1
|
Loera-Lopez AL, Lord MN, Noble EE. Astrocytes of the hippocampus and responses to periprandial neuroendocrine hormones. Physiol Behav 2025; 295:114913. [PMID: 40209869 DOI: 10.1016/j.physbeh.2025.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Astrocytes have risen as stars in the field of energy homeostasis and neurocognitive function, acting as a bridge of communication between the periphery and the brain, providing metabolic support, signaling via gliotransmitters, and altering synaptic communication. Dietary factors and energy state have a profound influence on hippocampal function, and the hippocampus is critical for appropriate behavioral responses associated with feeding and internal hunger cues (being in the fasted or full state), but how the hippocampus senses periprandial status and is impacted by diet is largely unknown. Periprandial hormones act within the hippocampus to modulate processes involved in hippocampal-dependent learning and memory function and astrocytes likely play an important role in modulating this signaling. In addition to periprandial hormones, astrocytes are positioned to respond to changes in circulating nutrients like glucose. Here, we review literature investigating how astrocytes mediate changes in hippocampal function, highlighting astrocyte location, morphology, and function in the context of integrating glucose metabolism, neuroendocrine hormone action, and/or cognitive function in the hippocampus. Specifically, we discuss research findings on the effects of insulin, ghrelin, leptin, and GLP-1 on glucose homeostasis, neural activity, astrocyte function, and behavior in the hippocampus. Because obesogenic diets impact neuroendocrine hormones, astrocytes, and cognitive function, we also discuss the effects of diet and diet-induced obesity on these parameters.
Collapse
Affiliation(s)
- Ana L Loera-Lopez
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Magen N Lord
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Emily E Noble
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA.
| |
Collapse
|
2
|
Gong Y, Wu M, Huang Y, He X, Yuan J, Dang B. Research developments in the neurovascular unit and the blood‑brain barrier (Review). Biomed Rep 2025; 22:88. [PMID: 40166412 PMCID: PMC11956146 DOI: 10.3892/br.2025.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
The neurovascular unit (NVU) is composed of neurons, glial cells, brain microvascular endothelial cells (BMECs), pericytes, and the extracellular matrix. The NVU controls the permeability of the blood-brain barrier (BBB) and protects the brain from harmful blood-borne and endogenous and exogenous substances. Among these, neurons transmit signals, astrocytes provide nutrients, microglia regulate inflammation, and BMECs and pericytes strengthen barrier tightness and coverage. These cells, due to their physical structure, anatomical location, or physiological function, maintain the microenvironment required for normal brain function. In this review, the BBB structure and mechanisms are examined to obtain a better understanding of the factors that influence BBB permeability. The findings may aid in safeguarding the BBB and provide potential therapeutic targets for drugs affecting the central nervous system.
Collapse
Affiliation(s)
- Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Yaqian Huang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Xiaoyi He
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Jiaqi Yuan
- Department of Neurosurgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
3
|
Chen JXY, Vipin A, Sandhu GK, Leow YJ, Zailan FZ, Tanoto P, Lee ES, Lee KL, Cheung C, Kandiah N. Blood-brain barrier integrity disruption is associated with both chronic vascular risk factors and white matter hyperintensities. J Prev Alzheimers Dis 2025; 12:100029. [PMID: 39863325 DOI: 10.1016/j.tjpad.2024.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD. OBJECTIVE This study explores the relationship between CRFs, BBB integrity, and WMH burden. DESIGN, SETTING, AND PARTICIPANTS The study included 155 participants from the Biomarkers and Cognition Study, Singapore (BIOCIS). CRFs were assessed through blood tests for glucose and lipid profiles, and blood pressure measurements. WMH volumes were quantified using MRI. MEASUREMENTS BBB integrity was evaluated using a Transendothelial Electrical Resistance (TEER) assay with human brain microvascular endothelial cells (hBMEC) exposed to participant plasma. RESULTS Plasma from individuals with a higher WMH burden was associated with increased BBB disruption in hBMEC. Higher systolic and diastolic blood pressure, as well as body mass index, were correlated with greater BBB disruption. Regression analyses revealed that elevated blood glucose and lipid levels were linked to increased BBB disruption. Both periventricular and subcortical WMH burdens were associated with increased BBB disruption. CONCLUSION This study highlights a relationship between CRFs, BBB disruption, and WMH burden, suggesting that CRFs may impair BBB integrity and contribute to WMH and cognitive decline in cSVD.
Collapse
Affiliation(s)
- James Xiao Yuan Chen
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Ashwati Vipin
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Gurveen Kaur Sandhu
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Yi Jin Leow
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Fatin Zahra Zailan
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Pricilia Tanoto
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Ee Soo Lee
- Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore; School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Khang Leng Lee
- Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Nagaendran Kandiah
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore.
| |
Collapse
|
4
|
Hussain Y, Dar MI, Pan X. Circadian Influences on Brain Lipid Metabolism and Neurodegenerative Diseases. Metabolites 2024; 14:723. [PMID: 39728504 DOI: 10.3390/metabo14120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues. Dysregulated lipid metabolism in the brain has been implicated in the pathogenesis of neurological disorders by contributing to oxidative stress, neuroinflammation, and synaptic dysfunction, as observed in conditions such as Alzheimer's and Parkinson's diseases. Disruptions in circadian gene expression have been shown to perturb lipid regulatory mechanisms in the brain, thereby triggering neuroinflammatory responses and oxidative damage. This review synthesizes current insights into the interconnections between circadian rhythms and lipid metabolism, with a focus on their roles in neurological health and disease. It further examines how the desynchronization of circadian genes affects lipid metabolism and explores the potential mechanisms through which disrupted circadian signaling might contribute to the pathophysiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
5
|
Isik FI, Thomson S, Cueto JF, Spathos J, Breit SN, Tsai VWW, Brown DA, Finney CA. A systematic review of the neuroprotective role and biomarker potential of GDF15 in neurodegeneration. Front Immunol 2024; 15:1514518. [PMID: 39737171 PMCID: PMC11682991 DOI: 10.3389/fimmu.2024.1514518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Neurodegeneration is characteristically multifaceted, with limited therapeutic options. One of the chief pathophysiological mechanisms driving these conditions is neuroinflammation, prompting increasing clinical interest in immunomodulatory agents. Growth differentiation factor 15 (GDF15; previously also called macrophage inhibitory cytokine-1 or MIC-1), an anti-inflammatory cytokine with established neurotrophic properties, has emerged as a promising therapeutic agent in recent decades. However, methodological challenges and the delayed identification of its specific receptor GFRAL have hindered research progress. This review systematically examines literature about GDF15 in neurodegenerative diseases and neurotrauma. The evidence collated in this review indicates that GDF15 expression is upregulated in response to neurodegenerative pathophysiology and increasing its levels in preclinical models typically improves outcomes. Key knowledge gaps are addressed for future investigations to foster a more comprehensive understanding of the neuroprotective effects elicited by GDF15.
Collapse
Affiliation(s)
- Finula I. Isik
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Shannon Thomson
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - John F. Cueto
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Jessica Spathos
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Samuel N. Breit
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Vicky W. W. Tsai
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David A. Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Western Sydney Local Health District, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| | - Caitlin A. Finney
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Chen Y, Fang B, Liu X, Bai W, Liu P, Duan Z, Lu T, Zhang Q, Dong W, Zhang Y. PTGS2/GRP78 Activation Triggers Endoplasmic Reticulum Stress Leading to Lipid Metabolism Disruption and Cell Apoptosis, Exacerbating Damage in Bovine Mastitis. Biomolecules 2024; 14:1533. [PMID: 39766240 PMCID: PMC11673387 DOI: 10.3390/biom14121533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Lipoteichoic acid (LTA), an organic acid of Gram-positive bacteria, is closely related to mastitis in dairy cows. This study evaluates the effect of LTA-induced endoplasmic reticulum stress (ER stress) in vitro using MAC-T (mammary epithelial cells) and in dairy cows with mastitis. LTA stimulation significantly increases ER stress and apoptosis-related factors in MAC-T. Further analysis suggests that the increase in ER stress may be associated with interactions involving PTGS2 and GRP78. Protein structural studies indicate a strong interaction between PTGS2 and GRP78. Lipidomics results further demonstrate that LTA disrupts lipid balance in MAC-T cells, affecting lipid metabolism in the endoplasmic reticulum, including PC, PE, TAG, and DAG, thereby exacerbating inflammation and ER stress. In dairy cows with mastitis caused by Gram-positive bacterial infection, damaged epithelial cells, inflammatory cell infiltration, and apoptotic vesicles are observed in affected tissues. In contrast, tissues from healthy cows exhibit regular epithelial cells without inflammatory cells or apoptotic vesicles. Furthermore, a significant ER stress and apoptosis increase is observed in mastitis tissues. This study demonstrates the close association between LTA-induced cell damage and ER stress, contributing to understanding the mechanisms underlying LTA-induced damage and supporting strategies for mastitis prevention and control in dairy cows.
Collapse
Affiliation(s)
- Yan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Bo Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Xian Liu
- Lanzhou Centers for Disease Control and Prevention, Lanzhou 730030, China;
| | - Wenkai Bai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Peiwen Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Zhiwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Ting Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Quanwei Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| |
Collapse
|
7
|
Zou T, Yang M, Chen Z, Xie H, Huang J, Qin Y, Liu F, Chen H, Xu X, Chen J, Tang H, Xiang H, Wu H, Liu M, Luo W, Liu J, Teng Z. Association among abnormal glycolipids, reproductive hormones, and cognitive dysfunction in female patients with bipolar disorder. BMC Psychiatry 2024; 24:385. [PMID: 38773397 PMCID: PMC11110249 DOI: 10.1186/s12888-024-05831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Patients with bipolar disorder (BD) show abnormalities in glucolipid metabolism and reproductive hormone levels, which are of concern in women with BD. This study was dedicated to investigating the glucolipid and reproductive hormone levels of female patients, and to preliminarily investigating their relationships with cognition. METHODS A total of 58 unmedicated female BD patients, 61 stable-medicated female BD patients, and 63 healthy controls (HC) were recruited in this study. Serum glycolipid indexes and reproductive hormones were measured. Cognitive function was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Stroop Color-Word Test (Stroop test). RESULTS Patients with BD showed significant cognitive impairment (p < 0.05), which was not affected by medication. Triglycerides (TG), luteinizing hormone (LH), and high-density lipoprotein cholesterol (HDL-c) were altered in stable-medicated BD patients. In addition, regression analysis showed that progesterone (PRGE) and prolactin (PRL) were negatively associated with cognitive performance in stable-medicated BD patients. CONCLUSIONS Female BD patients may have cognitive deficits and abnormal levels of glycolipids and reproductive hormones. And abnormal levels of glycolipids and reproductive hormones may be associated with cognitive dysfunction in female BD patients.
Collapse
Affiliation(s)
- Tianxiang Zou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Min Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhuohui Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Haiqing Xie
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yue Qin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Furu Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Haiyu Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xuelei Xu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hui Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hui Xiang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Haishan Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - MingHui Liu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Wenbo Luo
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jieyu Liu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Ziwei Teng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
8
|
Rutkowsky JM, Wong A, Toupadakis CA, Rutledge JC, Yellowley CE. Lipolysis products from triglyceride-rich lipoproteins induce stress protein ATF3 in osteoblasts. J Orthop Res 2024; 42:1033-1044. [PMID: 38044472 PMCID: PMC11009083 DOI: 10.1002/jor.25756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
High fat diets overwhelm the physiological mechanisms for absorption, storage, and utilization of triglycerides (TG); consequently TG, TG-rich lipoproteins (TGRL), and TGRL remnants accumulate, circulate systemically, producing dyslipidemia. This associates with, or is causative for increased atherosclerotic cardiovascular risk, ischemic stroke, fatty liver disease, and pancreatitis. TGRL hydrolysis by endothelial surface-bound lipoprotein lipase (LPL) generates metabolites like free fatty acids which have proinflammatory properties. While osteoblasts utilize fatty acids as an energy source, dyslipidemia is associated with negative effects on the skeleton. In this study we investigated the effects of TGRL lipolysis products (TGRL-LP) on expression of a stress responsive transcription factor, termed activating transcription factor 3 (ATF3), reactive oxygen species (ROS), ATF3 target genes, and angiopoietin-like 4 (Angptl4) in osteoblasts. As ATF3 negatively associates with osteoblast differentiation, we also investigated the skeletal effects of global ATF3 deletion in mice. TGRL-LP increased expression of Atf3, proinflammatory proteins Ptgs2 and IL-6, and induced ROS in MC3T3-E1 osteoblastic cells. Angptl4 is an endogenous inhibitor of LPL which was transcriptionally induced by TGRL-LP, while recombinant Angptl4 prevented TG-driven Atf3 induction. Atf3 global knockout male mice demonstrated increased trabecular and cortical microarchitectural parameters. In summary, we find that TGRL-LP induce osteoblastic cell stress as evidenced by expression of ATF3, which may contribute to the negative impact of dyslipidemia in the skeleton. Further, concomitant induction of Angptl4 in osteoblasts might play a protective role by reducing local lipolysis.
Collapse
Affiliation(s)
| | - Alice Wong
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine
| | | | - John C. Rutledge
- Department of Internal Medicine (Cardiology), School of Medicine, University of California Davis, Davis, CA 95616
| | - Clare E. Yellowley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine
| |
Collapse
|
9
|
Trunfio M, Tang B, Okwuegbuna O, Iudicello JE, Bharti A, Moore DJ, Gelman BB, Morgello S, Patel PB, Rubin LH, Ances BM, Gianella S, Heaton RK, Ellis RJ, Letendre SL. Longitudinal analysis of CSF HIV RNA in untreated people with HIV: Identification of CSF controllers. J Med Virol 2024; 96:e29550. [PMID: 38511593 PMCID: PMC11139255 DOI: 10.1002/jmv.29550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Interindividual variation of human immunodeficiency virus (HIV) RNA setpoint in cerebrospinal fluid (CSF) and its determinants are poorly understood, but relevant for HIV neuropathology, brain reservoirs, viral escape, and reseeding after antiretroviral interruptions. Longitudinal multicentric study on demographic, clinical, and laboratory correlates of CSF HIV RNA in 2000 follow-up visits from 597 people with HIV (PWH) off antiretroviral therapy (ART) and with plasma HIV RNA > the lower limit of quantification (LLQ). Factors associated with CSF control (CSFC; CSF HIV RNA < LLQ while plasma HIV RNA > LLQ) and with CSF/plasma discordance (CSF > plasma HIV RNA > LLQ) were also assessed through mixed-effects models. Posthoc and sensitivity analyses were performed for persistent CSFC and ART-naïve participants, respectively. Over a median follow-up of 2.1 years, CSF HIV RNA was associated with CD4+ and CD8+ T cells, CSF leukocytes, blood-brain barrier (BBB) integrity, biomarkers of iron and lipid metabolism, serum globulins, past exposure to lamivudine, and plasma HIV RNA (model p < 0.0001). CSFC (persistent in 7.7% over 3 years) and CSF/plasma discordance (persistent in <0.01% over 1 year) were variably associated with the same parameters (model p < 0.001). Sensitivity analyses confirmed most of the previous associations in participants never exposed to ART. Persistent CSFC was associated with higher CD4+ T-cell count nadir (p < 0.001), lower serum globulins (p = 0.003), and lower CSF leukocytes (p < 0.001). Without ART, one in 13 PWH had persistently undetectable CSF HIV RNA, while persistent CSF/plasma discordance was extremely rare over years. Immune responses, inflammation, BBB permeability, and iron and lipid metabolism were all associated with HIV replication in CSF.
Collapse
Affiliation(s)
- Mattia Trunfio
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, California, USA
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Bin Tang
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, California, USA
| | - Oluwakemi Okwuegbuna
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, California, USA
| | - Jennifer E. Iudicello
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, California, USA
| | - Ajay Bharti
- Division of Infectious Diseases and Global Health, University of California San Diego, San Diego, California, USA
| | - David J. Moore
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, California, USA
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Payal B. Patel
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Leah H. Rubin
- Department of Neurology, Psychiatry and Behavioral Sciences, Molecular and Cellular Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Beau M. Ances
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Health, University of California San Diego, San Diego, California, USA
| | - Robert K. Heaton
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, California, USA
| | - Ronald J. Ellis
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, California, USA
| | - Scott L. Letendre
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, California, USA
| |
Collapse
|
10
|
Li M, Wang M, Zhao Y, Zhong R, Chen W, Lei X, Wu X, Han J, Lei L, Wang Q, Luo G, Wei M. Effects of elevated remnant cholesterol on outcomes of acute ischemic stroke patients receiving mechanical thrombectomy. J Thromb Thrombolysis 2024; 57:390-401. [PMID: 38180591 DOI: 10.1007/s11239-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE Large cohort studies provided evidence that elevated remnant cholesterol (RC) was an important risk factor for ischemic stroke. However, the association between high RC and clinical outcomes in acute ischemic stroke (AIS) individuals was still undetermined. METHODS This retrospective study enrolled 165 AIS patients undergoing mechanical thrombectomy in one tertiary stroke center. We divided patients into two groups based on the median of their RC levels (0.49 mmol/L). The modified Rankin Scale (mRS) was used to evaluate the primary outcome 90 days after the onset of symptoms. The mRS scores ≤ 2 and ≤ 1 at 90 days were deemed as favorable and excellent outcomes, respectively. RESULTS In the overall AIS patients undergoing mechanical thrombectomy, there was no obvious distinction between the high and low RC group at 90-day favorable outcome (41.0% vs. 47.1%, P = 0.431) or excellent outcome (23.1% vs. 31.0%, P = 0.252). In the subgroup analysis stratified by stroke etiology, non-large artery atherosclerosis (non-LAA) stroke patients yielded with less favorable or excellent prognosis in the high RC group (26.8% vs. 46.8%, adjusted OR = 0.31, 95%CI: 0.11-0.85, P = 0.023; or 12.2% vs. 29.0%, adjusted OR = 0.18, 95%CI: 0.04-0.80, P = 0.024, respectively.). Post hoc power analyses indicated that the power was sufficient for favorable outcome (80.38%) and excellent outcome (88.72%) in non-LAA stroke patients. Additionally, RC can enhance the risk prediction value of a poor outcome (mRS scores 3-6) based on traditional risk indicators (including age, initial NIHSS score, operative duration, and neutrophil-to-lymphocyte ratio) for non-LAA stroke patients (AUC = 0.86, 95%CI: 0.79-0.94, P < 0.001). CONCLUSION In AIS patients undergoing mechanical thrombectomy, elevated RC was independently related to poor outcome for non-LAA stroke patients, but not to short-term prognosis of LAA stroke patients.
Collapse
Affiliation(s)
- Mengmeng Li
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wang
- Department of Neurology, Xi'an Children's Hospital, Xi'an, China
| | - Yixin Zhao
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Zhong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wanying Chen
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiangyu Lei
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyu Wu
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaxin Han
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Lei
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingfan Wang
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guogang Luo
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Meng Wei
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
11
|
Kelty TJ, Dashek RJ, Arnold WD, Rector RS. Emerging Links between Nonalcoholic Fatty Liver Disease and Neurodegeneration. Semin Liver Dis 2023; 43:77-88. [PMID: 36764305 DOI: 10.1055/s-0043-1762585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The association between liver and brain health has gained attention as biomarkers of liver function have been revealed to predict neurodegeneration. The liver is a central regulator in metabolic homeostasis. However, in nonalcoholic fatty liver disease (NAFLD), homeostasis is disrupted which can result in extrahepatic organ pathologies. Emerging literature provides insight into the mechanisms behind the liver-brain health axis. These include the increased production of liver-derived factors that promote insulin resistance and loss of neuroprotective factors under conditions of NAFLD that increase insulin resistance in the central nervous system. In addition, elevated proinflammatory cytokines linked to NAFLD negatively impact the blood-brain barrier and increase neuroinflammation. Furthermore, exacerbated dyslipidemia associated with NAFLD and hepatic dysfunction can promote altered brain bioenergetics and oxidative stress. In this review, we summarize the current knowledge of the crosstalk between liver and brain as it relates to the pathophysiology between NAFLD and neurodegeneration, with an emphasis on Alzheimer's disease. We also highlight knowledge gaps and future areas for investigation to strengthen the potential link between NAFLD and neurodegeneration.
Collapse
Affiliation(s)
- Taylor J Kelty
- Department of Biomedical Sciences, University of Missouri - Columbia, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri - Columbia, Columbia, Missouri
- NextGen Precision Health, University of Missouri - Columbia, Columbia, Missouri
| | - Ryan J Dashek
- Department of Biomedical Sciences, University of Missouri - Columbia, Columbia, Missouri
- NextGen Precision Health, University of Missouri - Columbia, Columbia, Missouri
- Comparative Medicine Program, University of Missouri - Columbia, Columbia, Missouri
| | - W David Arnold
- NextGen Precision Health, University of Missouri - Columbia, Columbia, Missouri
- Physical Medicine and Rehabilitation, University of Missouri - Columbia, Columbia, Missouri
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri - Columbia, Columbia, Missouri
- NextGen Precision Health, University of Missouri - Columbia, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri - Columbia, Columbia, Missouri
| |
Collapse
|
12
|
Zhao X, Zhang S, Sanders AR, Duan J. Brain Lipids and Lipid Droplet Dysregulation in Alzheimer's Disease and Neuropsychiatric Disorders. Complex Psychiatry 2023; 9:154-171. [PMID: 38058955 PMCID: PMC10697751 DOI: 10.1159/000535131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
Background Lipids are essential components of the structure and for the function of brain cells. The intricate balance of lipids, including phospholipids, glycolipids, cholesterol, cholesterol ester, and triglycerides, is crucial for maintaining normal brain function. The roles of lipids and lipid droplets and their relevance to neurodegenerative and neuropsychiatric disorders (NPDs) remain largely unknown. Summary Here, we reviewed the basic role of lipid components as well as a specific lipid organelle, lipid droplets, in brain function, highlighting the potential impact of altered lipid metabolism in the pathogenesis of Alzheimer's disease (AD) and NDPs. Key Messages Brain lipid dysregulation plays a pivotal role in the pathogenesis and progression of neurodegenerative and NPDs including AD and schizophrenia. Understanding the cell type-specific mechanisms of lipid dysregulation in these diseases is crucial for identifying better diagnostic biomarkers and for developing therapeutic strategies aiming at restoring lipid homeostasis.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Wang X, Chen Y, Huang Z, Cai Z, Yu X, Chen Z, Li L, Chen G, Wu K, Zheng H, Wu S, Chen Y. Visit-to-visit variability in triglyceride-glucose index and diabetes: A 9-year prospective study in the Kailuan Study. Front Endocrinol (Lausanne) 2022; 13:1054741. [PMID: 36936898 PMCID: PMC10020697 DOI: 10.3389/fendo.2022.1054741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
INSTRUCTION/AIMS It is unknown whether variability in the triglyceride-glucose index (TyG-index) is associated with the risk of diabetes. Here, we sought to characterize the relationship between TyG-index variability and incident diabetes. METHODS We performed a prospective study of 48,013 participants in the Kailuan Study who did not have diabetes. The TyG-index was calculated as ln [triglyceride (TG, mg/dL) concentration × fasting blood glucose concentration (FBG, mg/dL)/2]. The TyG-index variability was assessed using the standard deviation (SD) of three TyG-index values that were calculated during 2006/07, 2008/09, and 2010/11. We used the Cox proportional hazard models to analyze the effect of TyG-index variability on incident diabetes. RESULTS A total of 4,055 participants were newly diagnosed with diabetes during the study period of 8.95 years (95% confidence interval (CI) 8.48-9.29 years). After adjustment for confounding factors, participants in the highest and second-highest quartiles had significantly higher risks of new-onset diabetes versus the lowest quartile, with hazard ratios (95% CIs) of 1.18 (1.08-1.29) and 1.13 (1.03-1.24), respectively (P trend< 0.05). These higher risks remained after further adjustment for the baseline TyG-index. CONCLUSIONS A substantial fluctuation in TyG-index is associated with a higher risk of diabetes in the Chinese population, implying that it is important to maintain a normal and consistent TyG-index.
Collapse
Affiliation(s)
- Xianxuan Wang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yanjuan Chen
- Department of Endocrinology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zegui Huang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zefeng Cai
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xinran Yu
- Department of Anesthesiology, North China University of Science and Technology, Tangshan, China
| | - Zekai Chen
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Linyao Li
- Department of Plastic Surgery, Chongqing Huamei Plastic Surgery Hospital, Chongqing, China
| | - Guanzhi Chen
- Second Clinical College, China Medical University, Shenyang, China
| | - Kuangyi Wu
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Huancong Zheng
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Youren Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
14
|
Reemst K, Broos JY, Abbink MR, Cimetti C, Giera M, Kooij G, Korosi A. Early-life stress and dietary fatty acids impact the brain lipid/oxylipin profile into adulthood, basally and in response to LPS. Front Immunol 2022; 13:967437. [PMID: 36131915 PMCID: PMC9484596 DOI: 10.3389/fimmu.2022.967437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/04/2022] [Indexed: 01/06/2023] Open
Abstract
Brain lipid dysregulation is a hallmark of depression and Alzheimer's disease, also marked by chronic inflammation. Early-life stress (ELS) and dietary intake of polyunsaturated fatty acids (PUFAs) are risk factors for these pathologies and are known to impact inflammatory processes. However, if these early-life factors alter brain lipid homeostasis on the long-term and thereby contribute to this risk remains to be elucidated. We have recently shown that an early diet enriched in omega(ω)-3 PUFAs protected against the long-term negative effects of ELS on cognition and neuroinflammation. Here, we aim to understand if modulation of brain lipid and oxylipin profiles contributes to the detrimental effects of ELS and the protective ones of the diet. We therefore studied if and how ELS and early dietary PUFAs modulate the brain lipid and oxylipin profile, basally as well as in response to an inflammatory challenge, to unmask possible latent effects. Male mice were exposed to ELS via the limited bedding and nesting paradigm, received an early diet with high or low ω6/ω3 ratio (HRD and LRD) and were injected with saline or lipopolysaccharide (LPS) in adulthood. Twenty-four hours later plasma cytokines (Multiplex) and hypothalamic lipids and oxylipins (liquid chromatography tandem mass spectrometry) were measured. ELS exacerbated the LPS-induced increase in IL-6, CXCL1 and CCL2. Both ELS and diet affected the lipid/oxylipin profile long-term. For example, ELS increased diacylglycerol and LRD reduced triacylglycerol, free fatty acids and ceramides. Importantly, the ELS-induced alterations were strongly influenced by the early diet. For example, the ELS-induced decrease in eicosapentaenoic acid was reversed when fed LRD. Similarly, the majority of the LPS-induced alterations were distinct for control and ELS exposed mice and unique for mice fed with LRD or HRD. LPS decreased ceramides and lysophosphotidylcholine, increased hexosylceramides and prostaglandin E2, reduced triacylglycerol species and ω6-derived oxylipins only in mice fed LRD and ELS reduced the LPS-induced increase in phosphatidylcholine. These data give further insights into the alterations in brain lipids and oxylipins that might contribute to the detrimental effects of ELS, to the protective ones of LRD and the possible early-origin of brain lipid dyshomeostasis characterizing ELS-related psychopathologies.
Collapse
Affiliation(s)
- Kitty Reemst
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands
| | - Jelle Y. Broos
- Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Multiple Sclerosis (MS) Center Amsterdam, Amsterdam, Netherlands,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Maralinde R. Abbink
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands
| | - Chiara Cimetti
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Gijs Kooij
- Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Multiple Sclerosis (MS) Center Amsterdam, Amsterdam, Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands,*Correspondence: Aniko Korosi,
| |
Collapse
|
15
|
Espinosa JM, Castellano JM, Garcia-Rodriguez S, Quintero-Flórez A, Carrasquilla N, Perona JS. Lipophilic Bioactive Compounds Transported in Triglyceride-Rich Lipoproteins Modulate Microglial Inflammatory Response. Int J Mol Sci 2022; 23:ijms23147706. [PMID: 35887052 PMCID: PMC9321013 DOI: 10.3390/ijms23147706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Microglial cells can contribute to Alzheimer’s disease by triggering an inflammatory response that leads to neuronal death. In addition, the presence of amyloid-β in the brain is consistent with alterations in the blood–brain barrier integrity and triglyceride-rich lipoproteins (TRL) permeation. In the present work, we used lab-made TRL as carriers of lipophilic bioactive compounds that are commonly present in dietary oils, namely oleanolic acid (OA), α-tocopherol (AT) and β-sitosterol (BS), to assess their ability to modulate the inflammatory response of microglial BV-2 cells. We show that treatment with lab-made TRL increases the release and gene-expression of IL-1β, IL-6, and TNF-α, as well as NO and iNOS in microglia. On the other hand, TRL revealed bioactive compounds α-tocopherol and β-sitosterol as suitable carriers for oleanolic acid. The inclusion of these biomolecules in TRL reduced the release of proinflammatory cytokines. The inclusion of these biomolecules in TRL reduced the release of proinflammatory cytokines. AT reduced IL-6 release by 72%, OA reduced TNF-α release by approximately 50%, and all three biomolecules together (M) reduced IL-1β release by 35% and TNF-α release by more than 70%. In addition, NO generation was reduced, with the inclusion of OA by 45%, BS by 80% and the presence of M by 88%. Finally, a recovery of the basal glutathione content was observed with the inclusion of OA and M in the TRL. Our results open the way to exploiting the neuro-pharmacological potential of these lipophilic bioactive compounds through their delivery to the brain as part of TRL.
Collapse
|
16
|
Nikolaeva SD, Fock EM, Parnova RG. Lipopolysaccharide Stimulates Triglyceride Accumulation and Lipid Droplet Biogenesis in PC12 Cells: the Role of Carnitine Palmitoyltransferase 1 Down-Regulation and Suppression of Fatty Acid Oxidation. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zúñiga-Hernández J, Sambra V, Echeverría F, Videla LA, Valenzuela R. N-3 PUFAs and their specialized pro-resolving lipid mediators on airway inflammatory response: beneficial effects in the prevention and treatment of respiratory diseases. Food Funct 2022; 13:4260-4272. [PMID: 35355027 DOI: 10.1039/d1fo03551g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Respiratory diseases include a wide range of pathologies with different clinical manifestations, affecting the normal airways and lung function. An increase in the inflammatory response is considered a characteristic hallmark of these diseases, being also a critical factor for their progression. The n-3 polyunsaturated fatty acids (n-3 PUFAs) eicosapentaenoic acid (C20:4n-3, EPA), docosahexaenoic acid (C22:6n-3, DHA) and their lipid mediators are known to have an inflammation pro-resolution effect. The effects of these n-3 PUFAs in the prevention and treatment of respiratory diseases are beginning to be understood. Consequently, this article aims to analyze the influence of n-3 PUFAs and their lipid mediators on the inflammatory response in respiratory health, emphasizing recent data concerning their beneficial effects in the prevention and possible treatment of different respiratory diseases, particularly asthma, airway allergic syndromes and chronic obstructive pulmonary disease. The review includes studies regarding the effects of EPA, DHA, and their specialized pro-resolving lipid mediators (SPMs) on in vivo and in vitro models of respiratory disease, concluding that EPA and DHA have a positive impact in attenuating the pro-inflammatory response in respiratory diseases, reducing symptoms like nasal congestion, fever and difficulty in breathing. Controversial data reported are probably due to differences in several factors, including the dosages, administration vehicles, and the supplementation times employed, which are aspects that remain to be addressed in future studies.
Collapse
Affiliation(s)
| | - Verónica Sambra
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Francisca Echeverría
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile. .,Carrera de Nutrición y Dietética, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
18
|
Zhang L, Wang X, Yu W, Ying J, Fang P, Zheng Q, Feng X, Hu J, Xiao F, Chen S, Wei G, Lin Y, Liu X, Yang D, Fang Y, Xu G, Hua F. CB2R Activation Regulates TFEB-Mediated Autophagy and Affects Lipid Metabolism and Inflammation of Astrocytes in POCD. Front Immunol 2022; 13:836494. [PMID: 35392078 PMCID: PMC8981088 DOI: 10.3389/fimmu.2022.836494] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests that the accumulation of lipid drots (LDs) accelerates damage to mitochondria and increases the release of inflammatory factors. These have been implicated as a mechanism underlying neurodegenerative diseases or tumors and aging-related diseases such as postoperative cognitive dysfunction (POCD), nevertheless, accumulation of lipid droplets has not been extensively studied in the central nervous system (CNS). Here, we found that after surgery, there was activation of astrocytes and lipid accumulation in the hippocampus. However, cannabinoid receptor type II (CB2R) activation significantly reduced lipid accumulation in astrocytes and change the expression of genes related to lipid metabolism. CB2R reduces the release of the inflammatory factors interleukin-1 beta (IL-1β) and interleukin 6 (IL-6) in peripheral serum and simultaneously improves cognitive ability in mice with POCD. Further research on mechanisms indicates that CB2R activation promotes the nuclear entry of the bHLH-leucine zipper transcription factor, the transcription factor EB (TFEB), and which is a master transcription factor of the autophagy–lysosomal pathway, also reduces TFEB-S211 phosphorylation. When CB2R promotes TFEB into the nucleus, TFEB binds at two sites within promoter region of PGC1α, promoting PGC1α transcription and accelerating downstream lipid metabolism. The aforementioned process leads to autophagy activation and decreases cellular lipid content. This study uncovers a new mechanism allowing CB2R to regulate lipid metabolism and inflammation in POCD.
Collapse
Affiliation(s)
- Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Danying Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
19
|
Association between abnormal glycolipid level and cognitive dysfunction in drug-naïve patients with bipolar disorder. J Affect Disord 2022; 297:477-485. [PMID: 34715186 DOI: 10.1016/j.jad.2021.10.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/13/2021] [Accepted: 10/23/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Cognitive impairment and abnormal glycolipid metabolism are common clinical features of bipolar disorder (BD). The purpose of this study was to investigate the relationship between conventional glycolipid metabolism indicators and cognitive impairment in patients with BD. METHODS A total of 132 drug-naïve patients with BD and 129 healthy controls (HC) were recruited in the study. Five serum glycolipid metabolism indicators were measured and cognitive function was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Stroop Color-Word Test (Stroop test) for each participant. RESULTS The scores of immediate memory, attention, language and delayed memory in BD group were significantly lower than those in HC group (P < 0.05). The triglyceride (TG) level in BD group was higher than that in HC group (P = 0.011), and the total cholesterol and high-density lipoprotein cholesterol (HDL) levels were lower than those in HC group (P = 0.026; P = 0.001). Regression analysis showed that TG level was significantly correlated with RBANS total score (β = 0.245, P = 0.008), attention (β = 0.289, P = 0.03) and delayed memory (β = 0.221, P = 0.023). Fasting blood glucose (FBG) level was significantly correlated with language subscale score (β = -0.187, P = 0.046) in BD. LIMITATIONS Cross-sectional design and limited control variables. CONCLUSIONS Elevated FBG and TG levels may be associated with cognitive dysfunction in BD patients. Improving glycolipid metabolism in patients with BD may help to improve certain domain-specific cognitive functions.
Collapse
|
20
|
Chen X, Wu T, Gong Z, Guo J, Liu X, Zhang Y, Li Y, Ferraro P, Li B. Lipid droplets as endogenous intracellular microlenses. LIGHT, SCIENCE & APPLICATIONS 2021; 10:242. [PMID: 34873142 PMCID: PMC8648767 DOI: 10.1038/s41377-021-00687-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/31/2021] [Accepted: 11/23/2021] [Indexed: 05/24/2023]
Abstract
Using a single biological element as a photonic component with well-defined features has become a new intriguing paradigm in biophotonics. Here we show that endogenous lipid droplets in the mature adipose cells can behave as fully biocompatible microlenses to strengthen the ability of microscopic imaging as well as detecting intra- and extracellular signals. By the assistance of biolenses made of the lipid droplets, enhanced fluorescence imaging of cytoskeleton, lysosomes, and adenoviruses has been achieved. At the same time, we demonstrated that the required excitation power can be reduced by up to 73%. The lipidic microlenses are finely manipulated by optical tweezers in order to address targets and perform their real-time imaging inside the cells. An efficient detecting of fluorescence signal of cancer cells in extracellular fluid was accomplished due to the focusing effect of incident light by the lipid droplets. The lipid droplets acting as endogenous intracellular microlenses open the intriguing route for a multifunctional biocompatible optics tool for biosensing, endoscopic imaging, and single-cell diagnosis.
Collapse
Affiliation(s)
- Xixi Chen
- Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Tianli Wu
- Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Zhiyong Gong
- Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Jinghui Guo
- Department of Physiology, School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China.
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China.
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems «E. Caianiello», Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China.
| |
Collapse
|
21
|
Xu CJ, Li MQ, Li-Zhao, Chen WG, Wang JL. Short-term high-fat diet favors the appearances of apoptosis and gliosis by activation of ERK1/2/p38MAPK pathways in brain. Aging (Albany NY) 2021; 13:23133-23148. [PMID: 34620734 PMCID: PMC8544319 DOI: 10.18632/aging.203607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 01/26/2023]
Abstract
High-fat diet (HFD) has been associated with neuroinflammation and apoptosis in distinct brain regions. To explore the effect of short-term (7, 14 and 21 days) high-fat overfeeding on apoptosis, inflammatory signaling proteins, APP changes and glial cell activities in cerebral cortex and cerebellum. Mice were fed with HFD for different lengths (up to 21 days) and after each time body weights of mice was tested, then the apoptotic proteins, IL-1β, APP, BACE1and MAPKs, Akt and NF-κB signaling activity were evaluated by western blots. Results demonstrate that short period of high-fat overnutrition significantly promotes apoptosis, APP expression at day 21 of cerebral cortex and at day 7 of cerebellum compared to chow diet. In addition, increased GFAP+astrocytes, Iba-1+microglia and IL-1β 30 were observed in cerebral cortex after 21 days HFD, but no changes for 7 days overfeeding of cerebellum. Serendipitously, ERK1/2 pathway was activated both in cerebral cortex and cerebellum for different time course of HFD. Furthermore, increased phospho-p38 MAPK level was observed in cerebellum only. In consistent with in vivo results, SH-SY5Y cells treatment with cholesterol (50 μM, 100 μM) for 48 h culture in vitro demonstrated that pro-apoptotic proteins were enhanced as well. In brief, short-term HFD consumption increases sensitivity to apoptosis, APP and IL-1β production as well as gliosis in cerebral cortex and cerebellum, which may be related to enhancement of ERK1/2 and p38 MAPK activation.
Collapse
Affiliation(s)
- Chao-Jin Xu
- Department of Histology and Embryology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Mei-Qi Li
- School of 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Li-Zhao
- School of 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Wei-Guang Chen
- Department of Histology and Embryology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jun-Ling Wang
- Center for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| |
Collapse
|
22
|
Hashimoto M, Watanabe K, Miyoshi K, Koyanagi Y, Tadano J, Miyawaki I. Multiplatform metabolomic analysis of the R6/2 mouse model of Huntington's disease. FEBS Open Bio 2021; 11:2807-2818. [PMID: 34469070 PMCID: PMC8487039 DOI: 10.1002/2211-5463.13285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Huntington's disease (HD) is a progressive, neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. To investigate the metabolic alterations that occur in HD, here we examined plasma and whole-brain metabolomic profiles of the R6/2 mouse model of HD. Plasma and brain metabolomic analyses were conducted using capillary electrophoresis-mass spectrometry (CE-MS). In addition, liquid chromatography-mass spectrometry (LC-MS) was also applied to plasma metabolomic analyses, to cover the broad range of metabolites with various physical and chemical properties. Various metabolic alterations were identified in R6/2 mice. We report for the first time the perturbation of histidine metabolism in the brain of R6/2 mice, which was signaled by decreases in neuroprotective dipeptides and histamine metabolites, indicative of neurodegeneration and an altered histaminergic system. Other differential metabolites were related to arginine metabolism and cysteine and methionine metabolism, suggesting upregulation of the urea cycle, perturbation of energy homeostasis, and an increase in oxidative stress. In addition, remarkable changes in specific lipid classes are indicative of dysregulation of lipid metabolism. These findings provide a deeper insight into the metabolic alterations that occur in HD and provide a foundation for the future development of HD therapeutics.
Collapse
Affiliation(s)
- Masayo Hashimoto
- Preclinical Research UnitSumitomo Dainippon Pharma Co., LtdOsakaJapan
| | - Kenichi Watanabe
- Preclinical Research UnitSumitomo Dainippon Pharma Co., LtdOsakaJapan
| | - Kan Miyoshi
- Pharmacology Research UnitSumitomo Dainippon Pharma Co., LtdOsakaJapan
| | - Yukako Koyanagi
- Pharmacology Research UnitSumitomo Dainippon Pharma Co., LtdOsakaJapan
| | - Jun Tadano
- Preclinical Research UnitSumitomo Dainippon Pharma Co., LtdOsakaJapan
| | - Izuru Miyawaki
- Preclinical Research UnitSumitomo Dainippon Pharma Co., LtdOsakaJapan
| |
Collapse
|
23
|
Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol 2021; 220:e202102136. [PMID: 34152362 PMCID: PMC8222944 DOI: 10.1083/jcb.202102136] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/20/2023] Open
Abstract
Lipid droplets are dynamic intracellular lipid storage organelles that respond to the physiological state of cells. In addition to controlling cell metabolism, they play a protective role for many cellular stressors, including oxidative stress. Despite prior descriptions of lipid droplets appearing in the brain as early as a century ago, only recently has the role of lipid droplets in cells found in the brain begun to be understood. Lipid droplet functions have now been described for cells of the nervous system in the context of development, aging, and an increasing number of neuropathologies. Here, we review the basic mechanisms of lipid droplet formation, turnover, and function and discuss how these mechanisms enable lipid droplets to function in different cell types of the nervous system under healthy and pathological conditions.
Collapse
Affiliation(s)
- Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Chi-Lun Chang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA
| | | | - Maria S. Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Price BR, Johnson LA, Norris CM. Reactive astrocytes: The nexus of pathological and clinical hallmarks of Alzheimer's disease. Ageing Res Rev 2021; 68:101335. [PMID: 33812051 PMCID: PMC8168445 DOI: 10.1016/j.arr.2021.101335] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
Astrocyte reactivity is a hallmark of neuroinflammation that arises with Alzheimer’s disease (AD) and nearly every other neurodegenerative condition. While astrocytes certainly contribute to classic inflammatory processes (e.g. cytokine release, waste clearance, and tissue repair), newly emerging technologies for measuring and targeting cell specific activities in the brain have uncovered essential roles for astrocytes in synapse function, brain metabolism, neurovascular coupling, and sleep/wake patterns. In this review, we use a holistic approach to incorporate, and expand upon, classic neuroinflammatory concepts to consider how astrocyte dysfunction/reactivity modulates multiple pathological and clinical hallmarks of AD. Our ever-evolving understanding of astrocyte signaling in neurodegeneration is not only revealing new drug targets and treatments for dementia but is suggesting we reimagine AD pathophysiological mechanisms.
Collapse
Affiliation(s)
- Brittani R Price
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA, 02111, USA
| | - Lance A Johnson
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Physiology, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA.
| |
Collapse
|
25
|
Schönfeld P, Reiser G. How the brain fights fatty acids' toxicity. Neurochem Int 2021; 148:105050. [PMID: 33945834 DOI: 10.1016/j.neuint.2021.105050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons spurn hydrogen-rich fatty acids for energizing oxidative ATP synthesis, contrary to other cells. This feature has been mainly attributed to a lower yield of ATP per reduced oxygen, as compared to glucose. Moreover, the use of fatty acids as hydrogen donor is accompanied by severe β-oxidation-associated ROS generation. Neurons are especially susceptible to detrimental activities of ROS due to their poor antioxidative equipment. It is also important to note that free fatty acids (FFA) initiate multiple harmful activities inside the cells, particularly on phosphorylating mitochondria. Several processes enhance FFA-linked lipotoxicity in the cerebral tissue. Thus, an uptake of FFA from the circulation into the brain tissue takes place during an imbalance between energy intake and energy expenditure in the body, a situation similar to that during metabolic syndrome and fat-rich diet. Traumatic or hypoxic brain injuries increase hydrolytic degradation of membrane phospholipids and, thereby elevate the level of FFA in neural cells. Accumulation of FFA in brain tissue is markedly associated with some inherited neurological disorders, such as Refsum disease or X-linked adrenoleukodystrophy (X-ALD). What are strategies protecting neurons against FFA-linked lipotoxicity? Firstly, spurning the β-oxidation pathway in mitochondria of neurons. Secondly, based on a tight metabolic communication between neurons and astrocytes, astrocytes donate metabolites to neurons for synthesis of antioxidants. Further, neuronal autophagy of ROS-emitting mitochondria combined with the transfer of degradation-committed FFA for their disposal in astrocytes, is a potent protective strategy against ROS and harmful activities of FFA. Finally, estrogens and neurosteroids are protective as triggers of ERK and PKB signaling pathways, consequently initiating the expression of various neuronal survival genes via the formation of cAMP response element-binding protein (CREB).
Collapse
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
26
|
Ioghen O, Chițoiu L, Gherghiceanu M, Ceafalan LC, Hinescu ME. CD36 - A novel molecular target in the neurovascular unit. Eur J Neurosci 2021; 53:2500-2510. [PMID: 33560561 PMCID: PMC8247892 DOI: 10.1111/ejn.15147] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
CD36 is an integral membrane protein primarily known for its function as a fatty acid transporter, yet also playing other biological roles from lipid metabolism to inflammation modulation. These pleiotropic effects are explained by the existence of multiple different ligands and the extensive distribution in numerous cell types. Moreover, the receptor is related to various pathologies and it may prove to be a good target for prospective therapeutic strategies. In the neurovascular unit (NVU), CD36 is expressed in cells like microglia, microvascular endothelial cells, astrocytes and neurons. In the normal brain, CD36 was proven to be involved in phagocytosis of apoptotic cells, oro‐sensory detection of dietary lipids, and fatty acid transport across the blood brain barrier (BBB). CD36 was also acknowledged as a potentially important player in central nervous system (CNS) disorders, such as Alzheimer Disease‐associated vascular dysfunction and oxidative stress and the neuroinflammatory response in stroke. Despite continuous efforts, the therapeutic arsenal for such diseases is still scarce and there is an increasing interest in discovering new molecular targets for more specific therapeutic approaches. In this review, we summarize the role of CD36 in the normal function of the NVU and in several CNS disorders, focusing on the dysregulation of the NVU and the potential therapeutic modulation.
Collapse
Affiliation(s)
- Octavian Ioghen
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania
| | - Leona Chițoiu
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, School of Medicine, Carol Davila Faculty of Medicine, Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, School of Medicine, Carol Davila Faculty of Medicine, Bucharest, Romania.,Cell Biology, Neurosciences and Experimental Myology Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania
| | - Mihail Eugen Hinescu
- Department of Cellular and Molecular Biology and Histology, School of Medicine, Carol Davila Faculty of Medicine, Bucharest, Romania.,Cell Biology, Neurosciences and Experimental Myology Laboratory, Victor Babes Institute of Pathology, Bucharest, Romania
| |
Collapse
|
27
|
Zeitelhofer M, Adzemovic MZ, Moessinger C, Stefanitsch C, Strell C, Muhl L, Brundin L, Fredriksson L, Olsson T, Eriksson U, Nilsson I. Blocking PDGF-CC signaling ameliorates multiple sclerosis-like neuroinflammation by inhibiting disruption of the blood-brain barrier. Sci Rep 2020; 10:22383. [PMID: 33361796 PMCID: PMC7759579 DOI: 10.1038/s41598-020-79598-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Disruption of blood–brain barrier (BBB) integrity is a feature of various neurological disorders. Here we found that the BBB is differently affected during the preclinical, progression and remission phase of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We have identified an upregulation of pro-inflammatory and pro-angiogenic factors in the BBB transcriptome and down-regulation of endothelial tight junction members coinciding with elevated BBB leakage specifically during the progression phase. These changes were antagonized by blocking PDGFRα signaling with the small tyrosine kinase inhibitor imatinib. Moreover, targeting the PDGFRα ligand PDGF-CC using a neutralizing antibody, facilitated recovery of BBB integrity and improvement of EAE symptoms. Intracerebroventricular injection of PDGF-CC induced upregulation, whereas blocking PDGF-CC during EAE led to downregulation of Tnfa and Il1a at the BBB. Our findings suggest that blocking PDGF-CC counteracts fundamental aspects of endothelial cell activation and disruption of the BBB by decreasing Tnfa and Il1a expression. We also demonstrate that both PDGF-CC and its receptor PDGFRα were upregulated in MS lesions indicating that blocking PDGF-CC may be considered a novel treatment for MS.
Collapse
Affiliation(s)
- Manuel Zeitelhofer
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Milena Z Adzemovic
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden.,Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Christine Moessinger
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Christina Stefanitsch
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Lars Muhl
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Lou Brundin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Linda Fredriksson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Ulf Eriksson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ingrid Nilsson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
28
|
Moazzami K, Power MC, Gottesman R, Mosley T, Lutsey PL, Jack CR, Hoogeveen RC, West N, Knopman DS, Alonso A. Association of mid-life serum lipid levels with late-life brain volumes: The atherosclerosis risk in communities neurocognitive study (ARICNCS). Neuroimage 2020; 223:117324. [PMID: 32882383 PMCID: PMC9006082 DOI: 10.1016/j.neuroimage.2020.117324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Limited information exists regarding the association between midlife lipid levels and late-life total and regional brain volumes. METHODS We studied 1872 participants in the longitudinal community-based Atherosclerosis Risk in Communities Neurocognitive Study. Serum lipid levels were measured in 1987-1989 (mean age, 53 ± 5 years). Participants underwent 3T brain MRI scans in 2011-2013. Brain volumes were measured using FreeSurfer image analysis software. Linear regression models were used to assess the associations between serum lipids and brain volumes modeled in standard deviation (SD) units, adjusting for potential confounders. RESULTS In adjusted analyses, one SD higher low-density lipoprotein cholesterol (LDL) levels were associated with larger total brain volumes (β 0.033, 95% CI 0.006-0.060) as well as larger volumes of the temporal (β 0.038, 95% CI 0.003-0.074) and parietal lobes (β 0.044, 95% CI 0.009-0.07) and Alzheimer disease-related region (β 0.048, 95% CI 0.048-0.085). Higher triglyceride levels were associated with smaller total brain volumes (β -0.033, 95% CI -0.060, -0.007). The associations between LDL levels and brain volumes were modified by age (P for interaction <0.001), with higher LDL levels associated with larger total and regional brain volumes only among adults >53 years at baseline, and were attenuated after application of weights to account for informative attrition, although associations with the parietal and Alzheimer's disease-related region remained significant. High-density lipoprotein cholesterol was not associated with brain volumes. CONCLUSION Higher LDL levels in late midlife were associated with larger brain volumes later in life, while higher triglyceride levels were associated with smaller brain volumes. These associations were driven by adults >53 years at baseline.
Collapse
Affiliation(s)
- Kasra Moazzami
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States; Emory Clinical Cardiovascular Research Institute, Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States.
| | - Melinda C Power
- Department of Epidemiology, George Washington University Milken Institute School of Public Health, Washington, DC, United States
| | - Rebecca Gottesman
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Thomas Mosley
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Pamela L Lutsey
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, United States
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Ron C Hoogeveen
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Nancy West
- Department of Preventive Medicine, University of Mississippi Medical Center, Jackson, United States
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
29
|
Tóth ME, Dukay B, Hoyk Z, Sántha M. Cerebrovascular Changes and Neurodegeneration Related to Hyperlipidemia: Characteristics of the Human ApoB-100 Transgenic Mice. Curr Pharm Des 2020; 26:1486-1494. [PMID: 32067608 PMCID: PMC7403644 DOI: 10.2174/1381612826666200218101818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 01/07/2023]
Abstract
Serum lipid levels are closely related to the structure and function of blood vessels. Chronic hyperlipidemia may lead to damage in both the cardio- and the cerebrovascular systems. Vascular dysfunctions, including impairments of the blood-brain barrier, are known to be associated with neurodegenerative diseases. A growing number of evidence suggests that cardiovascular risk factors, such as hyperlipidemia, may increase the likelihood of developing dementia. Due to differences in lipoprotein metabolism, wild-type mice are protected against diet-induced hypercholesterolemia, and their serum lipid profile is different from that observed in humans. Therefore, several transgenic mouse models have been established to study the role of different apolipoproteins and their receptors in lipid metabolism, as well as the complications related to pathological lipoprotein levels. This mini-review focused on a transgenic mouse model overexpressing an apolipoprotein, the human ApoB-100. We discussed literature data and current advancements on the understanding of ApoB-100 induced cardio- and cerebrovascular lesions in order to demonstrate the involvement of this type of apolipoprotein in a wide range of pathologies, and a link between hyperlipidemia and neurodegeneration.
Collapse
Affiliation(s)
- Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Sezeged, Hungary
| | - Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Sezeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsófia Hoyk
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Temesvári krt. 62., Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Sezeged, Hungary
| |
Collapse
|
30
|
Farmer BC, Walsh AE, Kluemper JC, Johnson LA. Lipid Droplets in Neurodegenerative Disorders. Front Neurosci 2020; 14:742. [PMID: 32848541 PMCID: PMC7403481 DOI: 10.3389/fnins.2020.00742] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge of lipid droplets (LDs) has evolved from simple depots of lipid storage to dynamic and functionally active organelles involved in a variety of cellular functions. Studies have now informed significant roles for LDs in cellular signaling, metabolic disease, and inflammation. While lipid droplet biology has been well explored in peripheral organs such as the liver and heart, LDs within the brain are relatively understudied. The presence and function of these dynamic organelles in the central nervous system has recently gained attention, especially in the context of neurodegeneration. In this review, we summarize the current understanding of LDs within the brain, with an emphasis on their relevance in neurodegenerative diseases.
Collapse
Affiliation(s)
- Brandon C Farmer
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Adeline E Walsh
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Jude C Kluemper
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
31
|
Johnson LA. APOE and metabolic dysfunction in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:131-151. [PMID: 32739002 DOI: 10.1016/bs.irn.2020.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The strongest genetic risk factor for sporadic Alzheimer's disease (AD) is carriage of the E4 allele of APOE. Metabolic dysfunction also increases risk of dementia and AD. Facing a need for effective therapies and an aging global population, studies aimed at uncovering new therapeutic targets for AD have become critical. Insight into the biology underlying the effects of E4 and metabolic impairment on the brain may lead to novel therapies to reduce AD risk. An understudied hallmark of both AD patients and E4 individuals is a common metabolic impairment-cerebral glucose hypometabolism. This is a robust and replicated finding in humans, and begins decades prior to cognitive decline. Possession of E4 also appears to alter several other aspects of cerebral glucose metabolism, fatty acid metabolism, and management of oxidative stress through the pentose phosphate pathway. A critical knowledge gap in AD is the mechanism by which APOE alters cerebral metabolism and clarification as to its relevance to AD risk. Facing a need for effective therapies, studies aimed at uncovering new therapeutic targets have become critical. One such approach is to gain a better understanding of the metabolic mechanisms that may underlie E4-associated cognitive dysfunction and AD risk.
Collapse
Affiliation(s)
- Lance A Johnson
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States; Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
32
|
Cheng X, Ander BP, Jickling GC, Zhan X, Hull H, Sharp FR, Stamova B. MicroRNA and their target mRNAs change expression in whole blood of patients after intracerebral hemorrhage. J Cereb Blood Flow Metab 2020; 40:775-786. [PMID: 30966854 PMCID: PMC7168793 DOI: 10.1177/0271678x19839501] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 01/31/2023]
Abstract
Previous studies showed changes in mRNA levels in whole blood of rats and humans, and in miRNA in whole blood of rats following intracerebral hemorrhage (ICH). Thus, this study assessed miRNA and their putative mRNA targets in whole blood of humans following ICH. Whole transcriptome profiling identified altered miRNA and mRNA levels in ICH patients compared to matched controls. Target mRNAs of the differentially expressed miRNAs were identified, and functional analysis of the miRNA-mRNA targets was performed. Twenty-nine miRNAs (22 down, 7 up) and 250 target mRNAs (136 up, 114 down), and 7 small nucleolar RNA changed expression after ICH compared to controls (FDR < 0.05, and fold change ≥ |1.2|). These included Let7i, miR-146a-5p, miR210-5p, miR-93-5p, miR-221, miR-874, miR-17-3p, miR-378a-5p, miR-532-5p, mir-4707, miR-4450, mir-1183, Let-7d-3p, miR-3937, miR-4288, miR-4741, miR-92a-1-3p, miR-4514, mir-4658, mir-3689d-1, miR-4760-3p, and mir-3183. Pathway analysis showed regulated miRNAs/mRNAs were associated with toll-like receptor, natural killer cell, focal adhesion, TGF-β, phagosome, JAK-STAT, cytokine-cytokine receptor, chemokine, apoptosis, vascular smooth muscle, and RNA degradation signaling. Many of these pathways have been implicated in ICH. The differentially expressed miRNA and their putative mRNA targets and associated pathways may provide diagnostic biomarkers as well as point to therapeutic targets for ICH treatments in humans.
Collapse
Affiliation(s)
- Xiyuan Cheng
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
- Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, CA, USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Glen C Jickling
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Xinhua Zhan
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Heather Hull
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
- Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, CA, USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
33
|
Nyunt T, Britton M, Wanichthanarak K, Budamagunta M, Voss JC, Wilson DW, Rutledge JC, Aung HH. Mitochondrial oxidative stress-induced transcript variants of ATF3 mediate lipotoxic brain microvascular injury. Free Radic Biol Med 2019; 143:25-46. [PMID: 31356870 PMCID: PMC6848793 DOI: 10.1016/j.freeradbiomed.2019.07.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/30/2019] [Accepted: 07/23/2019] [Indexed: 12/06/2022]
Abstract
Elevation of blood triglycerides, primarily triglyceride-rich lipoproteins (TGRL), is an independent risk factor for cardiovascular disease and vascular dementia (VaD). Accumulating evidence indicates that both atherosclerosis and VaD are linked to vascular inflammation. However, the role of TGRL in vascular inflammation, which increases risk for VaD, remains largely unknown and its underlying mechanisms are still unclear. We strived to determine the effects of postprandial TGRL exposure on brain microvascular endothelial cells, the potential risk factor of vascular inflammation, resulting in VaD. We showed in Aung et al., J Lipid Res., 2016 that postprandial TGRL lipolysis products (TL) activate mitochondrial reactive oxygen species (ROS) and increase the expression of the stress-responsive protein, activating transcription factor 3 (ATF3), which injures human brain microvascular endothelial cells (HBMECs) in vitro. In this study, we deployed high-throughput sequencing (HTS)-based RNA sequencing methods and mito stress and glycolytic rate assays with an Agilent Seahorse XF analyzer and profiled the differential expression of transcripts, constructed signaling pathways, and measured mitochondrial respiration, ATP production, proton leak, and glycolysis of HBMECs treated with TL. Conclusions: TL potentiate ROS by mitochondria which activate mitochondrial oxidative stress, decrease ATP production, increase mitochondrial proton leak and glycolysis rate, and mitochondria DNA damage. Additionally, CPT1A1 siRNA knockdown suppresses oxidative stress and prevents mitochondrial dysfunction and vascular inflammation in TL treated HBMECs. TL activates ATF3-MAPKinase, TNF, and NRF2 signaling pathways. Furthermore, the NRF2 signaling pathway which is upstream of the ATF3-MAPKinase signaling pathway, is also regulated by the mitochondrial oxidative stress. We are the first to report differential inflammatory characteristics of transcript variants 4 (ATF3-T4) and 5 (ATF3-T5) of the stress responsive gene ATF3 in HBMECs induced by postprandial TL. Specifically, our data indicates that ATF3-T4 predominantly regulates the TL-induced brain microvascular inflammation and TNF signaling. Both siRNAs of ATF3-T4 and ATF3-T5 suppress cells apoptosis and lipotoxic brain microvascular endothelial cells. These novel signaling pathways triggered by oxidative stress-responsive transcript variants, ATF3-T4 and ATF3-T5, in the brain microvascular inflammation induced by TGRL lipolysis products may contribute to pathophysiological processes of vascular dementia.
Collapse
Affiliation(s)
- Tun Nyunt
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Monica Britton
- Genome Center and Bioinformatics Core Facility, University of California, Davis, CA, 95616, USA
| | - Kwanjeera Wanichthanarak
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA, USA; Department of Biochemistry and Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Madhu Budamagunta
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - John C Voss
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Dennis W Wilson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - John C Rutledge
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Hnin H Aung
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
34
|
Toscano R, Millan-Linares MC, Lemus-Conejo A, Claro C, Sanchez-Margalet V, Montserrat-de la Paz S. Postprandial triglyceride-rich lipoproteins promote M1/M2 microglia polarization in a fatty-acid-dependent manner. J Nutr Biochem 2019; 75:108248. [PMID: 31707281 DOI: 10.1016/j.jnutbio.2019.108248] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/18/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022]
Abstract
Inhibiting M1 microglia phenotype while stimulating the M2 microglia has been suggested as a potential therapeutic approach for the treatment of neuroinflammatory diseases. Our hypothesis is that the type of dietary fatty acids (FAs) into human postprandial triglyceride-rich lipoproteins (TRLs) could modulate the plasticity of microglia. We isolated TRLs at the postprandial hypertriglyceridemic peak from blood samples of healthy volunteers after the ingestion of a meal rich in saturated FAs (SFAs), monounsaturated FAs (MUFAs) or MUFAs plus omega-3 long-chain polyunsaturated FAs. We observed that postprandial TRL-MUFAs enhance M2 microglia polarization, whereas postprandial TRL-SFAs made polarized microglia prone to an M1 phenotype. In addition, in contrast to dietary SFAs, dietary MUFAs primed for a reduced proinflammatory profile in the brain of mice fed with the different FA-enriched diets. Our study underlines a role of postprandial TRLs as a metabolic entity in regulating the plasticity of microglia and brings an understanding of the mechanisms by which dietary FAs are environmental factors fostering the innate immune responsiveness. These exciting findings open opportunities for developing nutraceutical strategies with olive oil as the principal source of MUFAs, notably oleic acid, to prevent development and progression of neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Rocio Toscano
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41009 Seville, Spain; Department of Food & Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain
| | - Maria C Millan-Linares
- Cell Biology Unit, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain.
| | - Ana Lemus-Conejo
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41009 Seville, Spain; Department of Food & Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain
| | - Carmen Claro
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain
| | - Victor Sanchez-Margalet
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41009 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41009 Seville, Spain.
| |
Collapse
|
35
|
Norman JE, Aung HH, Wilson DW, Rutledge JC. Inhibition of perilipin 2 expression reduces pro-inflammatory gene expression and increases lipid droplet size. Food Funct 2018; 9:6245-6256. [PMID: 30402637 PMCID: PMC6292725 DOI: 10.1039/c8fo01420e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our lab previously demonstrated that triglyceride-rich lipoprotein (TGRL) lipolysis products induce lipid droplet formation and pro-inflammatory gene expression in monocytes. We hypothesized that the inhibition of perilipin 2 expression in THP-1 monocytes would reduce lipid droplet formation and suppress pro-inflammatory gene expression induced by TGRL lipolysis products. In the current study, we use microarray analysis to identify gene expression altered by TGRL lipolysis products in THP-1 monocytes. We confirmed the expression of selected genes by quantitative reverse transcription PCR and characterized lipid droplet formation in these cells after exposure to TGRL lipolysis products. Using siRNA inhibition of perilipin 2 expression, we examined the role of perilipin 2 in the response of THP-1 monocytes to TGRL lipolysis products. We found that perilipin 2 siRNA increased the intracellular triglyceride content, increased the size of lipid droplets, and reduced pro-atherogenic and pro-inflammatory gene expression. We saw a reduction of serum/glucocorticoid kinase 1, v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian), chemokine (C-C motif) ligand 3, and interleukin 8 gene expression induced by TGRL lipolysis products. This study supports previous findings that reduction of perilipin 2 expression is protective against atherogenesis, while finding an unexpected increase in lipid droplet size with reduced perilipin 2 expression.
Collapse
Affiliation(s)
- Jennifer E Norman
- University of California, Davis, School of Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine, GBSF 5404, 451 Health Sciences Dr. Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
36
|
Hoyk Z, Tóth ME, Lénárt N, Nagy D, Dukay B, Csefová A, Zvara Á, Seprényi G, Kincses A, Walter FR, Veszelka S, Vígh J, Barabási B, Harazin A, Kittel Á, Puskás LG, Penke B, Vígh L, Deli MA, Sántha M. Cerebrovascular Pathology in Hypertriglyceridemic APOB-100 Transgenic Mice. Front Cell Neurosci 2018; 12:380. [PMID: 30410436 PMCID: PMC6209654 DOI: 10.3389/fncel.2018.00380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/04/2018] [Indexed: 01/08/2023] Open
Abstract
Hypertriglyceridemia is not only a serious risk factor in the development of cardiovascular diseases, but it is linked to neurodegeneration, too. Previously, we generated transgenic mice overexpressing the human APOB-100 protein, a mouse model of human atherosclerosis. In this model we observed high plasma levels of triglycerides, oxidative stress, tau hyperphosphorylation, synaptic dysfunction, cognitive impairment, increased neural apoptosis and neurodegeneration. Neurovascular dysfunction is recognized as a key factor in the development of neurodegenerative diseases, but the cellular and molecular events linking cerebrovascular pathology and neurodegeneration are not fully understood. Our aim was to study cerebrovascular changes in APOB-100 transgenic mice. We described the kinetics of the development of chronic hypertriglyceridemia in the transgenic animals. Increased blood-brain barrier permeability was found in the hippocampus of APOB-100 transgenic mice which was accompanied by structural changes. Using transmission electron microscopy, we detected changes in the brain capillary endothelial tight junction structure and edematous swelling of astrocyte endfeet. In brain microvessels isolated from APOB-100 transgenic animals increased Lox-1, Aqp4, and decreased Meox-2, Mfsd2a, Abcb1a, Lrp2, Glut-1, Nos2, Nos3, Vim, and in transgenic brains reduced Cdh2 and Gfap-σ gene expressions were measured using quantitative real-time PCR. We confirmed the decreased P-glycoprotein (ABCB1) and vimentin expression related to the neurovascular unit by immunostaining in transgenic brain sections using confocal microscopy. We conclude that in chronic hypertriglyceridemic APOB-100 transgenic mice both functional and morphological cerebrovascular pathology can be observed, and this animal model could be a useful tool to study the link between cerebrovascular pathology and neurodegeneration.
Collapse
Affiliation(s)
- Zsófia Hoyk
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Nikolett Lénárt
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Dóra Nagy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Alexandra Csefová
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ágnes Zvara
- Laboratory of Functional Genomics, Core Facilities, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - György Seprényi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Judit Vígh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Beáta Barabási
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ágnes Kittel
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - László G Puskás
- Laboratory of Functional Genomics, Core Facilities, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
37
|
Förstner P, Rehman R, Anastasiadou S, Haffner-Luntzer M, Sinske D, Ignatius A, Roselli F, Knöll B. Neuroinflammation after Traumatic Brain Injury Is Enhanced in Activating Transcription Factor 3 Mutant Mice. J Neurotrauma 2018; 35:2317-2329. [PMID: 29463176 DOI: 10.1089/neu.2017.5593] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) induces a neuroinflammatory response resulting in astrocyte and microglia activation at the lesion site. This involves upregulation of neuroinflammatory genes, including chemokines and interleukins. However, so far, there is lack of knowledge on transcription factors (TFs) modulating this TBI-associated gene expression response. Herein, we analyzed activating transcription factor 3 (ATF3), a TF encoding a regeneration-associated gene (RAG) predominantly studied in peripheral nervous system (PNS) injury. ATF3 contributes to PNS axon regeneration and was shown before to regulate inflammatory processes in other injury models. In contrast to PNS injury, data on ATF3 in central nervous system (CNS) injury are sparse. We used Atf3 mouse mutants and a closed-head weight-drop-based TBI model in adult mice to target the rostrolateral cortex resulting in moderate injury severity. Post-TBI, ATF3 was upregulated already at early time points (i.e,. 1-4 h) post-injury in the brain. Mortality and weight loss upon TBI were slightly elevated in Atf3 mutants. ATF3 deficiency enhanced TBI-induced paresis and hematoma formation, suggesting that ATF3 limits these injury outcomes in wild-type mice. Next, we analyzed TBI-associated RAG and inflammatory gene expression in the cortical impact area. In contrast to the PNS, only some RAGs (Atf3, Timp1, and Sprr1a) were induced by TBI, and, surprisingly, some RAG encoding neuropeptides were downregulated. Notably, we identified ATF3 as TF-regulating proneuroinflammatory gene expression, including CCL and CXCL chemokines (Ccl2, Ccl3, Ccl4, and Cxcl1) and lipocalin. In Atf3 mutant mice, mRNA abundance was further enhanced upon TBI compared to wild-type mice, suggesting immune gene repression by wild-type ATF3. In accord, more immune cells were present in the lesion area of ATF3-deficient mice. Overall, we identified ATF3 as a new TF-mediating TBI-associated CNS inflammatory responses.
Collapse
Affiliation(s)
- Philip Förstner
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| | - Rida Rehman
- 2 Department of Neurology, Ulm University , Ulm, Germany .,3 Department of Biomedical Engineering and Sciences (BMES), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST) , H-12, Islamabad, Pakistan
| | | | - Melanie Haffner-Luntzer
- 4 Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, University of Ulm , Ulm, Germany
| | - Daniela Sinske
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| | - Anita Ignatius
- 4 Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, University of Ulm , Ulm, Germany
| | | | - Bernd Knöll
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| |
Collapse
|
38
|
D'Arrigo JS. Targeting Early Dementia: Using Lipid Cubic Phase Nanocarriers to Cross the Blood⁻Brain Barrier. Biomimetics (Basel) 2018; 3:E4. [PMID: 31105226 PMCID: PMC6352688 DOI: 10.3390/biomimetics3010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, a frequent co-morbidity of cerebrovascular pathology and Alzheimer's disease has been observed. Numerous published studies indicate that the preservation of a healthy cerebrovascular endothelium can be an important therapeutic target. By incorporating the appropriate drug(s) into biomimetic (lipid cubic phase) nanocarriers, one obtains a multitasking combination therapeutic, which targets certain cell surface scavenger receptors, mainly class B type I (i.e., SR-BI), and crosses the blood⁻brain barrier. This targeting allows for various cell types related to Alzheimer's to be simultaneously searched out for localized drug treatment in vivo.
Collapse
|
39
|
Rutkowsky JM, Lee LL, Puchowicz M, Golub MS, Befroy DE, Wilson DW, Anderson S, Cline G, Bini J, Borkowski K, Knotts TA, Rutledge JC. Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/-and C57BL/6 mice fed a western diet. PLoS One 2018; 13:e0191909. [PMID: 29444171 PMCID: PMC5812615 DOI: 10.1371/journal.pone.0191909] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
Recent work suggests that diet affects brain metabolism thereby impacting cognitive function. Our objective was to determine if a western diet altered brain metabolism, increased blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately influence cognitive processes as assessed by Y-maze and radial arm water maze. Also, western diet significantly increased BBB transport, as well as microvessel factor VIII in LDLr -/- and microglia IBA1 staining in WT, both indicators of activation and neuroinflammation. Interestingly, LDLr -/- mice had a significant increase in 18F- fluorodeoxyglucose uptake irrespective of diet and brain 1H-magnetic resonance spectroscopy showed increased lactate and lipid moieties. Metabolic assessments of whole mouse brain by GC/MS and LC/MS/MS showed that a western diet altered brain TCA cycle and β-oxidation intermediates, levels of amino acids, and complex lipid levels and elevated proinflammatory lipid mediators. Our study reveals that the western diet has multiple impacts on brain metabolism, physiology, and altered cognitive function that likely manifest via multiple cellular pathways.
Collapse
Affiliation(s)
- Jennifer M. Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
- * E-mail:
| | - Linda L. Lee
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California, United States of America
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mari S. Golub
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| | - Douglas E. Befroy
- Magnetic Resonance Research Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dennis W. Wilson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Steven Anderson
- Department of Physiology and Membrane Biology, University of California, Davis, California, United States of America
| | - Gary Cline
- Department of Endocrinology, Yale University, New Haven, Connecticut, United States of America
| | - Jason Bini
- Yale PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut, United States of America
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California, Davis, California, United States of America
| | - Trina A. Knotts
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - John C. Rutledge
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | | |
Collapse
|
40
|
Nanotherapy for Alzheimer's disease and vascular dementia: Targeting senile endothelium. Adv Colloid Interface Sci 2018; 251:44-54. [PMID: 29274774 DOI: 10.1016/j.cis.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/12/2022]
Abstract
Due to the complexity of Alzheimer's disease, multiple cellular types need to be targeted simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-sensitive coated microbubbles (in a targeted lipid nanoemulsion) are available. Versatile small molecule drug(s) targeting multiple pathways of Alzheimer's disease pathogenesis are known. By incorporating such drug(s) into the targeted "lipid-coated microbubble" [LCM]/"nanoparticle-derived" [ND] (or LCM/ND) nanoemulsion type, one obtains a multitasking combination therapeutic for translational medicine. This multitasking therapeutic targets cell-surface scavenger receptors (mainly class B type I), or SR-BI, making possible for various Alzheimer's-related cell types to be simultaneously searched out for localized drug treatment in vivo. Besides targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) include a characteristic lipid-coated microbubble [LCM] subpopulation (i.e., a stable LCM suspension); such film-stabilized microbubbles are well known to substantially reduce the acoustic power levels needed for accomplishing temporary noninvasive (transcranial) ultrasound treatment, or sonoporation, if additionally desired for the Alzheimer's patient.
Collapse
|