1
|
Akula S, Alvarado-Vazquez A, Haide Mendez Enriquez E, Bal G, Franke K, Wernersson S, Hallgren J, Pejler G, Babina M, Hellman L. Characterization of Freshly Isolated Human Peripheral Blood B Cells, Monocytes, CD4+ and CD8+ T Cells, and Skin Mast Cells by Quantitative Transcriptomics. Int J Mol Sci 2024; 25:13050. [PMID: 39684762 DOI: 10.3390/ijms252313050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Quantitative transcriptomics offers a new way to obtain a detailed picture of freshly isolated cells. By direct isolation, the cells are unaffected by in vitro culture, and the isolation at cold temperatures maintains the cells relatively unaltered in phenotype by avoiding activation through receptor cross-linking or plastic adherence. Simultaneous analysis of several cell types provides the opportunity to obtain detailed pictures of transcriptomic differences between them. Here, we present such an analysis focusing on four human blood cell populations and compare those to isolated human skin mast cells. Pure CD19+ peripheral blood B cells, CD14+ monocytes, and CD4+ and CD8+ T cells were obtained by fluorescence-activated cell sorting, and KIT+ human connective tissue mast cells (MCs) were purified by MACS sorting from healthy skin. Detailed information concerning expression levels of the different granule proteases, protease inhibitors, Fc receptors, other receptors, transcription factors, cell signaling components, cytoskeletal proteins, and many other protein families relevant to the functions of these cells were obtained and comprehensively discussed. The MC granule proteases were found exclusively in the MC samples, and the T-cell granzymes in the T cells, of which several were present in both CD4+ and CD8+ T cells. High levels of CD4 were also observed in MCs and monocytes. We found a large variation between the different cell populations in the expression of Fc receptors, as well as for lipid mediators, proteoglycan synthesis enzymes, cytokines, cytokine receptors, and transcription factors. This detailed quantitative comparative analysis of more than 780 proteins of importance for the function of these populations can now serve as a good reference material for research into how these entities shape the role of these cells in immunity and tissue homeostasis.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Abigail Alvarado-Vazquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Erika Haide Mendez Enriquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gürkan Bal
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kristin Franke
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sara Wernersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Magda Babina
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
2
|
Emmanuel NS, Yusuf T, Bako IG, Malgwi IS, Eze ED, Ali Z, Aliyu M. Hematological changes, oxidative stress assessment, and dysregulation of aquaporin-3 channel, prolactin, and oxytocin receptors in kidneys of lactating Wistar rats treated with monosodium glutamate. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6213-6229. [PMID: 38446217 DOI: 10.1007/s00210-024-03008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
High consumption of locally produced delicacies could expose nursing mothers to high monosodium glutamate (MSG) levels, frequently used as a necessary condiment in low-income countries. Thus, this study evaluated some novel preliminary changes in renal hormonal receptors, the aquaporin-3 channel, oxidative stress markers, and hematological indices induced by monosodium glutamate in lactating rats. Post-parturition, twenty-four (24) lactating Wistar rats were divided into four (4) groups of six rats each (n = 6). Oral administration of distilled water and MSG started three (3) days postpartum as follows: group 1: distilled water (1 ml/kg BW), group 2: MSG (925 mg/kg BW), group 3: MSG (1850 mg/kg BW), and group 4: MSG (3700 mg/kg BW). At the end of the experiment, which lasted fourteen (14) days, animals were sacrificed and samples of blood and tissues were obtained for biochemical analysis. MSG administration significantly (p < 0.05) increased ROS and MDA, with a significant (p < 0.05) decrease in kidney antioxidants. Serum creatinine, total, conjugated, and unconjugated bilirubin significantly (p < 0.05) increased with MSG administration. The prolactin receptor was significantly reduced (p < 0.05), while the oxytocin receptor and aquaporin-3 channel were significantly (p < 0.05) increased in the MSG-administered groups. There were significant (p < 0.05) changes in the hematological indices of the MSG-administered animals. Thus, the findings of this study suggest that high MSG consumption causes hematological alterations and may alter renal function via increased ROS production and dysregulation of the AQP-3 channel, prolactin, and oxytocin receptors in the kidneys of lactating Wistar rats.
Collapse
Affiliation(s)
- Nachamada Solomon Emmanuel
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria.
| | - Tanko Yusuf
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Ibrahim Gaya Bako
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Ibrahim Samaila Malgwi
- Department of Human Physiology, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Ejike Daniel Eze
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye Campus, Huye, Rwanda
| | - Zubairu Ali
- Department of Human Physiology, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Mohammed Aliyu
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| |
Collapse
|
3
|
The Water Transport System in Astrocytes–Aquaporins. Cells 2022; 11:cells11162564. [PMID: 36010640 PMCID: PMC9406552 DOI: 10.3390/cells11162564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Highlights (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes, including those of astrocytes. The expression and subcellular localization of AQPs in astrocytes are highly dynamic under physiological and pathological conditions. Besides their primary function in water homeostasis, AQPs participate in many ancillary functions including glutamate clearance in tripartite synapses and cell migration.
Abstract Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood–brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate “water distribution” system in cells, exemplified by astrocytes, under normal and pathological conditions.
Collapse
|
4
|
Clinical value and molecular mechanism of AQGPs in different tumors. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:174. [PMID: 35972604 PMCID: PMC9381609 DOI: 10.1007/s12032-022-01766-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Aquaglyceroporins (AQGPs), including AQP3, AQP7, AQP9, and AQP10, are transmembrane channels that allow small solutes across biological membranes, such as water, glycerol, H2O2, and so on. Increasing evidence suggests that they play critical roles in cancer. Overexpression or knockdown of AQGPs can promote or inhibit cancer cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition and metastasis, and the expression levels of AQGPs are closely linked to the prognosis of cancer patients. Here, we provide a comprehensive and detailed review to discuss the expression patterns of AQGPs in different cancers as well as the relationship between the expression patterns and prognosis. Then, we elaborate the relevance between AQGPs and malignant behaviors in cancer as well as the latent upstream regulators and downstream targets or signaling pathways of AQGPs. Finally, we summarize the potential clinical value in cancer treatment. This review will provide us with new ideas and thoughts for subsequent cancer therapy specifically targeting AQGPs.
Collapse
|
5
|
Hanai S, Uchimura K, Takahashi K, Ishii T, Mitsui T, Furuya F. Hypoxia-induced thyroid hormone receptor expression regulates cell-cycle progression in renal tubule epithelial cells. Endocr J 2021; 68:1309-1320. [PMID: 34108302 DOI: 10.1507/endocrj.ej21-0245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hypoxia occurs in the kidneys of chronic kidney disease (CKD) patients, inducing interstitial fibrosis and tubule cell death. Renal tubule cell death is an important determinant of mortality in CKD. We focused on the regulation of cell-cycle-mediated protein expression to prevent cell death under chronic hypoxia in the kidneys of CKD patients. Paraffin-embedded kidney sections from patients with CKD (diabetes nephropathy, nephrosclerosis, or IgA nephropathy) were analyzed for the expression of hypoxia-inducible factor (HIF), thyroid hormone receptor (TR) β, or p21 and levels of interstitial fibrosis. Human renal proximal tubule cells were exposed to hypoxia and analyzed for the expression of HIF, TRβ, or p21 and the cell-cycle stage. TRβ expression was enhanced early on when fibrosis was not fully developed in the tubule cells of CKD patients. HIF1α bound to the TRβ promoter and directly induced its transcription. Further, HIF1α expression induced the expression of TRβ and inhibited cell-cycle progression. In the early stage of kidney injury, TRβ might act as a guardian to prepare and organize cell-cycle proliferation and prevent cell death. While the molecular mechanism that regulates the expression of cell-cycle regulators in renal tubule cells remains controversial, TRβ has strong potential as a new therapeutic target.
Collapse
Affiliation(s)
- Shunichiro Hanai
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kohei Uchimura
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kazuya Takahashi
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Toshihisa Ishii
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Fumihiko Furuya
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
6
|
Bird aquaporins: Molecular machinery for urine concentration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183688. [PMID: 34242632 DOI: 10.1016/j.bbamem.2021.183688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022]
Abstract
Water conservation is one of the most challenging processes for terrestrial vertebrates and is necessary for their survival. Birds are the only vertebrate animals other than mammals that have the ability to concentrate their urine. Previously, we identified and characterized aquaporins (AQP)1-4 responsible for urine concentration in Japanese quail kidneys. Today, a total of 13 orthologs for these genes have been reported in birds. Bird AQPs can be classified into four subfamilies: 1) Classical AQPs (AQP0-5 and novel member, AQP4-like) that conserve the selectivity filter; 2) aquaglyceroporins (AQP3, 7, 9 and 10) that retain an aspartic acid residue in the second NPA box and expand the pore to accept larger molecules; 3) unorthodox AQPs (AQP11-12) which structurally resemble their mammalian counterparts; 4) AQP8-type, a subfamily that differs from mammalian AQP8. Interestingly, over the course of time, birds lost their mammalian counterpart AQP6 but obtained a novel AQP4-like aquaporin member. In quail and/or chicken kidneys, at least six AQPs are expressed. Quail AQP1 (qAQP1) is expressed in both cortical and medullary proximal tubules but is absent in the descending limb (DL) and the thick ascending limb (TAL), supporting our previous finding that the DL and TAL are water impermeable. AQP2, an arginine vasotocin (AVT)-sensitive water channel, is exclusively expressed in the principal cells of the collecting duct (CD). AQP4 is unlikely to participate in free water resorption from the collecting duct (CD), and only AQP3 may represent an exit pathway for water reabsorbed apically via AQP2. While AQP9 is not expressed in mammalian kidneys, AQP9 was recently found in chicken kidneys. This review summarizes the current knowledge of the structure, function and expression of bird AQPs.
Collapse
|
7
|
Salhadar K, Matthews A, Raghuram V, Limbutara K, Yang CR, Datta A, Chou CL, Knepper MA. Phosphoproteomic Identification of Vasopressin/cAMP/Protein Kinase A-Dependent Signaling in Kidney. Mol Pharmacol 2021; 99:358-369. [PMID: 32245905 PMCID: PMC8058505 DOI: 10.1124/mol.120.119602] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
Water excretion by the kidney is regulated by the neurohypophyseal peptide hormone vasopressin through actions in renal collecting duct cells to regulate the water channel protein aquaporin-2. Vasopressin signaling is initiated by binding to a G-protein-coupled receptor called V2R, which signals through heterotrimeric G-protein subunit Gs α, adenylyl cyclase 6, and activation of the cAMP-regulated protein kinase (PKA). Signaling events coupling PKA activation and aquaporin-2 regulation were largely unknown until the advent of modern protein mass spectrometry techniques that allow proteome-wide quantification of protein phosphorylation changes (phosphoproteomics). This short review documents phosphoproteomic findings in collecting duct cells describing the response to V2R-selective vasopressin agonists and antagonists, the response to CRISPR-mediated deletion of PKA, results from in vitro phosphorylation studies using recombinant PKA, the response to the broad-spectrum kinase inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulphonamide), and the responses underlying lithium-induced nephrogenic diabetes insipidus. These phosphoproteomic data sets have been made available online for modeling vasopressin signaling and signaling downstream from other G-protein-coupled receptors. SIGNIFICANCE STATEMENT: New developments in protein mass spectrometry are facilitating progress in identification of signaling networks. Using mass spectrometry, it is now possible to identify and quantify thousands of phosphorylation sites in a given cell type (phosphoproteomics). The authors describe the use of phosphoproteomics technology to identify signaling mechanisms downstream from a G-protein-coupled receptor, the vasopressin V2 subtype receptor, and its role of the regulation and dysregulation of water excretion in the kidney. Data from multiple phosphoproteomic data sets are provided as web-based resources.
Collapse
Affiliation(s)
- Karim Salhadar
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Allanah Matthews
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Kavee Limbutara
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Arnab Datta
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| |
Collapse
|
8
|
Expression, Distribution and Role of Aquaporins in Various Rhinologic Conditions. Int J Mol Sci 2020; 21:ijms21165853. [PMID: 32824013 PMCID: PMC7461600 DOI: 10.3390/ijms21165853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are water-specific membrane channel proteins that regulate cellular and organismal water homeostasis. The nose, an organ with important respiratory and olfactory functions, is the first organ exposed to external stimuli. Nose-related topics such as allergic rhinitis (AR) and chronic rhinosinusitis (CRS) have been the subject of extensive research. These studies have reported that mechanisms that drive the development of multiple inflammatory diseases that occur in the nose and contribute to the process of olfactory recognition of compounds entering the nasal cavity involve the action of water channels such as AQPs. In this review, we provide a comprehensive overview of the relationship between AQPs and rhinologic conditions, focusing on the current state of knowledge and mechanisms that link AQPs and rhinologic conditions. Key conclusions include the following: (1) Various AQPs are expressed in both nasal mucosa and olfactory mucosa; (2) the expression of AQPs in these tissues is different in inflammatory diseases such as AR or CRS, as compared with that in normal tissues; (3) the expression of AQPs in CRS differs depending on the presence or absence of nasal polyps; and (4) the expression of AQPs in tissues associated with olfaction is different from that in the respiratory epithelium.
Collapse
|
9
|
A Review: Expression of Aquaporins in Otitis Media. Int J Mol Sci 2017; 18:ijms18102164. [PMID: 29039751 PMCID: PMC5666845 DOI: 10.3390/ijms18102164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Otitis media (OM) refers to inflammatory diseases of the middle ear (ME), regardless of cause or pathological mechanism. Among the molecular biological studies assessing the pathology of OM are investigations of the expression of aquaporins (AQPs) in the ME and Eustachian tube (ET). To date, fifteen studies have evaluated AQPs expression in the ME and ET. Although the expression of individual AQPs varies by species and model, eleven types of AQP, AQP1 to AQP11, were found to be expressed in mammalian ME and ET. The review showed that: (1) various types of AQPs are expressed in the ME and ET; (2) AQP expression may vary by species; and (3) the distribution and levels of expression of AQPs may depend on the presence or absence of inflammation, with variations even in the same species and same tissue. Fluid accumulation in the ME and ET is a common pathological mechanism for all types of OM, causing edema in the tissue and inducing inflammation, thereby possibly involving various AQPs. The expression patterns of several AQPs, especially AQP1, 4 and 5, were found to be altered in response to inflammatory stimuli, including lipopolysaccharide (LPS), suggesting that AQPs may have immunological functions in OM.
Collapse
|
10
|
Seleit I, Bakry OA, Sharaky DA, Ragheb E. Evaluation of Aquaporin-3 Role in Nonmelanoma Skin Cancer: An Immunohistochemical Study. Ultrastruct Pathol 2015; 39:306-17. [DOI: 10.3109/01913123.2015.1022241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Sasaki S. Aquaporin 2: From its discovery to molecular structure and medical implications. Mol Aspects Med 2012; 33:535-46. [DOI: 10.1016/j.mam.2012.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/12/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|
12
|
Solenov EI, Baturina GS, Ilyaskin AV, Katkova LY, Ivanova LN. Cell volume regulation of rat kidney collecting duct epithelial cells in hypotonic medium. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2011; 436:13-15. [PMID: 21374003 DOI: 10.1134/s0012496611010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Indexed: 05/30/2023]
Affiliation(s)
- E I Solenov
- Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
13
|
Li X, Azlina A, Karabasil MR, Purwanti N, Hasegawa T, Yao C, Akamatsu T, Hosoi K. Degradation of submandibular gland AQP5 by parasympathetic denervation of chorda tympani and its recovery by cevimeline, an M3 muscarinic receptor agonist. Am J Physiol Gastrointest Liver Physiol 2008; 295:G112-G123. [PMID: 18450949 DOI: 10.1152/ajpgi.00359.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
By chorda tympani denervation (CTD, parasympathectomy), the aquaporin 5 (AQP5), but not AQP1, protein level in the rat submandibular gland (SMG) was significantly decreased, dropping to 37% of that of the contralateral gland at 4 wk. The protein levels of AQP5 and AQP1 were not significantly affected by denervation of the cervical sympathetic trunk (sympathectomy). Administration of cevimeline hydrochloride, an M3 muscarinic receptor agonist (10 mg/kg for 7 days po), but not pilocarpine (0.3 mg/kg for 7 days po), recovered the AQP5 protein level reduced by CTD and increased the AQP1 protein level above the control one. The mRNA level of AQP5 was scarcely affected by CTD and cevimeline hydrochloride administration. Administration of chloroquine (50 mg/kg for 7 days po), a denaturant of lysosomes, increased the AQP5 protein level reduced by CTD. An extract obtained from the submandibular lysosomal fraction degraded the AQP5 protein in the total membrane fraction in vitro. These results suggest the possible regulation of the AQP5 protein level in the SMG by the parasympathetic nerves/M3 muscarinic receptor agonist and imply the involvement of lysosomal enzymes, but not a transcriptional mechanism, in this regulation.
Collapse
Affiliation(s)
- Xuefei Li
- Department of Molecular Oral Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi, Tokushima 770-8504, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Cao C, Wan S, Jiang Q, Amaral A, Lu S, Hu G, Bi Z, Kouttab N, Chu W, Wan Y. All-trans retinoic acid attenuates ultraviolet radiation-induced down-regulation of aquaporin-3 and water permeability in human keratinocytes. J Cell Physiol 2008; 215:506-16. [DOI: 10.1002/jcp.21336] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Spring JH, Robichaux SR, Kaufmann N, Brodsky JL. Localization of a Drosophila DRIP-like aquaporin in the malpighian tubules of the house cricket, Acheta domesticus. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:92-100. [PMID: 17267256 DOI: 10.1016/j.cbpa.2006.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 12/04/2006] [Accepted: 12/06/2006] [Indexed: 11/26/2022]
Abstract
Malpighian tubules (Mt) are the primary excretory and osmoregulatory organs of insects, capable of rapidly transporting extraordinary volumes of fluid when stimulated by diuretic factors. In the house cricket, Acheta domesticus, the Mt are composed of three morphologically distinct regions (proximal, mid, and distal). Unlike the dipteran Mt, which have both primary and stellate cells, each region of the Acheta Mt consists of a morphologically uniform cell type. The mid and distal regions are both secretory in function and increase secretion rate in response to dibutyryl cAMP (cAMP). Achetakinin-2, while acting synergistically with cAMP on the mid-Mt, inhibits secretion by the distal Mt, and the effects can be reversed by cAMP. Using an antibody to the water-specific Drosophila aquaporin (DRIP), we demonstrated that DRIP-like immunoreactivity was found in both the distal and mid-Mt. The distribution of the aquaporin altered in response to stimulation and was consistent with the secretory data. The regulation of secretion in Acheta Mt is quite different from that of Drosophila, with both cation and anion/water transport occurring in the same cells. This is the first demonstration of the presence of an insect aquaporin, namely DRIP, in the Mt of an order other than the Diptera.
Collapse
Affiliation(s)
- Jeffrey H Spring
- Department of Biology, University of Louisiana, Lafayette, LA 70504-2451, USA.
| | | | | | | |
Collapse
|
16
|
Watson KJ, Kim I, Baquero AF, Burks CA, Liu L, Gilbertson TA. Expression of aquaporin water channels in rat taste buds. Chem Senses 2007; 32:411-21. [PMID: 17339611 DOI: 10.1093/chemse/bjm006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to gain insight into the molecular mechanisms that allow taste cells to respond to changes in their osmotic environment, we have used primarily immunocytochemical and molecular approaches to look for evidence of the presence of aquaporin-like water channels in taste cells. Labeling of isolated taste buds from the fungiform, foliate, and vallate papillae in rat tongue with antibodies against several of the aquaporins (AQPs) revealed the presence of AQP1, AQP2, and AQP5 in taste cells from these areas. AQP3 antibodies failed to label isolated taste buds from any of the papillae. There was an apparent difference in the regional localization of AQP labeling within the taste bud. Antibodies against AQP1 and AQP2 labeled predominantly the basolateral membrane, whereas the AQP5 label was clearly evident on both the apical and basolateral membranes of cells within the taste bud. Double labeling revealed that AQP1 and AQP2 labeled many, but not all, of the same taste cells. Similar double-labeling experiments with anti-AQP2 and anti-AQP5 clearly showed that AQP5 was expressed on or near the apical membranes whereas AQP2 was absent from this area. The presence of these 3 types of AQPs in taste buds but not in non-taste bud-containing epithelia was confirmed using reverse transcription-polymerase chain reaction. Experiments using patch clamp recording showed that the AQP inhibitor, tetraethylammonium, significantly reduced hypoosmotic-induced currents in rat taste cells. We hypothesize that the AQPs may play roles both in the water movement underlying compensatory mechanisms for changes in extracellular osmolarity and, in the case of AQP5 in particular, in the gustatory response to water.
Collapse
Affiliation(s)
- Kristina J Watson
- Department of Biology and The Center for Advanced Nutrition, Utah State University, Logan, UT 84322-5305, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Prado M, Roa LM, Reina-Tosina J. Viability study of a personalized and adaptive knowledge-generation telehealthcare system for nephrology (NEFROTEL). Int J Med Inform 2006; 75:646-57. [PMID: 16675297 DOI: 10.1016/j.ijmedinf.2006.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 03/27/2006] [Accepted: 03/31/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Several important problems in the majority of countries are challenging the centralized and overburdened current model of healthcare. Telehealthcare is presented as a new paradigm that offers high expectations to solve this picture. In this paper we present the major outcomes of the viability study of a novel personalized telehealthcare system for nephrology (NEFROTEL). METHODS The study evaluates the accuracy and quality of the knowledge generated by two key processing layers, namely, sensor layer and patient physiological image (PPI) layer, in an independent way, thanks to its modular design. The first one was defined by a personalized falling detection monitor, on account of the consequences of falls in chronic renal patients. The second one was analyzed by means of a PPI's prototype based on a urea compartmental pharmacokinetic model. The experimental study of the falling detector monitor has been more extensive than the other because the latter has already been addressed in other works. RESULTS The outcomes show, firstly, the capability of the PPIs to provide integrated and correlated physiological knowledge adapted to each patient, and secondly, demonstrate the reliability of the impact detection function of the adaptive human movement monitor compliant with the NEFROTEL paradigm. CONCLUSIONS The study confirms that NEFROTEL is able to provide knowledge concerning a patient in a manner that cannot be accomplished by the ordinary healthcare model at the present time.
Collapse
Affiliation(s)
- Manuel Prado
- Biomedical Engineering Group, University of Seville, Seville, Spain.
| | | | | |
Collapse
|
18
|
Abstract
The identification of members of the aquaporin family as the primary water channels of cell membranes has been followed up by an intense effort to determine how these channels work. Specifically, investigators have sought to learn why these channels are selective for water and how they exclude proton trafficking. Molecular-dynamics studies using elegant, extremely detailed computer models based on accurate crystallographic maps of the channels show the basis for the selectivity of the channel. Channel size, the location of hydrophobic amino-acid side chains, and specific interactions of water dipoles with a charged residue near the most constricted point of the channel indicate that water molecules travel in single file through the center of the channel, and that the orientation of water molecules is manipulated to prevent the formation of a water wire spanning the channel. Finally, the number of water molecules calculated to be aligned in single file in the channel constriction fits predictions based on classic studies of the osmotic permeability: diffusive permeability ratios in water-permeable membranes.
Collapse
Affiliation(s)
- Melvin E Laski
- Department of Internal Medicine and Physiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
19
|
Holm LM, Jahn TP, Møller ALB, Schjoerring JK, Ferri D, Klaerke DA, Zeuthen T. NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes. Pflugers Arch 2005; 450:415-28. [PMID: 15988592 DOI: 10.1007/s00424-005-1399-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 02/17/2005] [Indexed: 11/30/2022]
Abstract
We have shown recently, in a yeast expression system, that some aquaporins are permeable to ammonia. In the present study, we expressed the mammalian aquaporins AQP8, AQP9, AQP3, AQP1 and a plant aquaporin TIP2;1 in Xenopus oocytes to study the transport of ammonia (NH3) and ammonium (NH4+) under open-circuit and voltage-clamped conditions. TIP2;1 was tested as the wild-type and in a mutated version (tip2;1) in which the water permeability is intact. When AQP8-, AQP9-, AQP3- and TIP2;1-expressing oocytes were placed in a well-stirred bathing medium of low buffer capacity, NH3 permeability was evident from the acidification of the bathing medium; the effects observed with AQP1 and tip2;1 did not exceed that of native oocytes. AQP8, AQP9, AQP3, and TIP2;1 were permeable to larger amides, while AQP1 was not. Under voltage-clamp conditions, given sufficient NH3, AQP8, AQP9, AQP3, and TIP2;1 supported inwards currents carried by NH4+. This conductivity increased as a sigmoid function of external [NH3]: for AQP8 at a bath pH (pH(e)) of 6.5, the conductance was abolished, at pH(e) 7.4 it was half maximal and at pH(e) 7.8 it saturated. NH4+ influx was associated with oocyte swelling. In comparison, native oocytes as well as AQP1 and tip2;1-expressing oocytes showed small currents that were associated with small and even negative volume changes. We conclude that AQP8, AQP9, AQP3, and TIP2;1, apart from being water channels, also support significant fluxes of NH3. These aquaporins could support NH4+ transport and have physiological implications for liver and kidney function.
Collapse
Affiliation(s)
- Lars M Holm
- Nordic Centre for Water Imbalance Related Disorders. Department of Medical Physiology, Panum Institute, University of Copenhagen, 2200N, Denmark
| | | | | | | | | | | | | |
Collapse
|
20
|
Hasegawa T, Sugawara Y, Suzuki M, Tanaka S. Spatial and temporal expression of the ventral pelvic skin aquaporins during metamorphosis of the tree frog, Hyla japonica. J Membr Biol 2004; 199:119-26. [PMID: 15383922 DOI: 10.1007/s00232-004-0677-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 03/17/2004] [Indexed: 10/26/2022]
Abstract
Most adult anurans absorb water through their ventral skin to maintain the proper water balance. We examined spatial and temporal expression of frog (Hyla japonica) aquaporins, Hyla AQP-h2 and AQP-h3 proteins, in the ventral pelvic skin by using specific antibodies. Immunofluorescence indicates that AQP-h2 and AQP-h3 first appear in the granular cells of the pelvic skin of the tadpoles at Gosner stage 42, and such labeling is seen in later stages as well. These findings were confirmed by Western blot analysis. In addition, Northern blot analysis demonstrated that V2-type vasotocin (AVT)-receptor mRNA is first expressed at the same stage as are the AQP proteins, which suggests a functional relationship between expression of AQP proteins and AVT receptor. Also, AQP expression in the ventral pelvic skin is consistent with the morphological changes that occur in the skin for adaptation from life in water to that on land.
Collapse
Affiliation(s)
- T Hasegawa
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | | | |
Collapse
|
21
|
Yang Y, Cui Y, Wang W, Zhang L, Bufford L, Sasaki S, Fan Z, Nishimura H. Molecular and functional characterization of a vasotocin-sensitive aquaporin water channel in quail kidney. Am J Physiol Regul Integr Comp Physiol 2004; 287:R915-24. [PMID: 15205186 DOI: 10.1152/ajpregu.00589.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both mammals and birds can concentrate urine hyperosmotic to plasma via a countercurrent multiplier mechanism, although evolutionary lines leading to mammals and birds diverged at an early stage of tetrapod evolution. We reported earlier (Nishimura H, Koseki C, and Patel TB. Am J Physiol Regul Integr Comp Physiol 271: R1535-R1543, 1996) that arginine vasotocin (AVT; avian antidiuretic hormone) increases diffusional water permeability in the isolated, perfused medullary collecting duct (CD) of the quail kidney. In the present study, we have identified an aquaporin (AQP) 2 homolog water channel in the medullary cones of Japanese quail, Coturnix coturnix (qAQP2), by RT-PCR-based cloning techniques. A full-length cDNA contains an 822-bp open reading frame that encodes a 274-amino acid sequence with 75.5% identity to rat AQP2. The qAQP2 has six transmembrane domains, two asparagine-proline-alanine (NPA) sequences, and putative N-glycosylation (asparagine-124) and phosphorylation sites (serine-257) for cAMP-dependent protein kinase. qAQP2 is expressed in the membrane of Xenopus laevis oocytes and significantly increased its osmotic water permeability (P(f)), inhibitable (P < 0.01) by mercury chloride. qAQP2 mRNA (RT-PCR) was detected in the kidney; medullary mRNA levels were higher than cortical levels. qAQP2 protein that binds to rabbit anti-rat AQP2 antibody is present in the apical/subapical regions of both cortical and medullary CDs from normally hydrated quail, and the intensity of staining increased only in the medullary CDs after water deprivation or AVT treatment. The relative density of the approximately 29-kDa protein band detected by immunoblot from the medullary cones was modestly higher in water-deprived/AVT-treated quail. The results suggest that 1) medullary CDs of quail kidneys express a mercury-sensitive functioning qAQP2 water channel, and 2) qAQP2 is at least partly regulated by an AVT-dependent mechanism. This is the first clear identification of AQP2 homolog in nonmammalian vertebrates.
Collapse
Affiliation(s)
- Y Yang
- Dept. of Physiology, Univ. of Tennessee Health Science Center, 894 Union Ave., Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Antunes-Rodrigues J, de Castro M, Elias LLK, Valença MM, McCann SM. Neuroendocrine control of body fluid metabolism. Physiol Rev 2004; 84:169-208. [PMID: 14715914 DOI: 10.1152/physrev.00017.2003] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mammals control the volume and osmolality of their body fluids from stimuli that arise from both the intracellular and extracellular fluid compartments. These stimuli are sensed by two kinds of receptors: osmoreceptor-Na+ receptors and volume or pressure receptors. This information is conveyed to specific areas of the central nervous system responsible for an integrated response, which depends on the integrity of the anteroventral region of the third ventricle, e.g., organum vasculosum of the lamina terminalis, median preoptic nucleus, and subfornical organ. The hypothalamo-neurohypophysial system plays a fundamental role in the maintenance of body fluid homeostasis by secreting vasopressin and oxytocin in response to osmotic and nonosmotic stimuli. Since the discovery of the atrial natriuretic peptide (ANP), a large number of publications have demonstrated that this peptide provides a potent defense mechanism against volume overload in mammals, including humans. ANP is mostly localized in the heart, but ANP and its receptor are also found in hypothalamic and brain stem areas involved in body fluid volume and blood pressure regulation. Blood volume expansion acts not only directly on the heart, by stretch of atrial myocytes to increase the release of ANP, but also on the brain ANPergic neurons through afferent inputs from baroreceptors. Angiotensin II also plays an important role in the regulation of body fluids, being a potent inducer of thirst and, in general, antagonizes the actions of ANP. This review emphasizes the role played by brain ANP and its interaction with neurohypophysial hormones in the control of body fluid homeostasis.
Collapse
Affiliation(s)
- José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
23
|
Solenov EI, Nesterov VV, Baturina GS, Khodus GR, Ivanova LN. Effect of dDAVP on basolateral cell surface water permeability in the outer medullary collecting duct. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2003; 32:614-9. [PMID: 12783226 DOI: 10.1007/s00249-003-0308-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2002] [Revised: 04/06/2003] [Accepted: 04/16/2003] [Indexed: 10/26/2022]
Abstract
We report a novel approach for assessing the volume of living cells which allows quantitative, high-resolution characterization of dynamic changes in cell volume while retaining the cell functionality. The aim of this study was to evaluate the short-term effect of vasopressin on basolateral cell surface water permeability in the outer medullary collecting duct (OMCD). The permeability of the basolateral cell membrane was determined in the tubules where the apical membrane was blocked with oil injected into the lumen. The apparent coefficient of water permeability (Pf) was evaluated by measuring the cell swelling after the step from hypertonic to isotonic medium (600 mosm to 300 mosm). Desmopressin (dDAVP) induced an increase of the basolateral Pf from 113.7+/-8.5 microm/s in control cells to 186.6+/-11.4 mum/s in micro-dissected fragments of the OMCD incubated in vitro (10(-7) M dDAVP, 30 min at 37 degrees C) (P<0.05). Mercury caused pronounced inhibition of basolateral water permeability (26.0+/-6.9 microm/s; P<0.05). The effect of mercury (1.0 mM HgCl2) was reversible: after washing the fragments with PBS for 20 min, Pf values were restored to the control levels (125.0+/-9.5 microm/s). The results of the study indicate the existence of a mechanism controlling the osmotic water permeability of the basolateral cell membrane in the OMCD epithelium.
Collapse
Affiliation(s)
- E I Solenov
- Institute of Cytology and Genetics, Academy of Sciences of Russia, 630090 Novosibirsk, Russia.
| | | | | | | | | |
Collapse
|
24
|
Hasegawa T, Tanii H, Suzuki M, Tanaka S. Regulation of water absorption in the frog skins by two vasotocin-dependent water-channel aquaporins, AQP-h2 and AQP-h3. Endocrinology 2003; 144:4087-96. [PMID: 12933683 DOI: 10.1210/en.2003-0418] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new frog aquaporin (AQP) cDNA was cloned from a cDNA library constructed from the ventral skin of the tree frog Hyla japonica. This AQP (Hyla AQP-h2) consisted of 268 amino acid residues with a high homology to mammalian AQP2. The predicted amino acid sequence contained the two conserved Asn-Pro-Ala motifs found in all the major intrinsic protein family members and the putative six transmembrane domains. The sequence also contained a mercurial compound: cysteine, one potential N-glycosylation site at Asn-124, and a putative phosphorylation site recognized by protein kinase A at Ser-262. In a swelling assay using Xenopus oocytes, AQP-h2 facilitated water permeability, especially in response to cAMP. Expression of AQP-h2 mRNA was restricted to several tissues including the ventral skin, kidney, and urinary bladder; but with immunofluorescence staining using an antipeptide antibody (ST-140) against the AQP-h2 protein, immunopositive cells were found only in the ventral skin and urinary bladder. In the ventral pelvic skin, the label for AQP-h2 was localized in the entire plasma membrane of the granular cells beneath the outmost layer of the skin and in the basolateral membrane of the granular cells in this layer. In response to vasotocin, however, the label for AQP-h2 became more intense in the apical membrane in the granular cells of the outermost layer, similar to the case for the earlier studied AQP-h3, which was specifically expressed in the ventral skin. Taken together, these findings suggest that not only AQP-h3, but also AQP-h2 acts as a regulator of the water balance in this frog.
Collapse
Affiliation(s)
- Takahiro Hasegawa
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | | | |
Collapse
|
25
|
Maurel C, Javot H, Lauvergeat V, Gerbeau P, Tournaire C, Santoni V, Heyes J. Molecular physiology of aquaporins in plants. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 215:105-48. [PMID: 11952226 DOI: 10.1016/s0074-7696(02)15007-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In plants, membrane channels of the major intrinsic protein (MIP) super-family exhibit a high diversity with, for instance, 35 homologues in the model species Arabidopsis thaliana. As has been found in other organisms, plant MIPs function as membrane channels permeable to water (aquaporins) and in some cases to small nonelectrolytes. The aim of the present article is to integrate into plant physiology what has been recently learned about the molecular and functional properties of aquaporins in plants. Exhaustive compilation of data in the literature shows that the numerous aquaporin isoforms of plants have specific expression patterns throughout plant development and in response to environmental stimuli. The diversity of aquaporin homologues in plants can also be explained in part by their presence in multiple subcellular compartments. In recent years, there have been numerous reports that describe the activity of water channels in purified membrane vesicles, in isolated organelles or protoplasts, and in intact plant cells or even tissues. Altogether, these data suggest that the transport of water and solutes across plant membranes concerns many facets of plant physiology. Because of the high degree of compartmentation of plant cells, aquaporins may play a critical role in cell osmoregulation. Water uptake in roots represents a typical process in which to investigate the role of aquaporins in transcellular water transport, and the mechanisms and regulations involved are discussed.
Collapse
Affiliation(s)
- C Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Agro-M/CNRS/INRA/UM2, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Lai KN, Leung JCK, Chan LYY, Tang S, Li FK, Lui SL, Chan TM. Expression of aquaporin-3 in human peritoneal mesothelial cells and its up-regulation by glucose in vitro. Kidney Int 2002; 62:1431-9. [PMID: 12234316 DOI: 10.1111/j.1523-1755.2002.kid564.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Aquaporin-3 (AQP3) is a member of the water channel family that is selective for the passage of not only water, but also glycerol and urea. Our recent study demonstrated the presence of aquaporin-1 in human peritoneal mesothelial cells (HPMC). Although transcripts encoding for AQP3 has been detected by reverse transcription-polymerase chain reaction (RT-PCR) in murine peritoneal mesothelium, to date there is no documentation of protein expression on peritoneal mesothelial cells. METHOD Our present study was designed to explore the gene and protein expression of AQP3 in HPMC and its regulation under different concentrations of glucose. RESULTS AQP3 protein was detected in the human peritoneal tissue by immunohistological staining using specific, affinity-purified polyclonal anti-AQP3 antibodies. AQ3 transcripts and protein expression in cultured HPMC were investigated by RT-PCR and immunoblotting analysis respectively. Cell permeability to glycerol (flux) was measured using [(14)C]glycerol incorporation. AQP3 transcript and protein were weakly expressed in HPMC constitutively. The gene expression of AQP3 and its protein biosynthesis in HPMC were inducible following exposure to glucose in a dose- and time-dependent manner (P < 0.0001). Glucose at a concentration of 200 mmol induced glycerol flux by 4.82-fold above the control value (P < 0.0001) and its effect was significantly inhibited by mercuric chloride (P < 0.01). CONCLUSION Our novel observation demonstrated the AQP3 expression and biosynthesis in HPMC and in vitro studies revealed that glycerol permeability in HPMC was up-regulated by glucose. Further study is warranted to elucidate the role of AQP3 in HPMC for maintaining the ultrafiltration of the peritoneal membrane.
Collapse
Affiliation(s)
- Kar Neng Lai
- Division of Nephrology, Department of Medicine, University of Hong Kong, Room 409 Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Hagiwara H, Tanaka S, Kominami E, Takata K. Immunohistochemical characterization of the intracellular pool of water channel aquaporin-2 in the rat kidney. Anat Sci Int 2002; 77:189-95. [PMID: 12422412 DOI: 10.1046/j.0022-7722.2002.00028.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aquaporin-2 (AQP2) is a member of water channel proteins expressed in the kidney collecting duct cells, where it is stored in the intracellular compartment. Upon stimulation of antidiuretic hormone (ADH), AQP2 is recruited to the plasma membrane, and plays a critical role in urine concentration. We immunohistochemically characterized the intracellular compartment harboring AQP2 in the rat kidney using antibodies to the endoplasmic reticulum, Golgi apparatus, trans-Golgi network, lysosome, and endosome. Aquaporin-2 did not colocalize with calnexin, TGN38, Golgi 58K, cathepsin D or Igp-110. Small portions of AQP2-bearing vesicles were positive for early endosome antigen 1. These localization patterns were basically the same in water-loaded and ADH-treated animals. These results indicate that AQP2-bearing vesicles constitute a unique intracellular compartment distinct from the endoplasmic reticulum, Golgi apparatus, trans-Golgi network and lysosome. Partial colocalization of AQP2 with early endosomes suggests that the endosomal system might be involved in the trafficking of AQP2.
Collapse
Affiliation(s)
- Yuki Tajika
- Department of Anatomy and Cell Biology, Gunma University School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ohshima Y, Iwasaki I, Suga S, Murakami M, Inoue K, Maeshima M. Low aquaporin content and low osmotic water permeability of the plasma and vacuolar membranes of a CAM plant Graptopetalum paraguayense: comparison with radish. PLANT & CELL PHYSIOLOGY 2001; 42:1119-29. [PMID: 11673628 DOI: 10.1093/pcp/pce141] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aquaporin facilitates the osmotic water transport across biomembranes and is involved in the transcellular and intracellular water flow in plants. We immunochemically quantified the aquaporin level in leaf plasma membranes (PM) and tonoplast of Graptopetalum paraguayense, a Crassulacean acid metabolism (CAM) plant. The aquaporin content in the Graptopetalum tonoplast was approximately 1% of that of radish. The content was calculated to be about 3 microg mg(-1) of tonoplast protein. The level of PM aquaporin in Graptopetalum was determined to be less than 20% of that of radish, in which an aquaporin was a major protein of the PM. The PM aquaporin was detected in the mesophyll tissue of Graptopetalum leaf by tissue print immunoblotting. The osmotic water permeability of PM and tonoplast vesicles prepared from both plants was determined with a stopped-flow spectrophotometer. The water permeability of PM was lower than that of the tonoplast in both plants. The Graptopetalum PM vesicles hardly showed water permeability, although the tonoplast showed a relatively high permeability. The water permeability changed depending on the assay temperature and was also partially inhibited by a sulfhydryl reagent. Furthermore, measurement of the rate of swelling and shrinking in different mannitol concentrations revealed that the protoplasts of Graptopetalum showed low water permeability. These results suggest that the low content of aquaporins in PM and tonoplast is one of the causes of the low water permeability of GRAPTOPETALUM: The relationship between the water-storage function of succulent leaves of CAM plants and the low aquaporin level is also discussed.
Collapse
Affiliation(s)
- Y Ohshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | | | | | | | | | | |
Collapse
|
29
|
Gallardo P, Cid LP, Vio CP, Sepúlveda FV. Aquaporin-2, a regulated water channel, is expressed in apical membranes of rat distal colon epithelium. Am J Physiol Gastrointest Liver Physiol 2001; 281:G856-63. [PMID: 11518698 DOI: 10.1152/ajpgi.2001.281.3.g856] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aquaporin-2 (AQP-2) is the vasopressin-regulated water channel expressed in the apical membrane of principal cells in the collecting duct and is involved in the urinary concentrating mechanism. In the rat distal colon, vasopressin stimulates water absorption through an unknown mechanism. With the hypothesis that AQP-2 could contribute to this vasopressin effect, we studied its presence in rat colonic epithelium. We used RT-PCR, in situ hybridization, immunoblotting, and immunocytochemistry to probe for AQP-2 expression. An AQP-2 amplicon was obtained through RT-PCR of colon epithelium RNA, and in situ hybridization revealed AQP-2 mRNA in colonic crypts and, to a lesser extent, in surface absorptive epithelial cells. AQP-2 protein was localized to the apical membrane of surface absorptive epithelial cells, where it colocalized with H(+)-K(+)-ATPase but not with Na(+)-K(+)-ATPase. AQP-2 was absent from the small intestine, stomach, and liver. Water deprivation increased the hybridization signal and the protein level (assessed by Western blot analysis) for AQP-2 in distal colon. This was accompanied by increased p-chloromercuriphenylsulfonic acid-sensitive water absorption. These results indicate that AQP-2 is present in the rat distal colon, where it might be involved in a water-sparing mechanism. In addition, these results support the idea that AQP-2, and probably other aquaporins, are involved in water absorption in the colon.
Collapse
Affiliation(s)
- P Gallardo
- Centro de Estudios Científicos, Valdivia, Chile.
| | | | | | | |
Collapse
|
30
|
Hubbard MJ. Calcium transport across the dental enamel epithelium. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 11:437-66. [PMID: 11132765 DOI: 10.1177/10454411000110040401] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dental enamel is the most highly calcified tissue in mammals, and its formation is an issue of fundamental biomedical importance. The enamel-forming cells must somehow supply calcium in bulk yet avoid the cytotoxic effects of excess calcium. Disrupted calcium transport could contribute to a variety of developmental defects in enamel, and the underlying cellular machinery is a potential target for drugs to improve enamel quality. The mechanisms used to transport calcium remain unclear despite much progress in our understanding of enamel formation. Here, current knowledge of how enamel cells handle calcium is reviewed in the context of findings from other epithelial calcium-transport systems. In the past, most attention has focused on approaches to boost the poor diffusion of calcium in cytosol. Recent biochemical findings led to an alternative proposal that calcium is routed through high-capacity stores associated with the endoplasmic reticulum. Research areas needing further attention and a working model are also discussed. Calcium-handling mechanisms in enamel cells are more generally relevant to the understanding of epithelial calcium transport, biomineralization, and calcium toxicity avoidance.
Collapse
Affiliation(s)
- M J Hubbard
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
31
|
Abstract
p73, a member of the p53 family, has been shown to exhibit similar biochemical activities to that of p53. However, in contrast to p53, p73 is rarely mutated in human tumors and p73 mutant mice develop neurological, pheromonal, and inflammatory defects, but not spontaneous tumors. Furthermore, p73 mutant mice are deficient in the physiological control of cerebral spinal fluid. To determine what mediates these p73 activities, cDNA subtraction assay was performed to identify cellular genes that are regulated by p73. We found that aquaporin 3 (AQP3), a glycerol and water transporter, is regulated by p73. In addition, we identified a potential p53 response element in the promoter of the AQP3 gene, which is responsive to p73. This suggests that AQP3 may mediate the activity of p73 in maintaining cerebral spinal fluid dynamics.
Collapse
Affiliation(s)
- X Zheng
- CB-2803, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | |
Collapse
|
32
|
Chapter 7 Aquaporins of plants: Structure, function, regulation, and role in plant water relations. CURRENT TOPICS IN MEMBRANES 2001. [DOI: 10.1016/s1063-5823(01)51009-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Offenberg H, Barcroft LC, Caveney A, Viuff D, Thomsen PD, Watson AJ. mRNAs encoding aquaporins are present during murine preimplantation development. Mol Reprod Dev 2000; 57:323-30. [PMID: 11066060 DOI: 10.1002/1098-2795(200012)57:4<323::aid-mrd3>3.0.co;2-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study was conducted to investigate the mechanisms underlying fluid movement across the trophectoderm during blastocyst formation by determining whether aquaporins (AQPs) are expressed during early mammalian development. AQPs belong to a family of major intrinsic membrane proteins and function as molecular water channels that allow water to flow rapidly across plasma membranes in the direction of osmotic gradients. Ten different AQPs have been identified to date. Murine preimplantation stage embryos were flushed from the oviducts and uteri of superovulated CD1 mice. Reverse transcription-polymerase chain reaction (RT-PCR) methods employing primer sets designed to amplify conserved sequences of AQPs (1-9) were applied to murine embryo cDNA samples. PCR reactions were conducted for up to 40 cycles involving denaturation of DNA hybrids at 95 degrees C, primer annealing at 52-60 degrees C and extension at 72 degrees C. PCR products were separated on 2% agarose gels and were stained with ethidium bromide. AQP PCR product identity was confirmed by sequence analysis. mRNAs encoding AQPs 1, 3, 5, 6, 7, and 9 were detected in murine embryos from the one-cell stage up to the blastocyst stage. AQP 8 mRNAs were not detected in early cleavage stages but were present in morula and blastocyst stage embryos. The results were confirmed in experimental replicates applied to separate embryo pools of each embryo stage. These results demonstrate that transcripts encoding seven AQP gene products are detectable during murine preimplantation development. These findings predict that AQPs may function as conduits for trophectoderm fluid transport during blastocyst formation.
Collapse
Affiliation(s)
- H Offenberg
- Department of Clinical Studies, Reproduction, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- K Ishibashi
- Department of Pharmacology, Jichi Medical School, Tochigi, Japan
| | | | | |
Collapse
|
35
|
Klussmann E, Maric K, Rosenthal W. The mechanisms of aquaporin control in the renal collecting duct. Rev Physiol Biochem Pharmacol 2000; 141:33-95. [PMID: 10916423 DOI: 10.1007/bfb0119577] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The antidiuretic hormone arginine-vasopressin (AVP) regulates water reabsorption in renal collecting duct principal cells. Central to its antidiuretic action in mammals is the exocytotic insertion of the water channel aquaporin-2 (AQP2) from intracellular vesicles into the apical membrane of principal cells, an event initiated by an increase in cAMP and activation of protein kinase A. Water is then reabsorbed from the hypotonic urine of the collecting duct. The water channels aquaporin-3 (AQP3) and aquaporin-4 (AQP4), which are constitutively present in the basolateral membrane, allow the exit of water from the cell into the hypertonic interstitium. Withdrawal of the hormone leads to endocytotic retrieval of AQP2 from the cell membrane. The hormone-induced rapid redistribution between the interior of the cell and the cell membrane establishes the basis for the short term regulation of water permeability. In addition water channels (AQP2 and 3) of principal cells are regulated at the level of expression (long term regulation). This review summarizes the current knowledge on the molecular mechanisms underlying the short and long term regulation of water channels in principal cells. In the first part special emphasis is placed on the proteins involved in short term regulation of AQP2 (SNARE proteins, Rab proteins, cytoskeletal proteins, G proteins, protein kinase A anchoring proteins and endocytotic proteins). In the second part, physiological and pathophysiological stimuli determining the long term regulation are discussed.
Collapse
Affiliation(s)
- E Klussmann
- Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | | |
Collapse
|
36
|
Ishikawa Y, Skowronski MT, Ishida H. Persistent increase in the amount of aquaporin-5 in the apical plasma membrane of rat parotid acinar cells induced by a muscarinic agonist SNI-2011. FEBS Lett 2000; 477:253-7. [PMID: 10908730 DOI: 10.1016/s0014-5793(00)01763-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
SNI-2011 induces the long-lasting increase in the amount of aquaporin-5 (AQP5) in apical plasma membranes (APMs) of rat parotid acini in a concentration-dependent manner. This induction was inhibited by p-F-HHSiD, U73122, TMB-8, or dantrolene but not by bisindolmaleimide or H-7, indicating that SNI-2011 acting at M(3) muscarinic receptors induced translocation of AQP5 via [Ca(2+)](i) elevation but not via the activation of protein kinase C. In contrast, acetylcholine induced a transient translocation of AQP5 to APMs. SNI-2011 induces long-lasting oscillations of [Ca(2+)](i) in the presence of extracellular Ca(2+). Thus, SNI-2011 induces a long-lasting translocation of AQP5 to APMs coupled with persistent [Ca(2+)](i) oscillations.
Collapse
Affiliation(s)
- Y Ishikawa
- Department of Pharmacology, School of Dentistry, Tokushima University, 3-18-15 Kuramoto-cho, 770-8504, Tokushima, Japan.
| | | | | |
Collapse
|
37
|
Snigirevskaya ES. Structural correlates of the transepithelial water transport. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 198:203-75. [PMID: 10804464 DOI: 10.1016/s0074-7696(00)98006-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Transepithelial permeability is one of the fundamental problems in cell biology. Epithelial cell layers protect the organism from its environment and form a selective barrier to the exchange of molecules between the lumen of an organ and an underlying tissue. This chapter discusses some problems and analyzes the participation of intercellular junctions in the paracellular transport of water, migration of intramembrane particles in the apical membrane during its permeability changes for isotonic fluid in cells of leaky epithelia, insertion of water channels into the apical membrane and their cytoplasmic sources in cells of tight epithelia under ADH (antidiuretic hormone)-induced water flows, the osmoregulating function of giant vacuoles in the transcellular fluxes of hypotonic fluid across tight epithelia, and the role of actin filaments and microtubules in the transcellular transport of water across epithelia.
Collapse
Affiliation(s)
- E S Snigirevskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
38
|
Preisser L, Teillet L, Aliotti S, Gobin R, Berthonaud V, Chevalier J, Corman B, Verbavatz JM. Downregulation of aquaporin-2 and -3 in aging kidney is independent of V(2) vasopressin receptor. Am J Physiol Renal Physiol 2000; 279:F144-52. [PMID: 10894796 DOI: 10.1152/ajprenal.2000.279.1.f144] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms underlying age-related polyuria were investigated in 10- and 30-mo-old female WAG/Rij rats. Urinary volume and osmolality were 3.9 +/- 0.3 ml/24 h and 2,511 +/- 54 mosmol/kgH(2)O in adult rats and 12.8 +/- 0.8 ml/24 h and 1,042 +/- 44 mosmol/kgH(2)O in senescent animals. Vasopressin V(2) receptor mRNA did not significantly differ between 10 and 30 mo, and [(3)H]vasopressin binding sites in membrane papilla were reduced by 30%. The cAMP content of the papilla was unchanged with age, whereas papillary osmolality was significantly lowered in senescent animals. The expression of aquaporin-1 (AQP1) and -4 was mostly unaltered from 10 to 30 mo. In contrast, aquaporin-2 (AQP2) and -3 (AQP3) expression was downregulated by 80 and 50%, respectively, and AQP2 was markedly redistributed into the intracellular compartment, in inner medulla of senescent animals, but not in renal cortex. These results indicate that age-related polyuria is associated with a downregulation of AQP2 and AQP3 expression in the medullary collecting duct, which is independent of vasopressin-mediated cAMP accumulation.
Collapse
Affiliation(s)
- L Preisser
- Service de Biologie Cellulaire, Commissariat à l'Energie Atomique/Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Valenti G, Procino G, Carmosino M, Frigeri A, Mannucci R, Nicoletti I, Svelto M. The phosphatase inhibitor okadaic acid induces AQP2 translocation independently from AQP2 phosphorylation in renal collecting duct cells. J Cell Sci 2000; 113 ( Pt 11):1985-92. [PMID: 10806109 DOI: 10.1242/jcs.113.11.1985] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation by kinases and dephosphorylation by phosphatase markedly affect the biological activity of proteins involved in intracellular signaling. In this study we investigated the effect of the serine/threonine phosphatase inhibitor okadaic acid on water permeability properties and on aquaporin2 (AQP2) translocation in AQP2-transfected renal CD8 cells. In CD8 cells both forskolin alone and okadaic acid alone increased the osmotic water permeability coefficient P(f) by about 4- to 5-fold. In intact cells, in vivo phosphorylation studies revealed that forskolin stimulation resulted in a threefold increase in AQP2 phosphorylation. In contrast, okadaic acid treatment promoted only a 60% increase in AQP2 phosphorylation which was abolished when this treatment was performed in the presence of 1 μM H89, a specific protein kinase A (PKA) inhibitor. Nevertheless, in this latter condition, confocal microscopy analysis revealed that AQP2 translocated and fused to the apical membrane. Okadaic acid-induced AQP2 translocation was dose dependent having its maximal effect at a concentration of 1 μM. In conclusion, our results clearly indicate that okadaic acid exerts a full forskolin-like effect independent from AQP2 phosphorylation. Thus AQP2 phosphorylation is not essential for water channel translocation in renal cells, indicating that different pathways might exist leading to AQP2 apical insertion and increase in P(f).
Collapse
Affiliation(s)
- G Valenti
- Dipartimento di Fisiologia Generale ed Ambientale, Universita' degli Studi, Via Amendola 165/A, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kirch HH, Vera-Estrella R, Golldack D, Quigley F, Michalowski CB, Barkla BJ, Bohnert HJ. Expression of water channel proteins in Mesembryanthemum crystallinum. PLANT PHYSIOLOGY 2000; 123:111-24. [PMID: 10806230 PMCID: PMC58987 DOI: 10.1104/pp.123.1.111] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/1999] [Accepted: 01/25/2000] [Indexed: 05/19/2023]
Abstract
We have characterized transcripts for nine major intrinsic proteins (MIPs), some of which function as water channels (aquaporins), from the ice plant Mesembryanthemum crystallinum. To determine the cellular distribution and expression of these MIPs, oligopeptide-based antibodies were generated against MIP-A, MIP-B, MIP-C, or MIP-F, which, according to sequence and functional characteristics, are located in the plasma membrane (PM) and tonoplast, respectively. MIPs were most abundant in cells involved in bulk water flow and solute flux. The tonoplast MIP-F was found in all cells, while signature cell types identified different PM-MIPs: MIP-A predominantly in phloem-associated cells, MIP-B in xylem parenchyma, and MIP-C in the epidermis and endodermis of immature roots. Membrane protein analysis confirmed MIP-F as tonoplast located. MIP-A and MIP-B were found in tonoplast fractions and also in fractions distinct from either the tonoplast or PM. MIP-C was most abundant but not exclusive to PM fractions, where it is expected based on its sequence signature. We suggest that within the cell, MIPs are mobile, which is similar to aquaporins cycling through animal endosomes. MIP cycling and the differential regulation of these proteins observed under conditions of salt stress may be fundamental for the control of tissue water flux.
Collapse
Affiliation(s)
- H H Kirch
- Department of Biochemistry, University of Arizona, Biosciences West, Tucson 85721-0088, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Aquaporins increase the water permeability in many cell types across many species. We investigated the effects of external pH and Ca(2+) on water permeability of Xenopus oocytes injected with aquaporin cRNA by measuring the rate of swelling in hypotonic solutions. Lowering pH to 6.5 increased the water permeability of aquaporin (AQP0) 3.4 +/- 0.4-fold. Diethylpyrocarbonate pretreatment increased water permeability 4.2 +/- 0.5-fold and abolished pH sensitivity, suggesting that the pH regulation is mediated by an external histidine. Lowering Ca(2+) increased water permeability 4.1 +/- 0. 4-fold. The effects of Ca(2+) and pH each required the presence of histidine 40, indicating a critical role of this amino acid in facilitating the modulation of water permeability. Clamping intracellular Ca(2+) at high or low values abolished sensitivity to external Ca(2+), suggesting that Ca(2+) acts at an internal site. Three different calmodulin inhibitors each increased AQP0 water permeability, suggesting that Ca(2+) may act through calmodulin. None of the above altered the water permeability induced by AQP1 or AQP4. Because the greatest change in AQP0 water permeability is in the normal pH range found in the lens (7.2-6.5), this paper provides evidence for regulation of an aquaporin by pH under physiological conditions.
Collapse
Affiliation(s)
- K L Németh-Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, California 92697-4560, USA
| | | |
Collapse
|
42
|
Kuwahara M, Shinbo I, Sato K, Terada Y, Marumo F, Sasaki S. Transmembrane helix 5 is critical for the high water permeability of aquaporin. Biochemistry 1999; 38:16340-6. [PMID: 10587459 DOI: 10.1021/bi9916776] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aquaporin-2 (AQP2), a vasopressin-regulated water channel, plays a major role in urinary concentration. AQP2 and the major intrinsic protein (MIP) of lens fiber are highly homologous (58% amino acid identity) and share a topology of six transmembrane helices connected by five loops (loops A-E). Despite the similarities of these proteins, however, the water channel activity of AQP2 is much higher than that of MIP. To determine the site responsible for this gain of activity in AQP2, several parts of MIP were replaced with the corresponding parts of AQP2. When expressed in Xenopus oocytes, the osmotic water permeability (P(f)) of MIP and AQP2 was 48 and 245 x 10(-)(4) cm/s, respectively. Substitutions in loops B-D failed to increase P(f), whereas substitution of loop E significantly increased P(f) 1.5-fold. A similar increase in P(f) was observed with the substitution of the front half of loop E. P(f) measurements taken in a yeast vesicle expression system also confirmed that loop E had a complementary effect, whereas loops B-D did not. However, P(f) values of the loop E chimeras were only approximately 30% of that of AQP2. Simultaneous exchanges of loop E and a distal half of transmembrane helix 5 just proximal to loop E increased P(f) to the level of that of AQP2. Replacement of helix 5 alone stimulated P(f) 2.7-fold. Conversely, P(f) was decreased by 73% when helix 5 of AQP2 was replaced with that of MIP. Moreover, P(f) was stimulated 2.6- and 3.3-fold after helix 5 of AQP1 and AQP4 was spliced into MIP, respectively. Our findings suggested that the distal half of helix 5 is necessary for maximum water channel activity in AQP. We speculate that this portion contributes to the formation of the aqueous pore and the determination of the flux rate.
Collapse
Affiliation(s)
- M Kuwahara
- Second Department of Internal Medicine, School of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Ishikawa Y, Skowronski MT, Inoue N, Ishida H. alpha(1)-adrenoceptor-induced trafficking of aquaporin-5 to the apical plasma membrane of rat parotid cells. Biochem Biophys Res Commun 1999; 265:94-100. [PMID: 10548496 DOI: 10.1006/bbrc.1999.1630] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Incubation of rat parotid tissue with 10 microM epinephrine resulted in a transient and marked trafficking of aquaporin-5 (AQP5) from intracellular membranes to the apical plasma membrane (APM) that was maximal at 1 min. This effect of epinephrine was mimicked by phenylephrine, but not by clonidine, dobutamine, or salbutamol, and it was inhibited by phentolamine, but not by propranolol. Furthermore, the epinephrine-induced trafficking of AQP5 was inhibited by phospholipase C inhibitor U73122 as well as dantrolene and TMB-8, both of which inhibit the release of Ca(2+) from intracellular stores. Cytochalasin D and tubulozole-C also inhibited this action of epinephrine. These results indicate that epinephrine, acting at alpha(1)-adrenoceptors, induces the trafficking of AQP5 to the APM by triggering the release of Ca(2+) from intracellular stores through inositol 1,4,5-trisphosphate and ryanodine receptors. In addition, the potent involvement of the cytoskeleton was shown in the epinephrine-induced trafficking of AQP5.
Collapse
Affiliation(s)
- Y Ishikawa
- Department of Pharmacology, Tokushima University School of Dentistry, Kuramoto-cho, Tokushima, 770-8504, Japan.
| | | | | | | |
Collapse
|
44
|
Abstract
Aquaporins (AQPs) were expressed in Xenopus laevis oocytes in order to study the effects of external pH and solute structure on permeabilities. For AQP3 the osmotic water permeability, L(p), was abolished at acid pH values with a pK of 6.4 and a Hill coefficient of 3. The L(p) values of AQP0, AQP1, AQP2, AQP4, and AQP5 were independent of pH. For AQP3 the glycerol permeability P(Gl), obtained from [(14)C]glycerol uptake, was abolished at acid pH values with a pK of 6.1 and a Hill coefficient of 6. Consequently, AQP3 acts as a glycerol and water channel at physiological pH, but predominantly as a glycerol channel at pH values around 6.1. The pH effects were reversible. The interactions between fluxes of water and straight chain polyols were inferred from reflection coefficients (sigma). For AQP3, water and glycerol interacted by competing for titratable site(s): sigma(Gl) was 0.15 at neutral pH but doubled at pH 6.4. The sigma values were smaller for polyols in which the -OH groups were free to form hydrogen bonds. The activation energy for the transport processes was around 5 kcal mol(-1). We suggest that water and polyols permeate AQP3 by forming successive hydrogen bonds with titratable sites.
Collapse
Affiliation(s)
- T Zeuthen
- The Panum Institute, Blegdamsvej 3C, DK 2200 Copenhagen N, Denmark.
| | | |
Collapse
|
45
|
Gerbeau P, Güçlü J, Ripoche P, Maurel C. Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 18:577-87. [PMID: 10417709 DOI: 10.1046/j.1365-313x.1999.00481.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Members of the major intrinsic protein (MIP) family, described in plants as water-selective channels (aquaporins), can also transport small neutral solutes in other organisms. In the present work, we characterize the permeability of plant vacuolar membrane (tonoplast; TP) and plasma membrane (PM) to non-electrolytes and evaluate the contribution of MIP homologues to such transport. PM and TP vesicles were purified from tobacco suspension cells by free-flow electrophoresis, and membrane permeabilities for a wide range of neutral solutes including urea, polyols of different molecular size, and amino acids were investigated by stopped-flow spectrofluorimetry. For all solutes tested, TP vesicles were found to be more permeable than their PM counterparts, with for instance urea permeabilities from influx experiments of 74.9 +/- 9.6 x 10(-6) and 1.0 +/- 0.3 x 10(-6) cm sec-1, respectively. Glycerol and urea transport in TP vesicles exhibited features of a facilitated diffusion process. This and the high channel-mediated permeability of the same TP vesicles to water suggested a common role for MIP proteins in water and solute transport. A cDNA encoding a novel tonoplast intrinsic protein (TIP) homologue named Nicotiana tabacum TIPa (Nt-TIPa) was isolated from tobacco cells. Immunodetection of Nt-TIPa in purified membrane fractions confirmed that the protein is localized in the TP. Functional expression of Nt-TIPa in Xenopus oocytes showed this protein to be permeable to water and solutes such as urea and glycerol. These features could account for the transport selectivity profile determined in purified TP vesicles. These results support the idea that plant aquaporins have a dual function in water and solute transport. Because Nt-TIPa diverges in sequence from solute permeable aquaporins characterized in other organisms, its identification also provides a novel tool for investigating the molecular determinants of aquaporin transport selectivity.
Collapse
Affiliation(s)
- P Gerbeau
- Institut des Sciences Végétales, CNRS, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
46
|
Lagrée V, Froger A, Deschamps S, Hubert JF, Delamarche C, Bonnec G, Thomas D, Gouranton J, Pellerin I. Switch from an aquaporin to a glycerol channel by two amino acids substitution. J Biol Chem 1999; 274:6817-9. [PMID: 10066730 DOI: 10.1074/jbc.274.11.6817] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MIP (major intrinsic protein) proteins constitute a channel family of currently 150 members that have been identified in cell membranes of organisms ranging from bacteria to man. Among these proteins, two functionally distinct subgroups are characterized: aquaporins that allow specific water transfer and glycerol channels that are involved in glycerol and small neutral solutes transport. Since the flow of small molecules across cell membranes is vital for every living organism, the study of such proteins is of particular interest. For instance, aquaporins located in kidney cell membranes are responsible for reabsorption of 150 liters of water/day in adult human. To understand the molecular mechanisms of solute transport specificity, we analyzed mutant aquaporins in which highly conserved residues have been substituted by amino acids located at the same positions in glycerol channels. Here, we show that substitution of a tyrosine and a tryptophan by a proline and a leucine, respectively, in the sixth transmembrane helix of an aquaporin leads to a switch in the selectivity of the channel, from water to glycerol.
Collapse
Affiliation(s)
- V Lagrée
- UPRES-A CNRS 6026, Biologie Cellulaire et Reproduction, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Campus de Beaulieu, Bâtiment 13, 35042 Rennes cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Klussmann E, Maric K, Wiesner B, Beyermann M, Rosenthal W. Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 1999; 274:4934-8. [PMID: 9988736 DOI: 10.1074/jbc.274.8.4934] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antidiuretic hormone arginine-vasopressin (AVP) regulates water reabsorption in renal collecting duct principal cells by inducing a cAMP-dependent translocation of water channels (aquaporin-2, AQP-2) from intracellular vesicles into the apical cell membranes. In subcellular fractions from primary cultured rat inner medullary collecting duct (IMCD) cells, enriched for intracellular AQP-2-bearing vesicles, catalytic protein kinase A (PKA) subunits and several protein kinase A anchoring proteins (AKAPs) were detected. In nonstimulated IMCD cells the majority of AQP-2 staining was detected intracellularly but became mainly localized within the cell membrane after stimulation with AVP or forskolin. Quantitative analysis revealed that preincubation of the cells with the synthetic peptide S-Ht31, which prevents the binding between AKAPs and regulatory subunits of PKA, strongly inhibited AQP-2 translocation in response to forskolin. Preincubation of the cells with the PKA inhibitor H89 prior to forskolin stimulation abolished AQP-2 translocation. In contrast to H89, S-Ht31 did not affect the catalytic activity of PKA. These data demonstrate that not only the activity of PKA, but also its tethering to subcellular compartments, are prerequisites for cAMP-dependent AQP-2 translocation.
Collapse
Affiliation(s)
- E Klussmann
- Forschungsinstitut für Molekulare Pharmakologie, Alfred-Kowalke-Strasse 4, D-10315 Berlin, Germany.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Since 1992 and the discovery of an MIP (major intrinsic protein of lens fiber cell) homologue protein that selectively permeates water, aquaporin (AQP), there has been an explosion of research in this field. Early research speculated that aquaporins played indispensible physiological roles in bacteria and plants, as well as in mammalian organs such as red blood cells, kidney, eye, brain and lung, where water transport rapidly takes place. Yet human subjects were identified who lacked AQP1 and yet had no apparent phenotypical changes clinically. To date 10 aquaporins have been discovered and a plethora of MIP members, and their prevalance in almost all organisms is a testament to their indispensible roles in the body, possibly as water and small neutral solute transporting channels. The recent localization of many different aquaporins in the same organ indicates that they may work cooperatively, which may partially explain the mystery of their physiological mechanism. Because the physiological roles of most aquaporins are currently only speculation, more extensive research is necessary to understand the exact function of each aquaporin.
Collapse
Affiliation(s)
- T Yamamoto
- Department of Pathology, Institute of Nephrology, Niigata University School of Medicine, Japan
| | | |
Collapse
|
49
|
Agre P. Aquaporin null phenotypes: the importance of classical physiology. Proc Natl Acad Sci U S A 1998; 95:9061-3. [PMID: 9689031 PMCID: PMC33873 DOI: 10.1073/pnas.95.16.9061] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- P Agre
- Departments of Biological Chemistry and Medicine, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2185, USA
| |
Collapse
|
50
|
Ishibashi K, Yamauchi K, Kageyama Y, Saito-Ohara F, Ikeuchi T, Marumo F, Sasaki S. Molecular characterization of human Aquaporin-7 gene and its chromosomal mapping. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1399:62-6. [PMID: 9714739 DOI: 10.1016/s0167-4781(98)00094-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cDNA for the seventh mammalian aquaporin (AQP7) was isolated from rat testis, and its expression demonstrated at the tail of late spermatids (Ishibashi et al., J. Biol. Chem. 272 (1997) 20,782-20,786). Here we report the isolation of the mouse and the human AQP7 cDNA and the human AQP7 gene. The human AQP7 gene is identical with human adipose AQP (AQPap or AQP7L). The deduced amino acid sequences of human and mouse AQP7 were 68% and 79% identical to those of rat AQP7, respectively. The mouse AQP7 is 67% identical to the human AQP7. Such a lower conservation of AQP7 among species is unusual in the aquaporin family. The human AQP7 gene is composed of six exons distributing over 6.5 kb. The exon-intron boundaries are identical to those of the human AQP3 gene. The intron sizes are also similar. Moreover, chromosomal localization of AQP7 was assigned to 9p13 by fluorescent in situ hybridization, where AQP3 is also localized, suggesting that 9p13 may be another site of an aquaporin cluster.
Collapse
Affiliation(s)
- K Ishibashi
- Second Department of Internal Medicine, Tokyo Medical and Dental University, Japan.
| | | | | | | | | | | | | |
Collapse
|