. Embryonic development of a centralised brain in coleoid cephalopods. Neural Dev 2024; 19:8. [PMID: 38907272 PMCID: PMC11191162 DOI: 10.1186/s13064-024-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
The last common ancestor of cephalopods and vertebrates lived about 580 million years ago, yet coleoid cephalopods, comprising squid, cuttlefish and octopus, have evolved an extraordinary behavioural repertoire that includes learned behaviour and tool utilization. These animals also developed innovative advanced defence mechanisms such as camouflage and ink release. They have evolved unique life cycles and possess the largest invertebrate nervous systems. Thus, studying coleoid cephalopods provides a unique opportunity to gain insights into the evolution and development of large centralised nervous systems. As non-model species, molecular and genetic tools are still limited. However, significant insights have already been gained to deconvolve embryonic brain development. Even though coleoid cephalopods possess a typical molluscan circumesophageal bauplan for their central nervous system, aspects of its development are reminiscent of processes observed in vertebrates as well, such as long-distance neuronal migration. This review provides an overview of embryonic coleoid cephalopod research focusing on the cellular and molecular aspects of neurogenesis, migration and patterning. Additionally, we summarize recent work on neural cell type diversity in embryonic and hatchling cephalopod brains. We conclude by highlighting gaps in our knowledge and routes for future research.
Collapse
Affiliation(s)
- Ali M Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Marie Van Dijck
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mark Lassnig
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Rath MF. Homeobox gene-encoded transcription factors in development and mature circadian function of the rodent pineal gland. J Pineal Res 2024; 76:e12950. [PMID: 38558122 DOI: 10.1111/jpi.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Homeobox genes encode transcription factors that are widely known to control developmental processes. This is also the case in the pineal gland, a neuroendocrine brain structure devoted to nighttime synthesis of the hormone melatonin. Thus, in accordance with high prenatal gene expression, knockout studies have identified a specific set of homeobox genes that are essential for development of the pineal gland. However, as a special feature of the pineal gland, homeobox gene expression persists into adulthood, and gene product abundance exhibits 24 h circadian rhythms. Recent lines of evidence show that some homeobox genes even control expression of enzymes catalyzing melatonin synthesis. We here review current knowledge of homeobox genes in the rodent pineal gland and suggest a model for dual functions of homeobox gene-encoded transcription factors in developmental and circadian mature neuroendocrine function.
Collapse
Affiliation(s)
- Martin F Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Wanninger A. Hox, homology, and parsimony: An organismal perspective. Semin Cell Dev Biol 2024; 152-153:16-23. [PMID: 36670036 DOI: 10.1016/j.semcdb.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/21/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Hox genes are important regulators in animal development. They often show a mosaic of conserved (e.g., longitudinal axis patterning) and lineage-specific novel functions (e.g., development of skeletal, sensory, or locomotory systems). Despite extensive research over the past decades, it remains controversial at which node in the animal tree of life the Hox cluster evolved. Its presence already in the last common metazoan ancestor has been proposed, although the genomes of both putative earliest extant metazoan offshoots, the ctenophores and the poriferans, are devoid of Hox sequences. The lack of Hox genes in the supposedly "simple"-built poriferans and their low number in cnidarians and the basally branching bilaterians, the xenacoelomorphs, seems to support the classical notion that the number of Hox genes is correlated with the degree of animal complexity. However, the 4-fold increase of the Hox cluster in xiphosurans, a basally branching chelicerate clade, as well as the situation in some teleost fishes that show a multitude of Hox genes compared to, e.g., human, demonstrates, that there is no per se direct correlation between organismal complexity and Hox number. Traditional approaches have tried to base homology on the morphological level on shared expression profiles of individual genes, but recent data have shown that, in particular with respect to Hox and other regulatory genes, complex gene-gene interactions rather than expression signatures of individual genes alone are responsible for shaping morphological traits during ontogeny. Accordingly, for sound homology assessments and reconstructions of character evolution on organ system level, additional independent datasets (e.g., morphological, developmental) need to be included in any such analyses. If supported by solid data, proposed structural homology should be regarded as valid and not be rejected solely on the grounds of non-parsimonious distribution of the character over a given phylogenetic topology.
Collapse
Affiliation(s)
- Andreas Wanninger
- University of Vienna, Department of Evolutionary Biology, Unit for Integrative Zoology, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
11
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
12
|
Hao Y, Li X, Qin K, Shi Y, He Y, Zhang C, Cheng B, Zhang X, Hu G, Liang S, Tang Q, Chen X. Chemoproteomic and Transcriptomic Analysis Reveals that O-GlcNAc Regulates Mouse Embryonic Stem Cell Fate through the Pluripotency Network. Angew Chem Int Ed Engl 2023; 62:e202300500. [PMID: 36852467 DOI: 10.1002/anie.202300500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Self-renewal and differentiation of embryonic stem cells (ESCs) are influenced by protein O-linked β-N-acetylglucosamine (O-GlcNAc) modification, but the underlying mechanism remains incompletely understood. Herein, we report the identification of 979 O-GlcNAcylated proteins and 1340 modification sites in mouse ESCs (mESCs) by using a chemoproteomics method. In addition to OCT4 and SOX2, the third core pluripotency transcription factor (PTF) NANOG was found to be modified and functionally regulated by O-GlcNAc. Upon differentiation along the neuronal lineage, the O-GlcNAc stoichiometry at 123 sites of 83 proteins-several of which were PTFs-was found to decline. Transcriptomic profiling reveals 2456 differentially expressed genes responsive to OGT inhibition during differentiation, of which 901 are target genes of core PTFs. By acting on the core PTF network, suppression of O-GlcNAcylation upregulates neuron-related genes, thus contributing to mESC fate determination.
Collapse
Affiliation(s)
- Yi Hao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xiang Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Ke Qin
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Yujie Shi
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Yanwen He
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Che Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xiwen Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Guangyu Hu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Shuyu Liang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
13
|
Warren J, Kumar JP. Patterning of the Drosophila retina by the morphogenetic furrow. Front Cell Dev Biol 2023; 11:1151348. [PMID: 37091979 PMCID: PMC10117938 DOI: 10.3389/fcell.2023.1151348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Pattern formation is the process by which cells within a homogeneous epithelial sheet acquire distinctive fates depending upon their relative spatial position to each other. Several proposals, starting with Alan Turing's diffusion-reaction model, have been put forth over the last 70 years to describe how periodic patterns like those of vertebrate somites and skin hairs, mammalian molars, fish scales, and avian feather buds emerge during development. One of the best experimental systems for testing said models and identifying the gene regulatory networks that control pattern formation is the compound eye of the fruit fly, Drosophila melanogaster. Its cellular morphogenesis has been extensively studied for more than a century and hundreds of mutants that affect its development have been isolated. In this review we will focus on the morphogenetic furrow, a wave of differentiation that takes an initially homogeneous sheet of cells and converts it into an ordered array of unit eyes or ommatidia. Since the discovery of the furrow in 1976, positive and negative acting morphogens have been thought to be solely responsible for propagating the movement of the furrow across a motionless field of cells. However, a recent study has challenged this model and instead proposed that mechanical driven cell flow also contributes to retinal pattern formation. We will discuss both models and their impact on patterning.
Collapse
Affiliation(s)
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
14
|
Manuel M, Tan KB, Kozic Z, Molinek M, Marcos TS, Razak MFA, Dobolyi D, Dobie R, Henderson BEP, Henderson NC, Chan WK, Daw MI, Mason JO, Price DJ. Pax6 limits the competence of developing cerebral cortical cells to respond to inductive intercellular signals. PLoS Biol 2022; 20:e3001563. [PMID: 36067211 PMCID: PMC9481180 DOI: 10.1371/journal.pbio.3001563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/16/2022] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
The development of stable specialized cell types in multicellular organisms relies on mechanisms controlling inductive intercellular signals and the competence of cells to respond to such signals. In developing cerebral cortex, progenitors generate only glutamatergic excitatory neurons despite being exposed to signals with the potential to initiate the production of other neuronal types, suggesting that their competence is limited. Here, we tested the hypothesis that this limitation is due to their expression of transcription factor Pax6. We used bulk and single-cell RNAseq to show that conditional cortex-specific Pax6 deletion from the onset of cortical neurogenesis allowed some progenitors to generate abnormal lineages resembling those normally found outside the cortex. Analysis of selected gene expression showed that the changes occurred in specific spatiotemporal patterns. We then compared the responses of control and Pax6-deleted cortical cells to in vivo and in vitro manipulations of extracellular signals. We found that Pax6 loss increased cortical progenitors' competence to generate inappropriate lineages in response to extracellular factors normally present in developing cortex, including the morphogens Shh and Bmp4. Regional variation in the levels of these factors could explain spatiotemporal patterns of fate change following Pax6 deletion in vivo. We propose that Pax6's main role in developing cortical cells is to minimize the risk of their development being derailed by the potential side effects of morphogens engaged contemporaneously in other essential functions.
Collapse
Affiliation(s)
- Martine Manuel
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Boon Tan
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Zrinko Kozic
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Molinek
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Tiago Sena Marcos
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Maizatul Fazilah Abd Razak
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Dániel Dobolyi
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Beth E. P. Henderson
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Neil C. Henderson
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Wai Kit Chan
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael I. Daw
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, Zhejiang, People’s Republic of China
| | - John O. Mason
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Price
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Huang H, Liu J, Li M, Guo H, Zhu J, Zhu L, Wu S, Mo K, Huang Y, Tan J, Chen C, Wang B, Yu Y, Wang L, Liu Y, Ouyang H. Cis-regulatory chromatin loops analysis identifies GRHL3 as a master regulator of surface epithelium commitment. SCIENCE ADVANCES 2022; 8:eabo5668. [PMID: 35857527 PMCID: PMC9278850 DOI: 10.1126/sciadv.abo5668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Understanding the regulatory network of cell fate acquisition remains a major challenge. Using the induction of surface epithelium (SE) from human embryonic stem cells as a paradigm, we show that the dynamic changes in morphology-related genes (MRGs) closely correspond to SE fate transitions. The marked remodeling of cytoskeleton indicates the initiation of SE differentiation. By integrating promoter interactions, epigenomic features, and transcriptome, we delineate an SE-specific cis-regulatory network and identify grainyhead-like 3 (GRHL3) as an initiation factor sufficient to drive SE commitment. Mechanically, GRHL3 primes the SE chromatin accessibility landscape and activates SE-initiating gene expression. In addition, the evaluation of GRHL3-mediated promoter interactions unveils a positive feedback loop of GRHL3 and bone morphogenetic protein 4 on SE fate decisions. Our work proposes a concept that MRGs could be used to identify cell fate transitions and provides insights into regulatory principles of SE lineage development and stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Liqiong Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Chaoqun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Bofeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yankun Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510060, China
| |
Collapse
|
16
|
Lv Y, Zhang C, Jian H, Lou Y, Kang Y, Deng W, Wang C, Wang W, Shang S, Hou M, Shen W, Xie J, Li X, Zhou H, Feng S. Regulating DNA methylation could reduce neuronal ischemia response and apoptosis after ischemia-reperfusion injury. Gene 2022; 837:146689. [PMID: 35750086 DOI: 10.1016/j.gene.2022.146689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an important pathophysiological condition that can cause cell injury and large-scale tissue injury in the nervous system. Previous studies have shown that epigenetic regulation may play a role in the pathogenesis of IRI. METHODS In this study, we isolated mouse cortical neurons and constructed an oxygen-glucose deprivation/reoxygenation (OGD) model to explore the change in DNA methylation and its effect on the expression of corresponding genes. RESULTS We found that DNA methylation in neurons increased with hypoxia duration and that hypermethylation of numerous promoters and 3'-untranslated regions increased. We performed Gene Ontology enrichment analysis to study gene function and Kyoto Encyclopedia of Genes and Genomes pathway analysis to identify the pathways associated with gene regulation. The results showed that hypermethylation-related genes expressed after OGD were related to physiological pathways such as neuronal projection, ion transport, growth and development, while hypomethylation-related genes were related to pathological pathways such as the external apoptosis signaling pathway, neuronal death regulation, and regulation of oxidative stress. However, the changes in DNA methylation were specific for certain genes and may have been related to OGD-induced neuronal damage. Importantly, we integrated transcription and DNA methylation data to identify several candidate target genes, including hypomethylated Apoe, Pax6, Bmp4, and Ptch1 and hypermethylated Adora2a, Crhr1, Stxbp1, and Tac1. This study further indicated the effect of DNA methylation on gene function in brain IRI from the perspective of epigenetics, and the identified genes may become new targets for achieving neuroprotection in the brain after IRI.
Collapse
Affiliation(s)
- Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Chi Zhang
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Weimin Deng
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Chaoyu Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Wei Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Shenghui Shang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Wenyuan Shen
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Jing Xie
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin 300070, P.R. China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Hengxing Zhou
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China; Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
17
|
Ochi S, Manabe S, Kikkawa T, Osumi N. Thirty Years' History since the Discovery of Pax6: From Central Nervous System Development to Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:6115. [PMID: 35682795 PMCID: PMC9181425 DOI: 10.3390/ijms23116115] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Pax6 is a sequence-specific DNA binding transcription factor that positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system (CNS). As indicated by the morphological and functional abnormalities in spontaneous Pax6 mutant rodents, Pax6 plays pivotal roles in various biological processes in the CNS. At the initial stage of CNS development, Pax6 is responsible for brain patterning along the anteroposterior and dorsoventral axes of the telencephalon. Regarding the anteroposterior axis, Pax6 is expressed inversely to Emx2 and Coup-TF1, and Pax6 mutant mice exhibit a rostral shift, resulting in an alteration of the size of certain cortical areas. Pax6 and its downstream genes play important roles in balancing the proliferation and differentiation of neural stem cells. The Pax6 gene was originally identified in mice and humans 30 years ago via genetic analyses of the eye phenotypes. The human PAX6 gene was discovered in patients who suffer from WAGR syndrome (i.e., Wilms tumor, aniridia, genital ridge defects, mental retardation). Mutations of the human PAX6 gene have also been reported to be associated with autism spectrum disorder (ASD) and intellectual disability. Rodents that lack the Pax6 gene exhibit diverse neural phenotypes, which might lead to a better understanding of human pathology and neurodevelopmental disorders. This review describes the expression and function of Pax6 during brain development, and their implications for neuropathology.
Collapse
Affiliation(s)
| | | | | | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.O.); (S.M.); (T.K.)
| |
Collapse
|
18
|
Abdalkader R, Kamei KI. An efficient simplified method for the generation of corneal epithelial cells from human pluripotent stem cells. Hum Cell 2022; 35:1016-1029. [PMID: 35553384 DOI: 10.1007/s13577-022-00713-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 01/23/2023]
Abstract
Corneal epithelial cells derived from human pluripotent stem cells (hPSCs) are an important cell source for preclinical models to test ophthalmic drugs. However, current differentiation protocols lack instructions regarding optimal culturing conditions, which hinders the quality of cells and limits scale-up. Here, we introduce a simplified small molecule-based corneal induction method (SSM-CI) to generate corneal epithelial cells from hPSCs. SSM-CI provides the advantage of minimizing cell-culturing time using two defined culturing media containing TGF-β, and Wnt/β-catenin pathway inhibitors, and bFGF growth factor over 25 days. Compared to the conventional human corneal epithelial cell line (HCE-T) and human primary corneal epithelial cells (hPCEpCs), corneal epithelial cells generated by SSM-CI are well differentiated and express relevant maturation markers, including PAX6 and CK12. RNA-seq analysis indicated the faithful differentiation of hPSCs into corneal epithelia, with significant upregulation of corneal progenitor and adult corneal epithelial phenotypes. Furthermore, despite the initial inhibition of TGF-β and Wnt/β-catenin, upregulation of these pathway-related transcripts was observed in the later stages, indicating their necessity in the generation of mature corneal epithelial cells. Moreover, we observed a shift in gene signatures associated with the metabolic characteristics of mature corneal epithelial cells, involving a decrease in glycolysis and an increase in fatty acid oxidation. This was also attributed to the overexpression of metabolic enzymes and transporter-related transcripts responsible for fatty acid metabolism. Thus, SSM-CI provides a comprehensive method for the generation of functional corneal epithelial cells for use in preclinical models.
Collapse
Affiliation(s)
- Rodi Abdalkader
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, 110016, People's Republic of China. .,Department of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
19
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
20
|
Sears KE, Gullapalli K, Trivedi D, Mihas A, Bukys MA, Jensen J. Controlling neural territory patterning from pluripotency using a systems developmental biology approach. iScience 2022; 25:104133. [PMID: 35434550 PMCID: PMC9010746 DOI: 10.1016/j.isci.2022.104133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/09/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Successful manufacture of specialized human cells requires process understanding of directed differentiation. Here, we apply high-dimensional Design of Experiments (HD-DoE) methodology to identify critical process parameters (CPPs) that govern neural territory patterning from pluripotency—the first stage toward specification of central nervous system (CNS) cell fates. Using computerized experimental design, 7 developmental signaling pathways were simultaneously perturbed in human pluripotent stem cell culture. Regionally specific genes spanning the anterior-posterior and dorsal-ventral axes of the developing embryo were measured after 3 days and mathematical models describing pathway control were developed using regression analysis. High-dimensional models revealed particular combinations of signaling inputs that induce expression profiles consistent with emerging CNS territories and defined CPPs for anterior and posterior neuroectoderm patterning. The results demonstrate the importance of combinatorial control during neural induction and challenge the use of generic neural induction strategies such as dual-SMAD inhibition, when seeking to specify particular lineages from pluripotency. Mathematical models describe pathway control of neuroectoderm marker expression Stage 1 media conditions optimized for regionally specific neuroectoderm in 3 days Optimized conditions are more consistent than dual-SMADi across hiPSC lines
Collapse
|
21
|
Sharma K, Asp NT, Harrison SP, Siller R, Baumgarten SF, Gupta S, Chollet ME, Andersen E, Sullivan GJ, Simonsen A. Autophagy modulates cell fate decisions during lineage commitment. Autophagy 2021; 18:1915-1931. [PMID: 34923909 PMCID: PMC9450964 DOI: 10.1080/15548627.2021.2008691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Early events during development leading to exit from a pluripotent state and commitment toward a specific germ layer still need in depth understanding. Autophagy has been shown to play a crucial role in both development and differentiation. This study employs human embryonic and induced pluripotent stem cells to understand the early events of lineage commitment with respect to the role of autophagy in this process. Our data indicate that a dip in autophagy facilitates exit from pluripotency. Upon exit, we demonstrate that the modulation of autophagy affects SOX2 levels and lineage commitment, with induction of autophagy promoting SOX2 degradation and mesendoderm formation, whereas inhibition of autophagy causes SOX2 accumulation and neuroectoderm formation. Thus, our results indicate that autophagy-mediated SOX2 turnover is a determining factor for lineage commitment. These findings will deepen our understanding of development and lead to improved methods to derive different lineages and cell types.Abbreviations: ACTB: Actin, beta; ATG: Autophagy-related; BafA1: Bafilomycin A1; CAS9: CRISPR associated protein 9; CQ: Chloroquine; DE: Definitive endoderm; hESCs: Human Embryonic Stem Cells; hiPSCs: Human Induced Pluripotent Stem Cells; LAMP1: Lysosomal Associated Membrane Protein 1; MAP1LC3: Microtubule-Associated Protein 1 Light Chain 3; MTOR: Mechanistic Target Of Rapamycin Kinase; NANOG: Nanog Homeobox; PAX6: Paired Box 6; PE: Phosphatidylethanolamine; POU5F1: POU class 5 Homeobox 1; PRKAA2: Protein Kinase AMP-Activated Catalytic Subunit Alpha 2; SOX2: SRY-box Transcription Factor 2; SQSTM1: Sequestosome 1; ULK1: unc-51 like Autophagy Activating Kinase 1; WDFY3: WD Repeat and FYVE Domain Containing 3.
Collapse
Affiliation(s)
- Kulbhushan Sharma
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India.,Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Nagham T Asp
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sean P Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Richard Siller
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Saphira F Baumgarten
- Hybrid Technology Hub, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Swapnil Gupta
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Maria E Chollet
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Elisabeth Andersen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Gareth J Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital, Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital Montebello, Oslo, Norway
| |
Collapse
|
22
|
Nuss A, Sharma A, Gulia-Nuss M. Genetic Manipulation of Ticks: A Paradigm Shift in Tick and Tick-Borne Diseases Research. Front Cell Infect Microbiol 2021; 11:678037. [PMID: 34041045 PMCID: PMC8141593 DOI: 10.3389/fcimb.2021.678037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Ticks are obligate hematophagous arthropods that are distributed worldwide and are one of the most important vectors of pathogens affecting humans and animals. Despite the growing burden of tick-borne diseases, research on ticks has lagged behind other arthropod vectors, such as mosquitoes. This is largely because of challenges in applying functional genomics and genetic tools to the idiosyncrasies unique to tick biology, particularly techniques for stable genetic transformations. CRISPR-Cas9 is transforming non-model organism research; however, successful germline editing has yet to be accomplished in ticks. Here, we review the ancillary methods needed for transgenic tick development and the use of CRISPR/Cas9, the most promising gene-editing approach, for tick genetic transformation.
Collapse
Affiliation(s)
- Andrew Nuss
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, United States
- Department of Agriculture, Veterinary, and Rangeland Sciences, The University of Nevada, Reno, NV, United States
| | - Arvind Sharma
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, United States
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, United States
| |
Collapse
|
23
|
Xu Y, Xi J, Wang G, Guo Z, Sun Q, Lu C, Ma L, Wu Y, Jia W, Zhu S, Guo X, Bian S, Kang J. PAUPAR and PAX6 sequentially regulate human embryonic stem cell cortical differentiation. Nucleic Acids Res 2021; 49:1935-1950. [PMID: 33544864 PMCID: PMC7913681 DOI: 10.1093/nar/gkab030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play a wide range of roles in the epigenetic regulation of crucial biological processes, but the functions of lncRNAs in cortical development are poorly understood. Using human embryonic stem cell (hESC)-based 2D neural differentiation approach and 3D cerebral organoid system, we identified that the lncRNA PAUPAR, which is adjacent to PAX6, plays essential roles in cortical differentiation by interacting with PAX6 to regulate the expression of a large number of neural genes. Mechanistic studies showed that PAUPAR confers PAX6 proper binding sites on the target neural genes by directly binding the genomic regions of these genes. Moreover, PAX6 recruits the histone methyltransferase NSD1 through its C-terminal PST enrichment domain, then regulate H3K36 methylation and the expression of target genes. Collectively, our data reveal that the PAUPAR/PAX6/NSD1 complex plays a critical role in the epigenetic regulation of hESC cortical differentiation and highlight the importance of PAUPAR as an intrinsic regulator of cortical differentiation.
Collapse
Affiliation(s)
- Yanxin Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China.,Bio-X Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chenqi Lu
- Department of Biostatistics and Computational Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Ma
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Thompson B, Davidson EA, Liu W, Nebert DW, Bruford EA, Zhao H, Dermitzakis ET, Thompson DC, Vasiliou V. Overview of PAX gene family: analysis of human tissue-specific variant expression and involvement in human disease. Hum Genet 2021; 140:381-400. [PMID: 32728807 PMCID: PMC7939107 DOI: 10.1007/s00439-020-02212-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Paired-box (PAX) genes encode a family of highly conserved transcription factors found in vertebrates and invertebrates. PAX proteins are defined by the presence of a paired domain that is evolutionarily conserved across phylogenies. Inclusion of a homeodomain and/or an octapeptide linker subdivides PAX proteins into four groups. Often termed "master regulators", PAX proteins orchestrate tissue and organ development throughout cell differentiation and lineage determination, and are essential for tissue structure and function through maintenance of cell identity. Mutations in PAX genes are associated with myriad human diseases (e.g., microphthalmia, anophthalmia, coloboma, hypothyroidism, acute lymphoblastic leukemia). Transcriptional regulation by PAX proteins is, in part, modulated by expression of alternatively spliced transcripts. Herein, we provide a genomics update on the nine human PAX family members and PAX homologs in 16 additional species. We also present a comprehensive summary of human tissue-specific PAX transcript variant expression and describe potential functional significance of PAX isoforms. While the functional roles of PAX proteins in developmental diseases and cancer are well characterized, much remains to be understood regarding the functional roles of PAX isoforms in human health. We anticipate the analysis of tissue-specific PAX transcript variant expression presented herein can serve as a starting point for such research endeavors.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular and Developmental Biology, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA.
| |
Collapse
|
25
|
Flach H, Basten T, Schreiner C, Dietmann P, Greco S, Nies L, Roßmanith N, Walter S, Kühl M, Kühl SJ. Retinol binding protein 1 affects Xenopus anterior neural development via all-trans retinoic acid signaling. Dev Dyn 2021; 250:1096-1112. [PMID: 33570783 DOI: 10.1002/dvdy.313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Retinol binding protein 1 (Rbp1) acts as an intracellular regulator of vitamin A metabolism and retinoid transport. In mice, Rbp1 deficiency decreases the capacity of hepatic stellate cells to take up all-trans retinol and sustain retinyl ester stores. Furthermore, Rbp1 is crucial for visual capacity. Although the function of Rbp1 has been studied in the mature eye, its role during early anterior neural development has not yet been investigated in detail. RESULTS We showed that rbp1 is expressed in the eye, anterior neural crest cells (NCCs) and prosencephalon of the South African clawed frog Xenopus laevis. Rbp1 knockdown led to defects in eye formation, including microphthalmia and disorganized retinal lamination, and to disturbed induction and differentiation of the eye field, as shown by decreased rax and pax6 expression. Furthermore, it resulted in reduced rax expression in the prosencephalon and affected cranial cartilage. Rbp1 inhibition also interfered with neural crest induction and migration, as shown by twist and slug. Moreover, it led to a significant reduction of the all-trans retinoic acid target gene pitx2 in NCC-derived periocular mesenchyme. The Rbp1 knockdown phenotypes were rescued by pitx2 RNA co-injection. CONCLUSION Rbp1 is crucial for the development of the anterior neural tissue.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Thomas Basten
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Corinna Schreiner
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Sara Greco
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Lea Nies
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Nathalie Roßmanith
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Svenja Walter
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
26
|
Liu F, Fu J, Wang L, Nie Q, Luo Z, Hou M, Yang Y, Gong X, Wang Y, Xiao Y, Xiang J, Hu X, Zhang L, Wu M, Chen W, Cheng B, Luo L, Zhang X, Liu X, Zheng D, Huang S, Liu Y, Li DW. Molecular signature for senile and complicated cataracts derived from analysis of sumoylation enzymes and their substrates in human cataract lenses. Aging Cell 2020; 19:e13222. [PMID: 32827359 PMCID: PMC7576240 DOI: 10.1111/acel.13222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022] Open
Abstract
Sumoylation is one of the key regulatory mechanisms in eukaryotes. Our previous studies reveal that sumoylation plays indispensable roles during lens differentiation (Yan et al. 2010. Proc Natl Acad Sci USA. 107:21034-21039; Gong et al. 2014. Proc Natl Acad Sci USA. 111:5574-5579). Whether sumoylation is implicated in cataractogenesis, a disease largely derived from aging, remains elusive. In the present study, we have examined the changing patterns of the sumoylation ligases and de-sumoylation enzymes (SENPs) and their substrates including Pax6 and other proteins in cataractous lenses of different age groups from 50 to 90 years old. It is found that compared with normal lenses, sumoylation ligases 1 and 3, de-sumoylation enzymes SENP3/7/8, and p46 Pax6 are clearly increased. In contrast, Ubc9 is significantly decreased. Among different cataract patients from 50s to 70s, male patients express more sumoylation enzymes and p46 Pax6. Ubc9 and SENP6 display age-dependent increase. The p46 Pax6 displays age-dependent decrease in normal lens, remains relatively stable in senile cataracts but becomes di-sumoylated in complicated cataracts. In contrast, sumoylation of p32 Pax6 is observed in senile cataracts and increases its stability. Treatment of rat lenses with oxidative stress increases Pax6 expression without sumoylation but promotes apoptosis. Thus, our results show that the changing patterns in Ubc9, SENP6, and Pax6 levels can act as molecular markers for senile cataract and the di-sumoylated p46 Pax6 for complicated cataract. Together, our results reveal the presence of molecular signature for both senile and complicated cataracts. Moreover, our study indicates that sumoylation is implicated in control of aging and cataractogenesis.
Collapse
Affiliation(s)
- Fang‐Yuan Liu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Jia‐Ling Fu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Ling Wang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Qian Nie
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Zhongwen Luo
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Min Hou
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yuan Yang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xiao‐Dong Gong
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yan Wang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Jiawen Xiang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xuebin Hu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Bing Cheng
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xinyu Zhang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Danying Zheng
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Shengsong Huang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - David Wan‐Cheng Li
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| |
Collapse
|
27
|
Omori A, Shibata TF, Akasaka K. Gene expression analysis of three homeobox genes throughout early and late development of a feather star Anneissia japonica. Dev Genes Evol 2020; 230:305-314. [PMID: 32671457 DOI: 10.1007/s00427-020-00665-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022]
Abstract
Crinoids are considered as the most basal extant echinoderms. They retain aboral nervous system with a nerve center, which has been degraded in the eleutherozoan echinoderms. To investigate the evolution of patterning of the nervous systems in crinoids, we examined temporal and spatial expression patterns of three neural patterning-related homeobox genes, six3, pax6, and otx, throughout the development of a feather star Anneissia japonica. These genes were involved in the patterning of endomesodermal tissues instead of the ectodermal neural tissues in the early planktonic stages. In the stages after larval attachment, the expression of these genes was mainly observed in the podia and the oral nervous systems instead of the aboral nerve center. Our results indicate the involvement of these three genes in the formation of oral nervous system in the common ancestor of the echinoderms and suggest that the aboral nerve center is not evolutionally related to the brain of other bilaterians.
Collapse
Affiliation(s)
- Akihito Omori
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado, Niigata, 952-2135, Japan.
- Misaki Marine Biological Station, School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan.
| | - Tomoko F Shibata
- Misaki Marine Biological Station, School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Koji Akasaka
- Misaki Marine Biological Station, School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
| |
Collapse
|
28
|
The ubiquitin-conjugating enzyme UBE2K determines neurogenic potential through histone H3 in human embryonic stem cells. Commun Biol 2020; 3:262. [PMID: 32451438 PMCID: PMC7248108 DOI: 10.1038/s42003-020-0984-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/01/2020] [Indexed: 01/05/2023] Open
Abstract
Histones modulate gene expression by chromatin compaction, regulating numerous processes such as differentiation. However, the mechanisms underlying histone degradation remain elusive. Human embryonic stem cells (hESCs) have a unique chromatin architecture characterized by low levels of trimethylated histone H3 at lysine 9 (H3K9me3), a heterochromatin-associated modification. Here we assess the link between the intrinsic epigenetic landscape and ubiquitin-proteasome system of hESCs. We find that hESCs exhibit high expression of the ubiquitin-conjugating enzyme UBE2K. Loss of UBE2K upregulates the trimethyltransferase SETDB1, resulting in H3K9 trimethylation and repression of neurogenic genes during differentiation. Besides H3K9 trimethylation, UBE2K binds histone H3 to induce its polyubiquitination and degradation by the proteasome. Notably, ubc-20, the worm orthologue of UBE2K, also regulates histone H3 levels and H3K9 trimethylation in Caenorhabditis elegans germ cells. Thus, our results indicate that UBE2K crosses evolutionary boundaries to promote histone H3 degradation and reduce H3K9me3 repressive marks in immortal cells. Azra Fatima et al. show that ubiquitin-conjugating enzyme UBE2K regulates neurogenic potential through its target histone H3 in human embryonic stem cells. This study suggests that UBE2K promotes histone H3 degradation, reducing the H3K9me3 repressive marks in immortal cells of both worms and humans.
Collapse
|
29
|
Lima Cunha D, Arno G, Corton M, Moosajee M. The Spectrum of PAX6 Mutations and Genotype-Phenotype Correlations in the Eye. Genes (Basel) 2019; 10:genes10121050. [PMID: 31861090 PMCID: PMC6947179 DOI: 10.3390/genes10121050] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor PAX6 is essential in ocular development in vertebrates, being considered the master regulator of the eye. During eye development, it is essential for the correct patterning and formation of the multi-layered optic cup and it is involved in the developing lens and corneal epithelium. In adulthood, it is mostly expressed in cornea, iris, and lens. PAX6 is a dosage-sensitive gene and it is highly regulated by several elements located upstream, downstream, and within the gene. There are more than 500 different mutations described to affect PAX6 and its regulatory regions, the majority of which lead to PAX6 haploinsufficiency, causing several ocular and systemic abnormalities. Aniridia is an autosomal dominant disorder that is marked by the complete or partial absence of the iris, foveal hypoplasia, and nystagmus, and is caused by heterozygous PAX6 mutations. Other ocular abnormalities have also been associated with PAX6 changes, and genotype-phenotype correlations are emerging. This review will cover recent advancements in PAX6 regulation, particularly the role of several enhancers that are known to regulate PAX6 during eye development and disease. We will also present an updated overview of the mutation spectrum, where an increasing number of mutations in the non-coding regions have been reported. Novel genotype-phenotype correlations will also be discussed.
Collapse
Affiliation(s)
| | - Gavin Arno
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital—Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mariya Moosajee
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Correspondence:
| |
Collapse
|
30
|
Liu F, Wang L, Fu JL, Xiao Y, Gong X, Liu Y, Nie Q, Xiang JW, Yang L, Chen Z, Liu Y, Li DWC. Analysis of Non-Sumoylated and Sumoylated Isoforms of Pax-6, the Master Regulator for Eye and Brain Development in Ocular Cell Lines. Curr Mol Med 2019; 18:566-573. [PMID: 30636604 DOI: 10.2174/1566524019666190111153310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 11/21/2018] [Accepted: 01/07/2019] [Indexed: 11/22/2022]
Abstract
PURPOSE Pax-6 is a master regulator for eye and brain development. Previous studies including ours have shown that Pax-6 exists in 4 major isoforms. According to their sizes, they are named p48, p46, p43 and p32 with the corresponding molecular weight of 48, 46, 43 and 32 kd, respectively. While p48 and p46 is derived from alternative splicing, p32 Pax-6 is generated through an internal translation initiation site. As for 43 kd Pax-6, two resources have been reported. In bird, it was found that an alternative splicing can generate a p43 Pax-6. In human and mouse, we reported that the p43 kd Pax-6 is derived from sumoylation: addition of a 11 kd polypeptide SUMO1 into the p32 Pax-6 at the K91 residue. Whether other Pax-6 isoforms can be sumoylated or not remains to be explored. METHODS The 5 major ocular cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM) containing fetal bovine serum (FBS) or rabbit serum (RBS) and 1% Penicillin- Streptomycin. The mRNA levels were analysed with qRT-PCR. The protein levels were determined with western blot analysis and quantitated with Image J. RESULTS Both non-sumoylated and sumoylated isoforms of Pax-6 exist in 6 major types of ocular cells among which five are lens epithelial cells, and one is retinal pigment epithelial cell. Our results revealed that the most abundant isoforms of Pax-6 are the p32 and p46 Pax-6. These two major isoforms can be sumoylated to generate p43 (mono-sumoylated p32 Pax-6), p57 and p68 Pax-6 (mono- and di-sumoylated p46 Pax-6). In addition, the splicing-generated p48 Pax-6 is also readily detected. CONCLUSION Our results for the first time, have determined the relative isoform abundance and also the sumoylation patterns of pax-6 in 6 major ocular cell lines.
Collapse
Affiliation(s)
- Fangyuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Xiaodong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yunfei Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhigang Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| |
Collapse
|
31
|
López JM, Morona R, Moreno N, Lozano D, Jiménez S, González A. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J Comp Neurol 2019; 528:135-159. [PMID: 31299095 DOI: 10.1002/cne.24744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022]
Abstract
The Pax6 gene encodes a regulatory transcription factor that is key in brain development. The molecular structure of Pax6, the roles it plays and its patterns of expression in the brain have been highly conserved during vertebrate evolution. As neurodevelopment proceeds, the Pax6 expression changes from the mitotic germinal zone in the ventricular zone to become distributed in cell groups in the adult brain. Studies in various vertebrates, from fish to mammals, found that the Pax6 expression is maintained in adults in most regions that express it during development. Specifically, in amphibians, Pax6 is widely expressed in the adult brain and its distribution pattern serves to highlight regional organization of the brain. In the present study, we analyzed the detailed distribution of Pax6 cells in the adult central nervous system of lungfishes, the closest living relatives of all tetrapods. Immunohistochemistry performed using double labeling techniques with several neuronal markers of known distribution patterns served to evaluate the actual location of Pax6 cells. Our results show that the Pax6 expression is maintained in the adult brain of lungfishes, in distinct regions of the telencephalon (pallium and subpallium), diencephalon, mesencephalon, hindbrain, spinal cord, and retina. The pattern of Pax6 expression is largely shared with amphibians and helps to understand the primitive condition that would have characterized the common ancestors to all sarcopterygians (lobe-finned fishes and tetrapods), in which Pax6 would be needed to maintain specific entities of subpopulations of neurons.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
32
|
Irmak D, Fatima A, Gutiérrez-Garcia R, Rinschen MM, Wagle P, Altmüller J, Arrigoni L, Hummel B, Klein C, Frese CK, Sawarkar R, Rada-Iglesias A, Vilchez D. Mechanism suppressing H3K9 trimethylation in pluripotent stem cells and its demise by polyQ-expanded huntingtin mutations. Hum Mol Genet 2019; 27:4117-4134. [PMID: 30452683 DOI: 10.1093/hmg/ddy304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells are invaluable resources to study development and disease, holding a great promise for regenerative medicine. Here we use human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) from patients with Huntington's disease (HD-iPSCs) to shed light into the normal function of huntingtin (HTT) and its demise in disease. We find that HTT binds ATF7IP, a regulator of the histone H3 methyltransferase SETDB1. HTT inhibits the interaction of the ATF7IP-SETDB1 complex with other heterochromatin regulators and transcriptional repressors, maintaining low levels of H3K9 trimethylation (H3K9me3) in hESCs. Loss of HTT promotes global increased H3K9me3 levels and enrichment of H3K9me3 marks at distinct genes, including transcriptional regulators of neuronal differentiation. Although these genes are normally expressed at low amounts in hESCs, HTT knockdown (KD) reduces their induction during neural differentiation. Notably, mutant expanded polyglutamine repeats in HTT diminish its interaction with ATF7IP-SETDB1 complex and trigger H3K9me3 in HD-iPSCs. Conversely, KD of ATF7IP in HD-iPSCs reduces H3K9me3 alterations and ameliorates gene expression changes in their neural counterparts. Taken together, our results indicate ATF7IP as a potential target to correct aberrant H3K9me3 levels induced by mutant HTT.
Collapse
Affiliation(s)
- Dilber Irmak
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Azra Fatima
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Ricardo Gutiérrez-Garcia
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Markus M Rinschen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Prerana Wagle
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Janine Altmüller
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Laura Arrigoni
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Corinna Klein
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Christian K Frese
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Alvaro Rada-Iglesias
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| |
Collapse
|
33
|
Gurung PMS, Barnett AR, Wilson JS, Hudson J, Ward DG, Messing EM, Bryan RT. Prognostic DNA Methylation Biomarkers in High-risk Non-muscle-invasive Bladder Cancer: A Systematic Review to Identify Loci for Prospective Validation. Eur Urol Focus 2019; 6:683-697. [PMID: 30803927 DOI: 10.1016/j.euf.2019.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
CONTEXT High-risk non-muscle-invasive bladder cancer (HR-NMIBC) represents over 30% of all incident urothelial bladder cancers (BCs); patients are at risk of progression, and 20-30% will die from BC within 5 yr. Current guidelines recommend induction and maintenance of intravesical bacillus Calmette-Guérin (BCG) or upfront radical cystectomy for highest-risk disease, treatments with markedly different morbidity, mortality, and patient burden. There are no validated biomarkers to facilitate such treatment decisions. Alterations in DNA methylation are commonplace in BC; hence, measurable changes in DNA methylation represent an opportunity for the discovery of such biomarkers. OBJECTIVE To systematically assess the evidence regarding DNA methylation markers as prognosticators for HR-NMIBC. EVIDENCE ACQUISITION Standard systematic review methods were employed with searches undertaken in MEDLINE, EMBASE, and PubMed up to January 2019. Studies that included patients with HR-NMIBC and investigated the utility of DNA methylation biomarkers as prognostic tools were included. EVIDENCE SYNTHESIS Of 63 prognostic biomarker studies identified, 21 met the protocol-driven inclusion criteria and were directly relevant to HR-NMIBC patient outcomes: tumour recurrence (TR), tumour progression (TP), disease-specific survival (DSS), and overall survival (OS). These studies described 140 methylation markers; of these, the most promising were cadherin-13 (CDH13; hazard ratios [HRs]: 5.1 for TR, 6.6 for TP, 3.8-8.0 for OS), protocadherins (PCDHs; HRs: 4.7 for TR, 2.5 for TP, 3.0-4.8 for OS), Runt domain transcription factor 3 (RUNX3; HR: 5.1 for TP), Homeobox 9 (HOXA9; HR: 1.9 for TR), Islet-1 (ISL1; HRs: 1.7 for TR, 3.3 for TP), and PAX6 (HR: 2.2 for TR). CONCLUSIONS This systematic review identifies a number of potentially useful prognostic methylation markers for HR-NMIBC. These loci (CDH13, PCDHs, RUNX3, HOXA9, ISL1, and PAX6) should be validated in prospective studies in order to translate benefit to patients. PATIENT SUMMARY Early bladder cancer represents a more complex spectrum of disease than can be assessed by conventional methods Emerging studies on molecular markers will improve our understanding of this disease, and may enable more precise and personalised treatment.
Collapse
Affiliation(s)
- Pratik M S Gurung
- University of Rochester Medical Center, Rochester, New York, NY, USA
| | - Abigail R Barnett
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Jayne S Wilson
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Douglas G Ward
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Edward M Messing
- University of Rochester Medical Center, Rochester, New York, NY, USA
| | - Richard T Bryan
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
34
|
Gao Q, Zhang W, Ma L, Li X, Wang H, Li Y, Freimann R, Yu Y, Shuai L, Wutz A. Derivation of Haploid Neural Stem Cell Lines by Selection for a Pax6-GFP Reporter. Stem Cells Dev 2019; 27:479-487. [PMID: 29471728 DOI: 10.1089/scd.2017.0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Haploid cells facilitate genetic screening of recessive mutations for a single set of chromosomes. Haploid embryonic stem cells (haESCs) have been achieved in several species and widely utilized in genetic screens. The fact that haESCs undergo substantial diploidization during differentiation has limited the screening to other haploid cell types. In this study, we report a method to establish haploid neural stem cells (haNSCs) by selection for a Pax6 reporter. We inserted a green fluorescence protein (GFP) marker gene by homologous recombination into the Pax6 locus of an haESC line. GFP-positive haploid cells could be sorted and further cultured in the NSC medium for more than 30 passages. The established haNSCs expressed neural lineage markers and could differentiate into neurons, oligodendroglia, and astrocytes. Our study shows the feasibility of deriving haploid proliferative somatic cell lines using a genetically encoded reporter that suggest a system for genetic screening of neural and retinal development.
Collapse
Affiliation(s)
- Qian Gao
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China .,2 Reproductive Medical Center, Department of Gynecology and Obstetrics, Peking University Third Hospital , Beijing, China
| | - Wenhao Zhang
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Lifang Ma
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Xu Li
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Haisong Wang
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Yanni Li
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Remo Freimann
- 3 Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich , Zurich, Switzerland
| | - Yang Yu
- 2 Reproductive Medical Center, Department of Gynecology and Obstetrics, Peking University Third Hospital , Beijing, China
| | - Ling Shuai
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Anton Wutz
- 3 Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich , Zurich, Switzerland
| |
Collapse
|
35
|
Microstructural differences in visual white matter tracts in people with aniridia. Neuroreport 2018; 29:1473-1478. [DOI: 10.1097/wnr.0000000000001135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Uslupehlivan M, Şener E, Deveci R. In silico analysis of Pax6 protein glycosylation in vertebrates. Comput Biol Chem 2018; 77:116-122. [PMID: 30286322 DOI: 10.1016/j.compbiolchem.2018.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/15/2018] [Accepted: 09/24/2018] [Indexed: 11/16/2022]
Abstract
Pax6 is a transcription factor that involves in the formation of the eye, brain, and central nervous system in vertebrates. Due to various roles in the eye morphogenesis, Pax6 interacts with DNA and various transcription factors via post-translational modifications. Post-translational modifications of Pax6 have been studied extensively but there is a paucity of information about the glycosylation. Here, we focused on predicting the glycosylation positions of Pax6 protein in vertebrates. Also, 3D protein and glycoprotein models were generated using I-TASSER and GLYCAM servers in order to understand the effect of glycosylation on the Pax6 protein structure. We predicted N-glycosylation, mucin-type O-glycosylation, O-α-GlcNAcylation, and O-β-GlcNAcylation positions on Pax6 protein besides O-GlcNAc modification. Moreover, we found ying-yang positions suggesting the presence of O-GlcNAcylation/phosphorylation competition in Pax6. As to 3D glycoprotein models of Pax6, Ser24, Ser65, and Ser74 residues at the PD domain of Pax6 protein was evaluated as a strong candidate for the DNA binding site. We suggest that determination of the glycosylation positions on 3D glycoprotein model will facilitate the understanding of glycosylation role on Pax6 protein interactions in transcription and intracellular activities.
Collapse
Affiliation(s)
- Muhammet Uslupehlivan
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Izmir, Turkey.
| | - Ecem Şener
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Izmir, Turkey.
| | - Remziye Deveci
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, Izmir, Turkey.
| |
Collapse
|
37
|
Brugler MR, González-Muñoz RE, Tessler M, Rodríguez E. An EPIC journey to locate single-copy nuclear markers in sea anemones. ZOOL SCR 2018. [DOI: 10.1111/zsc.12309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mercer R. Brugler
- Division of Invertebrate Zoology; American Museum of Natural History; New York New York
- Biological Sciences Department; NYC College of Technology (CUNY); Brooklyn New York
| | - Ricardo E. González-Muñoz
- Laboratorio de Biología de Cnidarios; Instituto de Investigaciones Marinas y Costeras (IIMyC); CONICET; Universidad Nacional de Mar del Plata; Mar del Plata Argentina
- Instituto de Ciencias del Mar y Limnología (ICMyL); Posgrado en Ciencias del Mar y Limnología (PCMyL); UNAM, Ciudad Universitaria; Ciudad de México México
| | - Michael Tessler
- Division of Invertebrate Zoology; American Museum of Natural History; New York New York
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology; American Museum of Natural History; New York New York
| |
Collapse
|
38
|
Zhu J, Huang X, Jiang H, Hu L, Michal JJ, Jiang Z, Shi H. The role of pparγ in embryonic development of Xenopus tropicalis under triphenyltin-induced teratogenicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:1245-1252. [PMID: 29758877 DOI: 10.1016/j.scitotenv.2018.03.313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Evidence has shown that triphenyltin (TPT) triggers severe malformations in Xenopus tropicalis embryos, partly due to activation of PPARγ (peroxisome proliferator activated receptor γ) protein. In the present study, we investigated how abundance of pparγ and TPT exposure interact and affect X. tropicalis embryonic development. We observed pparγ expression signals appeared in the neural crest and neural fold, as well as in the brain, eyes and spinal cord organs. Both pparγ overexpression and its Morpholino (MO) knockdown inhibited pax6 (paired box 6) expression, a marker of eye development, and significantly up- and down-regulated lipid and glucose homeostasis related genes, such as lpl (lipoprotein lipase), slc2a4 (solute carrier family 2 (facilitated glucose transporter), member 4) and pck1 (phosphoenolpyruvate carboxykinase 1, cytosolic), thus inducing eye phenotypes. Overexpression of pparγ induced small eye phenotype, while pparγ MO induced small eye plus turbid eye lens microencephaly and enlarged trunk. In contrast, 5-20μgSn/L (stannum/L) TPT exposure reversed some impacts induced by pparγ overexpression, i.e., no small eye, up-regulation of pax6 and down-regulation of pparγ, lpl, slc2a4 and pck1. Meanwhile, microinjection of pparγ MO combined with exposure to 20μgSn/L TPT caused 85% mortality. In brief, our work clearly indicates that pparγ is essential to eye development and inhibition of its expression combined with TPT exposure can be extremely harmful to X. tropicalis embryo.
Collapse
Affiliation(s)
- Jingmin Zhu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Ocean college, Qinzhou University, Qinzhou, Guangxi, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xiao Huang
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Jiang
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lingling Hu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jennifer J Michal
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-7620, USA
| | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-7620, USA
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
39
|
Baker LR, Weasner BM, Nagel A, Neuman SD, Bashirullah A, Kumar JP. Eyeless/Pax6 initiates eye formation non-autonomously from the peripodial epithelium. Development 2018; 145:dev.163329. [PMID: 29980566 DOI: 10.1242/dev.163329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
The transcription factor Pax6 is considered the master control gene for eye formation because (1) it is present within the genomes and retina/lens of all animals with a visual system; (2) severe retinal defects accompany its loss; (3) Pax6 genes have the ability to substitute for one another across the animal kingdom; and (4) Pax6 genes are capable of inducing ectopic eye/lens in flies and mammals. Many roles of Pax6 were first elucidated in Drosophila through studies of the gene eyeless (ey), which controls both growth of the entire eye-antennal imaginal disc and fate specification of the eye. We show that Ey also plays a surprising role within cells of the peripodial epithelium to control pattern formation. It regulates the expression of decapentaplegic (dpp), which is required for initiation of the morphogenetic furrow in the eye itself. Loss of Ey within the peripodial epithelium leads to the loss of dpp expression within the eye, failure of the furrow to initiate, and abrogation of retinal development. These findings reveal an unexpected mechanism for how Pax6 controls eye development in Drosophila.
Collapse
Affiliation(s)
- Luke R Baker
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Bonnie M Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Athena Nagel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sarah D Neuman
- Department of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | - Arash Bashirullah
- Department of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
40
|
Flach H, Krieg J, Hoffmeister M, Dietmann P, Reusch A, Wischmann L, Kernl B, Riegger R, Oess S, Kühl SJ. Nosip functions during vertebrate eye and cranial cartilage development. Dev Dyn 2018; 247:1070-1082. [PMID: 30055071 DOI: 10.1002/dvdy.24659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/01/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The nitric oxide synthase interacting protein (Nosip) has been associated with diverse human diseases including psychological disorders. In line, early neurogenesis of mouse and Xenopus is impaired upon Nosip deficiency. Nosip knockout mice show craniofacial defects and the down-regulation of Nosip in the mouse and Xenopus leads to microcephaly. Until now, the exact underlying molecular mechanisms of these malformations were still unknown. RESULTS Here, we show that nosip is expressed in the developing ocular system as well as the anterior neural crest cells of Xenopus laevis. Furthermore, Nosip inhibition causes severe defects in eye formation in the mouse and Xenopus. Retinal lamination as well as dorso-ventral patterning of the retina were affected in Nosip-depleted Xenopus embryos. Marker gene analysis using rax, pax6 and otx2 reveals an interference with the eye field induction and differentiation. A closer look on Nosip-deficient Xenopus embryos furthermore reveals disrupted cranial cartilage structures and an inhibition of anterior neural crest cell induction and migration shown by twist, snai2, and egr2. Moreover, foxc1 as downstream factor of retinoic acid signalling is affected upon Nosip deficiency. CONCLUSIONS Nosip is a crucial factor for the development of anterior neural tissue such the eyes and neural crest cells. Developmental Dynamics 247:1070-1082, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Julia Krieg
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Meike Hoffmeister
- Institute of Biochemistry II, Goethe University, Frankfurt Medical School, Frankfurt/Main, Germany.,Institute of Biochemistry, Brandenburg Medical School (MHB) Theodor Fontane, Neuruppin, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Adrian Reusch
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Lisa Wischmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Bianka Kernl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Ricarda Riegger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Stefanie Oess
- Institute of Biochemistry II, Goethe University, Frankfurt Medical School, Frankfurt/Main, Germany.,Institute of Biochemistry, Brandenburg Medical School (MHB) Theodor Fontane, Neuruppin, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
41
|
Cvekl A, Zhao Y, McGreal R, Xie Q, Gu X, Zheng D. Evolutionary Origins of Pax6 Control of Crystallin Genes. Genome Biol Evol 2018; 9:2075-2092. [PMID: 28903537 PMCID: PMC5737492 DOI: 10.1093/gbe/evx153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2017] [Indexed: 12/19/2022] Open
Abstract
The birth of novel genes, including their cell-specific transcriptional control, is a major source of evolutionary innovation. The lens-preferred proteins, crystallins (vertebrates: α- and β/γ-crystallins), provide a gateway to study eye evolution. Diversity of crystallins was thought to originate from convergent evolution through multiple, independent formation of Pax6/PaxB-binding sites within the promoters of genes able to act as crystallins. Here, we propose that αB-crystallin arose from a duplication of small heat shock protein (Hspb1-like) gene accompanied by Pax6-site and heat shock element (HSE) formation, followed by another duplication to generate the αA-crystallin gene in which HSE was converted into another Pax6-binding site. The founding β/γ-crystallin gene arose from the ancestral Hspb1-like gene promoter inserted into a Ca2+-binding protein coding region, early in the cephalochordate/tunicate lineage. Likewise, an ancestral aldehyde dehydrogenase (Aldh) gene, through multiple gene duplications, expanded into a multigene family, with specific genes expressed in invertebrate lenses (Ω-crystallin/Aldh1a9) and both vertebrate lenses (η-crystallin/Aldh1a7 and Aldh3a1) and corneas (Aldh3a1). Collectively, the present data reconstruct the evolution of diverse crystallin gene families.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Rebecca McGreal
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Qing Xie
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Xun Gu
- Program in Bioinformatics and Computational Biology, Department of Genetics, Development, and Cell Biology, Iowa State University
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York.,Department of Neurology, Albert Einstein College of Medicine, Bronx, New York.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
42
|
Steinmetz EL, Dewald DN, Walldorf U. Homeodomain-interacting protein kinase phosphorylates the Drosophila Paired box protein 6 (Pax6) homologues Twin of eyeless and Eyeless. INSECT MOLECULAR BIOLOGY 2018; 27:198-211. [PMID: 29205612 DOI: 10.1111/imb.12363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Homeodomain-interacting protein kinase (Hipk), the Drosophila homologue of mammalian HIPK2, plays several important roles in regulating differentiation, proliferation, apoptosis, and stress responses and acts as a mediator for signals of diverse pathways, such as Notch or Wingless signalling. The Paired box protein 6 (Pax6) has two Drosophila homologues, Twin of eyeless (Toy) and Eyeless (Ey). Both stand atop the retinal determination gene network (RDGN), which is essential for proper eye development in Drosophila. Here, we set Hipk and the master regulators Toy and Ey in an enzyme-substrate relationship. Furthermore, we prove a physical interaction between Toy and Hipk in vivo using bimolecular fluorescence complementation. Using in vitro kinase assays with different truncated Toy constructs and mutational analyses, we mapped four Hipk phosphorylation sites of Toy, one in the paired domain (Ser121 ) and three in the C-terminal transactivation domain of Toy (Thr395 , Ser410 and Thr452 ). The interaction and phosphorylation of the master regulator Toy by Hipk may be important for precise tuning of signalling within the RDGN and therefore for Drosophila eye development.
Collapse
Affiliation(s)
- E L Steinmetz
- Developmental Biology, Saarland University, Homburg, Germany
| | - D N Dewald
- Developmental Biology, Saarland University, Homburg, Germany
| | - U Walldorf
- Developmental Biology, Saarland University, Homburg, Germany
| |
Collapse
|
43
|
Nguyen LT, Reverter A, Cánovas A, Venus B, Anderson ST, Islas-Trejo A, Dias MM, Crawford NF, Lehnert SA, Medrano JF, Thomas MG, Moore SS, Fortes MRS. STAT6, PBX2, and PBRM1 Emerge as Predicted Regulators of 452 Differentially Expressed Genes Associated With Puberty in Brahman Heifers. Front Genet 2018; 9:87. [PMID: 29616079 PMCID: PMC5869259 DOI: 10.3389/fgene.2018.00087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
The liver plays a central role in metabolism and produces important hormones. Hepatic estrogen receptors and the release of insulin-like growth factor 1 (IGF1) are critical links between liver function and the reproductive system. However, the role of liver in pubertal development is not fully understood. To explore this question, we applied transcriptomic analyses to liver samples of pre- and post-pubertal Brahman heifers and identified differentially expressed (DE) genes and genes encoding transcription factors (TFs). Differential expression of genes suggests potential biological mechanisms and pathways linking liver function to puberty. The analyses identified 452 DE genes and 82 TF with significant contribution to differential gene expression by using a regulatory impact factor metric. Brain-derived neurotrophic factor was observed as the most down-regulated gene (P = 0.003) in post-pubertal heifers and we propose this gene influences pubertal development in Brahman heifers. Additionally, co-expression network analysis provided evidence for three TF as key regulators of liver function during pubertal development: the signal transducer and activator of transcription 6, PBX homeobox 2, and polybromo 1. Pathway enrichment analysis identified transforming growth factor-beta and Wnt signaling pathways as significant annotation terms for the list of DE genes and TF in the co-expression network. Molecular information regarding genes and pathways described in this work are important to further our understanding of puberty onset in Brahman heifers.
Collapse
Affiliation(s)
- Loan T Nguyen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Antonio Reverter
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Bronwyn Venus
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Stephen T Anderson
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alma Islas-Trejo
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Marina M Dias
- Departamento de Zootecnia, Faculdade de Ciências Agráìrias e Veterináìrias, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil
| | - Natalie F Crawford
- Department of Animal Science, Colorado State University, Fort Collins, CO, United States
| | - Sigrid A Lehnert
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Milt G Thomas
- Department of Animal Science, Colorado State University, Fort Collins, CO, United States
| | - Stephen S Moore
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
44
|
Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells. Stem Cell Res Ther 2018; 9:67. [PMID: 29544541 PMCID: PMC5856210 DOI: 10.1186/s13287-018-0812-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 01/15/2023] Open
Abstract
Background Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. Methods We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Results Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically significant differences in the variation of PAX6 and SOX1-positive NPCs between the two human pluripotent cell-derived methods; therefore, both methods are suitable for producing stable dorsal NPCs. When further differentiated into mature neurons, NPCs gave rise to a population of almost exclusively forebrain cortical neurons, confirming the dorsal fate commitment of the progenitors. Conclusions The methods described in this study show improvements over previously published studies and are highly efficient at differentiating human and mouse pluripotent cell types into dorsal PAX6-positive NPCs and eventually into forebrain cortical neurons. Electronic supplementary material The online version of this article (10.1186/s13287-018-0812-6) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Saez I, Koyuncu S, Gutierrez-Garcia R, Dieterich C, Vilchez D. Insights into the ubiquitin-proteasome system of human embryonic stem cells. Sci Rep 2018; 8:4092. [PMID: 29511261 PMCID: PMC5840266 DOI: 10.1038/s41598-018-22384-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/22/2018] [Indexed: 12/27/2022] Open
Abstract
Human embryonic stem cells (hESCs) exhibit high levels of proteasome activity, an intrinsic characteristic required for their self-renewal, pluripotency and differentiation. However, the mechanisms by which enhanced proteasome activity maintains hESC identity are only partially understood. Besides its essential role for the ability of hESCs to suppress misfolded protein aggregation, we hypothesize that enhanced proteasome activity could also be important to degrade endogenous regulatory factors. Since E3 ubiquitin ligases are responsible for substrate selection, we first define which E3 enzymes are increased in hESCs compared with their differentiated counterparts. Among them, we find HECT-domain E3 ligases such as HERC2 and UBE3A as well as several RING-domain E3s, including UBR7 and RNF181. Systematic characterization of their interactome suggests a link with hESC identity. Moreover, loss of distinct up-regulated E3s triggers significant changes at the transcriptome and proteome level of hESCs. However, these alterations do not dysregulate pluripotency markers and differentiation ability. On the contrary, global proteasome inhibition impairs diverse processes required for hESC identity, including protein synthesis, rRNA maturation, telomere maintenance and glycolytic metabolism. Thus, our data indicate that high proteasome activity is coupled with other determinant biological processes of hESC identity.
Collapse
Affiliation(s)
- Isabel Saez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Cologne, Germany
| | - Seda Koyuncu
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Cologne, Germany
| | - Ricardo Gutierrez-Garcia
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Cologne, Germany
| | - Christoph Dieterich
- Department of Internal Medicine III and Klaus Tschira Institute for Computational Cardiology, Section of Bioinformatics and Systems Cardiology, Neuenheimer Feld 669, University Hospital, 69120, Heidelberg, Germany
| | - David Vilchez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Cologne, Germany.
| |
Collapse
|
46
|
Matsuoka AJ, Sayed ZA, Stephanopoulos N, Berns EJ, Wadhwani AR, Morrissey ZD, Chadly DM, Kobayashi S, Edelbrock AN, Mashimo T, Miller CA, McGuire TL, Stupp SI, Kessler JA. Creating a stem cell niche in the inner ear using self-assembling peptide amphiphiles. PLoS One 2017; 12:e0190150. [PMID: 29284013 PMCID: PMC5746215 DOI: 10.1371/journal.pone.0190150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/09/2017] [Indexed: 11/23/2022] Open
Abstract
The use of human embryonic stem cells (hESCs) for regeneration of the spiral ganglion will require techniques for promoting otic neuronal progenitor (ONP) differentiation, anchoring of cells to anatomically appropriate and specific niches, and long-term cell survival after transplantation. In this study, we used self-assembling peptide amphiphile (PA) molecules that display an IKVAV epitope (IKVAV-PA) to create a niche for hESC-derived ONPs that supported neuronal differentiation and survival both in vitro and in vivo after transplantation into rodent inner ears. A feature of the IKVAV-PA gel is its ability to form organized nanofibers that promote directed neurite growth. Culture of hESC-derived ONPs in IKVAV-PA gels did not alter cell proliferation or viability. However, the presence of IKVAV-PA gels increased the number of cells expressing the neuronal marker beta-III tubulin and improved neurite extension. The self-assembly properties of the IKVAV-PA gel allowed it to be injected as a liquid into the inner ear to create a biophysical niche for transplanted cells after gelation in vivo. Injection of ONPs combined with IKVAV-PA into the modiolus of X-SCID rats increased survival and localization of the cells around the injection site compared to controls. Human cadaveric temporal bone studies demonstrated the technical feasibility of a transmastoid surgical approach for clinical intracochlear injection of the IKVAV-PA/ONP combination. Combining stem cell transplantation with injection of self-assembling PA gels to create a supportive niche may improve clinical approaches to spiral ganglion regeneration.
Collapse
Affiliation(s)
- Akihiro J. Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| | - Zafar A. Sayed
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nicholas Stephanopoulos
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, United States of America
| | - Eric J. Berns
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Anil R. Wadhwani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Zachery D. Morrissey
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Duncan M. Chadly
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shun Kobayashi
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Alexandra N. Edelbrock
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Tomoji Mashimo
- The Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Charles A. Miller
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tammy L. McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Samuel I. Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Chemistry, Northwestern University, Evanston, Illinois, United States of America
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - John A. Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
47
|
Kumar JP. The fly eye: Through the looking glass. Dev Dyn 2017; 247:111-123. [PMID: 28856763 DOI: 10.1002/dvdy.24585] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
The developing eye-antennal disc of Drosophila melanogaster has been studied for more than a century, and it has been used as a model system to study diverse processes, such as tissue specification, organ growth, programmed cell death, compartment boundaries, pattern formation, cell fate specification, and planar cell polarity. The findings that have come out of these studies have informed our understanding of basic developmental processes as well as human disease. For example, the isolation of a white-eyed fly ultimately led to a greater appreciation of the role that sex chromosomes play in development, sex determination, and sex linked genetic disorders. Similarly, the discovery of the Sevenless receptor tyrosine kinase pathway not only revealed how the fate of the R7 photoreceptor is selected but it also helped our understanding of how disruptions in similar biochemical pathways result in tumorigenesis and cancer onset. In this article, I will discuss some underappreciated areas of fly eye development that are fertile for investigation and are ripe for producing exciting new breakthroughs. The topics covered here include organ shape, growth control, inductive signaling, and right-left symmetry. Developmental Dynamics 247:111-123, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
48
|
Chen T, Cavari B, Schartl M, Hong Y. Identification and Expression of Conserved and Novel RNA Variants of Medakapax6bGene. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:412-422. [PMID: 28547909 DOI: 10.1002/jez.b.22742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/18/2017] [Accepted: 03/24/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Tiansheng Chen
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture and College of Fisheries; Huazhong Agricultural University; Wuhan Hubei China
| | - Benzion Cavari
- Israel Oceanographic and Limnological Research; Tel Shikmona; Halfa Israel
| | - Manfred Schartl
- Department of Physiological Chemistry I, Biocenter; University of Würzburg; Würzburg Germany
| | - Yunhan Hong
- Department of Biological Sciences; National University of Singapore; Singapore
| |
Collapse
|
49
|
Seigfried FA, Cizelsky W, Pfister AS, Dietmann P, Walther P, Kühl M, Kühl SJ. Frizzled 3 acts upstream of Alcam during embryonic eye development. Dev Biol 2017; 426:69-83. [PMID: 28427856 DOI: 10.1016/j.ydbio.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/09/2017] [Accepted: 04/14/2017] [Indexed: 12/18/2022]
Abstract
Formation of a functional eye during vertebrate embryogenesis requires different processes such as cell differentiation, cell migration, cell-cell interactions as well as intracellular signalling processes. It was previously shown that the non-canonical Wnt receptor Frizzled 3 (Fzd3) is required for proper eye formation, however, the underlying mechanism is poorly understood. Here we demonstrate that loss of Fzd3 induces severe malformations of the developing eye and that this defect is phenocopied by loss of the activated leukocyte cell adhesion molecule (Alcam). Promoter analysis revealed the presence of a Fzd3 responsive element within the alcam promoter, which is responsible for alcam expression during anterior neural development. In-depth analysis identified the jun N-terminal protein kinase 1 (JNK1) and the transcription factor paired box 2 (Pax2) to be important for the activation of alcam expression. Altogether our study reveals that alcam is activated through non-canonical Wnt signalling during embryonic eye development in Xenopus laevis and shows that this pathway plays a similar role in different tissues.
Collapse
Affiliation(s)
- Franziska A Seigfried
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, 89081 Ulm, Germany; Tissue Homeostasis Joint-PhD-Programme in Cooperation with the University of Oulu, Finland
| | - Wiebke Cizelsky
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, 89081 Ulm, Germany
| | - Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
50
|
Scherholz M, Redl E, Wollesen T, de Oliveira AL, Todt C, Wanninger A. Ancestral and novel roles of Pax family genes in mollusks. BMC Evol Biol 2017; 17:81. [PMID: 28302062 PMCID: PMC5356317 DOI: 10.1186/s12862-017-0919-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/18/2017] [Indexed: 01/31/2023] Open
Abstract
Background Pax genes are transcription factors with significant roles in cell fate specification and tissue differentiation during animal ontogeny. Most information on their tempo-spatial mode of expression is available from well-studied model organisms where the Pax-subfamilies Pax2/5/8, Pax6, and Paxα/β are mainly involved in the development of the central nervous system (CNS), the eyes, and other sensory organs. In certain taxa, Pax2/5/8 seems to be additionally involved in the development of excretion organs. Data on expression patterns in lophotrochozoans, and in particular in mollusks, are very scarce for all the above-mentioned Pax-subfamilies, which hampers reconstruction of their putative ancestral roles in bilaterian animals. Thus, we studied the developmental expression of Pax2/5/8, Pax6, and the lophotrochozoan-specific Paxβ in the worm-shaped mollusk Wirenia argentea, a member of Aplacophora that together with Polyplacophora forms the Aculifera, the proposed sister taxon to all primarily single-shelled mollusks (Conchifera). Results All investigated Pax genes are expressed in the developing cerebral ganglia and in the ventral nerve cords, but not in the lateral nerve cords of the tetraneural nervous system. Additionally, Pax2/5/8 is expressed in epidermal spicule-secreting or associated cells of the larval trunk and in the region of the developing protonephridia. We found no indication for an involvement of the investigated Pax genes in the development of larval or adult sensory organs of Wirenia argentea. Conclusions Pax2/5/8 seems to have a conserved role in the development of the CNS, whereas expression in the spicule-secreting tissues of aplacophorans and polyplacophorans suggests co-option in aculiferan skeletogenesis. The Pax6 expression pattern in Aculifera largely resembles the common bilaterian expression during CNS development. All data available on Paxβ expression argue for a common role in lophotrochozoan neurogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0919-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maik Scherholz
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Emanuel Redl
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Tim Wollesen
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - André Luiz de Oliveira
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Christiane Todt
- University Museum of Bergen, University of Bergen, Allégaten 41, 5007, Bergen, Norway
| | - Andreas Wanninger
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| |
Collapse
|