1
|
Huang J, Walters TD. Growth Impairment in Pediatric Inflammatory Bowel Disease. PEDIATRIC INFLAMMATORY BOWEL DISEASE 2023:151-172. [DOI: 10.1007/978-3-031-14744-9_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Jansen van Vuuren J, Pillay S, Naidoo A. Circulating Biomarkers in Long-Term Stroke Prognosis: A Scoping Review Focusing on the South African Setting. Cureus 2022; 14:e23971. [PMID: 35547443 PMCID: PMC9090128 DOI: 10.7759/cureus.23971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular disease, including both ischaemic and haemorrhagic strokes, remains one of the highest causes of global morbidity and mortality. Developing nations, such as South Africa (SA), are affected disproportionately. Early identification of stroke patients at risk of poor clinical prognosis may result in improved outcomes. In addition to conventional neuroimaging, the role of predictive biomarkers has been shown to be important. Little data exist on their applicability within SA. This scoping review aimed to evaluate the currently available data pertaining to blood biomarkers that aid in the long-term prognostication of patients following stroke and its potential application in the South African setting. This scoping review followed a 6-stage process to identify and critically review currently available literature pertaining to prognostic biomarkers in stroke. An initial 1191 articles were identified and, following rigorous review, 41 articles were included for the purposes of the scoping review. A number of potential biomarkers were identified and grouped according to the function or origin of the marker. Although most biomarkers showed great prognostic potential, the cost and availability will likely limit their application within SA. The burden of stroke is increasing worldwide and appears to be affecting developing countries disproportionately. Access to neuroradiological services is not readily available in all settings and the addition of biomarkers to assist in the long-term prognostication of patients following a stroke can be of great clinical value. The cost and availability of many of the reviewed biomarkers will likely hinder their use in the South African setting.
Collapse
Affiliation(s)
- Juan Jansen van Vuuren
- Department of Neurology, Grey's Hospital, Pietermaritzburg, ZAF
- School of Clinical Medicine, PhD programme, University of KwaZulu-Natal, Pietermaritzburg, ZAF
- Member, Royal Society of South Africa, Cape Town, ZAF
| | | | - Ansuya Naidoo
- Neurology, University of KwaZulu-Natal, Pietermaritzburg, ZAF
- Department of Neurology, Grey's Hospital, University of KwaZulu-Natal, Pietermaritzburg, ZAF
| |
Collapse
|
3
|
Wei W, Liu Z, Zhang C, Khoriaty R, Zhu M, Zhang B. A common human missense mutation of vesicle coat protein SEC23B leads to growth restriction and chronic pancreatitis in mice. J Biol Chem 2021; 298:101536. [PMID: 34954140 PMCID: PMC8760524 DOI: 10.1016/j.jbc.2021.101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Wei Wei
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio, USA
| | - Zhigang Liu
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio, USA
| | - Chao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rami Khoriaty
- Departments of Internal Medicine, Cell and Developmental Biology and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Min Zhu
- Department of Pathology, Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, China.
| | - Bin Zhang
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
4
|
Frank SJ. Classical and novel GH receptor signaling pathways. Mol Cell Endocrinol 2020; 518:110999. [PMID: 32835785 PMCID: PMC7799394 DOI: 10.1016/j.mce.2020.110999] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
In this review, I summarize historical and recent features of the classical pathways activated by growth hormone (GH) through the cell surface GH receptor (GHR). GHR is a cytokine receptor superfamily member that signals by activating the non-receptor tyrosine kinase, JAK2, and members of the Src family kinases. Activation of the GHR engages STATs, PI3K, and ERK pathways, among others, and details of these now-classical pathways are presented. Modulating elements, including the SOCS proteins, phosphatases, and regulated GHR metalloproteolysis, are discussed. In addition, a novel physical and functional interaction of GHR with IGF-1R is summarized and discussed in terms of its mechanisms, consequences, and physiological and therapeutic implications.
Collapse
Affiliation(s)
- Stuart J Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, 1720 2nd Avenue South, BDB 485, AL, 35294-0012, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Endocrinology Section, Medical Service, Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
5
|
Ben-Zvi D, Meoli L, Abidi WM, Nestoridi E, Panciotti C, Castillo E, Pizarro P, Shirley E, Gourash WF, Thompson CC, Munoz R, Clish CB, Anafi RC, Courcoulas AP, Stylopoulos N. Time-Dependent Molecular Responses Differ between Gastric Bypass and Dieting but Are Conserved Across Species. Cell Metab 2018; 28:310-323.e6. [PMID: 30043755 PMCID: PMC6628900 DOI: 10.1016/j.cmet.2018.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/19/2017] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
The effectiveness of Roux-en-Y gastric bypass (RYGB) against obesity and its comorbidities has generated excitement about developing new, less invasive treatments that use the same molecular mechanisms. Although controversial, RYGB-induced improvement of metabolic function may not depend entirely upon weight loss. To elucidate the differences between RYGB and dieting, we studied several individual organ molecular responses and generated an integrative, interorgan view of organismal physiology. We also compared murine and human molecular signatures. We show that, although dieting and RYGB can bring about the same degree of weight loss, post-RYGB physiology is very different. RYGB induces distinct, organ-specific adaptations in a temporal pattern that is characterized by energetically demanding processes, which may be coordinated by HIF1a activation and the systemic repression of growth hormone receptor signaling. Many of these responses are conserved in rodents and humans and may contribute to the remarkable ability of surgery to induce and sustain metabolic improvement.
Collapse
Affiliation(s)
- Danny Ben-Zvi
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Luca Meoli
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Wasif M Abidi
- Developmental Endoscopy Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Eirini Nestoridi
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Courtney Panciotti
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Erick Castillo
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Palmenia Pizarro
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Eleanor Shirley
- Division of Minimally Invasive and Metabolic Surgery, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - William F Gourash
- Division of Minimally Invasive and Metabolic Surgery, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Christopher C Thompson
- Developmental Endoscopy Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rodrigo Munoz
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ron C Anafi
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anita P Courcoulas
- Division of Minimally Invasive and Metabolic Surgery, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Nicholas Stylopoulos
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Cirillo F, Lazzeroni P, Catellani C, Sartori C, Amarri S, Street ME. MicroRNAs link chronic inflammation in childhood to growth impairment and insulin-resistance. Cytokine Growth Factor Rev 2018; 39:1-18. [DOI: 10.1016/j.cytogfr.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
7
|
GH/IGF-1 Signaling and Current Knowledge of Epigenetics; a Review and Considerations on Possible Therapeutic Options. Int J Mol Sci 2017; 18:ijms18101624. [PMID: 28981462 PMCID: PMC5666699 DOI: 10.3390/ijms18101624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023] Open
Abstract
Epigenetic mechanisms play an important role in the regulation of the Growth Hormone- Insulin-like Growth Factor 1 (GH-IGF1) axis and in processes for controlling long bone growth, and carbohydrate and lipid metabolism. Improvement of methodologies that allow for the assessment of epigenetic regulation have contributed enormously to the understanding of GH action, but many questions still remain to be clarified. The reversible nature of epigenetic factors and, particularly, their role as mediators between the genome and the environment, make them viable therapeutic target candidates. Rather than reviewing the molecular and epigenetic pathways regulated by GH action, in this review we have focused on the use of epigenetic modulators as potential drugs to improve the GH response. We first discuss recent progress in the understanding of intracellular molecular mechanisms controlling GH and IGF-I action. We then emphasize current advances in genetic and epigenetic mechanisms that control gene expression, and which support a key role for epigenetic regulation in the cascade of intracellular events that trigger GH action when coupled to its receptor. Thirdly, we focus on fetal programming and epigenetic regulation at the IGF1 locus. We then discuss epigenetic alterations in intrauterine growth retardation, and the possibility for a potential epigenetic pharmaceutical approach in short stature associated with this fetal condition. Lastly, we review an example of epigenetic therapeutics in the context of growth-related epigenetic deregulation disorders. The advance of our understanding of epigenetic changes and the impact they are having on new forms of therapy creates exciting prospects for the future.
Collapse
|
8
|
Cirillo F, Lazzeroni P, Sartori C, Street ME. Inflammatory Diseases and Growth: Effects on the GH-IGF Axis and on Growth Plate. Int J Mol Sci 2017; 18:E1878. [PMID: 28858208 PMCID: PMC5618527 DOI: 10.3390/ijms18091878] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 02/08/2023] Open
Abstract
This review briefly describes the most common chronic inflammatory diseases in childhood, such as cystic fibrosis (CF), inflammatory bowel diseases (IBDs), juvenile idiopathic arthritis (JIA), and intrauterine growth restriction (IUGR) that can be considered, as such, for the changes reported in the placenta and cord blood of these subjects. Changes in growth hormone (GH) secretion, GH resistance, and changes in the insulin-like growth factor (IGF) system are described mainly in relationship with the increase in nuclear factor-κB (NF-κB) and pro-inflammatory cytokines. Changes in the growth plate are also reported as well as a potential role for microRNAs (miRNAs) and thus epigenetic changes in chronic inflammation. Many mechanisms leading to growth failure are currently known; however, it is clear that further research in the field is still warranted.
Collapse
Affiliation(s)
- Francesca Cirillo
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Pietro Lazzeroni
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Chiara Sartori
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Maria Elisabeth Street
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|
9
|
Schilbach K, Bidlingmaier M. Growth hormone binding protein - physiological and analytical aspects. Best Pract Res Clin Endocrinol Metab 2015; 29:671-83. [PMID: 26522453 DOI: 10.1016/j.beem.2015.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A significant proportion of total circulating growth hormone (GH) is bound to a high affinity growth hormone binding protein (GHBP). Several low affinity binding proteins have also been described. Significant differences between species exist with respect to origin and regulation of GHBP, but generally it resembles the extracellular domain of the GH receptor. Concentrations are associated with GH status, body composition and other factors. Although the clinical relevance of GHBP is not fully understood it is suggested that concentrations indirectly reflect GH receptor status. This is supported by cases of Laron's syndrome where a molecular defect in the extracellular domain of the GH receptor is associated with low or unmeasurable GHBP concentrations. Methods to measure GHBP have evolved from chromatographic, activity based procedures to direct immunoassays. In clinical practice, measurement of GHBP can be helpful to differentiate between GH deficiency and GH insensitivity, particularly if GHBP is absent.
Collapse
Affiliation(s)
- Katharina Schilbach
- Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstr. 1, 80336, Munich, Germany.
| | - Martin Bidlingmaier
- Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstr. 1, 80336, Munich, Germany.
| |
Collapse
|
10
|
Simon D. Puberté et maladies inflammatoires. Arch Pediatr 2015; 22:163-4. [DOI: 10.1016/s0929-693x(15)30081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Lin J, Bao ZK, Zhang Q, Hu WW, Yu QH, Yang Q. Transcriptome analysis of the mammary gland from GH transgenic goats during involution. Gene 2015; 565:228-34. [PMID: 25865296 DOI: 10.1016/j.gene.2015.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/11/2015] [Accepted: 04/07/2015] [Indexed: 11/26/2022]
Abstract
Mammary glands are organs for milk production in female mammals. Growth hormone (GH) is known to affect the growth and development of the mammary gland, as well as to increase milk production in dairy goats. This study performed a comprehensive expression profiling of genes expressed in the mammary gland of early involution GH transgenic (n=4) and non-transgenic goats (n=4) by RNA sequencing. RNA was extracted from mammary gland tissues collected at day 3 of involution. Gene expression analysis was conducted by Illumina RNA sequencing and sequence reads were assembled and analyzed using TopHat. FPKM (fragments per kilobase of exon per million) values were analyzed for differentially expressed genes using the Cufflinks package. Gene ontology analysis of differentially expressed genes was categorized using agriGO, while KEGG pathway analysis was performed with the online KEGG automatic annotation server. Our results revealed that 75% of NCBI goat annotated genes were expressed during early involution. A total of 18,323 genes were expressed during early involution in GH transgenic goats, compared with 18,196 expressed genes during early involution of non-transgenic goats. In these expressed genes, the majority (17,589) were ubiquitously expressed in GH transgenic and non-transgenic goats. However, there were 745 differentially expressed genes, 421 of which were upregulated and 324 were downregulated in GH transgenic goats. GO and KEGG pathway analysis showed that these genes were involved in mammary gland physiology, including cell adhesion molecules, ECM-receptor interaction, Jak-STAT signaling pathway, and fat metabolism. Our results demonstrated that the GH receptor was strongly affected in GH transgenic goats, which may activate the IGF-1/Stat3 signaling pathway. Overall, our study provided a global view of the transcriptome during involution of GH transgenic and non-transgenic goats, which increases our understanding of the biology of involution in the goat.
Collapse
Affiliation(s)
- Jian Lin
- College of Veterinary, Nanjing Agricultural University, Weigang 1, Jiangsu, PR China
| | - Ze Kun Bao
- College of Veterinary, Nanjing Agricultural University, Weigang 1, Jiangsu, PR China
| | - Qiang Zhang
- College of Veterinary, Nanjing Agricultural University, Weigang 1, Jiangsu, PR China
| | - Wei Wei Hu
- College of Veterinary, Nanjing Agricultural University, Weigang 1, Jiangsu, PR China
| | - Qing Hua Yu
- College of Veterinary, Nanjing Agricultural University, Weigang 1, Jiangsu, PR China
| | - Qian Yang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, PR China.
| |
Collapse
|
12
|
Zhang J, Carnduff L, Norman G, Josey T, Wang Y, Sawyer TW, Martyniuk CJ, Langlois VS. Transcriptional profiling in rat hair follicles following simulated Blast insult: a new diagnostic tool for traumatic brain injury. PLoS One 2014; 9:e104518. [PMID: 25136963 PMCID: PMC4138085 DOI: 10.1371/journal.pone.0104518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/11/2014] [Indexed: 01/05/2023] Open
Abstract
With wide adoption of explosive-dependent weaponry during military activities, Blast-induced neurotrauma (BINT)-induced traumatic brain injury (TBI) has become a significant medical issue. Therefore, a robust and accessible biomarker system is in demand for effective and efficient TBI diagnosis. Such systems will also be beneficial to studies of TBI pathology. Here we propose the mammalian hair follicles as a potential candidate. An Advanced Blast Simulator (ABS) was developed to generate shock waves simulating traumatic conditions on brains of rat model. Microarray analysis was performed in hair follicles to identify the gene expression profiles that are associated with shock waves. Gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) were used to identify cell processes and molecular signaling cascades affected by simulated bomb blasts. Enrichment analyses indicated that genes with altered expression levels were involved in central nervous system (CNS)/peripheral nervous system (PNS) responses as well as signal transduction including Ca2+, K+-transportation-dependent signaling, Toll-Like Receptor (TLR) signaling and Mitogen Activated Protein Kinase (MAPK) signaling cascades. Many of the pathways identified as affected by shock waves in the hair follicles have been previously reported to be TBI responsive in other organs such as brain and blood. The results suggest that the hair follicle has some common TBI responsive molecular signatures to other tissues. Moreover, various TBI-associated diseases were identified as preferentially affected using a gene network approach, indicating that the hair follicle may be capable of reflecting comprehensive responses to TBI conditions. Accordingly, the present study demonstrates that the hair follicle is a potentially viable system for rapid and non-invasive TBI diagnosis.
Collapse
Affiliation(s)
- Jing Zhang
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Lisa Carnduff
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Grant Norman
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Tyson Josey
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | - Yushan Wang
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | - Thomas W. Sawyer
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | | | - Valerie S. Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
13
|
Senggunprai L, Kukongviriyapan V, Prawan A, Kukongviriyapan U. Quercetin and EGCG exhibit chemopreventive effects in cholangiocarcinoma cells via suppression of JAK/STAT signaling pathway. Phytother Res 2014; 28:841-848. [PMID: 24038588 DOI: 10.1002/ptr.5061] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 06/03/2013] [Accepted: 08/04/2013] [Indexed: 12/16/2022]
Abstract
Quercetin and epigallocatechin-3-gallate (EGCG) are dietary phytochemicals with antiinflammatory and antitumor effects. In the present study, we examined the effects of these two compounds on Janus-like kinase (JAK)/signal transduction and transcription (STAT) pathway of cholangiocarcinoma (CCA) cells, because CCA is one of the aggressive cancers with very poor prognosis and JAK/STAT pathway is critically important in inflammation and carcinogenesis. The results showed that the JAK/STAT pathway activation by proinflammatory cytokine interleukin-6 and interferon-γ in CCA cells was suppressed by pretreatment with quercetin and EGCG, evidently by a decrease of the elevated phosphorylated-STAT1 and STAT3 proteins in a dose-dependent manner. The cytokine-mediated up-regulation of inducible nitric oxide synthase (iNOS) and intercellular adhesion molecule-1 (ICAM-1) via JAK/STAT cascade was abolished by both quercetin and EGCG pretreatment. Moreover, these flavonoids also could inhibit growth and cytokine-induced migration of CCA cells. Pretreatment with specific JAK inhibitors, AG490 and piceatannol, abolished cytokine-induced iNOS and ICAM-1 expression. These results demonstrate beneficial effects of quercetin and EGCG in the suppression of JAK/STAT cascade of CCA cells. Quercetin and EGCG would be potentially useful as cancer chemopreventive agents against CCA.
Collapse
Affiliation(s)
- Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, and Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, 40002, Thailand
| | | | | | | |
Collapse
|
14
|
Bechtold S, Simon D. Growth abnormalities in children and adolescents with juvenile idiopathic arthritis. Rheumatol Int 2014; 34:1483-8. [PMID: 24760485 DOI: 10.1007/s00296-014-3022-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
In patients with juvenile idiopathic arthritis (JIA) growth impairment and variance in body composition are well-known long-term complications. In the active phases of the disease, particular patients with systemic and polyarticular JIA reveal growth impairment. Some experience "catch-up" growth following reduction in disease activity and lower glucocorticoid doses. Although new therapeutic options are available, there are still 10-20 % of patients with severe forms of the disease who show continuous growth disturbance. Only few studies have specifically addressed body composition in JIA. Bone mass deficits in part could be related to the deficits of muscle mass. Study data on growth hormone treatment in short children with JIA are promising in respect of growth development, final height and body composition. The major goal for physicians is optimal disease control while maintaining normal growth and body composition. Early recognition of patients who develop prolonged growth and body composition disturbances is important as these abnormalities contribute to long-term morbidity and need to be addressed both diagnostically and therapeutically.
Collapse
Affiliation(s)
- Susanne Bechtold
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Munich, Germany,
| | | |
Collapse
|
15
|
Abstract
Interleukin (IL)-6 is a typical cytokine featuring redundancy and pleiotropic activity. It contributes to host defense against pathogens, but dysregulation of IL-6 production plays a significant pathological role in various autoimmune and inflammatory diseases. Because IL-6 blockade was expected to constitute a novel strategy for the treatment of such diseases, tocilizumab, a humanized anti-IL-6 receptor antibody (anti-IL-6RAb), was developed. Clinical trials have demonstrated the efficacy of anti-IL-6RAb for patients with rheumatoid arthritis, Castleman's disease, and juvenile idiopathic arthritis, resulting in approval of this innovative biologic for the treatment of these diseases, and it can be expected to become a novel drug for various other autoimmune and inflammatory diseases. In murine models of autoimmune diseases, anti-IL-6RAb induces Treg and inhibits Th17 and/or Th1 differentiation, indicating that anti-IL-6RAb may be able to repair Th17/Treg imbalance in human diseases as well.
Collapse
Affiliation(s)
- Toshio Tanaka
- Laboratory of Immunoregulation, Graduate School of Frontier Biosciences, and Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | | | | |
Collapse
|
16
|
Shimokawa H, Tsutsui M. Nitric oxide synthases in the pathogenesis of cardiovascular disease: lessons from genetically modified mice. Pflugers Arch 2010; 459:959-67. [PMID: 20179961 DOI: 10.1007/s00424-010-0796-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) is produced in almost all tissues and organs, exerting a variety of biological actions under both physiological and pathological conditions. NO is synthesized by three distinct NO synthase (NOS) isoforms (neuronal, inducible, and endothelial NOS), all of which are expressed in the human cardiovascular system. Although the regulatory roles of NOSs in cardiovascular diseases have been described in pharmacological studies with selective and non-selective NOS inhibitors, the specificity of the NOS inhibitors continues to be an issue of debate. To overcome this issue, genetically engineered animals have been used. All types of NOS gene-deficient animals, including singly, doubly, and triply NOS-deficient mice, and various types of NOS gene-transgenic (TG) animals, including conditional and non-conditional TG mice bearing endothelium-specific or cardiomyocyte-specific overexpression of each NOS gene, have thus been developed. The roles of individual NOS isoforms as well as the entire NOS system in the cardiovascular system have been extensively investigated in those mice, providing pivotal insights into an understanding of the pathophysiology of NOSs in human cardiovascular diseases. Based on studies with the murine NOS genetic models, this review briefly summarizes the latest knowledge of NOSs and cardiovascular diseases.
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | | |
Collapse
|
17
|
Abstract
Crohn's disease manifests during childhood or adolescence in up to 25% of patients. The potential for linear growth impairment as a complication of chronic intestinal inflammation is unique to pediatric patient populations. Insulin-like growth factor I (IGF-I), produced by the liver in response to growth hormone (GH) stimulation, is the key mediator of GH effects at the growth plate of bones. An association between impaired growth in children with Crohn's disease and low IGF-I levels is well recognized. Early studies emphasized the role of malnutrition in suppression of IGF-I production. However, a simple nutritional hypothesis fails to explain all the observations related to growth in children with Crohn's disease. The direct, growth-inhibitory effects of proinflammatory cytokines are increasingly recognized and explored. The potential role of noncytokine factors, such as lipopolysaccharides, and their potential to negatively influence the growth axis have recently been investigated with intriguing results. There is now reason for optimism that the modern anticytokine therapeutic agents available for treating children and adolescents with Crohn's disease will reduce the prevalence of this otherwise common complication. As our understanding of the mechanisms that underlie growth impairment advance, so too should the opportunity for developing further novel and targeted therapies.
Collapse
Affiliation(s)
- Thomas D Walters
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | | |
Collapse
|
18
|
Chen Y, Lin G, Huo JS, Barney D, Wang Z, Livshiz T, States DJ, Qin ZS, Schwartz J. Computational and functional analysis of growth hormone (GH)-regulated genes identifies the transcriptional repressor B-cell lymphoma 6 (Bc16) as a participant in GH-regulated transcription. Endocrinology 2009; 150:3645-54. [PMID: 19406940 PMCID: PMC2717871 DOI: 10.1210/en.2009-0212] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For insight into transcriptional mechanisms mediating physiological responses to GH, data mining was performed on a profile of GH-regulated genes induced or inhibited at different times in highly responsive 3T3-F442A adipocytes. Gene set enrichment analysis indicated that GH-regulated genes are enriched in pathways including phosphoinositide and insulin signaling and suggested that suppressor of cytokine signaling 2 (SOCS2) and phosphoinositide 3' kinase regulatory subunit p85alpha (Pik3r1) are important targets. Model-based Chinese restaurant clustering identified a group of genes highly regulated by GH at times consistent with its key physiological actions. This cluster included IGF-I, phosphoinositide 3' kinase p85alpha, SOCS2, and cytokine-inducible SH2-containing protein. It also contains the most strongly repressed gene in the profile, B cell lymphoma 6 (Bcl6), a transcriptional repressor. Quantitative real-time PCR verified the strong decrease in Bcl6 mRNA after GH treatment and induction of the other genes in the cluster. Transcriptional network analysis of the genes implicated signal transducer and activator of transcription (Stat) 5 as hub regulating the most responsive genes, Igf1, Socs2, Cish, and Bcl6. Transcriptional activation analysis demonstrated that Bcl6 inhibits SOCS2-luciferase and blunts its stimulation by GH. Occupancy of endogenous Bcl6 on SOCS2 DNA decreased after GH treatment, whereas occupancy of Stat5 increased concomitantly. Thus, GH-mediated inhibition of Bcl6 expression may reverse the repression of SOCS2 and facilitate SOCS2 activation by GH. Together these analyses identify Bcl6 as a participant in GH-regulated gene expression and suggest an interplay between the repressor Bcl6 and the activator Stat5 in regulating genes, which contribute to GH responses.
Collapse
Affiliation(s)
- Yili Chen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Amuzie CJ, Shinozuka J, Pestka JJ. Induction of suppressors of cytokine signaling by the trichothecene deoxynivalenol in the mouse. Toxicol Sci 2009; 111:277-87. [PMID: 19625342 DOI: 10.1093/toxsci/kfp150] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin found in grains and cereal-based foods worldwide, impairs weight gain in experimental animals but the underlying mechanisms remain undetermined. Oral exposure to DON induces rapid and transient upregulation of proinflammatory cytokine expression in the mouse. The latter are known to induce several suppressors of cytokine signaling (SOCS), some of which impair growth hormone (GH) signaling. We hypothesized that oral exposure to DON will induce SOCS expression in the mouse. Real-time PCR and cytokine bead array revealed that oral gavage with DON rapidly (1 h) induced tumor necrosis factor-alpha and interleukin-6 mRNA and protein expression in several organs and plasma, respectively. Upregulation of mRNAs for four well-characterized SOCS (CIS [cytokine-inducible SH2 domain protein], SOCS1, SOCS2, and SOCS3) was either concurrent with (1 h) or subsequent to cytokine upregulation (2 h). Notably, DON-induced SOCS3 mRNAs in muscle, spleen and liver, with CIS1, SOCS1, and SOCS2 occurring to a lesser extent. Hepatic SOCS3 mRNA was a very sensitive indicator of DON exposure with SOCS3 protein being detectable in the liver well after the onset of cytokine decline (5 h). Furthermore, hepatic SOCS upregulation was associated with about 75% suppression of GH-inducible insulin-like growth factor acid labile subunit. Taken together, DON-induced cytokine upregulation corresponded to increased expression of several SOCS, and was associated with suppression of GH-inducible gene expression in the liver.
Collapse
Affiliation(s)
- Chidozie J Amuzie
- Comparative Medicine and Integrative Biology Program, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
20
|
Belot A, Cimaz R. Nouveaux traitements en rhumatologie pédiatrique : les traitements adjuvants. Arch Pediatr 2008; 15:870-2. [DOI: 10.1016/s0929-693x(08)71946-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Wang X, Jiang J, Warram J, Baumann G, Gan Y, Menon RK, Denson LA, Zinn KR, Frank SJ. Endotoxin-induced proteolytic reduction in hepatic growth hormone (GH) receptor: a novel mechanism for GH insensitivity. Mol Endocrinol 2008; 22:1427-1437. [PMID: 18323468 PMCID: PMC2422827 DOI: 10.1210/me.2007-0561] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 02/27/2008] [Indexed: 01/01/2023] Open
Abstract
GH is an important anabolic hormone. We previously demonstrated in cell culture that the cell surface GH receptor (GHR) is susceptible to inducible metalloproteolytic cleavage that yields the shed receptor extracellular domain (called GH binding protein) and renders the cells desensitized to subsequent GH stimulation. Sepsis and inflammatory states are associated with hepatic desensitization to GH, although disparate mechanisms have been postulated in various animal models. Using C3H/HeJ mice, we now demonstrate that administration of lipopolysaccharide (LPS) causes marked hepatic desensitization to GH, assessed by monitoring signal transducer and activator of transcription 5 tyrosine phosphorylation and nuclear accumulation and with a novel noninvasive bioluminescence imaging system to track in vivo hepatic GH signaling serially in individual mice. This endotoxin-induced desensitization was accompanied by marked loss of hepatic GHR, which was not explained by changes in GHR mRNA abundance. Furthermore, we observe that LPS causes GH-binding protein shedding of a hepatically expressed wild-type GHR but not a GHR with a mutation in the metalloprotease cleavage site. These data suggest that in this model system, LPS-induced desensitization to GH is associated with proteolytic GHR cleavage. These data are the first to demonstrate inducible in vivo GHR proteolysis and suggest this is a mechanism to regulate GH sensitivity and its anabolic effects during sepsis or inflammation.
Collapse
Affiliation(s)
- Xiangdong Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0012, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nakata S, Tsutsui M, Shimokawa H, Suda O, Morishita T, Shibata K, Yatera Y, Sabanai K, Tanimoto A, Nagasaki M, Tasaki H, Sasaguri Y, Nakashima Y, Otsuji Y, Yanagihara N. Spontaneous myocardial infarction in mice lacking all nitric oxide synthase isoforms. Circulation 2008; 117:2211-23. [PMID: 18413498 DOI: 10.1161/circulationaha.107.742692] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The roles of nitric oxide (NO) in the cardiovascular system have been investigated extensively in pharmacological studies with NO synthase (NOS) inhibitors and in studies with NOS isoform-deficient mice. However, because of the nonspecificity of the NOS inhibitors and the compensatory interactions among NOS isoforms (nNOS, iNOS, and eNOS), the ultimate roles of endogenous NO derived from the entire NOS system are still poorly understood. In this study, we examined this point in mice deficient in all 3 NOS isoforms (triply n/i/eNOS(-/-) mice) that we have recently developed. METHODS AND RESULTS The triply n/i/eNOS(-/-) mice, but not singly eNOS(-/-) mice, exhibited markedly reduced survival, possibly due to spontaneous myocardial infarction accompanied by severe coronary arteriosclerotic lesions. Furthermore, the triply n/i/eNOS(-/-) mice manifested phenotypes that resembled metabolic syndrome in humans, including visceral obesity, hypertension, hypertriglyceridemia, and impaired glucose tolerance. Importantly, activation of the renin-angiotensin system was noted in the triply n/i/eNOS(-/-) mice, and long-term oral treatment with an angiotensin II type 1 receptor blocker significantly suppressed coronary arteriosclerotic lesion formation and the occurrence of spontaneous myocardial infarction and improved the prognosis of those mice, along with ameliorating the metabolic abnormalities. CONCLUSIONS These results provide the first direct evidence that genetic disruption of the whole NOS system causes spontaneous myocardial infarction associated with multiple cardiovascular risk factors of metabolic origin in mice in vivo through the angiotensin II type 1 receptor pathway, demonstrating the critical role of the endogenous NOS system in maintaining cardiovascular and metabolic homeostasis.
Collapse
Affiliation(s)
- Sei Nakata
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Petzold GC, Haack S, von Bohlen und Halbach O, Priller J, Lehmann TN, Heinemann U, Dirnagl U, Dreier JP. Nitric Oxide Modulates Spreading Depolarization Threshold in the Human and Rodent Cortex. Stroke 2008; 39:1292-9. [DOI: 10.1161/strokeaha.107.500710] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Gabor C. Petzold
- From the Departments of Experimental Neurology (G.C.P., S.H., J.P., U.D., J.P.D.), Neurology (G.C.P., U.D., J.P.D.), Psychiatry (J.P.), and Neurosurgery (T.-N.L.), and the Johannes Müller Institute of Physiology (U.H.), Charité University Medicine Berlin, Berlin, and the Interdisciplinary Center for Neuroscience (O.v.B.u.H.), Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Stephan Haack
- From the Departments of Experimental Neurology (G.C.P., S.H., J.P., U.D., J.P.D.), Neurology (G.C.P., U.D., J.P.D.), Psychiatry (J.P.), and Neurosurgery (T.-N.L.), and the Johannes Müller Institute of Physiology (U.H.), Charité University Medicine Berlin, Berlin, and the Interdisciplinary Center for Neuroscience (O.v.B.u.H.), Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Oliver von Bohlen und Halbach
- From the Departments of Experimental Neurology (G.C.P., S.H., J.P., U.D., J.P.D.), Neurology (G.C.P., U.D., J.P.D.), Psychiatry (J.P.), and Neurosurgery (T.-N.L.), and the Johannes Müller Institute of Physiology (U.H.), Charité University Medicine Berlin, Berlin, and the Interdisciplinary Center for Neuroscience (O.v.B.u.H.), Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Josef Priller
- From the Departments of Experimental Neurology (G.C.P., S.H., J.P., U.D., J.P.D.), Neurology (G.C.P., U.D., J.P.D.), Psychiatry (J.P.), and Neurosurgery (T.-N.L.), and the Johannes Müller Institute of Physiology (U.H.), Charité University Medicine Berlin, Berlin, and the Interdisciplinary Center for Neuroscience (O.v.B.u.H.), Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Thomas-Nicolas Lehmann
- From the Departments of Experimental Neurology (G.C.P., S.H., J.P., U.D., J.P.D.), Neurology (G.C.P., U.D., J.P.D.), Psychiatry (J.P.), and Neurosurgery (T.-N.L.), and the Johannes Müller Institute of Physiology (U.H.), Charité University Medicine Berlin, Berlin, and the Interdisciplinary Center for Neuroscience (O.v.B.u.H.), Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Uwe Heinemann
- From the Departments of Experimental Neurology (G.C.P., S.H., J.P., U.D., J.P.D.), Neurology (G.C.P., U.D., J.P.D.), Psychiatry (J.P.), and Neurosurgery (T.-N.L.), and the Johannes Müller Institute of Physiology (U.H.), Charité University Medicine Berlin, Berlin, and the Interdisciplinary Center for Neuroscience (O.v.B.u.H.), Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Ulrich Dirnagl
- From the Departments of Experimental Neurology (G.C.P., S.H., J.P., U.D., J.P.D.), Neurology (G.C.P., U.D., J.P.D.), Psychiatry (J.P.), and Neurosurgery (T.-N.L.), and the Johannes Müller Institute of Physiology (U.H.), Charité University Medicine Berlin, Berlin, and the Interdisciplinary Center for Neuroscience (O.v.B.u.H.), Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Jens P. Dreier
- From the Departments of Experimental Neurology (G.C.P., S.H., J.P., U.D., J.P.D.), Neurology (G.C.P., U.D., J.P.D.), Psychiatry (J.P.), and Neurosurgery (T.-N.L.), and the Johannes Müller Institute of Physiology (U.H.), Charité University Medicine Berlin, Berlin, and the Interdisciplinary Center for Neuroscience (O.v.B.u.H.), Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Raher MJ, Thibault H, Poh KK, Liu R, Halpern EF, Derumeaux G, Ichinose F, Zapol WM, Bloch KD, Picard MH, Scherrer-Crosbie M. In vivo characterization of murine myocardial perfusion with myocardial contrast echocardiography: validation and application in nitric oxide synthase 3 deficient mice. Circulation 2007; 116:1250-7. [PMID: 17709634 DOI: 10.1161/circulationaha.107.707737] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The ability to noninvasively evaluate murine myocardial blood flow (MBF) in vivo would provide an important tool for cardiovascular research. Myocardial contrast echocardiography (MCE) has been used to measure MBF; however, it has not been validated in mice. This study assesses whether MCE can evaluate MBF at rest and after vasodilation and measure the maximal augmentation (coronary reserve) of MBF in mice. Wild-type (WT) and nitric oxide synthase 3 (NOS3)-deficient (NOS3-/-) mice were studied. METHODS AND RESULTS MCE was performed at baseline and after intravenous infusion of acetylcholine or adenosine. Definity contrast agent was infused, and parasternal views were acquired in real-time mode. Replenishment curves of myocardial contrast were obtained, and rates of signal rise (beta) and plateau intensity (A) were calculated. MBF estimated by the product of A and beta (Abeta) was compared with that measured with fluorescent microspheres. MCE analysis was feasible in 98% (52/53) of mice. MBF measured by microspheres increased with adenosine and correlated closely with Abeta. There was no difference in MCE-derived MBF between WT and NOS3-/- mice at rest. Adenosine infusion increased MBF by 3.0+/-0.6-fold in NOS3-/- mice and 2.5+/-0.3-fold in WT (P=0.58 between genotypes). Acetylcholine induced an increase of 2.4+/-0.2-fold in MBF in WT mice but did not increase MBF in NOS3-/- mice (P<0.0005 versus WT). CONCLUSIONS MBF, coronary reserve, and vasodilator responses can be evaluated accurately in the intact mouse by MCE. This method demonstrated a preserved coronary response to adenosine but an impaired acetylcholine-induced vasodilation in NOS3-/- mice compared with WT mice.
Collapse
Affiliation(s)
- Michael J Raher
- Cardiac Ultrasound Laboratory, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nuno DW, Korovkina VP, England SK, Lamping KG. RhoA Activation Contributes to Sex Differences in Vascular Contractions. Arterioscler Thromb Vasc Biol 2007; 27:1934-40. [PMID: 17556652 DOI: 10.1161/atvbaha.107.144675] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Studies have suggested that sex differences in endothelial function in part account for the lower incidence of cardiovascular disease in premenopausal women compared with men. Less is known about the role of smooth muscle. We hypothesized that signaling mechanisms that regulate calcium sensitivity in vascular muscle also play a role in determining sex differences in contractile function.
Methods and Results—
In aorta, concentration-dependent contractions to serotonin were greater in male versus female mice whereas contractions to KCl and U46619 were similar. Nitric oxide or other endothelial-derived factors did not account for the difference in responses to serotonin because inhibition of nitric oxide synthase (NOS) with N
G
-nitro-
l
-arginine, genetic deficiency of endothelial NOS, and removal of endothelium increased contractions but did not abolish the enhanced contractions in aorta from males. Contractions in aorta from both males and females were abolished by a serotonergic 5HT
2A
receptor antagonist (ketanserin), however there was no sex difference in 5HT
2A
receptor expression. Activation of RhoA and Rho-kinase by serotonin was greater in aorta from males compared with females, but this was not related to greater expression of RhoA or Rho-kinase isoforms (ROCK1 and ROCK2). The sex difference in aortic contractions to serotonin was abolished by an inhibitor of Rho-kinase, Y27632.
Conclusion—
We conclude that increased contractions to serotonin in aorta from male mice are attributable to differences in RhoA/Rho-kinase activation in smooth muscle independent of differences in the expression of RhoA or Rho-kinase.
Collapse
Affiliation(s)
- Daniel W Nuno
- VA Medical Center, 10W16, 601 Highway 6 West, Iowa City, IA 52246, USA
| | | | | | | |
Collapse
|
26
|
Favre J, Musette P, Douin-Echinard V, Laude K, Henry JP, Arnal JF, Thuillez C, Richard V. Toll-like receptors 2-deficient mice are protected against postischemic coronary endothelial dysfunction. Arterioscler Thromb Vasc Biol 2007; 27:1064-71. [PMID: 17332486 DOI: 10.1161/atvbaha.107.140723] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Toll-like receptors (TLR) 2 are expressed in cardiac and inflammatory cells, and regulate leukocyte function. Because leukocyte adhesion is a critical event in endothelial injury induced by ischemia/reperfusion (I/R), we assessed whether TLR2 were involved in I/R-induced coronary endothelial injury. METHODS AND RESULTS Ischemia-reperfusion markedly decreased NO-mediated coronary relaxations to acetylcholine assessed ex vivo. In contrast, in TLR2 deficient mice, I/R paradoxically improved the NO-mediated responses to acetylcholine. To precise the cellular compartment expressing TLR2 which is involved in endothelial injury, we developed bone-marrow chimeric mice by transplanting TLR2-/- bone marrow to WT mice or WT bone marrow to TLR2-/- mice and submitted them to I/R 5 weeks after transplant. Both chimeric mice displayed similar protection as TLR2-/- mice against I/R-induced endothelial dysfunction, suggesting a role of TLR2 expressed on both non-bone marrow cells (in our case presumably endothelial cells and/or cardiomyocytes) and cells of bone marrow origin (presumably neutrophils). TLR2 deficiency was also associated with a smaller infarct size, and reduced reperfusion-induced production of reactive oxygen species and leukocyte infiltration. CONCLUSIONS TLR2 contribute to coronary endothelial dysfunction after I/R, possibly through stimulation of neutrophil- (and free radical-) mediated endothelial injury.
Collapse
Affiliation(s)
- Julie Favre
- Inserm U644 & Rouen University Hospital, Institute for Biomedical Research and IFRMP 23, University of Rouen, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ceseña TI, Cui TX, Piwien-Pilipuk G, Kaplani J, Calinescu AA, Iñiguez-Lluhí JA, Kwok R, Schwartz J. Multiple mechanisms of growth hormone-regulated gene transcription. Mol Genet Metab 2007; 90:126-33. [PMID: 17129742 PMCID: PMC1986646 DOI: 10.1016/j.ymgme.2006.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 10/21/2006] [Accepted: 10/21/2006] [Indexed: 12/21/2022]
Abstract
Diverse physiological actions of growth hormone (GH) are mediated by changes in gene transcription. Transcription can be regulated at several levels, including post-translational modification of transcription factors, and formation of multiprotein complexes involving transcription factors, co-regulators and additional nuclear proteins; these serve as targets for regulation by hormones and signaling pathways. Evidence that GH regulates transcription at multiple levels is exemplified by analysis of the proto-oncogene c-fos. Among the GH-regulated transcription factors on c-fos, C/EBPbeta appears to be key, since depletion of C/EBPbeta by RNA interference blocks the stimulation of c-fos by GH. The phosphorylation state of C/EBPbeta and its ability to activate transcription are regulated by GH through MAPK and PI3K/Akt-mediated signaling cascades. The acetylation of C/EBPbeta also contributes to its ability to activate c-fos transcription. These and other post-translational modifications of C/EBPbeta appear to be integrated for regulation of transcription by GH. The formation of nuclear proteins into complexes associated with DNA-bound transcription factors is also regulated by GH. Both C/EBPbeta and the co-activator p300 are recruited to c-fos in response to GH, altering c-fos promoter activation. In addition, GH rapidly induces spatio-temporal re-localization of C/EBPbeta within the nucleus. Thus, GH-regulated gene transcription mediated by C/EBPbeta reflects the integration of diverse mechanisms including post-translational modifications, modulation of protein complexes associated with DNA and re-localization of gene regulatory proteins. Similar integration involving other transcription factors, including Stats, appears to be a feature of regulation by GH of other gene targets.
Collapse
Affiliation(s)
- Teresa I. Ceseña
- Cellular & Molecular Biology Program, University Michigan, Ann Arbor, MI 48109
| | - Tracy Xiao Cui
- Dept. of Molecular & Integrative Physiology, University Michigan, Ann Arbor, MI 48109
| | | | - Julianne Kaplani
- Dept. of Molecular & Integrative Physiology, University Michigan, Ann Arbor, MI 48109
| | | | | | - Roland Kwok
- Depts of Biological Chemistry and Ob/Gyn, University Michigan, Ann Arbor, MI 48109
| | - Jessica Schwartz
- Cellular & Molecular Biology Program, University Michigan, Ann Arbor, MI 48109
- Dept. of Molecular & Integrative Physiology, University Michigan, Ann Arbor, MI 48109
| |
Collapse
|
28
|
Nakata S, Tsutsui M, Shimokawa H, Yamashita T, Tanimoto A, Tasaki H, Ozumi K, Sabanai K, Morishita T, Suda O, Hirano H, Sasaguri Y, Nakashima Y, Yanagihara N. Statin treatment upregulates vascular neuronal nitric oxide synthase through Akt/NF-kappaB pathway. Arterioscler Thromb Vasc Biol 2006; 27:92-8. [PMID: 17082483 DOI: 10.1161/01.atv.0000251615.61858.33] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Three-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are known to enhance vascular expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS). In this study, we examined whether statins also upregulate vascular expression of neuronal NOS (nNOS). METHODS AND RESULTS In cultured rat aortic smooth muscle cells, treatment with atorvastatin significantly increased nNOS expression, associated with activation of Akt and NF-kappaB. Inhibition of Akt by dominant-negative Akt suppressed atorvastatin-induced nNOS expression as well as Akt and NF-kappaB activation. Inhibition of NF-kappaB by dominant-negative IkappaB also attenuated atorvastatin-induced nNOS expression and NF-kappaB activation, but not Akt activation. We further examined whether atorvastatin also enhances nNOS expression in isolated mouse aorta, and if so, how much nNOS-derived NO accounts for atorvastatin-induced NOx production. In isolated aortas of wild-type mice, atorvastatin significantly increased all three NOS isoform expression and NOx production. In isolated aortas of doubly i/eNOS(-/-), n/eNOS(-/-), and n/iNOS(-/-) mice, which express only nNOS, iNOS, and eNOS, respectively, atorvastatin-induced NOx production was approximately 25%, 25%, and 50% to that of wild-type mice, respectively, suggesting that nNOS accounts for 25% of the atorvastatin-mediated NOx production. CONCLUSIONS These results indicate that atorvastatin upregulates vascular nNOS through Akt/NF-kappaB pathway, demonstrating a novel nNOS-mediated vascular effect of the statin.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Atorvastatin
- Cells, Cultured
- Endothelin-1/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Heptanoic Acids/pharmacology
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Male
- Mevalonic Acid/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NF-kappa B/genetics
- NF-kappa B/physiology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type I/genetics
- Nitric Oxide Synthase Type I/metabolism
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Oncogene Protein v-akt/genetics
- Oncogene Protein v-akt/physiology
- Pyrroles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Sei Nakata
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cooney RN, Shumate M. The Inhibitory Effects of Interleukin‐1 on Growth Hormone Action During Catabolic Illness. INTERLEUKINS 2006; 74:317-40. [PMID: 17027521 DOI: 10.1016/s0083-6729(06)74013-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Growth hormone (GH) induces the expression of the anabolic genes responsible for growth, metabolism, and differentiation. Normally, GH stimulates the synthesis of circulating insulin-like growth factor-I (IGF-I) by liver, which upregulates protein synthesis in many tissues. The development of GH resistance during catabolic illness or inflammation contributes to loss of body protein, resulting in multiple complications that prolong recovery and cause death. In septic patients, increased levels of proinflammatory cytokines and GH resistance are commonly observed together. Numerous studies have provided evidence that the inhibitory effects of cytokines on skeletal muscle protein synthesis during sepsis and inflammation are mediated indirectly by changes in the GH/IGF-I system. Interleukin (IL)-1, a member of the family of proinflammatory cytokines, interacts with most cell types and is an important mediator of the inflammatory response. Infusion of a specific IL-1 receptor antagonist (IL-1Ra) ameliorates protein catabolism and GH resistance during systemic infection. This suggests that IL-1 is an important mediator of GH resistance during systemic infection or inflammation. Consequently, a better understanding of the interaction between GH, IL-1, and the regulation of protein metabolism is of great importance for the care of the patient.
Collapse
Affiliation(s)
- Robert N Cooney
- Department of Surgery, The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
30
|
Abstract
Growth hormone is essential for normal linear growth and the attainment of an adult mature height. It also plays an important role in cartilage growth and the attainment of normal bone mass. There is only one rheumatic disorder, namely acromegaly, in which abnormalities of growth hormone production play a major etiologic role. However, there is increasing appreciation that suboptimal growth hormone secretion, leading to a state of adult growth hormone deficiency, may occur in the setting of chronic inflammatory disease, chronic corticosteroid use, and fibromyalgia. Therefore, the evaluation and effective management of growth hormone oversecretion and undersecretion is relevant to practicing rheumatologists.
Collapse
Affiliation(s)
- Robert Bennett
- Department of Medicine (OP09), Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
31
|
Rush JWE, Denniss SG, Graham DA. Vascular nitric oxide and oxidative stress: determinants of endothelial adaptations to cardiovascular disease and to physical activity. ACTA ACUST UNITED AC 2005; 30:442-74. [PMID: 16258183 DOI: 10.1139/h05-133] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cardiovascular disease is the single leading cause of death and morbidity for Canadians. A universal feature of cardiovascular disease is dysfunction of the vascular endothelium, thus disrupting control of vasodilation, tissue perfusion, hemostasis, and thrombosis. Nitric oxide bioavailability, crucial for maintaining vascular endothelial health and function, depends on the processes controlling synthesis and destruction of nitric oxide as well as on the sensitivity of target tissue to nitric oxide. Evidence supports a major contribution by oxidative stress-induced destruction of nitric oxide to the endothelial dysfunction that accompanies a number of cardiovascular disease states including hypertension, diabetes, chronic heart failure, and atherosclerosis. Regular physical activity (exercise training) reduces cardiovascular disease risk. Numerous studies support the hypothesis that exercise training improves vascular endothelial function, especially when it has been impaired by preexisting risk factors. Evidence is emerging to support a role for improved nitric oxide bioavailability with training as a result of enhanced synthesis and reduced oxidative stress-mediated destruction. Molecular targets sensitive to the exercise training effect include the endothelial nitric oxide synthase and the antioxidant enzyme superoxide dismutase. However, many fundamental details of the cellular and molecular mechanisms linking exercise to altered molecular and functional endothelial phenotypes have yet to be discovered. The working hypothesis is that some of the cellular mechanisms contributing to endothelial dysfunction in cardiovascular disease can be targeted and reversed by signals associated with regular increases in physical activity. The capacity for exercise training to regulate vascular endothelial function, nitric oxide bioavailability, and oxidative stress is an example of how lifestyle can complement medicine and pharmacology in the prevention and management of cardiovascular disease.
Collapse
Affiliation(s)
- James W E Rush
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
32
|
Hatoum OA, Gauthier KM, Binion DG, Miura H, Telford G, Otterson MF, Campbell WB, Gutterman DD. Novel Mechanism of Vasodilation in Inflammatory Bowel Disease. Arterioscler Thromb Vasc Biol 2005; 25:2355-61. [PMID: 16141408 DOI: 10.1161/01.atv.0000184757.50141.8d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Endothelium-dependent dilation to acetylcholine (Ach) is reduced in mucosal arterioles from patients with inflammatory bowel disease (IBD). The contributions of both nitric oxide (NO) and endothelial-derived hyperpolarizing factor (EDHF) are decreased. We hypothesized that the remaining dilation results from products of cyclooxygenase. METHODS AND RESULTS High-performance liquid chromatography (HPLC) was used to isolate eicosanoid vasodilator products and videomicroscopy was used to examine vasomotor responses in human mucosal arterioles from subjects with or without IBD undergoing bowel resection surgeries. In subjects without IBD, Ach constricted (-52%+/-10%) arterioles devoid of endothelium. Indomethacin (INDO) (cyclooxygenase inhibitor) had no effect. In contrast, Ach dose-dependently dilated both intact and endothelial denuded arterioles from patients with IBD. The dilation was converted to constriction by INDO (-54%+/-9%; P<0.05 versus non-IBD) or by BWA868C (PGD2 receptor antagonist). Only in arterioles from subjects with IBD did Ach produce an arachidonic acid metabolite that comigrated on HPLC with PG D2 (PGD2). Exogenous PGD2 dilated (max=66%+/-4%) IBD arterioles. CONCLUSIONS In arterioles from IBD patients, Ach-mediated dilation shifts from endothelial production of NO and EDHF to nonendothelial generation of a PG, likely PGD2. This is a novel dilator mechanism arising from nonendothelial vascular tissue that compensates for loss of endothelium-dependent dilation. PGD2 appears to be important in regulating mucosal blood flow in patients with IBD, implicating potentially detrimental effects from nonsteroidal antiinflammatory drugs.
Collapse
Affiliation(s)
- Ossama A Hatoum
- Department of Medicine, Zablocki VA Medical Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lang CH, Hong-Brown L, Frost RA. Cytokine inhibition of JAK-STAT signaling: a new mechanism of growth hormone resistance. Pediatr Nephrol 2005; 20:306-12. [PMID: 15549417 DOI: 10.1007/s00467-004-1607-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 04/26/2004] [Accepted: 06/30/2004] [Indexed: 10/26/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor (IGF)-I are potent regulators of muscle mass in health and disease. This somatomedin axis is markedly deranged in various catabolic conditions in which circulating and tissue levels of inflammatory cytokines are elevated. The plasma concentration of IGF-I, which is primarily determined by hepatic synthesis and secretion of the peptide hormone, is dramatically decreased during catabolic and inflammatory conditions. Moreover, many of these conditions are also associated with an inability of GH to stimulate hepatic IGF-I synthesis. This defect results from an impaired phosphorylation and activation of the traditional JAK2/STAT5 signal transduction pathway. Numerous lines of evidence support the role of tumor necrosis factor (TNF)-alpha as a prominent but probably not the sole mediator of the sepsis-induced impairment in basal and GH-stimulated IGF-I synthesis in liver. Additionally, catabolic conditions produce comparable alterations in skeletal muscle. However, in contrast to liver, the GH resistance in muscle is not mediated by a defect in STAT5 phosphorylation. Muscle is now recognized to respond to infectious stimuli with the production of numerous inflammatory cytokines, including TNF-alpha. Furthermore, myocytes cultured with TNF-alpha are GH resistant and this defect appears mediated via a STAT5-independent but JNK-dependent mechanism. Collectively, these changes act to limit IGF-I availability in muscle, which disturbs protein balance and results in the loss of protein stores in catabolic and inflammatory conditions.
Collapse
Affiliation(s)
- Charles H Lang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
34
|
Broughton BRS, Donald JA. Nitric oxide control of large veins in the toad Bufo marinus. J Comp Physiol B 2005; 175:157-66. [PMID: 15690177 DOI: 10.1007/s00360-005-0471-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 11/16/2004] [Accepted: 12/13/2004] [Indexed: 11/27/2022]
Abstract
This study examined the nitric oxide (NO) control of the vascular smooth muscle of the ventral abdominal vein and vena cava of the toad, Bufo marinus, by using anatomical and physiological approaches. Nicotinamide adenine di-nucleotide phosphate-diaphorase histochemistry and immunohistochemistry using endothelial nitric oxide synthase (NOS) and neural NOS antibodies produced no evidence for endothelial NOS in the veins, but, neural NOS-immunoreactive perivascular nerves were present. Acetylcholine (10(-5) M) caused a vasodilation in both veins that was endothelium-independent, and which was blocked by the soluble guanylyl cyclase inhibitor, ODQ (10(-5) M). The NOS inhibitors, L-NNA (10(-4) M) and L-NAME (10(-4) M), did not significantly reduce the vasodilatory effect of acetylcholine in the veins; this suggested that the vasodilation was not due to NO. However, in the presence of phenoxybenzamine (10(-7)-10(-8) M), L-NNA significantly reduced the vasodilatory effect of acetylcholine in the veins. This unusual response is due to phenoxybenzamine partially inactivating the muscarinic receptor pool in the veins. In addition, the neural NOS inhibitor, vinyl-L-NIO (10(-5) M), significantly reduced the acetylcholine-mediated vasodilation in the presence of phenoxybenzamine. The results show that in toad veins, nitrergic nerves rather than an endothelial NO system are involved in NO-mediated vasodilation.
Collapse
Affiliation(s)
- Brad R S Broughton
- School of Biological and Chemical Sciences, Deakin University, Geelong, VIC 3217, Australia
| | | |
Collapse
|
35
|
Abstract
Growth hormone is essential for normal linear growth and the attainment of an adult mature height. It also plays an important role in cartilage growth and the attainment of normal bone mass. There is only one rheumatic disorder, namely acromegaly, in which abnormalities of growth hormone production play a major etiologic role. However, there is increasing appreciation that suboptimal growth hormone secretion, leading to a state of adult growth hormone deficiency, may occur in the setting of chronic inflammatory disease, chronic corticosteroid use, and fibromyalgia. Therefore, the evaluation and effective management of growth hormone oversecretion and undersecretion is relevant to practicing rheumatologists.
Collapse
Affiliation(s)
- Robert Bennett
- Oregon Health & Science University, Department of Medicine (OP09), 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA.
| |
Collapse
|
36
|
Lamping KG, Wess J, Cui Y, Nuno DW, Faraci FM. Muscarinic (M) Receptors in Coronary Circulation. Arterioscler Thromb Vasc Biol 2004; 24:1253-8. [PMID: 15130910 DOI: 10.1161/01.atv.0000130661.82773.ca] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Determining the role of specific muscarinic (M) receptor subtypes mediating responses to acetylcholine (ACh) has been limited by the specificity of pharmacological agents. Deletion of the gene for M5 receptors abolished response to ACh in cerebral blood vessels but did not affect dilation of coronary arteries. The goal of this study was to determine the M receptors mediating responses to ACh in coronary circulation using mice deficient in M2 or M3 receptors (M2-/-, M3-/-, respectively). METHODS AND RESULTS Coronary arteries from respective wild-type, M2-/-, or M3-/- mice were isolated, cannulated, and pressurized. Diameter was measured with video microscopy. After preconstriction with U46619, ACh produced dose-dependent dilation of coronary arteries that was similar in wild-type and M2-/- mice. In contrast, dilation of coronary arteries from M3-/- mice to ACh was reduced by approximately 80% compared with wild type. The residual response to ACh was atropine insensitive. Relaxation of coronary arteries to other stimuli was similar in M2-/- and M3-/- mice. Similar results were obtained in aorta rings. CONCLUSIONS These findings provide the first direct evidence that relaxation to ACh in coronary circulation is mediated predominantly by activation of M3 receptors.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Acetylcholine/pharmacology
- Animals
- Aorta, Thoracic
- Atropine/pharmacology
- Cholinergic Agents/pharmacology
- Coronary Circulation/physiology
- Coronary Vessels
- Male
- Mice
- Mice, Knockout
- Muscarinic Antagonists/pharmacology
- Nitroprusside/pharmacology
- Papaverine/pharmacology
- RNA, Messenger/biosynthesis
- Receptor, Muscarinic M1/biosynthesis
- Receptor, Muscarinic M1/genetics
- Receptor, Muscarinic M3/deficiency
- Receptor, Muscarinic M3/drug effects
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/physiology
- Receptor, Muscarinic M4/biosynthesis
- Receptor, Muscarinic M4/genetics
- Receptor, Muscarinic M5/biosynthesis
- Receptor, Muscarinic M5/genetics
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- Kathryn G Lamping
- Department of Internal Medicine and Pharmacology, University of Iowa, Roy J. and Lucille A. Carver School of Medicine and the Veterans Administration, Iowa City, IA 52246, USA.
| | | | | | | | | |
Collapse
|
37
|
McMillian M, Nie AY, Parker JB, Leone A, Kemmerer M, Bryant S, Herlich J, Yieh L, Bittner A, Liu X, Wan J, Johnson MD. Inverse gene expression patterns for macrophage activating hepatotoxicants and peroxisome proliferators in rat liver. Biochem Pharmacol 2004; 67:2141-65. [PMID: 15135310 DOI: 10.1016/j.bcp.2004.01.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 01/28/2004] [Indexed: 12/21/2022]
Abstract
Macrophage activation contributes to adverse effects produced by a number of hepatotoxic compounds. Transcriptional profiles elicited by two macrophage activators, LPS and zymosan A, were compared to those produced by 100 paradigm compounds (mostly hepatotoxicants) using cDNA microarrays. Several hepatotoxicants previously reported to activate liver macrophages produced transcriptional responses similar to LPS and zymosan, and these were used to construct a gene signature profile for macrophage activators in the liver. Measurement of cytokine mRNAs in the same liver samples by RT-PCR independently confirmed that these compounds are associated with macrophage activation. In addition to expected effects on acute phase proteins and metabolic pathways that are regulated by LPS and inflammation, a strong induction was observed for many endoplasmic reticulum-associated stress/chaperone proteins. Additionally, many genes in our macrophage activator signature profile were well-characterized PPARalpha-induced genes which were repressed by macrophage activators. A shared gene signature profile for peroxisome proliferators was determined using a training set of clofibrate, WY 14643, diethylhexylphthalate, diisononylphthalate, perfluorodecanoic acid, perfluoroheptanoic acid, and perfluorooctanoic acid. The signature profile included macrophage activator-induced genes that were repressed by peroxisome proliferators. NSAIDs comprised an interesting pharmacological class in that some compounds, notably diflunisal, co-clustered with peroxisome proliferators whereas several others co-clustered with macrophage activators, possibly due to endotoxin exposure secondary to their adverse effects on the gastrointestinal system. While much of these data confirmed findings from the literature, the transcriptional patterns detected using this toxicogenomics approach showed relationships between genes and biological pathways requiring complex analysis to be discerned.
Collapse
Affiliation(s)
- Michael McMillian
- Johnson & Johnson Pharmaceutical Research & Development, LLC, Raritan, NJ, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Denson LA, Held MA, Menon RK, Frank SJ, Parlow AF, Arnold DL. Interleukin-6 inhibits hepatic growth hormone signaling via upregulation of Cis and Socs-3. Am J Physiol Gastrointest Liver Physiol 2003; 284:G646-54. [PMID: 12519742 DOI: 10.1152/ajpgi.00178.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytokines may cause an acquired growth hormone (GH) resistance in patients with inflammatory diseases. Anabolic effects of GH are mediated through activation of STAT5 transcription factors. We have reported that TNF-alpha suppresses hepatic GH receptor (GHR) gene expression, whereas the cytokine-inducible SH2-containing protein 1 (Cis)/suppressors of cytokine signaling (Socs) genes are upregulated by TNF-alpha and IL-6 and inhibit GH activation of STAT5. However, the relative importance of these mechanisms in inflammatory GH resistance was not known. We hypothesized that IL-6 would prevent GH activation of STAT5 and that this would involve Cis/Socs protein upregulation. GH +/- LPS was administered to TNF receptor 1 (TNFR1) or IL-6 null mice and wild-type (WT) controls. STAT5, STAT3, GHR, Socs 1-3, and Cis phosphorylation and abundance were assessed by using immunoblots, EMSA, and/or real time RT-PCR. TNF-alpha and IL-6 abundance were assessed by using ELISA. GH activated STAT5 in WT and TNFR1 or IL-6 null mice. LPS pretreatment prevented STAT5 activation in WT and TNFR1 null mice; however, STAT5 activation was preserved in IL-6 null mice. GHR abundance did not change with LPS administration. Inhibition of STAT5 activation by LPS was temporally associated with phosphorylation of STAT3 and upregulation of Cis and Socs-3 protein in WT and TNFR1 null mice; STAT3, Cis, and Socs-3 were not induced in IL-6 null mice. IL-6 inhibits hepatic GH signaling by upregulating Cis and Socs-3, which may involve activation of STAT3. Therapies that block IL-6 may enhance GH signaling in inflammatory diseases.
Collapse
Affiliation(s)
- Lee A Denson
- The Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Potter JJ, Rennie-Tankersley L, Mezey E. Endotoxin enhances liver alcohol dehydrogenase by action through upstream stimulatory factor but not by nuclear factor-kappa B. J Biol Chem 2003; 278:4353-7. [PMID: 12454009 DOI: 10.1074/jbc.m210097200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Liver alcohol dehydrogenase (ADH) is increased by physiological stress and by chronic administration of growth hormone (GH). Endotoxin plays a role in the pathogenesis of alcoholic liver disease. The effect of lipopolysaccharide (LPS), the endotoxin component of Gram-negative bacteria, was determined on liver ADH. LPS given daily to rats for 3 days increased ADH mRNA, ADH protein, and ADH activity. Nuclear factor-kappaB (NF-kappaB) in the liver nuclear extracts bound to an oligonucleotide specifying region -226 to -194 of the ADH promoter, whereas upstream stimulatory factor (USF) was shown previously to bind to a more proximal site. LPS increased NF-kappaB and USF binding to the ADH promoter. The NF-kappaB (p65) and NF-kappaB (p50) expression vectors inhibited the transfected ADH promoter activity, which contrasts with the previously demonstrated stimulation by an USF expression vector. The binding activities of STAT5b and of C/EBPbeta, which mediate the effect of GH on ADH, were not changed or decreased, respectively, by LPS, indicating that GH plays no intermediary role in the effect of LPS. This study shows that LPS increases ADH and that this effect is mediated by increased binding of USF to the ADH promoter and not by NF-kappaB, which has an inhibitory action.
Collapse
Affiliation(s)
- James J Potter
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
40
|
The acute phase response. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1567-7443(03)80059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Tannenbaum B, Tannenbaum GS, Sudom K, Anisman H. Neurochemical and behavioral alterations elicited by a chronic intermittent stressor regimen: implications for allostatic load. Brain Res 2002; 953:82-92. [PMID: 12384241 DOI: 10.1016/s0006-8993(02)03273-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although stressors induce a series of adaptive neurochemical changes, sustained physiological activation associated with protracted stressor exposure may engender adverse effects (allostatic load). In the present investigation CD-1 mice exposed to a series of different stressors, twice a day over 54 days, exhibited increased signs of depression and anxiety, including increased passivity in a forced swim test, reduced aggression in a social interaction test, and delayed approach to food in a novel environment. Consistent with the view that a chronic stressor regimen affects immune-related processes, sickness behavior elicited by the proinflammatory cytokine, interleukin-1beta, was augmented in response to a chronic but not an acute stressor. Relative to nonstressed mice, median eminence serotonin was augmented by the cytokine treatment administered 24 h after chronic stressor exposure. Treatment with IL-1beta diminished plasma growth hormone levels and increased circulating corticosterone levels irrespective of the animals stressor history. It is suggested that chronic stressor exposure may instigate relatively protracted neurochemical effects, thereby influencing the behavioral responses to later psychological and systemic challenges.
Collapse
Affiliation(s)
- B Tannenbaum
- Institute of Neuroscience, Life Sciences Research Centre, Carleton University, 1125 Colonel BY Drive, Ottawa, Ontario K1S 5B6, Canada.
| | | | | | | |
Collapse
|
42
|
Yumet G, Shumate ML, Bryant P, Lin CM, Lang CH, Cooney RN. Tumor necrosis factor mediates hepatic growth hormone resistance during sepsis. Am J Physiol Endocrinol Metab 2002; 283:E472-81. [PMID: 12169440 DOI: 10.1152/ajpendo.00107.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During sepsis, growth hormone (GH) resistance contributes to the catabolism of muscle protein. To determine the role of tumor necrosis factor (TNF) as a mediator of GH resistance, we examined the effects of a TNF antagonist [TNF-binding protein (TNFbp)] on the GH/insulin-like growth factor (IGF) I system during abdominal sepsis. To investigate potential mechanisms, the effects of TNF on the IGF-I response to GH and GH signaling were examined in cultured rat hepatocytes (CWSV-1). Three groups of rats were studied: Control, Sepsis, and Sepsis + TNFbp. Liver, gastrocnemius, and plasma were collected on day 5. In gastrocnemius, neither sepsis nor TNFbp altered the abundance of IGF-I mRNA. However, septic rats demonstrated an increase in circulating GH and a reduction in plasma IGF-I concentrations that was ameliorated by pretreatment with TNFbp. Liver from septic rats demonstrated a 50% reduction in GH receptor (GHR) and IGF-I mRNA on day 5 that was attenuated by TNFbp. However, the abundance of GHR protein was not different in liver from Control, Sepsis, or Sepsis + TNFbp rats. Consequently, a decreased amount of hepatic GHR does not explain the GH-resistant septic state. In CWSV-1 hepatocytes, TNF-alpha had no effect on GHR protein level but inhibited the induction of IGF-I mRNA by GH. Nuclear protein from TNF-treated hepatocytes demonstrated similar levels of phosphorylated signal transducer and activator of transcription-5 (STAT5) and DNA binding relative to controls 5 min after GH treatment. However, both of these parameters were decreased (vs. control) in TNF-treated cells 60 min after GH treatment. Collectively, these results suggest that TNF mediates hepatic GH resistance during sepsis by inhibiting the duration of signaling via the janus kinase-2/STAT5 pathway.
Collapse
Affiliation(s)
- Gladys Yumet
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
43
|
Lang CH, Frost RA. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection. Curr Opin Clin Nutr Metab Care 2002; 5:271-9. [PMID: 11953652 DOI: 10.1097/00075197-200205000-00006] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.
Collapse
Affiliation(s)
- Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
44
|
Sesmilo G, Fairfield WP, Katznelson L, Pulaski K, Freda PU, Bonert V, Dimaraki E, Stavrou S, Vance ML, Hayden D, Klibanski A. Cardiovascular risk factors in acromegaly before and after normalization of serum IGF-I levels with the GH antagonist pegvisomant. J Clin Endocrinol Metab 2002; 87:1692-9. [PMID: 11932303 DOI: 10.1210/jcem.87.4.8364] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Acromegaly is associated with premature cardiovascular mortality. GH replacement therapy decreases inflammatory markers of cardiovascular risk, but little is known about these markers in patients with acromegaly. The GH receptor antagonist, pegvisomant, reduces IGF-I levels in 98% of patients treated. We investigated the effects of GH receptor blockade on inflammatory and other cardiovascular risk markers in active acromegaly. Forty-eight patients with acromegaly and 47 age- and body mass index-matched controls were included. The study consisted of 3 parts: a cross-sectional study, a prospective randomized 12-wk placebo-controlled study, and a longitudinal open-label study of up to 18 months of pegvisomant treatment. After baseline evaluation, patients with acromegaly were randomized to placebo (n = 14), 10 mg (n = 12), 15 mg (n = 10), or 20 mg (n = 12) daily pegvisomant for 12 wk. Subsequently, all patients received at least 10 mg pegvisomant daily for up to 18 months, with dose adjustments to achieve a normal IGF-I level. Anthropometry, GH, IGF-I, and pegvisomant levels were measured monthly. C-reactive protein (CRP), IL-6, homocysteine, lipoprotein(a), glucose, insulin, triglycerides, total cholesterol, and high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol were determined at baseline, 4 and 12 wk in the placebo-controlled study and at 3-month intervals (during which IGF-I levels were normal) in the longitudinal study. In the cross-sectional study, patients had lower CRP than did controls [median, 0.3 (range, 0.2-0.8) vs. 2.0 (0.6-3.7) mg/liter; P < 0.0001] and had higher insulin [78.6 (55.8-130.2) vs. 54.5 (36.6-77.5) pM, P = 0.0051]. IL-6, homocysteine, triglycerides, lipoprotein(a), LDL cholesterol and HDL cholesterol were not different between groups. In the placebo-controlled study, CRP increased in patients treated with 20 mg pegvisomant, compared with placebo (mean +/- SEM, 13.7 +/- 3.6 vs. 0.5 +/- 3.3 mg/liter; P = 0.010). There were no significant differences in IL-6, homocysteine, glucose, insulin, triglyceride, total cholesterol, LDL cholesterol and HDL cholesterol levels. In the longitudinal open-label study (median duration, 15.6 months), CRP increased by 2.0 +/- 0.5 mg/liter (P = 0.0002). Total cholesterol and triglycerides increased (0.22 +/- 0.11 mM, P = 0.050; and 0.25 +/- 0.09 mM, P = 0.007, respectively), whereas lipoprotein(a) decreased (-70 +/- 33 mg/liter, P = 0.039). Glucose, insulin, homocysteine, HDL cholesterol, and IL-6 did not change. We conclude that patients with active acromegaly have lower CRP and higher insulin levels than healthy controls. Administration of pegvisomant increases CRP levels. We propose that GH secretory status is an important determinant of serum CRP levels, although additional studies are needed to determine the mechanism and significance of this finding.
Collapse
Affiliation(s)
- Gemma Sesmilo
- Neuroendocrine Clinical Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The suppressors of cytokine signaling (SOCS) are recently identified inhibitors of cytokine and growth factor (GF) signaling that act via the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway. Cytokine-mediated JAK/STAT signaling controls a number of important biologic responses, including immune function, cellular growth, differentiation, and hematopoieses. The SOCS family consists of eight proteins: CIS and SOCS1-SOCS7, which contain a central SH2 domain, a conserved C-terminus referred to as the SOCS box, and a unique N-terminus. The expression of SOCS-1 to -3 and CIS is induced by cytokine or GF stimulation, resulting in the inhibition of JAK/STAT-mediated cytokine signaling by what appears to be a classic negative feedback loop. In this article we review cytokine/GF signaling by the JAK/STAT pathway, discovery of the SOCS family, the regulation of SOCS expression, mechanism(s) of SOCS action, and we summarize some of the biochemical and genetic studies investigating the physiologic role of SOCS in regulating cytokine activity.
Collapse
Affiliation(s)
- Robert N Cooney
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey 17033, USA
| |
Collapse
|
46
|
Liu YH, Xu J, Yang XP, Yang F, Shesely E, Carretero OA. Effect of ACE inhibitors and angiotensin II type 1 receptor antagonists on endothelial NO synthase knockout mice with heart failure. Hypertension 2002; 39:375-81. [PMID: 11882576 DOI: 10.1161/hy02t2.102796] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The beneficial effects of ACE inhibitors (ACEi) or angiotensin II type 1 receptor antagonists (AT(1)-ant) are reportedly mediated by NO in heart failure (HF). We hypothesized that in the absence of endothelial NO synthase (eNOS), (1) left ventricular (LV) dysfunction and myocardial remodeling would be more severe after myocardial infarction (MI), and (2) the cardioprotective effect of ACEi and AT(1)-ant would be diminished or absent in mice with HF after MI. eNOS knockout mice (eNOS-/-) and wild-type C57BL/6J (C57) mice (+/+) were subjected to MI by ligating the left coronary artery. One month after MI, each strain was treated with vehicle, ACEi (enalapril, 20 mg/kg per day), or AT(1)-ant (valsartan, 50 mg/kg per day) for 5 months. Echocardiography was performed, and systolic blood pressure was measured before MI and monthly thereafter. Interstitial collagen fraction and myocyte cross-sectional area were examined histologically. We found that (1) compared with C57 mice, eNOS-/- mice that underwent sham surgery had significantly increased systolic blood pressure (P<0.05) and increased LV mass both initially and at 1 to 3 months, although cardiac function and histological findings did not differ between strains; (2) the development of HF and myocardial remodeling were similar after MI in both strains; and (3) ACEi improved cardiac function and remodeling in C57 mice, as evidenced by increased LV ejection fraction (LVEF) and LV shortening fraction (LVSF) and decreased diastolic LV dimension, mass, myocyte cross-sectional area, and interstitial collagen fraction, but these benefits were absent or diminished in eNOS-/- mice (for C57 versus eNOS-/-: increase in LVEF after ACEi, 14.2 +/- 2% versus -4.9 +/- 2.5%, respectively [P<0.001]; increase in LVSF, 8.6 +/- 2.1% versus -7.2 +/- 2.8%, respectively [P<0.01]; and decrease in LV mass, -16.6 +/- 15 versus 73 +/- 23 mm(3), respectively [P<0.01]). AT(1)-ant had benefits similar to those of ACEi, which were also absent or diminished in eNOS-/- mice (for C57 versus eNOS-/-: increase in LVEF after AT(1)-ant, 13.5 +/- 1.8% versus -9.8 +/- 3%, respectively [P<0.001]; increase in LVSF, 6.1 +/- 1.6% versus -3.8 +/- 3.1%, respectively [P<0.01]). Our data suggest that the absence of NO does not alter the development of HF after MI; however, it significantly decreases the cardioprotective effects of ACEi or AT(1)-ant.
Collapse
Affiliation(s)
- Yun-He Liu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202-2689, USA
| | | | | | | | | | | |
Collapse
|
47
|
Schaefer F, Chen Y, Tsao T, Nouri P, Rabkin R. Impaired JAK-STAT signal transduction contributes to growth hormone resistance in chronic uremia. J Clin Invest 2001; 108:467-75. [PMID: 11489940 PMCID: PMC209355 DOI: 10.1172/jci11895] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chronic renal failure (CRF) is associated with resistance to the growth-promoting and anabolic actions of growth hormone (GH). In rats with CRF induced by partial renal ablation, 7 days of GH treatment had a diminished effect on weight gain and hepatic IGF-1 and IGFBP-1 mRNA levels, compared with sham-operated pair-fed controls. To assess whether GH resistance might be due to altered signal transduction, activation of the JAK-STAT pathway was studied 10 or 15 minutes after intravenous injection of 5 mg/kg GH or vehicle. Hepatic GH receptor (GHR) mRNA levels were significantly decreased in CRF, but GHR protein abundance and GH binding to microsomal and plasma membranes was unaltered. JAK2, STAT1, STAT3, and STAT5 protein abundance was also unchanged. However, GH-induced tyrosine phosphorylation of JAK2, STAT5, and STAT3 was 75% lower in the CRF animals. Phosphorylated STAT5 and STAT3 were also diminished in nuclear extracts. The expression of the suppressor of cytokine signaling-2 (SOCS-2) was increased twofold in GH-treated CRF animals, and SOCS-3 mRNA levels were elevated by 60% in CRF, independent of GH treatment. In conclusion, CRF causes a postreceptor defect in GH signal transduction characterized by impaired phosphorylation and nuclear translocation of GH-activated STAT proteins, which is possibly mediated, at least in part, by overexpression of SOCS proteins.
Collapse
Affiliation(s)
- F Schaefer
- Research Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | | | |
Collapse
|
48
|
Lamping K. Interactions between NO and cAMP in the regulation of vascular tone. Arterioscler Thromb Vasc Biol 2001; 21:729-30. [PMID: 11348866 DOI: 10.1161/01.atv.21.5.729] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Lamping KG, Faraci FM. Role of sex differences and effects of endothelial NO synthase deficiency in responses of carotid arteries to serotonin. Arterioscler Thromb Vasc Biol 2001; 21:523-8. [PMID: 11304467 DOI: 10.1161/01.atv.21.4.523] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined the hypothesis that contraction of the carotid arteries to serotonin is normally inhibited by endothelial NO synthase (eNOS) and is enhanced in mice lacking the gene for eNOS. Because the influence of eNOS may vary with the sex of the mouse, we also tested whether responses to serotonin were dependent on sex. We studied carotid arteries in vitro from littermate control (eNOS(+/+)) mice, heterozygous (eNOS(+/-)) mice, and homozygous eNOS-deficient (eNOS(-/-)) mice (male and female). Contraction to serotonin was greater in male eNOS(+/+) mice than in female eNOS(+/+) mice. In male mice, contraction to serotonin increased by approximately 40% and 2.5-fold in male eNOS(+/-) and eNOS(-/-) mice, respectively. Contraction to serotonin was more than doubled in female eNOS(+/-) mice and increased >5-fold in arteries from eNOS(-/-) mice. In contrast, maximum vasoconstriction to U46619 was similar in male and female eNOS(+/+), eNOS(+/-), and eNOS(-/-) mice. Relaxation to acetylcholine was not different in male and female eNOS(+/+) or eNOS(+/-) mice but was absent in eNOS(-/-) mice. These findings suggest that the contraction of carotid arteries to serotonin is influenced by the sex of the animal. eNOS deficiency in gene-targeted mice is associated with enhanced contraction to serotonin, particularly in female mice, providing direct evidence that eNOS is a major determinant of vascular effects of serotonin. The results with eNOS(+/-) mice suggest a "gene-dosing" effect for vascular responses to serotonin.
Collapse
Affiliation(s)
- K G Lamping
- Departments of Internal Medicine and Pharmacology, The Cardiovascular Center, The University of Iowa, and Veterans Administration Medical Center, Iowa City, Iowa 52246, USA.
| | | |
Collapse
|
50
|
Mullen MJ, Kharbanda RK, Cross J, Donald AE, Taylor M, Vallance P, Deanfield JE, MacAllister RJ. Heterogenous nature of flow-mediated dilatation in human conduit arteries in vivo: relevance to endothelial dysfunction in hypercholesterolemia. Circ Res 2001; 88:145-51. [PMID: 11157665 DOI: 10.1161/01.res.88.2.145] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flow-mediated dilatation (FMD) of conduit arteries is dependent on an intact endothelium, although the mechanisms are not fully understood. Using high-resolution ultrasound, we examined the role of endothelial mediators in radial artery dilatation in response to transient (short period of reactive hyperemia) and sustained (prolonged period of reactive hyperemia, hand warming, or an incremental infusion of acetylcholine into the distal radial artery) hyperemia. After short episodes of reactive hyperemia, FMD was abolished by local infusion of the nitric oxide synthesis inhibitor N:(G)monomethyl-L-arginine (5.3+/-1.2% versus 0.7+/-0.7%, P:<0.001). In contrast, basal vessel diameter and dilatation after prolonged episodes of reactive hyperemia, hand warming, and distal infusion of acetylcholine were not attenuated by nitric oxide synthesis inhibition. Inhibition of cyclooxygenase or local autonomic nervous system blockade also had no effect on FMD. Patients with hypercholesterolemia exhibited reduced FMD in response to transient hyperemia, but the response to sustained hyperemia was normal. These data suggest heterogeneity of endothelial responses to blood flow that are dependent on the characteristics of the flow stimulus. Dilatation after brief episodes of hyperemia is mediated by release of nitric oxide, whereas dilatation during sustained hyperemia is unaffected by NO synthesis inhibition. Hypercholesterolemia seems to differentially affect these pathways with impairment of the nitric oxide-dependent pathway and preservation of non nitric oxide-mediated dilatation to sustained flow stimuli.
Collapse
Affiliation(s)
- M J Mullen
- Vascular Physiology Unit, Institute of Child Health and the Centre for Clinical Pharmacology, University College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|