1
|
Ma C, Hu H, Liu H, Zhong C, Wu B, Lv C, Tian Y. Lipotoxicity, lipid peroxidation and ferroptosis: a dilemma in cancer therapy. Cell Biol Toxicol 2025; 41:75. [PMID: 40285867 PMCID: PMC12033115 DOI: 10.1007/s10565-025-10025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
The vulnerability of tumor cells to lipid peroxidation, driven by redox imbalance and lipid overabundance within the tumor microenvironment (TME), has become a focal point for novel antitumor strategies. Ferroptosis, a form of regulated cell death predicated on lipid peroxidation, is emerging as a promising approach. Beyond their role in directly eliminating tumor cells, lipid peroxidation and its products, such as 4-hydroxynonenal (HNE), exert an additional influence by damaging DNA and shaping an environment conducive to tumor growth and metastasis. This process polarizes macrophages towards a pro-inflammatory phenotype, dampens the antigen-presenting capacity of dendritic cells (DCs), and undermines the cytotoxic functions of T and NK cells. Furthermore, it transforms neutrophils into pro-tumorigenic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). The lipid peroxidation of stroma cells also contributes to tumor progression. Although advanced nanotherapies have shown the ability to target tumor cells precisely, they often overlook the nuanced effects of lipid peroxidation products. In this review, we highlight a synergistic mechanism in which lipid peroxidation products and ferroptosis contribute to an immunosuppressive state that is temporally distinct from cell death. This insight broadens our understanding of ferroptosis-derived immunosuppression, encompassing all types of immune cells within the TME. This review aims to catalyze further research in this underexplored area, emphasizing the potential of lipid peroxidation products to hinder the clinical translation of ferroptosis-based therapies.
Collapse
Affiliation(s)
- Chuhan Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Huixin Hu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Hao Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
2
|
Romanello KS, da Silva JPMDO, Torres FF, Teixeira KKL, Domingos IDF, Arcanjo GDS, Martins DAP, Araujo ADS, Bezerra MAC, Malavazi I, da Silva DGH, da Cunha AF. Unraveling the multifaceted roles of peroxiredoxins in sickle cell anemia: implications in redox and inflammation adaptations. Ann Hematol 2025; 104:2265-2277. [PMID: 40085210 PMCID: PMC12052826 DOI: 10.1007/s00277-025-06294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
Sickle cell anemia (SCA) presents a complex interplay of factors, with the production of high levels of reactive oxygen species (ROS) and the chronic inflammatory process leading to chronic oxidative stress. In this context, efficient action of antioxidant systems becomes crucial, with particular emphasis on peroxiredoxins (PRDXs) due to their abundance and vital roles. Our primary objective was to establish associations between gene and protein expression of PRDXs 1, 2, and 6, as well as their reducers TRX1, TRXR1, and SRX1, with the characteristic hyperoxidative status observed in SCA patients. Concomitantly, we assessed the production of other essential antioxidant enzymes (SOD1, CAT, and GPX1) in reticulocytes and erythrocytes and explored mRNA levels of the NRF2/KEAP1/PKCδ complex. Our comprehensive analysis revealed a ∼ 3-fold elevation in ROS levels in erythrocytes of patients compared to healthy individuals. However, the NRF2/KEAP1/PKCδ complex exhibited a significant reduction in gene expression, hinting that another transcription factor may regulate the antioxidant response among SCA patients. In addition, the pattern of increased transcript levels of antioxidants in SCA patients was not associated with their protein levels, indicating a possible degradation by proteasome. The protein content of PRDX2 showed a significant reduction, indicating an increased vulnerability of these cells to oxidative damage. Intriguingly, both PRDXs 1 and 2 exhibited significant increases in the plasma of SCA patients, indicating that, besides their well-known intracellular antioxidant role, these enzymes may also play a vital extracellular role in modulating inflammation in these individuals. Our findings unveil novel insights into the redox metabolism adaption of erythroid cells in response to the presence of HbS in homozygosity, thus, into the complex SCA pathophysiology. Moreover, our study reveals the simultaneous presence of both PRDXs 1 and 2 in the plasma of these patients, thereby offering valuable implications for potential prognostic and therapeutic avenues.
Collapse
Affiliation(s)
- Karen Simone Romanello
- Departamento de Genética e Evolução - Laboratório de Bioquímica e Genética Aplicada, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - João Pedro Maia de Oliveira da Silva
- Departamento de Genética e Evolução - Laboratório de Bioquímica e Genética Aplicada, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Flaviene Felix Torres
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Karina Kirschner Lopes Teixeira
- Departamento de Genética e Evolução - Laboratório de Bioquímica e Genética Aplicada, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | | | | | | | | | | | - Iran Malavazi
- Departamento de Genética e Evolução - Laboratório de Bioquímica e Genética Aplicada, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Danilo Grünig Humberto da Silva
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
- Universidade Federal de Mato Grosso do Sul, Três Lagoas, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução - Laboratório de Bioquímica e Genética Aplicada, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil.
- Centro de Ciências Biológicas e da Saúde - Departamento de Genética e Evolução - Laboratório de Bioquímica e Genética Aplicada, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 - SP-310, Bairro Monjolinho, São Carlos, Brasil.
| |
Collapse
|
3
|
Wang T, Liu M, Li X, Zhang S, Gu H, Wei X, Wang X, Xu Z, Shen T. Naturally-derived modulators of the Nrf2 pathway and their roles in the intervention of diseases. Free Radic Biol Med 2024; 225:560-580. [PMID: 39368519 DOI: 10.1016/j.freeradbiomed.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver diseases, as well as cancers. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Liu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Li
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Sen Zhang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Haoran Gu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuan Wei
- Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong, PR China
| | - Xiaoning Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhenpeng Xu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
4
|
Hassanein EHM, Althagafy HS, Baraka MA, Abd-Alhameed EK, Ibrahim IM, Abd El-Maksoud MS, Mohamed NM, Ross SA. The promising antioxidant effects of lignans: Nrf2 activation comes into view. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6439-6458. [PMID: 38695909 PMCID: PMC11422461 DOI: 10.1007/s00210-024-03102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
Lignans are biologically active compounds widely distributed, recognized, and identified in seeds, fruits, and vegetables. Lignans have several intriguing bioactivities, including anti-inflammatory, antioxidant, and anticancer activities. Nrf2 controls the expression of many cytoprotective genes. Activation of Nrf2 is a promising therapeutic approach for treating and preventing diseases resulting from oxidative injury and inflammation. Lignans have been demonstrated to stimulate Nrf2 signaling in a variety of in vitro and experimental animal models. The review summarizes the findings of fourteen lignans (Schisandrin A, Schisandrin B, Schisandrian C, Magnolol, Honokiol, Sesamin, Sesamol, Sauchinone, Pinoresinol, Phyllanthin, Nectandrin B, Isoeucommin A, Arctigenin, Lariciresinol) as antioxidative and anti-inflammatory agents, affirming how Nrf2 activation affects their pharmacological effects. Therefore, lignans may offer therapeutic candidates for the treatment and prevention of various diseases and may contribute to the development of effective Nrf2 modulators.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa S Abd El-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Assiut, Assiut, 77771, Egypt.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
5
|
Mukherjee AG, Gopalakrishnan AV. The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: a deadly scenario. Med Oncol 2023; 40:248. [PMID: 37480500 DOI: 10.1007/s12032-023-02124-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The Nuclear factor erythroid 2-related factor 2 (Nrf2) protein has garnered significant interest due to its crucial function in safeguarding cells and tissues. The Nrf2 protein is crucial in preserving tissue integrity by safeguarding cells against metabolic, xenobiotic and oxidative stress. Due to its various functions, Nrf2 is a potential pharmacological target for reducing the incidence of diseases such as cancer. However, mutations in Keap1-Nrf2 are not consistently favored in all types of cancer. Instead, they seem to interact with specific driver mutations of tumors and their respective tissue origins. The Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 pathway mutations are a powerful cancer adaptation that utilizes inherent cytoprotective pathways, encompassing nutrient metabolism and ROS regulation. The augmentation of Nrf2 activity elicits significant alterations in the characteristics of neoplastic cells, such as resistance to radiotherapy and chemotherapy, safeguarding against apoptosis, heightened invasiveness, hindered senescence, impaired autophagy and increased angiogenesis. The altered activity of Nrf2 can arise from diverse genetic and epigenetic modifications that instantly impact Nrf2 regulation. The present study aims to showcase the correlation between the Keap1-Nrf2 pathway and the progression of cancers, emphasizing genetic mutations, metabolic processes, immune regulation, and potential therapeutic strategies. This article delves into the intricacies of Nrf2 pathway anomalies in cancer, the potential ramifications of uncontrolled Nrf2 activity, and therapeutic interventions to modulate the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Yin M, Liu Z, Wang J, Gao W. Buyang Huanwu decoction alleviates oxidative injury of cerebral ischemia-reperfusion through PKCε/Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115953. [PMID: 36442760 DOI: 10.1016/j.jep.2022.115953] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke is a significant risk factor for human health, and Buyang Huanwu Decoction is a classical and famous Chinese formula for treating it, but without clear pharmacological mechanism. AIM OF THE STUDY The aim of this study was to investigate that the molecular mechanism of BYHWD activation of the PKCε/Nrf2 signaling pathway to attenuate cerebral ischemia-reperfusion (I/R) oxidative damage. MATERIALS AND METHODS The MCAO method was used to establish a brain I/R injury model in SD rats, and neurological deficits were evaluated by neurological function score. Neuronal damage was observed by Nissl staining and immunofluorescence detection of MAP2 expression. Oxidative damage was observed by ROS, SOD, GSH-PX, MDA, and 8-OHdG. Changes in mitochondrial membrane potential were detected by using the fluorescent probe JC-1. The Western blot analysis detected protein expression of PKCε, P-PKCε, total Nrf2, nuclear Nrf2, HO-1, and NQO1. RESULTS BYHWD significantly enhanced neural function, reduced neuronal damage, inhibited the production of ROS, decreased MDA and 8-OHdG levels, increased SOD and GSH-PX activity to reduce oxidative damage, and restored mitochondrial membrane potential. BYHWD and Nrf2 activator TBHQ increased total Nrf2, nucleus Nrf2 protein expression, and its downstream HO-1 and NQO1 proteins, and the administration of the Nrf2 inhibitor brusatol reduced the enhancing effect of BYHWD. Meanwhile, BYHWD increased the expression of PKCε and P-PKCε and the administration of the PKCε inhibitor εV1-2 reduced the effect of BYHWD in increasing the expression of PKCε, P-PKCε, nuclear Nrf2, and HO-1, as well as promoting the effect of Nrf2 translocation to the nucleus. CONCLUSION This study marks the first to demonstrate that BYHWD ameliorates oxidative damage and attenuates brain I/R injury by activating the PKCε/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Meijuan Yin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Zhenyi Liu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Jing Wang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China; Hebei Medical University, Shijiazhuang, 050017, China.
| | - Weijuan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| |
Collapse
|
7
|
Kryszczuk M, Kowalczuk O. Significance of NRF2 in physiological and pathological conditions an comprehensive review. Arch Biochem Biophys 2022; 730:109417. [DOI: 10.1016/j.abb.2022.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022]
|
8
|
Bondi CD, Rush BM, Hartman HL, Wang J, Al-Bataineh MM, Hughey RP, Tan RJ. Suppression of NRF2 Activity by HIF-1α Promotes Fibrosis after Ischemic Acute Kidney Injury. Antioxidants (Basel) 2022; 11:1810. [PMID: 36139884 PMCID: PMC9495756 DOI: 10.3390/antiox11091810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023] Open
Abstract
Acute kidney injury (AKI) is a rapid decline in renal function and can occur after ischemia/reperfusion injury (IRI) to the tubular epithelia. The nuclear factor erythroid-2-related factor 2 (NRF2) pathway protects against AKI and AKI-to-chronic kidney disease (CKD) progression, but we previously demonstrated that severe IRI maladaptively reduced NRF2 activity in mice. To understand the mechanism of this response, we subjected C57BL/6J mice to unilateral kidney IRI with ischemia times that were titrated to induce mild to severe injury. Mild IRI increased NRF2 activity and was associated with renal recovery, whereas severe IRI decreased NRF2 activity and led to progressive CKD. Due to these effects of ischemia, we tested the hypothesis that hypoxia-inducible factor-1α (HIF-1α) mediates NRF2 activity. To mimic mild and severe ischemia, we activated HIF-1α in HK-2 cells in nutrient-replete or nutrient-deficient conditions. HIF-1α activation in nutrient-replete conditions enhanced NRF2 nuclear localization and activity. However, in nutrient-deficient conditions, HIF-1α activation suppressed NRF2 nuclear localization and activity. Nuclear localization was rescued with HIF-1α siRNA knockdown. Our results suggest that severe ischemic AKI leads to HIF-1α-mediated suppression of NRF2, leading to AKI-to-CKD progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roderick J. Tan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 152671, USA
| |
Collapse
|
9
|
Okusha Y, Lang BJ, Murshid A, Borges TJ, Holton KM, Clark-Matott J, Doshi S, Ikezu T, Calderwood SK. Extracellular Hsp90α stimulates a unique innate gene profile in microglial cells with simultaneous activation of Nrf2 and protection from oxidative stress. Cell Stress Chaperones 2022; 27:461-478. [PMID: 35689138 PMCID: PMC9485360 DOI: 10.1007/s12192-022-01279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 11/03/2022] Open
Abstract
Delivery of exogenous heat shock protein 90α (Hsp90α) and/or its induced expression in neural tissues has been suggested as a potential strategy to combat neurodegenerative disease. However, within a neurodegenerative context, a pro-inflammatory response to extracellular Hsp90α (eHsp90α) could undermine strategies to use it for therapeutic intervention. The aim of this study was to investigate the biological effects of eHsp90α on microglial cells, the primary mediators of inflammatory responses in the brain. Transcriptomic profiling by RNA-seq of primary microglia and the cultured EOC2 microglial cell line treated with eHsp90α showed the chaperone to stimulate activation of innate immune responses in microglia that were characterized by an increase in NF-kB-regulated genes. Further characterization showed this response to be substantially lower in amplitude than the effects of other inflammatory stimuli such as fibrillar amyloid-β (fAβ) or lipopolysaccharide (LPS). Additionally, the toxicity of conditioned media obtained from microglia treated with fAβ was attenuated by addition of eHsp90α. Using a co-culture system of microglia and hippocampal neuronal cell line HT22 cells separated by a chamber insert, the neurotoxicity of medium conditioned by microglia treated with fAβ was reduced when eHsp90α was also added. Mechanistically, eHsp90α was shown to activate Nrf2, a response which attenuated fAβ-induced nitric oxide production. The data thus suggested that eHsp90α protects against fAβ-induced oxidative stress. We also report eHsp90α to induce expression of macrophage receptor with collagenous structure (Marco), which would permit receptor-mediated endocytosis of fAβ.
Collapse
Affiliation(s)
- Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
- JSPS Overseas Research Fellowship, Tokyo, 102-0083, Japan.
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Kristina M Holton
- Research Computing, Harvard Medical School, Boston, MA, 02215, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Joanne Clark-Matott
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Sachin Doshi
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Molecular NeuroTherapeutics Laboratory, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
10
|
Wehrens M, de Leeuw AE, Wright-Clark M, Eding JEC, Boogerd CJ, Molenaar B, van der Kraak PH, Kuster DWD, van der Velden J, Michels M, Vink A, van Rooij E. Single-cell transcriptomics provides insights into hypertrophic cardiomyopathy. Cell Rep 2022; 39:110809. [PMID: 35545053 DOI: 10.1016/j.celrep.2022.110809] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is characterized by unexplained segmental hypertrophy that is usually most pronounced in the septum. While sarcomeric gene mutations are often the genetic basis for HCM, the mechanistic origin for the heterogeneous remodeling remains largely unknown. A better understanding of the gene networks driving the cardiomyocyte (CM) hypertrophy is required to improve therapeutic strategies. Patients suffering from HCM often receive a septal myectomy surgery to relieve outflow tract obstruction due to hypertrophy. Using single-cell RNA sequencing (scRNA-seq) on septal myectomy samples from patients with HCM, we identify functional links between genes, transcription factors, and cell size relevant for HCM. The data show the utility of using scRNA-seq on the human hypertrophic heart, highlight CM heterogeneity, and provide a wealth of insights into molecular events involved in HCM that can eventually contribute to the development of enhanced therapies.
Collapse
Affiliation(s)
- Martijn Wehrens
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Anne E de Leeuw
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Maya Wright-Clark
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joep E C Eding
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Bas Molenaar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Petra H van der Kraak
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Michelle Michels
- Department of Cardiology, Erasmus MC, Rotterdam, the Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Liu B, Li X, Wang D, Yu Y, Lu D, Chen L, Lv F, Li Y, Cheng L, Song Y, Xing Y. CEMIP promotes extracellular matrix-detached prostate cancer cells survival by inhibiting ferroptosis. Cancer Sci 2022; 113:2056-2070. [PMID: 35363929 PMCID: PMC9207355 DOI: 10.1111/cas.15356] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Cells detached from the extracellular matrix (ECM) can trigger different modes of cell death, and the survival of ECM‐detached cells is one of the prerequisites for the metastatic cascade. Ferroptosis, a form of iron‐dependent programmed cell death, has recently been found to be involved in matrix‐detached cancer cells. However, the molecular mechanisms by which ECM‐detached cells escape ferroptosis are not fully understood. Here, we observed that cell migration‐inducing protein (CEMIP) upregulation facilitates ferroptosis resistance during ECM detachment by promoting cystine uptake in prostate cancer (PCa) cells. Meanwhile, silencing CEMIP causes it to lose its ability to promote cystine uptake and inhibit ferroptosis. Mechanistically, the interaction of CEMIP with inositol 1,4,5‐trisphosphate receptor type 3 (ITPR3) modulates calcium ion (Ca2+) leakage from the endoplasmic reticulum, activating calcium/calmodulin‐dependent protein kinase II (CaMKII), which further facilitates nuclear factor erythroid 2‐related factor 2 (NRF2) phosphorylation and nuclear localization, leading to elevated transcription of solute carrier family 7 member 11 (SLC7A11), a glutamate/cystine antiporter, in PCa cells. Our findings delineate a novel role of CEMIP in ferroptosis resistance during ECM detachment and provide new insights into therapeutic strategies for metastatic PCa.
Collapse
Affiliation(s)
- Bing Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuexiang Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Decai Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ying Yu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430061, China
| | - Dingheng Lu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yunxue Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulin Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
12
|
Zhao XJ, Zhu HY, Wang XL, Lu XW, Pan CL, Xu L, Liu X, Xu N, Zhang ZY. Oridonin ameliorates traumatic brain injury-induced neurological damage by improving mitochondrial function and antioxidant capacity and suppressing neuroinflammation through the Nrf2 pathway. J Neurotrauma 2022; 39:530-543. [PMID: 35102762 DOI: 10.1089/neu.2021.0466] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) is a global public health concern, and few effective treatments for its delayed damages are available. Oridonin (Ori) has been recently reported to show a promising neuroprotective efficacy, but its potential therapeutic effect on TBI has not been thoroughly elucidated. TBI mouse models were established and treated with Ori or vehicle 30 minutes post-operation and every 24 hours since then. Impairments in cognitive and motor function and neuropathological changes were evaluated and compared. The therapeutic efficacy and mechanisms of action of Ori were further investigated using animal tissues and cell cultures. Ori restored motor function and cognition following TBI-induced impairment and exerted neuroprotective effects by reducing cerebral edema and cortical lesion volume. Ori increased neuronal survival, ameliorating gliosis and the accumulation of macrophages after injury. It suppressed the increased production of reactive oxygen species, lipid peroxide, and malondialdehyde; and reversed the decrease of mitochondrial membrane potential and adenosine triphosphate content, which was also identified in oxidatively stressed neuronal cultures. Furthermore, Ori inhibited the expression of NLRP3 inflammasome proteins and NLRP3-dependent cytokine IL-1β that can be induced by oxidative stress following TBI. Regarding underlying mechanisms, Ori significantly enhanced expression of key proteins of the Nrf2/HO-1 pathway. Our results demonstrated that Ori effectively improved functional impairments and neuropathological changes in TBI animals. By activating the Nrf2 pathway, it improved mitochondrial function and antioxidant capacity, and suppressed the neuroinflammation induced by oxidative stress. The results therefore suggest Ori as a potent candidate for treating neurological damage after TBI.
Collapse
Affiliation(s)
- Xiao-Jing Zhao
- Nanjing Medical University, 12461, School of Basic Medical Sciences, Nanjing, Jiangsu, China.,The Affiliated Jiangning Hospital of Nanjing Medical University, 579164, Department of Pathology, Nanjing, Jiangsu, China;
| | - Hai-Yan Zhu
- Nanjing Medical University, 12461, School of Basic Medical Sciences, Nanjing, Jiangsu, China;
| | - Xiao-Liang Wang
- Nanjing First Hospital, 385685, Department of Anesthesiology, Nangjing, Jiangsu, China;
| | - Xiao-Wei Lu
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 74734, Department of Geriatrics, Nanjing, Jiangsu, China;
| | - Cai-Long Pan
- Nanjing Medical University, 12461, School of Basic Medical Sciences, Nanjing, Jiangsu, China;
| | - Lu Xu
- Nanjing Medical University, 12461, School of Basic Medical Sciences, Nanjing, Jiangsu, China.,Nanjing Medical University, 12461, Key Laboratory of Antibody Technique of Ministry of Health, Nanjing, Jiangsu, China;
| | - Xue Liu
- Nanjing Medical University, 12461, School of Basic Medical Sciences, Nanjing, Jiangsu, China;
| | - Ning Xu
- Nanjing Medical University, 12461, School of Basic Medical Sciences, Nanjing, Jiangsu, China.,Nanjing Medical University, 12461, Key Laboratory of Antibody Technique of Ministry of Health, Nanjing, Jiangsu, China;
| | - Zhi-Yuan Zhang
- Nanjing Medical University, 12461, School of Basic Medical Sciences, Nanjing, Jiangsu, China.,Nanjing Medical University, 12461, Key Laboratory of Antibody Technique of Ministry of Health, Nanjing, Jiangsu, China;
| |
Collapse
|
13
|
Saha S, Buttari B, Profumo E, Tucci P, Saso L. A Perspective on Nrf2 Signaling Pathway for Neuroinflammation: A Potential Therapeutic Target in Alzheimer's and Parkinson's Diseases. Front Cell Neurosci 2022; 15:787258. [PMID: 35126058 PMCID: PMC8813964 DOI: 10.3389/fncel.2021.787258] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation plays a pivotal role in Alzheimer's disease (AD) and Parkinson's disease (PD), the leading causes of dementia. These neurological disorders are characterized by the accumulation of misfolded proteins such as amyloid-ß (Aß), tau protein and α-synuclein, contributing to mitochondrial fragmentation, oxidative stress, and neuroinflammation. Misfolded proteins activate microglia, which induces neuroinflammation, expression of pro-inflammatory cytokines and subsequently facilitates synaptic damage and neuronal loss. So far, all the proposed drugs were based on the inhibition of protein aggregation and were failed in clinical trials. Therefore, the treatment options of dementia are still a challenging issue. Thus, it is worthwhile to study alternative therapeutic strategies. In this context, there is increasing data on the pivotal role of transcription factor NF- E2 p45-related factor 2 (Nrf2) on the redox homeostasis and anti-inflammatory functions in neurodegenerative disorders. Interestingly, Nrf2 signaling pathway has shown upregulation of antioxidant genes, inhibition of microglia-mediated inflammation, and improved mitochondrial function in neurodegenerative diseases, suggesting Nrf2 activation could be a novel therapeutic approach to target pathogenesis. The present review will examine the correlation between Nrf2 signaling with neuroinflammation in AD and PD.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, Rome, Italy
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, Rome, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Cuadrado A. Brain-Protective Mechanisms of Transcription Factor NRF2: Toward a Common Strategy for Neurodegenerative Diseases. Annu Rev Pharmacol Toxicol 2021; 62:255-277. [PMID: 34637322 DOI: 10.1146/annurev-pharmtox-052220-103416] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodegenerative diseases are characterized by the loss of homeostatic functions that control redox and energy metabolism, neuroinflammation, and proteostasis. The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is a master controller of these functions, and its overall activity is compromised during aging and in these diseases. However, NRF2 can be activated pharmacologically and is now being considered a common therapeutic target. Many gaps still exist in our knowledge of the specific role that NRF2 plays in specialized brain cell functions or how these cells respond to the hallmarks of these diseases. This review discusses the relevance of NRF2 to several hallmark features of neurodegenerative diseases and the current status of pharmacological activators that might pass through the blood-brain barrier and provide a disease-modifying effect. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid, Madrid 28049, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid 28029, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid 28046, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain;
| |
Collapse
|
15
|
Zhu X, Zhang YM, Zhang MY, Chen YJ, Liu YW. Hesperetin ameliorates diabetes-associated anxiety and depression-like behaviors in rats via activating Nrf2/ARE pathway. Metab Brain Dis 2021; 36:1969-1983. [PMID: 34273043 DOI: 10.1007/s11011-021-00785-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Diabetes-associated affective disorders are of wide concern, and oxidative stress plays a vital role in the pathological process. This study was to investigate the cerebroprotective effects of hesperetin against anxious and depressive disorders caused by diabetes, exploring the potential mechanisms related to activation of Nrf2/ARE pathway. Streptozotocin-induced diabetic rats were intragastrically administrated with hesperetin (0, 50, and 150 mg/kg) for 10 weeks. Forced swimming test, open field test, and elevated plus maze were used to evaluate the anxiety and depression-like behaviors of rats. The brain was collected for assays of Nrf2/ARE pathway. Moreover, high glucose-cultured SH-SY5Y cells were used to further examine the neuroprotective effects of hesperetin and underlying mechanisms. Hesperetin showed anxiolytic and antidepressant effects in diabetic rats according to the behavior tests, and increased p-Nrf2 in cytoplasm and Nrf2 in nucleus followed by elevations in mRNA levels and protein expression of glyoxalase 1 (Glo-1) and γ-glutamylcysteine synthetase (γ-GCS) in brain, known target genes of Nrf2/ARE signaling. Moreover, hesperetin attenuated high glucose-induced neuronal damages through activation of the classical Nrf2/ARE pathway in SH-SY5Y cells. Further study indicated that PKC inhibition or GSK-3β activation pretreatment attenuated even abolished the effect of hesperetin on the protein expression of Glo-1 and γ-GCS in high glucose-cultured SH-SY5Y cells. In summary, hesperetin ameliorated diabetes-associated anxiety and depression-like behaviors in rats, which was achieved through activation of the Nrf2/ARE pathway. Furthermore, an increase in nuclear Nrf2 phosphorylation from PKC activation and GSK-3β inhibition contributed to the activation of Nrf2/ARE pathway by hesperetin.
Collapse
Affiliation(s)
- Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yu-Meng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Meng-Ya Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Ya-Jing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
16
|
Ali T, Khan A, Alam SI, Ahmad S, Ikram M, Park JS, Lee HJ, Kim MO. Cadmium, an Environmental Contaminant, Exacerbates Alzheimer's Pathology in the Aged Mice's Brain. Front Aging Neurosci 2021; 13:650930. [PMID: 34248598 PMCID: PMC8263901 DOI: 10.3389/fnagi.2021.650930] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
Cadmium (Cd) is an environmental contaminant, which is a potential risk factor in the progression of aging-associated neurodegenerative diseases. Herein, we have assessed the effects of chronic administration of Cd on cellular oxidative stress and its associated Alzheimer's disease (AD) pathologies in animal models. Two groups of mice were used, one group administered with saline and the other with Cd (1 mg/kg/day; intraperitoneally) for 3 months. After behavioral studies, molecular/biochemical (Immunoblotting, ELISAs, ROS, LPO, and GSH assays) and morphological analyses were performed. We observed an exacerbation of memory and synaptic deficits in chronic Cd-injected mice. Subacute and chronic Cd escalated reactive oxygen species (ROS), suppressed the master antioxidant enzymes, e.g., nuclear factor-erythroid 2-related factor 2 and heme oxygenase-1, and evoked the stress kinase phospho-c-Jun N-terminal kinase 1 signaling pathways, which may escalate AD pathologies possibly associated with amyloidogenic processes. These findings suggest the regulation of oxidative stress/ROS and its associated amyloid beta pathologies for targeting the Cd-exacerbated AD pathogenesis. In addition, these preclinical animal studies represent a paradigm for epidemiological studies of the human population exposed to chronic and subacute administration of Cd, suggesting avoiding environmental contaminants.
Collapse
Affiliation(s)
- Tahir Ali
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Amjad Khan
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Sayed Ibrar Alam
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Sareer Ahmad
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Muhammad Ikram
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Jun Sung Park
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Hyeon Jin Lee
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
17
|
Delaidelli A, Richner M, Jiang L, van der Laan A, Bergholdt Jul Christiansen I, Ferreira N, Nyengaard JR, Vægter CB, Jensen PH, Mackenzie IR, Sorensen PH, Jan A. α-Synuclein pathology in Parkinson disease activates homeostatic NRF2 anti-oxidant response. Acta Neuropathol Commun 2021; 9:105. [PMID: 34092244 PMCID: PMC8183088 DOI: 10.1186/s40478-021-01209-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Circumstantial evidence points to a pathological role of alpha-synuclein (aSyn; gene symbol SNCA), conferred by aSyn misfolding and aggregation, in Parkinson disease (PD) and related synucleinopathies. Several findings in experimental models implicate perturbations in the tissue homeostatic mechanisms triggered by pathological aSyn accumulation, including impaired redox homeostasis, as significant contributors in the pathogenesis of PD. The nuclear factor erythroid 2-related factor (NRF2/Nrf2) is recognized as ‘the master regulator of cellular anti-oxidant response’, both under physiological as well as in pathological conditions. Using immunohistochemical analyses, we show a robust nuclear NRF2 accumulation in post-mortem PD midbrain, detected by NRF2 phosphorylation on the serine residue 40 (nuclear active p-NRF2, S40). Curated gene expression analyses of four independent publicly available microarray datasets revealed considerable alterations in NRF2-responsive genes in the disease affected regions in PD, including substantia nigra, dorsal motor nucleus of vagus, locus coeruleus and globus pallidus. To further examine the putative role of pathological aSyn accumulation on nuclear NRF2 response, we employed a transgenic mouse model of synucleionopathy (M83 line, expressing the mutant human A53T aSyn), which manifests widespread aSyn pathology (phosphorylated aSyn; S129) in the nervous system following intramuscular inoculation of exogenous fibrillar aSyn. We observed strong immunodetection of nuclear NRF2 in neuronal populations harboring p-aSyn (S129), and found an aberrant anti-oxidant and inflammatory gene response in the affected neuraxis. Taken together, our data support the notion that pathological aSyn accumulation impairs the redox homeostasis in nervous system, and boosting neuronal anti-oxidant response is potentially a promising approach to mitigate neurodegeneration in PD and related diseases.
Collapse
|
18
|
AQP3 and AQP5-Potential Regulators of Redox Status in Breast Cancer. Molecules 2021; 26:molecules26092613. [PMID: 33947079 PMCID: PMC8124745 DOI: 10.3390/molecules26092613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is still one of the leading causes of mortality in the female population. Despite the campaigns for early detection, the improvement in procedures and treatment, drastic improvement in survival rate is omitted. Discovery of aquaporins, at first described as cellular plumbing system, opened new insights in processes which contribute to cancer cell motility and proliferation. As we discover new pathways activated by aquaporins, the more we realize the complexity of biological processes and the necessity to fully understand the pathways affected by specific aquaporin in order to gain the desired outcome-remission of the disease. Among the 13 human aquaporins, AQP3 and AQP5 were shown to be significantly upregulated in breast cancer indicating their role in the development of this malignancy. Therefore, these two aquaporins will be discussed for their involvement in breast cancer development, regulation of oxidative stress and redox signalling pathways leading to possibly targeting them for new therapies.
Collapse
|
19
|
Kim EH, Kim SJ, Na HK, Han W, Kim NJ, Suh YG, Surh YJ. 15-Deoxy-Δ 12,14-prostaglandin J 2 Upregulates VEGF Expression via NRF2 and Heme Oxygenase-1 in Human Breast Cancer Cells. Cells 2021; 10:cells10030526. [PMID: 33801351 PMCID: PMC8002112 DOI: 10.3390/cells10030526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
There is a plethora of evidence to support that inflammation is causally linked to carcinogenesis. Cyclooxygenase-2 (COX-2), a rate-limiting enzyme in the biosynthesis of prostaglandins, is inappropriately overexpressed in various cancers and hence recognized as one of the hallmarks of chronic inflammation-associated malignancies. However, the mechanistic role of COX-2 as a link between inflammation and cancer remains largely undefined. In this study, we found that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), one of the final products of COX-2, induced upregulation of vascular endothelial growth factor (VEGF) and capillary formation and migration through nuclear factor erythroid 2-related factor 2 (NRF2)-dependent heme oxygenase-1 (HO-1) induction in MCF-7 cells. Analysis of the publicly available TCGA data set showed that high mRNA levels of both COX-2 and NRF2 correlated with the poor clinical outcomes in breast cancer patients. Moreover, human tissue analysis showed that the levels of 15d-PGJ2 as well the expression of COX-2, NRF2, and HO-1 were found to be increased in human breast cancer tissues. In conclusion, the elevated levels of 15d-PGJ2 during inflammatory response activate VEGF expression through NRF2-driven induction of HO-1 in human breast cancer cells, proposing a novel mechanism underlying the oncogenic function of 15d-PGJ2.
Collapse
Affiliation(s)
- Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea;
- Correspondence: (E.-H.K.); (Y.-J.S.); Tel.: +82-31-881-7179 (E.-H.K.); +82-2-880-7845 (Y.-J.S.)
| | - Su-Jung Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women’s University, Seoul 01133, Korea;
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea;
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
| | - Young-Ger Suh
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea;
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea;
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Correspondence: (E.-H.K.); (Y.-J.S.); Tel.: +82-31-881-7179 (E.-H.K.); +82-2-880-7845 (Y.-J.S.)
| |
Collapse
|
20
|
Tan X, Jiao PL, Sun JC, Wang W, Ye P, Wang YK, Leng YQ, Wang WZ. β-Arrestin1 Reduces Oxidative Stress via Nrf2 Activation in the Rostral Ventrolateral Medulla in Hypertension. Front Neurosci 2021; 15:657825. [PMID: 33897365 PMCID: PMC8059792 DOI: 10.3389/fnins.2021.657825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress in the rostral ventrolateral medulla (RVLM), a key region for blood pressure (BP) regulation, has been demonstrated to be responsible for the overactivity of the sympathetic nervous system in hypertension and heart failure. Nuclear factor-erythroid-2-related factor 2 (Nrf2) is a key transcription factor that maintains redox homeostasis by governing a broad array of antioxidant genes in response to oxidative stress. β-Arrestin1 is a multifunctional scaffold protein with the ability to interact with diverse signaling molecules independent of G protein-coupled receptors (GPCRs), and its overexpression in the RVLM could reduce BP and renal sympathetic nerve activity (RSNA) in spontaneously hypertensive rats (SHR). The goal of this study was to investigate whether Nrf2-mediated antioxidative stress is involved in the antihypertensive effect of β-arrestin1 in the RVLM. It was found that the activation level of Nrf2 in the RVLM of SHR was significantly reduced, compared with normotensive Wistar-Kyoko (WKY) rats. Overexpression of β-arrestin1 in the RVLM significantly decreased ROS production and facilitated the Nrf2 activation in the RVLM of SHR, accompanied by upregulating the expression of HO-1 and NQO-1. However, Nrf2 knockdown attenuated the antioxidant effect of β-arrestin1 overexpression in the RVLM by downregulating HO-1 and NQO-1 expression levels. In conclusion, the current results suggested that the antihypertensive effect of β-arrestin1 overexpression in the RVLM is mediated by decreased ROS production, which is associated with Nrf2 activation.
Collapse
Affiliation(s)
- Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Pei-Lei Jiao
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Orthopedics, The 962th Hospital of People’s Liberation Army, Harbin, China
| | - Jia-Cen Sun
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Peng Ye
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yue-Qi Leng
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Wei-Zhong Wang,
| |
Collapse
|
21
|
Yarmohammadi F, Rezaee R, Karimi G. Natural compounds against doxorubicin-induced cardiotoxicity: A review on the involvement of Nrf2/ARE signaling pathway. Phytother Res 2020; 35:1163-1175. [PMID: 32985744 DOI: 10.1002/ptr.6882] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/01/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Cardiotoxicity is the main concern for long-term use of the doxorubicin (DOX). Reactive oxygen species (ROS) generation leads to oxidative stress that significantly contributes to the cardiac damage induced by DOX. The nuclear factor erythroid 2-related factor (Nrf2) acts as a protective player against DOX-induced myocardial oxidative stress. Several natural compounds (NCs) with anti-oxidative effects, were examined to suppress DOX cardiotoxicity such as asiatic acid, α-linolenic acid, apigenin, baicalein, β-lapachone, curdione, dioscin, ferulic acid, Ganoderma lucidum polysaccharides, genistein, ginsenoside Rg3, indole-3-carbinol, naringenin-7-O-glucoside, neferine, p-coumaric acid, pristimerin, punicalagin, quercetin, sulforaphane, and tanshinone IIA. The present article, reviews NCs that showed protective effects against DOX-induced cardiac injury through induction of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Madadi E, Mazloum-Ravasan S, Yu JS, Ha JW, Hamishehkar H, Kim KH. Therapeutic Application of Betalains: A Review. PLANTS 2020; 9:plants9091219. [PMID: 32957510 PMCID: PMC7569795 DOI: 10.3390/plants9091219] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Anthocyanins, betalains, riboflavin, carotenoids, chlorophylls and caramel are the basic natural food colorants used in modern food manufacture. Betalains, which are composed of red–violet betacyanin and yellow betaxanthins, are water-soluble pigments that color flowers and fruits. Betalains are pigments primarily produced by plants of the order Caryophyllales. Because of their anti-inflammatory, cognitive impairment, anticancer and anti-hepatitis properties, betalains are useful as pharmaceutical agents and dietary supplements. Betalains also exhibit antimicrobial and antimalarial effects, and as an example, betalain-rich Amaranthus spinosus displays prominent antimalarial activity. Studies also confirmed the antidiabetic effect of betalains, which reduced glycemia by 40% without causing weight loss or liver impairment. These findings show that betalain colorants may be a promising alternative to the synthetic dyes currently used as food additives.
Collapse
Affiliation(s)
- Elaheh Madadi
- Biotechnology Research Center and Student’s Research Committee, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Sahand Mazloum-Ravasan
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.S.Y.); (J.W.H.)
| | - Ji Won Ha
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.S.Y.); (J.W.H.)
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran
- Correspondence: (H.H.); (K.H.K.); Tel.: +98-41-3336-3277 (H.H.); +82-31-290-7700 (K.H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.S.Y.); (J.W.H.)
- Correspondence: (H.H.); (K.H.K.); Tel.: +98-41-3336-3277 (H.H.); +82-31-290-7700 (K.H.K.)
| |
Collapse
|
23
|
Natural Nrf2 Modulators for Skin Protection. Antioxidants (Basel) 2020; 9:antiox9090812. [PMID: 32882952 PMCID: PMC7556038 DOI: 10.3390/antiox9090812] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of antioxidant responsive elements (ARE), which are commonly found in the promoter of the Phase II metabolism/antioxidant enzymes, and nuclear factor erythroid 2-related factor 2 (Nrf2), the transcription factor that binds to ARE, the study conducted in this field has expanded remarkably over the decades, and the Nrf2-mediated pathway is now recognized to occupy a central position in cell defense mechanisms. Induction of the Phase II metabolism/antioxidant enzymes through direct activation of Nrf2 can be a promising strategy for preventing degenerative diseases in general, but a dark side of this strategy should be considered, as Nrf2 activation can enhance the survival of cancer cells. In this review, we discuss the historical discovery of Nrf2 and the regulatory mechanism of the Nrf2-mediated pathway, focusing on the interacting proteins and post-translational modifications. In addition, we discuss the latest studies that examined various natural Nrf2 modulators for the protective roles in the skin, in consideration of their dermatological and cosmetic applications. Studies are reviewed in the order of time of research as much as possible, to help understand how and why such studies were conducted under the circumstances of that time. We hope that this review can serve as a steppingstone in conducting more advanced research by providing a scientific basis for researchers newly entering this field.
Collapse
|
24
|
Bacteroides fragilis Enterotoxin Induces Sulfiredoxin-1 Expression in Intestinal Epithelial Cell Lines Through a Mitogen-Activated Protein Kinases- and Nrf2-Dependent Pathway, Leading to the Suppression of Apoptosis. Int J Mol Sci 2020; 21:ijms21155383. [PMID: 32751114 PMCID: PMC7432937 DOI: 10.3390/ijms21155383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis is a causative agent of colitis and secrets enterotoxin (BFT), leading to the disease. Sulfiredoxin (Srx)-1 serves to protect from oxidative damages. Although BFT can generate reactive oxygen species in intestinal epithelial cells (IECs), no Srx-1 expression has been reported in ETBF infection. In this study, we explored the effects of ETBF-produced BFT on Srx-1 induction in IECs. Treatment of IECs with BFT resulted in increased expression of Srx-1 in a time-dependent manner. BFT treatment also activated transcriptional signals including Nrf2, AP-1 and NF-κB, and the Srx-1 induction was dependent on the activation of Nrf2 signals. Nrf2 activation was assessed using immunoblot and Nrf2-DNA binding activity and the specificity was confirmed by supershift and competition assays. Suppression of NF-κB or AP-1 signals did not affect the upregulation of Srx-1 expression. Nrf2-dependent Srx-1 expression was associated with the activation of p38 mitogen-activated protein kinases (MAPKs) in IECs. Furthermore, suppression of Srx-1 significantly enhanced apoptosis while overexpression of Srx-1 significantly attenuated apoptosis during exposure to BFT. These results imply that a signaling cascade involving p38 and Nrf2 is essential for Srx-1 upregulation in IECs stimulated with BFT. Following this upregulation, Srx-1 may control the apoptosis in BFT-exposed IECs.
Collapse
|
25
|
Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol 2020; 34:101475. [PMID: 32336668 PMCID: PMC7327986 DOI: 10.1016/j.redox.2020.101475] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Living organisms are surrounded with heavy metals such as methylmercury, manganese, cobalt, cadmium, arsenic, as well as pesticides such as deltamethrin and paraquat, or atmospheric pollutants such as quinone. Extensive studies have demonstrated a strong link between environmental pollutants and human health. Redox toxicity is proposed as one of the main mechanisms of chemical-induced pathology in humans. Acting as both a sensor of oxidative stress and a positive regulator of antioxidants, the nuclear factor erythroid 2-related factor 2 (NRF2) has attracted recent attention. However, the role NRF2 plays in environmental pollutant-induced toxicity has not been systematically addressed. Here, we characterize NRF2 function in response to various pollutants, such as metals, pesticides and atmospheric quinones. NRF2 related signaling pathways and epigenetic regulations are also reviewed.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States
| | - Yumi Abiko
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| |
Collapse
|
26
|
Balhorn R, Hartmann C, Schupp N. Aldosterone Induces DNA Damage and Activation of Nrf2 Mainly in Tubuli of Mouse Kidneys. Int J Mol Sci 2020; 21:ijms21134679. [PMID: 32630085 PMCID: PMC7370281 DOI: 10.3390/ijms21134679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Hypertensive patients have an increased risk of developing chronic kidney disease (CKD). Many of these patients have increased levels of the blood pressure regulating mineralocorticoid aldosterone. As a protection against aldosterone-induced damage, kidney cells can upregulate key regulators of the antioxidant defense, such as nuclear factor-erythroid-2-related factor 2 (Nrf2). In the present study aldosterone-induced kidney damage and Nrf2 activation in kidney cells of mice treated with three different concentrations of aldosterone for 4 weeks was localized. Increased albumin and neutrophil gelatinase-associated lipocalin (NGAL) in urine revealed an impaired kidney function of the aldosterone-infused mice. Localization of aldosterone-induced oxidative damage (in the form of DNA lesions) in specific kidney cells showed an increase in proximal tubuli and to an even greater extend in distal tubuli. Phosphorylated Nrf2 was increased in distal tubule cells after aldosterone-infusion. Nrf2 activation in proximal tubuli or in glomeruli after aldosterone-treatment could not be observed. Nrf2 target genes and proteins analyzed, paradoxically, showed a downregulation in the whole kidney. Aldosterone-treated mice exhibited an increased kidney injury and DNA damage in distal and proximal tubuli. Nrf2 seemed only to be specifically activated in distal tubule cells, where we also detected the highest amount of oxidative damage.
Collapse
|
27
|
Isolation of an antioxidant peptide from krill protein hydrolysates as a novel agent with potential hepatoprotective effects. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103889] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
28
|
Shin JW, Chun KS, Kim DH, Kim SJ, Kim SH, Cho NC, Na HK, Surh YJ. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification. Biochem Pharmacol 2020; 173:113820. [DOI: 10.1016/j.bcp.2020.113820] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
|
29
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
30
|
4-Hydroxy-Trans-2-Nonenal in the Regulation of Anti-Oxidative and Pro-Inflammatory Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5937326. [PMID: 31781341 PMCID: PMC6875399 DOI: 10.1155/2019/5937326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/13/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022]
Abstract
Recent studies indicate that 4-hydroxy-trans-2-nonenal (HNE), a major oxidative stress triggered lipid peroxidation-derived aldehyde, plays a critical role in the pathophysiology of various human pathologies including metabolic syndrome, diabetes, cardiovascular, neurological, immunological, and age-related diseases and various types of cancer. HNE is the most abundant and toxic α, β-unsaturated aldehyde formed during the peroxidation of polyunsaturated fatty acids in a series of free radical-mediated reactions. The presence of an aldehyde group at C1, a double bond between C2 and C3 and a hydroxyl group at C4 makes HNE a highly reactive molecule. These strong reactive electrophilic groups favor the formation of HNE adducts with cellular macromolecules such as proteins and nucleic acids leading to the regulation of various cell signaling pathways and processes involved in cell proliferation, differentiation, and apoptosis. Many studies suggest that the cell-specific intracellular concentrations of HNE dictate the anti-oxidative and pro-inflammatory activities of this important molecule. In this review, we focused on how HNE could alter multiple anti-oxidative defense pathways and pro-inflammatory cytotoxic pathways by interacting with various cell-signaling intermediates.
Collapse
|
31
|
Reducing Pancreatic Fibrosis Using Antioxidant Therapy Targeting Nrf2 Antioxidant Pathway: A Possible Treatment for Chronic Pancreatitis. Pancreas 2019; 48:1259-1262. [PMID: 31688588 DOI: 10.1097/mpa.0000000000001433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic pancreatitis is the progressive inflammation of the pancreas resulting in the irreversible damage of pancreatic structure and function by means of fibrosis. Chronic pancreatitis is most commonly caused by alcohol consumption, although the direct molecular etiology is unknown. Recent studies suggest oxidative stress as a catalyst for pancreatic stellate cell activation leading to the deposition of collagenous extracellular matrix causing pancreatic fibrosis. We review the effect of oxidative stress on pancreatic fibrogenesis and indicate the molecular pathways involved in preventing oxidant-related cell damage. Likewise, we summarize existing antioxidative therapies for chronic pancreatitis and discuss a novel nuclear factor erythroid 2-related factor 2 activator, dimethyl fumarate, and its potential to reduce fibrogenesis by downregulating pancreatic stellate cell activation.
Collapse
|
32
|
Nakatake R, Hishikawa H, Kotsuka M, Ishizaki M, Matsui K, Nishizawa M, Yoshizawa K, Kaibori M, Okumura T. The Proton Pump Inhibitor Lansoprazole Has Hepatoprotective Effects in In Vitro and In Vivo Rat Models of Acute Liver Injury. Dig Dis Sci 2019; 64:2854-2866. [PMID: 30989463 DOI: 10.1007/s10620-019-05622-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS The proton pump inhibitor lansoprazole (LPZ) is clinically used to reduce gastric acid secretion, but little is known about its possible hepatoprotective effects. This study aimed to investigate the hepatoprotective effects of LPZ and its potential mechanisms using in vitro and in vivo rat models of liver injury. METHODS For the in vitro model of liver injury, primary cultured rat hepatocytes were treated with interleukin-1β in the presence or absence of LPZ. The influence of LPZ on inducible nitric oxide synthase (iNOS) induction and nitric oxide (NO) production and on the associated signaling pathways was analyzed. For the in vivo model, rats were treated with D-galactosamine (GalN) and lipopolysaccharide (LPS). The effects of LPZ on survival and proinflammatory mediator expression (including iNOS and tumor necrosis factor-α) in these rats were examined. RESULTS LPZ inhibited iNOS induction partially through suppression of the nuclear factor-kappa B signaling pathway in hepatocytes, thereby reducing potential liver injury from excessive NO levels. Additionally, LPZ increased survival by 50% and decreased iNOS, tumor necrosis factor-α, and cytokine-induced neutrophil chemoattractant-1 mRNA expression in the livers of GalN/LPS-treated rats. LPZ also inhibited nuclear factor-kappa B activation by GalN/LPS. CONCLUSIONS LPZ inhibits the induction of several inflammatory mediators (including cytokines, chemokines, and NO) partially through suppression of nuclear factor-kappa B, resulting in the prevention of fulminant liver failure. The therapeutic potential of LPZ for liver injuries warrants further investigation.
Collapse
Affiliation(s)
- Richi Nakatake
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Hidehiko Hishikawa
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Masaya Kotsuka
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Morihiko Ishizaki
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Kosuke Matsui
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Katsuhiko Yoshizawa
- Laboratory of Environmental Sciences, Department of Food Sciences and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, 6-46 Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Tadayoshi Okumura
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.,Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
33
|
Shaping the Nrf2-ARE-related pathways in Alzheimer's and Parkinson's diseases. Ageing Res Rev 2019; 54:100942. [PMID: 31415806 DOI: 10.1016/j.arr.2019.100942] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
A failure in redox homeostasis is a common hallmark of Alzheimer's Disease (AD) and Parkinson's Disease (PD), two age-dependent neurodegenerative disorders (NDD), causing increased oxidative stress, oxidized/damaged biomolecules, altered neuronal function and consequent cell death. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a redox-regulated transcription factor, results in upregulation of cytoprotective and antioxidant enzymes/proteins, protecting against oxidative stress. Nrf2 regulation is achieved by various proteins and pathways, at both cytoplasmatic and nuclear level; however, the elaborate network of mechanisms involved in Nrf2 regulation may restrain Nrf2 pathway normal activity. Indeed, altered Nrf2 activity is involved in aging and NDD, such as AD and PD. Therefore, understanding the diversity of Nrf2 control mechanisms and regulatory proteins is of high interest, since more effective NDD therapeutics can be identified. In this review, we first introduce Keap1-Nrf2-ARE structure, function and regulation, with a special focus on the several pathways involved in Nrf2 positive and negative modulation, namely p62, PKC, PI3K/Akt/GSK-3β, NF-kB and p38 MAPK. We then briefly describe the evidences for oxidative stress and Nrf2 pathway deregulation in different stages of NDDs. Finally, we discuss the potential of Nrf2-related pathways as potential therapeutic targets to possibly prevent or slowdown NDD progression.
Collapse
|
34
|
Melatonin Treatment Ameliorates Hyperhomocysteinemia-Induced Impairment of Erectile Function in a Rat Model. J Sex Med 2019; 16:1506-1517. [PMID: 31439521 DOI: 10.1016/j.jsxm.2019.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Hyperhomocysteinemia (HHcy) has been reported to be strongly correlated with the occurrence of erectile dysfunction (ED), but the mechanisms are not fully understood. Moreover, whether melatonin could be a potential treatment of HHcy-induced ED needs to be elucidated. AIM The aim of this study was to investigate the effects of melatonin on HHcy-induced ED and the potential mechanisms via modulating oxidative stress and apoptosis. METHODS The Sprague-Dawley (SD) rat model of HHcy was induced by 7% methionine (Met)-rich diets. 36 male SD rats were randomly distributed into 3 groups (n = 12 per group): control group, 7% Met group, and 7% Met + melatonin (Mel; 10 mg/kg, intraperitoneal injection) treatment group. After 4 weeks, the erectile function of all rats was evaluated by electrical stimulation of the cavernous nerve. Histologic and molecular alterations of the corpus cavernosum were also analyzed by immunofluorescence, immunohistochemistry, enzyme-linked immunosorbent assay, Western blotting, and polymerase chain reaction. OUTCOMES HHcy-induced ED rat models were successfully established, and Mel could preserve erectile function mainly through inhibiting oxidative stress via the Erk1/2/Nrf2/HO-1 signaling pathway and suppression of apoptosis. RESULTS Erectile function was significantly reduced in the rats with HHcy compared with that in the control group and was ameliorated in the HHcy rats treated with Mel. Compared with the control group, the rats in the HHcy group showed the following: (1) higher levels of total plasma homocysteine; (2) fewer neuronal nitric oxide synthase-positive cells in the corpus cavernous; (3) higher levels of reactive oxygen species and malondialdehyde, higher expression levels of nicotinamide adenine dinucleotide phosphate oxidase, and lower activities of superoxide dismutase, indicating an overactivated oxidative stress; (4) lower expression levels of Erk1/2/Nrf2/HO-1 signaling pathway components; and (5) higher levels of apoptosis, as determined by the expression levels of Bax, Bcl-2, and caspase 3. Mel treatment improved the erectile response, as well as histologic and molecular alterations. CLINICAL TRANSLATION Our study on a rodent model of HHcy provided evidence that Mel could be a potential therapeutic method for HHcy-related ED. CONCLUSIONS Mel treatment improves erectile function in rats with HHcy probably by potential antioxidative stress activity. This finding provides evidence for a potential new therapy for HHcy-induced ED. Tang Z, Song J, Yu, Z, et al. Melatonin Treatment Ameliorates Hyperhomocysteinemia-Induced Impairment of Erectile Function in a Rat Model. J Sex Med 2019;16:1506-1517.
Collapse
|
35
|
Zhou X, Chen Z, Zhong W, Yu R, He L. Effect of fluoride on PERK-Nrf2 signaling pathway in mouse ameloblasts. Hum Exp Toxicol 2019; 38:833-845. [PMID: 30977402 DOI: 10.1177/0960327119842273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the development of dental fluorosis, oxidative stress is considered as the key mechanism. Endoplasmic reticulum (ER) stress can induce oxidative stress and activate the important antioxidative factor nuclear factor erythroid 2-related factor 2 (Nrf2) in a PKR-like ER kinase (PERK)-dependent manner, but combining ER stress and oxidative stress, the role of PERK-Nrf2 signaling pathway involved in fluoride-regulated ameloblasts is not fully defined. Here, we studied the effect of fluoride on PERK-Nrf2 signaling pathway in mouse ameloblasts. We found that low-dose and continuous fluoride exposure increased binding immunoglobulin protein expression and activated PERK-activating transcription factor 4 signaling pathway. Meanwhile, the expression of Nrf2 and its target genes (glutamylcysteine synthetase and glutathione S-transferase-P1) enhanced following ER stress. Tunicamycin increased the expression of PERK, leading to Nrf2 nuclear import, and tauroursodeoxycholate suppressed Nrf2 activation through PERK during ER stress, indicating that PERK activation is required for Nrf2 nuclear entry. Furthermore, tert-butylhydroquinone triggered the overexpression of Nrf2 to reduce ER stress, but luteolin inhibited Nrf2 nuclear localization to elevate ER stress. In summary, this study proved that fluoride under certain dose can induce ER stress and promote Nrf2 nuclear import via PERK activation and suggested that antioxidation mechanism mediated by PERK-Nrf2 can alleviate fluoride-induced ER stress effectively.
Collapse
Affiliation(s)
- X Zhou
- 1 Department of Dental Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- 2 Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- 3 Department of Occupational Health and Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Z Chen
- 2 Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - W Zhong
- 2 Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - R Yu
- 2 Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - L He
- 1 Department of Dental Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
36
|
Zhang F, Munoz FM, Sun L, Zhang S, Lau SS, Monks TJ. Cell-specific regulation of Nrf2 during ROS-Dependent cell death caused by 2,3,5-tris(glutathion-S-yl)hydroquinone (TGHQ). Chem Biol Interact 2019; 302:1-10. [DOI: 10.1016/j.cbi.2019.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 01/06/2023]
|
37
|
Yang WJ, He JX, Zhou MX, Huang M, Wang SQ, Wang XN, Lou HX, Ren DM, Shen T. An isopentenyl-substituted flavonoid norartocarpin activates Nrf2 signalling pathway and prevents oxidative insults in human lung epithelial cells. Free Radic Res 2019; 53:348-358. [DOI: 10.1080/10715762.2019.1582769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wen-Jing Yang
- Key Laboratory of Chemical Biology (MOE) School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China
| | - Ji-Xiang He
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Ming-Xing Zhou
- Key Laboratory of Chemical Biology (MOE) School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China
| | - Min Huang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Shu-Qi Wang
- Key Laboratory of Chemical Biology (MOE) School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China
| | - Xiao-Ning Wang
- Key Laboratory of Chemical Biology (MOE) School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology (MOE) School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China
| | - Dong-Mei Ren
- Key Laboratory of Chemical Biology (MOE) School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China
| | - Tao Shen
- Key Laboratory of Chemical Biology (MOE) School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
38
|
Tian L, Lu Y, Yang T, Deng Z, Xu L, Yao W, Ma C, Li X, Zhang J, Liu Y, Wang J. aPKCι promotes gallbladder cancer tumorigenesis and gemcitabine resistance by competing with Nrf2 for binding to Keap1. Redox Biol 2019; 22:101149. [PMID: 30822690 PMCID: PMC6395946 DOI: 10.1016/j.redox.2019.101149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Gallbladder cancer (GBC) is a highly malignant bile duct cancer with poor prognosis characterized by its insensitivity to chemotherapy. Emerging evidence indicates that cytoprotective antioxidation is involved in drug resistance of various cancers; however, the underlying molecular mechanisms remain obscure. Here, we demonstrated that atypical protein kinase Cι (aPKCι) mediated reactive oxygen species (ROS) inhibition in a kinase-independent manner, which played a crucial role in tumorigenesis and chemoresistance. Mechanistically, we found that aPKCι facilitated nuclear factor erythroid 2-related factor 2 (Nrf2) accumulation, nuclear translocation and activated its target genes by competing with Nrf2 for binding to Kelch-like ECH-associated protein 1 (Keap1) through a highly conserved DLL motif. In addition, the aPKCι-Keap1 interaction was required for antioxidant effect, cell growth and gemcitabine resistance in GBC. Importantly, we further confirmed that aPKCι was frequently upregulated and correlated with poor prognosis in patients with GBC. Collectively, our findings suggested that aPKCι positively modulated the Keap1-Nrf2 pathway to enhance GBC growth and gemcitabine resistance, implying that the aPKCι-Keap1-Nrf2 axis may be a potential approach to overcome the drug resistance for the treatment of GBC. aPKCι inhibits ROS in a kinase-independent manner. aPKCι competes with Nrf2 for binding to Keap1 via a DLL motif. The aPKCι-Keap1 interaction promotes cell growth and gemcitabine resistance. Upregulation of aPKCι was linked to poor prognosis in patients with GBC. aPKCι-Keap1-Nrf2 axis may be a potential therapeutic target for GBC.
Collapse
Affiliation(s)
- Li Tian
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Lu
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tao Yang
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhengdong Deng
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lei Xu
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Yao
- Department of Oncology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chaoqun Ma
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jian Zhang
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Liu
- Department of Geriatrics, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
39
|
Cen J, Zhao N, Huang WW, Liu L, Xie YY, Gan Y, Wang CJ, Ji BS. Polyamine analogue QMA attenuated ischemic injury in MCAO rats via ERK and Akt activated Nrf2/HO-1 signaling pathway. Eur J Pharmacol 2019; 844:165-174. [DOI: 10.1016/j.ejphar.2018.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
|
40
|
Fão L, Mota SI, Rego AC. c-Src regulates Nrf2 activity through PKCδ after oxidant stimulus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:686-698. [PMID: 30685263 DOI: 10.1016/j.bbamcr.2019.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/19/2018] [Accepted: 01/23/2019] [Indexed: 12/29/2022]
Abstract
Nrf2 is the main transcription factor involved in expression of cell defense enzymes, which is altered in several oxidant-related disorders. Cytosolic Nrf2 activation is modulated through phosphorylation by PKCδ, an enzyme controlled by Src tyrosine kinases. Of relevance, Src family members are involved in numerous cellular processes and regulated by hydrogen peroxide (H2O2). In this study we analysed the activation of cell survival-related signaling proteins, c-Src and Nrf2, and the influence of c-Src kinase on Nrf2 regulation after exposure to H2O2. Acute exposure of HT22 mouse hippocampal neural cells to H2O2 increased c-Src and Nrf2 phosphorylation/activation at Tyr416 and Ser40, respectively. Nrf2 phosphorylation at Ser40, its nuclear accumulation and transcriptional activity involving heme oxygenase-1 (HO-1) expression were dependent on c-Src kinase activation. Moreover, modulation of Nrf2 activity by c-Src occurred through PKCδ phosphorylation at Tyr311. We demonstrate, for the first time, c-Src-mediated regulation of Nrf2 transcriptional activity, via PKCδ activation, following an acute H2O2 stimulus. This work supports that the c-Src/PKCδ/Nrf2 pathway may constitute a novel signaling pathway stimulated by H2O2 and a potential target for the treatment of diseases involving redox deregulation.
Collapse
Affiliation(s)
- Lígia Fão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sandra I Mota
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - A Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
41
|
Romanello KS, Teixeira KKL, Silva JPMO, Nagamatsu ST, Bezerra MAC, Domingos IF, Martins DAP, Araujo AS, Lanaro C, Breyer CA, Ferreira RA, Franco-Penteado C, Costa FF, Malavazi I, Netto LES, de Oliveira MA, Cunha AF. Global analysis of erythroid cells redox status reveals the involvement of Prdx1 and Prdx2 in the severity of beta thalassemia. PLoS One 2018; 13:e0208316. [PMID: 30521599 PMCID: PMC6283586 DOI: 10.1371/journal.pone.0208316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/15/2018] [Indexed: 12/30/2022] Open
Abstract
β-thalassemia is a worldwide distributed monogenic red cell disorder, characterized by an absent or reduced beta globin chain synthesis. The unbalance of alpha-gamma chain and the presence of pathological free iron promote severe oxidative damage, playing crucial a role in erythrocyte hemolysis, exacerbating ineffective erythropoiesis and decreasing the lifespan of red blood cells (RBC). Catalase, glutathione peroxidase and peroxiredoxins act together to protect RBCs from hydrogen peroxide insult. Among them, peroxiredoxins stand out for their overall abundance and reactivity. In RBCs, Prdx2 is the third most abundant protein, although Prdxs 1 and 6 isoforms are also found in lower amounts. Despite the importance of these enzymes, Prdx1 and Prdx2 may have their peroxidase activity inactivated by hyperoxidation at high hydroperoxide concentrations, which also promotes the molecular chaperone activity of these proteins. Some studies have demonstrated the importance of Prdx1 and Prdx2 for the development and maintenance of erythrocytes in hemolytic anemia. Now, we performed a global analysis comparatively evaluating the expression profile of several antioxidant enzymes and their physiological reducing agents in patients with beta thalassemia intermedia (BTI) and healthy individuals. Furthermore, increased levels of ROS were observed not only in RBC, but also in neutrophils and mononuclear cells of BTI patients. The level of transcripts and the protein content of Prx1 were increased in reticulocyte and RBCs of BTI patients and the protein content was also found to be higher when compared to beta thalassemia major (BTM), suggesting that this peroxidase could cooperate with Prx2 in the removal of H2O2. Furthermore, Prdx2 production is highly increased in RBCs of BTM patients that present high amounts of hyperoxidized species. A significant increase in the content of Trx1, Srx1 and Sod1 in RBCs of BTI patients suggested protective roles for these enzymes in BTI patients. Finally, the upregulation of Nrf2 and Keap1 transcription factors found in BTI patients may be involved in the regulation of the antioxidant enzymes analyzed in this work.
Collapse
Affiliation(s)
- Karen S. Romanello
- Universidade Federal de São Carlos (UFSCar), Departamento de Genética e Evolução, São Carlos, Brazil
| | - Karina K. L. Teixeira
- Universidade Federal de São Carlos (UFSCar), Departamento de Genética e Evolução, São Carlos, Brazil
| | - João Pedro M. O. Silva
- Universidade Federal de São Carlos (UFSCar), Departamento de Genética e Evolução, São Carlos, Brazil
| | - Sheila T. Nagamatsu
- Universidade de Campinas (UNICAMP), Departamento de Genética, Evolução e Bioagentes, Campinas, Brazil
| | | | - Igor F. Domingos
- Universidade Federal de Pernambuco (UFPE), Departamento de Genética, Pernambuco, Brazil
| | - Diego A. P. Martins
- Universidade Federal de Pernambuco (UFPE), Departamento de Genética, Pernambuco, Brazil
| | - Aderson S. Araujo
- Fundação de Hematologia e Hemoterapia do estado de Pernambuco (HEMOPE), Pernambuco, Brazil
| | - Carolina Lanaro
- Hemocentro da Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Carlos A. Breyer
- Universidade Estadual Paulista (UNESP)–Campus Litoral Paulista, São Vicente, Brazil
| | | | | | | | - Iran Malavazi
- Universidade Federal de São Carlos (UFSCar), Departamento de Genética e Evolução, São Carlos, Brazil
| | - Luis E. S. Netto
- Universidade de São Paulo (USP), Departamento de Genética, Biologia Evolutiva, São Paulo, Brazil
| | | | - Anderson F. Cunha
- Universidade Federal de São Carlos (UFSCar), Departamento de Genética e Evolução, São Carlos, Brazil
- * E-mail:
| |
Collapse
|
42
|
Xiao X, Song D, Cheng Y, Hu Y, Wang F, Lu Z, Wang Y. Biogenic nanoselenium particles activate Nrf2‐ARE pathway by phosphorylating p38, ERK1/2, and AKT on IPEC‐J2 cells. J Cell Physiol 2018; 234:11227-11234. [DOI: 10.1002/jcp.27773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/30/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Xiao Xiao
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Zhejiang University Hangzhou China
- Key Laboratory of Feed and Animal Nutrition of Zhejiang Province, Ministry of Agriculture, Institute of Feed Science, Zhejiang University Hangzhou China
| | - Deguang Song
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Zhejiang University Hangzhou China
- Key Laboratory of Feed and Animal Nutrition of Zhejiang Province, Ministry of Agriculture, Institute of Feed Science, Zhejiang University Hangzhou China
| | - Yuanzhi Cheng
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Zhejiang University Hangzhou China
- Key Laboratory of Feed and Animal Nutrition of Zhejiang Province, Ministry of Agriculture, Institute of Feed Science, Zhejiang University Hangzhou China
| | - Yuhan Hu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Zhejiang University Hangzhou China
- Key Laboratory of Feed and Animal Nutrition of Zhejiang Province, Ministry of Agriculture, Institute of Feed Science, Zhejiang University Hangzhou China
| | - Fengqin Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Zhejiang University Hangzhou China
- Key Laboratory of Feed and Animal Nutrition of Zhejiang Province, Ministry of Agriculture, Institute of Feed Science, Zhejiang University Hangzhou China
| | - Zeqing Lu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Zhejiang University Hangzhou China
- Key Laboratory of Feed and Animal Nutrition of Zhejiang Province, Ministry of Agriculture, Institute of Feed Science, Zhejiang University Hangzhou China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Zhejiang University Hangzhou China
- Key Laboratory of Feed and Animal Nutrition of Zhejiang Province, Ministry of Agriculture, Institute of Feed Science, Zhejiang University Hangzhou China
| |
Collapse
|
43
|
Liu YW, Liu XL, Kong L, Zhang MY, Chen YJ, Zhu X, Hao YC. Neuroprotection of quercetin on central neurons against chronic high glucose through enhancement of Nrf2/ARE/glyoxalase-1 pathway mediated by phosphorylation regulation. Biomed Pharmacother 2018; 109:2145-2154. [PMID: 30551472 DOI: 10.1016/j.biopha.2018.11.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/11/2018] [Accepted: 11/19/2018] [Indexed: 01/16/2023] Open
Abstract
Although dietary flavonoid quercetin alleviates diabetes-associated cognitive decline in rodents, the mechanisms are not clearly clarified. This study was designed to investigate whether quercetin showed neuroprotection on central neurons against chronic high glucose through the enhancement of Nrf2/ARE/glyoxalase 1 (Glo-1) pathway. SH-SY5Y cells were divided into 8 groups: normal glucose, high glucose (HG), osmotic pressure control, solvent control, HG plus low, middle, high concentrations of quercetin, or Nrf2 activator (sulforaphane). After treatment for 72 h, the associated parameters were measured. We found quercetin and sulforaphane increased cell viability, and enhanced Glo-1 functions (Glo-1 activity, the reduced glutathione and advanced glycation end-products levels) as well as Glo-1 protein and mRNA levels in SH-SY5Y cells cultured with HG. Meanwhile, quercetin and sulforaphane activated Nrf2/ARE pathway, reflected by the raised Nrf2 and p-Nrf2 levels, and the elevated protein and mRNA levels of γ-glutamycysteine synthase (γ-GCS), a known target gene of Nrf2/ARE signaling. Moreover, Nrf2/ARE pathway was activated after pretreatment with a PKC activator, p38 MAPK inhibitor, or GSK-3β inhibitor under the condition of HG, and quercetin addition further strengthened this pathway; however, PKC inhibition or GSK-3β activation pretreatment reversed the effects of quercetin on the protein expression of γ-GCS in the HG condition. In summary, quercetin exerts the neuroprotection by enhancing Glo-1 functions in central neurons under chronic HG condition, which may be mediated by activation of Nrf2/ARE pathway; furthermore, the increased Nrf2 phosphorylation mediated by PKC activation and/or GSK-3β inhibition may involve in the activation of Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Xiao-Li Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Department of Pharmacy, the Second People's Hospital of Wuhu, Anhui, China
| | - Li Kong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Meng-Ya Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ya-Jing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yun-Chao Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
44
|
Zhao N, Guo FF, Xie KQ, Zeng T. Targeting Nrf-2 is a promising intervention approach for the prevention of ethanol-induced liver disease. Cell Mol Life Sci 2018; 75:3143-3157. [PMID: 29947925 PMCID: PMC11105722 DOI: 10.1007/s00018-018-2852-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) remains to be a worldwide health problem. It is generally accepted that oxidative stress plays critical roles in the pathogenesis of ALD, and antioxidant therapy represents a logical strategy for the prevention and treatment of ALD. Nuclear factor erythroid-derived 2-like 2 (NFE2L2 or Nrf-2) is essential for the antioxidant responsive element (ARE)-mediated induction of endogenous antioxidant enzymes such as heme oxygenase 1 (HO-1) and glutamate-cysteine ligase [GCL, the rate-limiting enzyme in the synthesis of glutathione (GSH)]. Activation of Nrf-2 pathway by genetic manipulation or pharmacological agents has been demonstrated to provide protection against ALD, which suggests that targeting Nrf-2 may be a promising approach for the prevention and treatment of ALD. Herein, we review the relevant literature about the potential hepatoprotective roles of Nrf-2 activation against ALD.
Collapse
Affiliation(s)
- Ning Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
45
|
Wang Y, Li L, Wang Y, Zhu X, Jiang M, Song E, Song Y. New application of the commercial sweetener rebaudioside a as a hepatoprotective candidate: Induction of the Nrf2 signaling pathway. Eur J Pharmacol 2018; 822:128-137. [PMID: 29355553 DOI: 10.1016/j.ejphar.2018.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
Abstract
A large population of drug candidates have failed "from bench to bed" due to unwanted toxicities. We intend to develop an alternative approach for drug discovery, that is, to seek candidates from "safe" compounds. Rebaudioside A (Reb-A) is an approved commercial sweetener from Stevia rebaudiana Bertoni. We found that Reb-A protects against carbon tetrachloride (CCl4)-induced oxidative injury in human liver hepatocellular carcinoma (HepG2) cells. Reb-A showed antioxidant activity on reducing cellular reactive oxygen species and malondialdehyde levels while increasing glutathione levels and superoxide dismutase and catalase activities. Reb-A treatment induced nuclear factor erythroid-derived 2-like 2 (Nrf2) activation and antioxidant response element activity, as well as the expression of heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). Further mechanistic studies indicated that c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), mitogen-active protein kinase (MAPK) and protein kinase C epsilon (PKCε) signaling was upregulated. Thus, the present in vitro study conclusively demonstrated that Reb-A is an activator of Nrf2 and is a potential candidate hepatoprotective agent. More importantly, the present study illustrated that seeking drug candidates from "safe" compounds is a promising strategy.
Collapse
Affiliation(s)
- Yuxin Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Linyao Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yawen Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Mingdong Jiang
- Department of Radiation Oncology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China.
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
46
|
Shi L, Hao Z, Zhang S, Wei M, Lu B, Wang Z, Ji L. Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: The involvement of ERK1/2 and PKC. Biochem Pharmacol 2018; 150:9-23. [DOI: 10.1016/j.bcp.2018.01.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022]
|
47
|
6'- O-Galloylpaeoniflorin Attenuates Cerebral Ischemia Reperfusion-Induced Neuroinflammation and Oxidative Stress via PI3K/Akt/Nrf2 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8678267. [PMID: 29765506 PMCID: PMC5889897 DOI: 10.1155/2018/8678267] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/27/2022]
Abstract
6'-O-galloylpaeoniflorin (GPF), a galloylated derivative of paeoniflorin isolated from peony root, has been proven to possess antioxidant potential. In this present study, we revealed that GPF treatment exerted significant neuroprotection of PC12 cells following OGD, as evidenced by a reduction of oxidative stress, inflammatory response, cellular injury, and apoptosis in vitro. Furthermore, treatment with GPF increased the levels of phosphorylated Akt (p-Akt) and nuclear factor-erythroid 2-related factor 2 (Nrf2), as well as promoted Nrf2 translocation in PC12 cells, which could be inhibited by Ly294002, an inhibitor of phosphoinositide 3-kinase (PI3K). In addition, Nrf2 knockdown or Ly294002 treatment significantly attenuated the antioxidant, anti-inflammatory, and antiapoptotic activities of GPF in vitro. In vivo studies indicated that GPF treatment significantly reduced infarct volume and improved neurological deficits in rats subjected to CIRI, as well as decreased oxidative stress, inflammation, and apoptosis, which could be inhibited by administration of Ly294002. In conclusion, these results revealed that GPF possesses neuroprotective effects against oxidative stress, inflammation, and apoptosis after ischemia-reperfusion insult via activation of the PI3K/Akt/Nrf2 pathway.
Collapse
|
48
|
Hennig P, Garstkiewicz M, Grossi S, Di Filippo M, French LE, Beer HD. The Crosstalk between Nrf2 and Inflammasomes. Int J Mol Sci 2018; 19:ijms19020562. [PMID: 29438305 PMCID: PMC5855784 DOI: 10.3390/ijms19020562] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/03/2023] Open
Abstract
The Nrf2 (nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2) transcription factor is a key player in cytoprotection and activated in stress conditions caused by reactive oxygen species (ROS) or electrophiles. Inflammasomes represent central regulators of inflammation. Upon detection of various stress factors, assembly of the inflamasome protein complex results in activation and secretion of proinflammatory cytokines. In addition, inflammasome activation causes pyroptosis, a lytic form of cell death, which supports inflammation. There is growing evidence of a crosstalk between the Nrf2 and inflammasome pathways at different levels. For example, Nrf2 activating compounds inhibit inflammasomes and consequently inflammation. This review summarizes what is known about the complex and predominantly antagonistic relationship of both stress-activated pathways.
Collapse
Affiliation(s)
- Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Martha Garstkiewicz
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Serena Grossi
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Lars E French
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, CH-8091 Zurich, Switzerland.
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
49
|
Kim P, Chu N, Davis J, Kim DH. Mechanoregulation of Myofibroblast Fate and Cardiac Fibrosis. ADVANCED BIOSYSTEMS 2018; 2:1700172. [PMID: 31406913 PMCID: PMC6690497 DOI: 10.1002/adbi.201700172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During myocardial infarction, myocytes die and are replaced by a specialized fibrotic extracellular matrix, otherwise known as scarring. Fibrotic scarring presents a tremendous hemodynamic burden on the heart, as it creates a stiff substrate, which resists diastolic filling. Fibrotic mechanisms result in permanent scarring which often leads to hypertrophy, arrhythmias, and a rapid progression to failure. Despite the deep understanding of fibrosis in other tissues, acquired through previous investigations, the mechanisms of cardiac fibrosis remain unclear. Recent studies suggest that biochemical cues as well as mechanical cues regulate cells in myocardium. However, the steps in myofibroblast transdifferentiation, as well as the molecular mechanisms of such transdifferentiation in vivo, are poorly understood. This review is focused on defining myofibroblast physiology, scar mechanics, and examining current findings of myofibroblast regulation by mechanical stress, stiffness, and topography for understanding fibrotic disease dynamics.
Collapse
Affiliation(s)
- Peter Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Nick Chu
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
50
|
Li C, Yang B, Xu Z, Boivin E, Black M, Huang W, Xu B, Wu P, Zhang B, Li X, Chen K, Wu Y, Rayat GR. Protective effect of cyanidin-3-O-glucoside on neonatal porcine islets. J Endocrinol 2017; 235:237-249. [PMID: 28931557 DOI: 10.1530/joe-17-0141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022]
Abstract
Oxidative stress is a major cause of islet injury and dysfunction during isolation and transplantation procedures. Cyanidin-3-O-glucoside (C3G), which is present in various fruits and vegetables especially in Chinese bayberry, shows a potent antioxidant property. In this study, we determined whether C3G could protect neonatal porcine islets (NPI) from reactive oxygen species (H2O2)-induced injury in vitro and promote the function of NPI in diabetic mice. We found that C3G had no deleterious effect on NPI and that C3G protected NPI from damage induced by H2O2 Significantly higher hemeoxygenase-1 (HO1) gene expression was detected in C3G-treated NPI compared to untreated islets before and after transplantation (P < 0.05). Western blot analysis showed a significant increase in the levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3K/Akt) proteins in C3G-treated NPI compared to untreated islets. C3G induced the nuclear translocation of nuclear erythroid 2-related factor 2 (NRF2) and the significant elevation of HO1 protein. Recipients of C3G-treated NPI with or without C3G-supplemented drinking water achieved normoglycemia earlier compared to recipients of untreated islets. Mice that received C3G-treated islets with or without C3G-supplemented water displayed significantly lower blood glucose levels at 5-10 weeks post-transplantation compared to mice that received untreated islets. Mice that received C3G-treated NPI and C3G-supplemented drinking water had significantly (P < 0.05) lower blood glucose levels at 7 and 8 weeks post-transplantation compared to mice that received C3G-treated islets. These findings suggest that C3G has a beneficial effect on NPI through the activation of ERK1/2- and PI3K/AKT-induced NRF2-mediated HO1 signaling pathway.
Collapse
Affiliation(s)
- Chao Li
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Bin Yang
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Zhihao Xu
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Eric Boivin
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mazzen Black
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wenlong Huang
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Baoyou Xu
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ping Wu
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bo Zhang
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Xian Li
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kunsong Chen
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yulian Wu
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Gina R Rayat
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|