1
|
Sato TR, Ode KL, Kinoshita FL, Ueda HR. A design principle for neuronal firing with up-down oscillation through Na + dynamics. iScience 2025; 28:111904. [PMID: 40028276 PMCID: PMC11869597 DOI: 10.1016/j.isci.2025.111904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/10/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Nonrapid eye movement sleep is characterized by high-amplitude and low-frequency electroencephalography signals. These signals are thought to be produced by the synchronized activity of cortical neurons, demonstrating the alternating bursting (up) and resting (down) states. Here, such an activity is referred to as up-down oscillation (UDO). Previously, we discussed the importance of the Ca2+-dependent hyperpolarization pathway in the generation of UDO by simulating neuronal activity based on the Hodgkin-Huxley-type model. We herein focus on intracellular Na+ dynamics. The Na+-centered model indicates that the activation of voltage-gated Na+ channels leads to intracellular Na+ accumulation, which in turn activates Na+-dependent K+ (KNa) channels or Na+/K+ ATPases, resulting in the down state. Activation kinetics of voltage-gated Na+ channels are important in shaping the UDO firing. Therefore, our model demonstrates that voltage-gated Na+ and KNa channels or Na+/K+ ATPases are candidate pathways for UDO induction.
Collapse
Affiliation(s)
- Tomohide R. Sato
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koji L. Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fukuaki L. Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Systems Biology, Institute of Life Science, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
2
|
Hong H, Trussell LO. Noise-induced hearing loss enhances Ca 2+-dependent spontaneous bursting activity in lateral cochlear efferents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631771. [PMID: 39829915 PMCID: PMC11741279 DOI: 10.1101/2025.01.07.631771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Exposure to loud and/or prolonged noise damages cochlear hair cells and triggers downstream changes in synaptic and electrical activity in multiple brain regions, resulting in hearing loss and altered speech comprehension. It remains unclear however whether or not noise exposure also compromises the cochlear efferent system, a feedback pathway in the brain that fine-tunes hearing sensitivity in the cochlea. We examined the effects of noise-induced hearing loss on the spontaneous action potential (AP) firing pattern in mouse lateral olivocochlear (LOC) neurons. This spontaneous firing exhibits a characteristic burst pattern dependent on Ca2+ channels, and we therefore also examined the effects of noise-induced hearing loss on the function of these and other ion channels. The burst pattern was sustained by an interaction between inactivating Ca2+ currents contributed largely by L-type channels, and steady outward currents mediated by Ba2+-sensitive inwardly-rectifying and two-pore domain K+ channels. One week following exposure to loud broadband noise, hearing thresholds were significantly elevated, and the duration of AP bursts was increased, likely as a result of an enhanced Ca2+ current. Additional effects of noise-induced hearing loss included alteration of Ca2+-dependent inactivation of Ca2+ currents and a small elevation of outward K+ currents. We propose that noise-induced hearing loss enhances efferent activity and may thus amplify the release of neurotransmitters and neuromodulators (i.e., neuropeptides), potentially altering sensory coding within the damaged cochlea.
Collapse
Affiliation(s)
- Hui Hong
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239
- Bellucci Translational Hearing Center, Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, 68178
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239
| |
Collapse
|
3
|
Tseng WW, Chu CH, Lee YJ, Zhao S, Chang C, Ho YP, Wei AC. Metabolic regulation of mitochondrial morphologies in pancreatic beta cells: coupling of bioenergetics and mitochondrial dynamics. Commun Biol 2024; 7:1267. [PMID: 39369076 PMCID: PMC11455970 DOI: 10.1038/s42003-024-06955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Cellular bioenergetics and mitochondrial dynamics are crucial for the secretion of insulin by pancreatic beta cells in response to elevated levels of blood glucose. To elucidate the interactions between energy production and mitochondrial fission/fusion dynamics, we combine live-cell mitochondria imaging with biophysical-based modeling and graph-based network analysis. The aim is to determine the mechanism that regulates mitochondrial morphology and balances metabolic demands in pancreatic beta cells. A minimalistic differential equation-based model for beta cells is constructed that includes glycolysis, oxidative phosphorylation, calcium dynamics, and fission/fusion dynamics, with ATP synthase flux and proton leak flux as main regulators of mitochondrial dynamics. The model shows that mitochondrial fission occurs in response to hyperglycemia, starvation, ATP synthase inhibition, uncoupling, and diabetic conditions, in which the rate of proton leakage exceeds the rate of mitochondrial ATP synthesis. Under these metabolic challenges, the propensities of tip-to-tip fusion events simulated from the microscopy images of the mitochondrial networks are lower than those in the control group and prevent the formation of mitochondrial networks. The study provides a quantitative framework that couples bioenergetic regulation with mitochondrial dynamics, offering insights into how mitochondria adapt to metabolic challenges.
Collapse
Affiliation(s)
- Wen-Wei Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsiang Chu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ju Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Shirui Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - Chen Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Magnuson MA, Osipovich AB. Ca 2+ signaling and metabolic stress-induced pancreatic β-cell failure. Front Endocrinol (Lausanne) 2024; 15:1412411. [PMID: 39015185 PMCID: PMC11250477 DOI: 10.3389/fendo.2024.1412411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Early in the development of Type 2 diabetes (T2D), metabolic stress brought on by insulin resistance and nutrient overload causes β-cell hyperstimulation. Herein we summarize recent studies that have explored the premise that an increase in the intracellular Ca2+ concentration ([Ca2+]i), brought on by persistent metabolic stimulation of β-cells, causes β-cell dysfunction and failure by adversely affecting β-cell function, structure, and identity. This mini-review builds on several recent reviews that also describe how excess [Ca2+]i impairs β-cell function.
Collapse
Affiliation(s)
- Mark A. Magnuson
- Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
5
|
Ye J, Guo K, Li J, Li X, Zhou Z, Yang L. Estimating the effect of lipid-lowering agents on novel subtypes of adult-onset diabetes. Diabetes Metab Res Rev 2024; 40:e3793. [PMID: 38661109 DOI: 10.1002/dmrr.3793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024]
Abstract
AIMS The aims of the present study were to assess the effects of lipid-lowering drugs [HMG-CoA reductase inhibitors, proprotein convertase subtilisin/kexin type 9 inhibitors, and Niemann-Pick C1-Like 1 (NPC1L1) inhibitors] on novel subtypes of adult-onset diabetes through a Mendelian randomisation study. MATERIALS AND METHODS We first inferred causal associations between lipid-related traits [including high-density lipoprotein cholesterol, low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), apolipoproteins A-I, and apolipoproteins B] and novel subtypes of adult-onset diabetes. The expression quantitative trait loci of drug target genes for three classes of lipid-lowering drugs, as well as genetic variants within or nearby drug target genes associated with LDL-C, were then utilised as proxies for the exposure of lipid-lowering drugs. Mendelian randomisation analysis was performed using summary data from genome-wide association studies of LDL-C, severe autoimmune diabetes, severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related diabetes. RESULTS There was an association between HMGCR-mediated LDL-C and the risk of SIRD [odds ratio (OR) = 0.305, 95% confidence interval (CI) = 0.129-0.723; p = 0.007], and there was an association of PCSK9-mediated LDL-C with the risk of SIDD (OR = 0.253, 95% CI = 0.120-0.532; p < 0.001) and MOD (OR = 0.345, 95% CI = 0.171-0.696; p = 0.003). Moreover, NPC1L1-mediated LDL-C (OR = 0.109, 95% CI = 0.019-0.613; p = 0.012) and the increased expression of NPC1L1 gene in blood (OR = 0.727, 95% CI = 0.541-0.977; p = 0.034) both showed a significant association with SIRD. These results were further confirmed by sensitivity analyses. CONCLUSIONS In summary, the different lipid-lowering medications have a specific effect on the increased risk of different novel subtypes of adult-onset diabetes.
Collapse
Affiliation(s)
- Jianan Ye
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Graff SM, Nakhe AY, Dadi PK, Dickerson MT, Dobson JR, Zaborska KE, Ibsen CE, Butterworth RB, Vierra NC, Jacobson DA. TALK-1-mediated alterations of β-cell mitochondrial function and insulin secretion impair glucose homeostasis on a diabetogenic diet. Cell Rep 2024; 43:113673. [PMID: 38206814 PMCID: PMC10961926 DOI: 10.1016/j.celrep.2024.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 11/08/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024] Open
Abstract
Mitochondrial Ca2+ ([Ca2+]m) homeostasis is critical for β-cell function and becomes disrupted during the pathogenesis of diabetes. [Ca2+]m uptake is dependent on elevations in cytoplasmic Ca2+ ([Ca2+]c) and endoplasmic reticulum Ca2+ ([Ca2+]ER) release, both of which are regulated by the two-pore domain K+ channel TALK-1. Here, utilizing a novel β-cell TALK-1-knockout (β-TALK-1-KO) mouse model, we found that TALK-1 limited β-cell [Ca2+]m accumulation and ATP production. However, following exposure to a high-fat diet (HFD), ATP-linked respiration, glucose-stimulated oxygen consumption rate, and glucose-stimulated insulin secretion (GSIS) were increased in control but not TALK1-KO mice. Although β-TALK-1-KO animals showed similar GSIS before and after HFD treatment, these mice were protected from HFD-induced glucose intolerance. Collectively, these data identify that TALK-1 channel control of β-cell function reduces [Ca2+]m and suggest that metabolic remodeling in diabetes drives dysglycemia.
Collapse
Affiliation(s)
- Sarah M Graff
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacy and Pharmaceutical Sciences, Lipscomb University, Nashville, TN 37204, USA
| | - Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jordyn R Dobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Karolina E Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Chloe E Ibsen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Regan B Butterworth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Nicholas C Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
7
|
Paradiž Leitgeb E, Kerčmar J, Križančić Bombek L, Pohorec V, Skelin Klemen M, Slak Rupnik M, Gosak M, Dolenšek J, Stožer A. Exendin-4 affects calcium signalling predominantly during activation and activity of beta cell networks in acute mouse pancreas tissue slices. Front Endocrinol (Lausanne) 2024; 14:1315520. [PMID: 38292770 PMCID: PMC10826511 DOI: 10.3389/fendo.2023.1315520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Tight control of beta cell stimulus-secretion coupling is crucial for maintaining homeostasis of energy-rich nutrients. While glucose serves as a primary regulator of this process, incretins augment beta cell function, partly by enhancing cytosolic [Ca2+] dynamics. However, the details of how precisely they affect beta cell recruitment during activation, their active time, and functional connectivity during plateau activity, and how they influence beta cell deactivation remain to be described. Performing functional multicellular Ca2+ imaging in acute mouse pancreas tissue slices enabled us to systematically assess the effects of the GLP-1 receptor agonist exendin-4 (Ex-4) simultaneously in many coupled beta cells with high resolution. In otherwise substimulatory glucose, Ex-4 was able to recruit approximately a quarter of beta cells into an active state. Costimulation with Ex-4 and stimulatory glucose shortened the activation delays and accelerated beta cell activation dynamics. More specifically, active time increased faster, and the time required to reach half-maximal activation was effectively halved in the presence of Ex-4. Moreover, the active time and regularity of [Ca2+]IC oscillations increased, especially during the first part of beta cell response. In contrast, subsequent addition of Ex-4 to already active cells did not significantly enhance beta cell activity. Network analyses further confirmed increased connectivity during activation and activity in the presence of Ex-4, with hub cell roles remaining rather stable in both control experiments and experiments with Ex-4. Interestingly, Ex-4 demonstrated a biphasic effect on deactivation, slightly prolonging beta cell activity at physiological concentrations and shortening deactivation delays at supraphysiological concentrations. In sum, costimulation by Ex-4 and glucose increases [Ca2+]IC during beta cell activation and activity, indicating that the effect of incretins may, to an important extent, be explained by enhanced [Ca2+]IC signals. During deactivation, previous incretin stimulation does not critically prolong cellular activity, which corroborates their low risk of hypoglycemia.
Collapse
Affiliation(s)
- Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jasmina Kerčmar
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Vilijem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
8
|
Rebello CJ, Morales TS, Chuon K, Dong S, Lam VT, Purner D, Lewis S, Lakey J, Beyl RA, Greenway FL. Physiologic hormone administration improves HbA1C in Native Americans with type 2 diabetes: A retrospective study and review of insulin secretion and action. Obes Rev 2023; 24:e13625. [PMID: 37580916 PMCID: PMC10879952 DOI: 10.1111/obr.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/16/2023]
Abstract
Insulin is secreted in pulses from pancreatic beta-cells, and these oscillations maintain fasting plasma glucose levels within a narrow normal range. Within islets, beta-cells exhibit tight synchronization of regular oscillations. This control circuit is disrupted in type 2 diabetes, and irregularities in pulse frequency and amplitude occur. The prevalence of type 2 diabetes is three times higher in American Indian and Native Alaskans compared to Whites, and their genetic ancestry is associated with low beta-cell function. Obesity in this population compounds their vulnerability to adverse outcomes. The purpose of this article is to review insulin secretion and action and its interaction with race. We also present the results from a 6-month retrospective chart review of metabolic outcomes following intravenous physiologic hormone administration to 10 Native Americans. We found reductions in hemoglobin A1C (baseline: 9.03% ± 2.08%, 6 months: 7.03% ± 0.73%, p = 0.008), fasting glucose (baseline: 176.0 ± 42.85 mg/dL, 6 months: 137.11 ± 17.05 mg/dL, p = 0.02), homeostatic model assessment of insulin resistance (baseline: 10.39 ± 4.66, 6 months: 7.74 ± 4.22, p = 0.008), and triglycerides (baseline: 212.20 ± 101.44, 6 months: 165.50 ± 76.48 mg/dL, p = 0.02). Physiologic hormone administration may improve components of the metabolic syndrome. The therapy warrants investigation in randomized controlled trials.
Collapse
Affiliation(s)
- Candida J Rebello
- Nutrition and Chronic Disease, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | - Katsya Chuon
- First American Wellness, Banning, California, USA
| | - Shu Dong
- First American Wellness, Banning, California, USA
| | - V Tyrone Lam
- First American Wellness, Banning, California, USA
| | - Dan Purner
- First American Wellness, Banning, California, USA
| | | | - Jonathan Lakey
- Department of Surgery, University of California Irvine, Irvine, California, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
| | - Robbie A Beyl
- Biostatistics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Frank L Greenway
- Clinical Trials Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
9
|
Vaishali, Adlakha N. Disturbances in system dynamics of
C
a
2
+
and
I
P
3
perturbing insulin secretion in a pancreatic
β
-cell due to type-2 diabetes. J Bioenerg Biomembr 2023; 55:151-167. [PMID: 37418135 DOI: 10.1007/s10863-023-09966-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 07/08/2023]
Abstract
The individual study ofC a 2 + andI P 3 dynamics respectively in aβ -cell has yielded limited information about the cell functions. But the systems biology approaches for such studies have received very little attention by the research workers in the past. In the present work, a system-dynamics model for the interdependentC a 2 + andI P 3 signaling that controls insulin secretion in aβ -cell has been suggested. A two-way feedback system ofC a 2 + andI P 3 has been considered and one-way feedback betweenC a 2 + and insulin has been implemented in the model. The finite element method along with the Crank-Nicolson method have been applied for simulation. Numerical results have been used to analyze the impact of perturbations inC a 2 + andI P 3 dynamics on insulin secretion for normal and Type-2 diabetic conditions. The results reveal that Type-2 diabetes comes from abnormalities in insulin secretion caused by the perturbation in buffers and pumps (SERCA and PMCA).
Collapse
Affiliation(s)
- Vaishali
- Department of Mathematics and Humanities, SVNIT, Surat, 395007, Gujarat, India.
| | - Neeru Adlakha
- Department of Mathematics and Humanities, SVNIT, Surat, 395007, Gujarat, India
| |
Collapse
|
10
|
D’Angelo CV, West HL, Whitticar NB, Corbin KL, Donovan LM, Stiadle BI, Nunemaker CS. Similarities in Calcium Oscillations Between Neonatal Mouse Islets and Mature Islets Exposed to Chronic Hyperglycemia. Endocrinology 2022; 163:6585503. [PMID: 35551371 PMCID: PMC9186310 DOI: 10.1210/endocr/bqac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/19/2022]
Abstract
Pulsatility is important to islet function. As islets mature into fully developed insulin-secreting micro-organs, their ability to produce oscillatory intracellular calcium ([Ca2+]i) patterns in response to glucose also matures. In this study, we measured [Ca2+]i using fluorescence imaging to characterize oscillations from neonatal mice on postnatal (PN) days 0, 4, and 12 in comparison to adult islets. Under substimulatory (3-mM) glucose levels, [Ca2+]i was low and quiescent for adult islets as expected, as well as for PN day 12 islets. In contrast, one-third of islets on PN day 0 and 4 displayed robust [Ca2+]i oscillations in low glucose. In stimulatory glucose (11 mM) conditions, oscillations were present on all neonatal days but differed from patterns in adults. By PN day 12, [Ca2+]i oscillations were approaching characteristics of fully developed islets. The immature response pattern of neonatal islets was due, at least in part, to differences in adenosine 5'-triphosphate (ATP)-sensitive K+-channel activity estimated by [Ca2+]i responses to KATP channel agents diazoxide and tolbutamide. Neonatal [Ca2+]i patterns were also strikingly similar to patterns observed in mature islets exposed to hyperglycemic conditions (20 mM glucose for 48 hours): elevated [Ca2+]i and oscillations in low glucose along with reduced pulse mass in high glucose. Since a hallmark of diabetic islets is dedifferentiation, we propose that diabetic islets display features of "reverse maturation," demonstrating similar [Ca2+]i dynamics as neonatal islets. Pulsatility is thus an important emergent feature of neonatal islets. Our findings may provide insight into reversing β-cell dedifferentiation and to producing better functioning β cells from pluripotent stem cells.
Collapse
Affiliation(s)
- Cathleen V D’Angelo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Hannah L West
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Honors Tutorial College, Ohio University, Athens, Ohio 45701, USA
| | - Nicholas B Whitticar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, Ohio 45701, USA
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Lauren M Donovan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Benjamin I Stiadle
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Craig S Nunemaker
- Correspondence: Craig S. Nunemaker, PhD, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, 1 Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
11
|
Stožer A, Šterk M, Paradiž Leitgeb E, Markovič R, Skelin Klemen M, Ellis CE, Križančić Bombek L, Dolenšek J, MacDonald PE, Gosak M. From Isles of Königsberg to Islets of Langerhans: Examining the Function of the Endocrine Pancreas Through Network Science. Front Endocrinol (Lausanne) 2022; 13:922640. [PMID: 35784543 PMCID: PMC9240343 DOI: 10.3389/fendo.2022.922640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Islets of Langerhans are multicellular microorgans located in the pancreas that play a central role in whole-body energy homeostasis. Through secretion of insulin and other hormones they regulate postprandial storage and interprandial usage of energy-rich nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell communication is essential for proper function. Electrical coupling between the insulin-secreting beta cells through gap junctions composed of connexin36 is particularly important, as it provides the required, most important, basis for coordinated responses of the beta cell population. The increasing evidence that gap-junctional communication and its modulation are vital to well-regulated secretion of insulin has stimulated immense interest in how subpopulations of heterogeneous beta cells are functionally arranged throughout the islets and how they mediate intercellular signals. In the last decade, several novel techniques have been proposed to assess cooperation between cells in islets, including the prosperous combination of multicellular imaging and network science. In the present contribution, we review recent advances related to the application of complex network approaches to uncover the functional connectivity patterns among cells within the islets. We first provide an accessible introduction to the basic principles of network theory, enumerating the measures characterizing the intercellular interactions and quantifying the functional integration and segregation of a multicellular system. Then we describe methodological approaches to construct functional beta cell networks, point out possible pitfalls, and specify the functional implications of beta cell network examinations. We continue by highlighting the recent findings obtained through advanced multicellular imaging techniques supported by network-based analyses, giving special emphasis to the current developments in both mouse and human islets, as well as outlining challenges offered by the multilayer network formalism in exploring the collective activity of islet cell populations. Finally, we emphasize that the combination of these imaging techniques and network-based analyses does not only represent an innovative concept that can be used to describe and interpret the physiology of islets, but also provides fertile ground for delineating normal from pathological function and for quantifying the changes in islet communication networks associated with the development of diabetes mellitus.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Šterk
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Institute of Mathematics and Physics, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Cara E. Ellis
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
12
|
Emfinger CH, de Klerk E, Schueler KL, Rabaglia ME, Stapleton DS, Simonett SP, Mitok KA, Wang Z, Liu X, Paulo JA, Yu Q, Cardone RL, Foster HR, Lewandowski SL, Perales JC, Kendziorski CM, Gygi SP, Kibbey RG, Keller MP, Hebrok M, Merrins MJ, Attie AD. β Cell-specific deletion of Zfp148 improves nutrient-stimulated β cell Ca2+ responses. JCI Insight 2022; 7:e154198. [PMID: 35603790 PMCID: PMC9220824 DOI: 10.1172/jci.insight.154198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/20/2022] [Indexed: 12/05/2022] Open
Abstract
Insulin secretion from pancreatic β cells is essential for glucose homeostasis. An insufficient response to the demand for insulin results in diabetes. We previously showed that β cell-specific deletion of Zfp148 (β-Zfp148KO) improves glucose tolerance and insulin secretion in mice. Here, we performed Ca2+ imaging of islets from β‑Zfp148KO and control mice fed both a chow and a Western-style diet. β-Zfp148KO islets demonstrated improved sensitivity and sustained Ca2+ oscillations in response to elevated glucose levels. β-Zfp148KO islets also exhibited elevated sensitivity to amino acid-induced Ca2+ influx under low glucose conditions, suggesting enhanced mitochondrial phosphoenolpyruvate-dependent (PEP-dependent), ATP-sensitive K+ channel closure, independent of glycolysis. RNA-Seq and proteomics of β-Zfp148KO islets revealed altered levels of enzymes involved in amino acid metabolism (specifically, SLC3A2, SLC7A8, GLS, GLS2, PSPH, PHGDH, and PSAT1) and intermediary metabolism (namely, GOT1 and PCK2), consistent with altered PEP cycling. In agreement with this, β-Zfp148KO islets displayed enhanced insulin secretion in response to l-glutamine and activation of glutamate dehydrogenase. Understanding pathways controlled by ZFP148 may provide promising strategies for improving β cell function that are robust to the metabolic challenge imposed by a Western diet.
Collapse
Affiliation(s)
| | | | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mary E. Rabaglia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shane P. Simonett
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kelly A. Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ziyue Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca L. Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Hannah R. Foster
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sophie L. Lewandowski
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - José C. Perales
- Department of Physiological Sciences, School of Medicine, University of Barcelona, L’Hospitalet del Llobregat, Barcelona, Spain
| | - Christina M. Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard G. Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Benninger RKP, Kravets V. The physiological role of β-cell heterogeneity in pancreatic islet function. Nat Rev Endocrinol 2022; 18:9-22. [PMID: 34667280 PMCID: PMC8915749 DOI: 10.1038/s41574-021-00568-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 01/03/2023]
Abstract
Endocrine cells within the pancreatic islets of Langerhans are heterogeneous in terms of transcriptional profile, protein expression and the regulation of hormone release. Even though this heterogeneity has long been appreciated, only within the past 5 years have detailed molecular analyses led to an improved understanding of its basis. Although we are beginning to recognize why some subpopulations of endocrine cells are phenotypically different to others, arguably the most important consideration is how this heterogeneity affects the regulation of hormone release to control the homeostasis of glucose and other energy-rich nutrients. The focus of this Review is the description of how endocrine cell heterogeneity (and principally that of insulin-secreting β-cells) affects the regulation of hormone secretion within the islets of Langerhans. This discussion includes an overview of the functional characteristics of the different islet cell subpopulations and describes how they can communicate to influence islet function under basal and glucose-stimulated conditions. We further discuss how changes to the specific islet cell subpopulations or their numbers might underlie islet dysfunction in type 2 diabetes mellitus. We conclude with a discussion of several key open questions regarding the physiological role of islet cell heterogeneity.
Collapse
Affiliation(s)
- Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Vira Kravets
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
14
|
Langlhofer G, Kogel A, Schaefer M. Glucose-induced [Ca2+]i oscillations in β cells are composed of trains of spikes within a subplasmalemmal microdomain. Cell Calcium 2021; 99:102469. [PMID: 34509871 DOI: 10.1016/j.ceca.2021.102469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Electrical activity and oscillations of cytosolic Ca2+ concentrations ([Ca2+]i) that trigger insulin release in response to glucose are key functions of pancreatic β cells. Although oscillatory Ca2+ signals have been intensively studied in β cells, their lower frequency did not match that of electrical activity. In addition, the measured peak [Ca2+]i did not reach levels that are typically required by synaptotagmins to elicit the release of insulin-containing vesicles in live-cell experiments. We therefore sought to resolve the Ca2+ dynamics in the subplasmalemmal microdomain that is critical for triggering fast exocytosis. Applying total internal reflection fluorescence (TIRF) microscopy in insulin-producing INS-1E and primary mouse β cells, we resolved extraordinary fast trains of Ca2+ spiking (frequency > 3 s-1) in response to glucose exposure. Using a low-affinity [Ca2+]i indicator dye, we provide experimental evidence that Ca2+ spikes reach low micromolar apparent concentrations in the vicinity of the plasma membrane. Analysis of Ca2+ spikes evoked by repeated depolarization for 10 ms closely matched the Ca2+ dynamics observed upon glucose application. To our knowledge, this is the first study that experimentally demonstrates Ca2+ spikes in β cells with velocities that resemble those of bursting or continuously appearing trains of action potentials (APs) in non-patched cells.
Collapse
Affiliation(s)
- Georg Langlhofer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Alexander Kogel
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
15
|
Raveh B, Sun L, White KL, Sanyal T, Tempkin J, Zheng D, Bharath K, Singla J, Wang C, Zhao J, Li A, Graham NA, Kesselman C, Stevens RC, Sali A. Bayesian metamodeling of complex biological systems across varying representations. Proc Natl Acad Sci U S A 2021; 118:e2104559118. [PMID: 34453000 PMCID: PMC8536362 DOI: 10.1073/pnas.2104559118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic β-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic β-Cell Consortium.
Collapse
Affiliation(s)
- Barak Raveh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190416, Israel
| | - Liping Sun
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kate L White
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Jeremy Tempkin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Dongqing Zheng
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Kala Bharath
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Jitin Singla
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089
- Epstein Department of Industrial and Systems Engineering, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
- Information Science Institute, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Chenxi Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jihui Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Angdi Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Carl Kesselman
- Epstein Department of Industrial and Systems Engineering, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
- Information Science Institute, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158;
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| |
Collapse
|
16
|
Bastin G, Luu L, Batchuluun B, Mighiu A, Beadman S, Zhang H, He C, Al Rijjal D, Wheeler MB, Heximer SP. RGS4-Deficiency Alters Intracellular Calcium and PKA-Mediated Control of Insulin Secretion in Glucose-Stimulated Beta Islets. Biomedicines 2021; 9:biomedicines9081008. [PMID: 34440212 PMCID: PMC8391461 DOI: 10.3390/biomedicines9081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
A number of diverse G-protein signaling pathways have been shown to regulate insulin secretion from pancreatic β-cells. Accordingly, regulator of G-protein signaling (RGS) proteins have also been implicated in coordinating this process. One such protein, RGS4, is reported to show both positive and negative effects on insulin secretion from β-cells depending on the physiologic context under which it was studied. We here use an RGS4-deficient mouse model to characterize previously unknown G-protein signaling pathways that are regulated by RGS4 during glucose-stimulated insulin secretion from the pancreatic islets. Our data show that loss of RGS4 results in a marked deficiency in glucose-stimulated insulin secretion during both phase I and phase II of insulin release in intact mice and isolated islets. These deficiencies are associated with lower cAMP/PKA activity and a loss of normal calcium surge (phase I) and oscillatory (phase II) kinetics behavior in the RGS4-deficient β-cells, suggesting RGS4 may be important for regulation of both Gαi and Gαq signaling control during glucose-stimulated insulin secretion. Together, these studies add to the known list of G-protein coupled signaling events that are controlled by RGS4 during glucose-stimulated insulin secretion and highlight the importance of maintaining normal levels of RGS4 function in healthy pancreatic tissues.
Collapse
Affiliation(s)
- Guillaume Bastin
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
- Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON M5S 3H2, Canada
- Correspondence: ; Tel.: +33-658-469-334
| | - Lemieux Luu
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Battsetseg Batchuluun
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Alexandra Mighiu
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Stephanie Beadman
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Hangjung Zhang
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Changhao He
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Dana Al Rijjal
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Michael B. Wheeler
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
| | - Scott P. Heximer
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (L.L.); (B.B.); (A.M.); (S.B.); (H.Z.); (C.H.); (D.A.R.); (M.B.W.); (S.P.H.)
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
- Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
17
|
Bédécarrats A, Puygrenier L, Castro O'Byrne J, Lade Q, Simmers J, Nargeot R. Organelle calcium-derived voltage oscillations in pacemaker neurons drive the motor program for food-seeking behavior in Aplysia. eLife 2021; 10:68651. [PMID: 34190043 PMCID: PMC8263059 DOI: 10.7554/elife.68651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
The expression of motivated behaviors depends on both external and internally arising neural stimuli, yet the intrinsic releasing mechanisms for such variably occurring behaviors remain elusive. In isolated nervous system preparations of Aplysia, we have found that irregularly expressed cycles of motor output underlying food-seeking behavior arise from regular membrane potential oscillations of varying magnitude in an identified pair of interneurons (B63) in the bilateral buccal ganglia. This rhythmic signal, which is specific to the B63 cells, is generated by organelle-derived intracellular calcium fluxes that activate voltage-independent plasma membrane channels. The resulting voltage oscillation spreads throughout a subset of gap junction-coupled buccal network neurons and by triggering plateau potential-mediated bursts in B63, can initiate motor output driving food-seeking action. Thus, an atypical neuronal pacemaker mechanism, based on rhythmic intracellular calcium store release and intercellular propagation, can act as an autonomous intrinsic releaser for the occurrence of a motivated behavior.
Collapse
Affiliation(s)
| | - Laura Puygrenier
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| | | | - Quentin Lade
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| | - John Simmers
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| | - Romuald Nargeot
- Univ. Bordeaux, INCIA, UMR 5287, F-33076 Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
Scialla S, Loppini A, Patriarca M, Heinsalu E. Hubs, diversity, and synchronization in FitzHugh-Nagumo oscillator networks: Resonance effects and biophysical implications. Phys Rev E 2021; 103:052211. [PMID: 34134340 DOI: 10.1103/physreve.103.052211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/03/2021] [Indexed: 11/06/2022]
Abstract
Using the FitzHugh-Nagumo equations to represent the oscillatory electrical behavior of β-cells, we develop a coupled oscillator network model with cubic lattice topology, showing that the emergence of pacemakers or hubs in the system can be viewed as a natural consequence of oscillator population diversity. The optimal hub to nonhub ratio is determined by the position of the diversity-induced resonance maximum for a given set of FitzHugh-Nagumo equation parameters and is predicted by the model to be in a range that is fully consistent with experimental observations. The model also suggests that hubs in a β-cell network should have the ability to "switch on" and "off" their pacemaker function. As a consequence, their relative amount in the population can vary in order to ensure an optimal oscillatory performance of the network in response to environmental changes, such as variations of an external stimulus.
Collapse
Affiliation(s)
- Stefano Scialla
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Á. del Portillo 21, 00128 Rome, Italy
| | - Alessandro Loppini
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Á. del Portillo 21, 00128 Rome, Italy
| | - Marco Patriarca
- National Institute of Chemical Physics and Biophysics, Rävala 10, Tallinn 15042, Estonia
| | - Els Heinsalu
- National Institute of Chemical Physics and Biophysics, Rävala 10, Tallinn 15042, Estonia
| |
Collapse
|
19
|
Tenner B, Getz M, Ross B, Ohadi D, Bohrer CH, Greenwald E, Mehta S, Xiao J, Rangamani P, Zhang J. Spatially compartmentalized phase regulation of a Ca 2+-cAMP-PKA oscillatory circuit. eLife 2020; 9:e55013. [PMID: 33201801 PMCID: PMC7671691 DOI: 10.7554/elife.55013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/07/2020] [Indexed: 01/31/2023] Open
Abstract
Signaling networks are spatiotemporally organized to sense diverse inputs, process information, and carry out specific cellular tasks. In β cells, Ca2+, cyclic adenosine monophosphate (cAMP), and Protein Kinase A (PKA) exist in an oscillatory circuit characterized by a high degree of feedback. Here, we describe a mode of regulation within this circuit involving a spatial dependence of the relative phase between cAMP, PKA, and Ca2+. We show that in mouse MIN6 β cells, nanodomain clustering of Ca2+-sensitive adenylyl cyclases (ACs) drives oscillations of local cAMP levels to be precisely in-phase with Ca2+ oscillations, whereas Ca2+-sensitive phosphodiesterases maintain out-of-phase oscillations outside of the nanodomain. Disruption of this precise phase relationship perturbs Ca2+ oscillations, suggesting the relative phase within an oscillatory circuit can encode specific functional information. This work unveils a novel mechanism of cAMP compartmentation utilized for localized tuning of an oscillatory circuit and has broad implications for the spatiotemporal regulation of signaling networks.
Collapse
Affiliation(s)
- Brian Tenner
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Michael Getz
- Chemical Engineering Graduate Program, University of California, San DiegoLa JollaUnited States
| | - Brian Ross
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Donya Ohadi
- Department of Mechanical and Aerospace Engineering, University of California, San DiegoLa JollaUnited States
| | - Christopher H Bohrer
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Eric Greenwald
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Sohum Mehta
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Padmini Rangamani
- Chemical Engineering Graduate Program, University of California, San DiegoLa JollaUnited States
- Department of Mechanical and Aerospace Engineering, University of California, San DiegoLa JollaUnited States
| | - Jin Zhang
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
20
|
Turovskaya MV, Epifanova EA, Tarabykin VS, Babaev AA, Turovsky EA. Interleukin-10 restores glutamate receptor-mediated Ca 2+-signaling in brain circuits under loss of Sip1 transcription factor. Int J Neurosci 2020; 132:114-125. [PMID: 32727246 DOI: 10.1080/00207454.2020.1803305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study aimed to investigate the connection between the mutation of the Sip1 transcription factor and impaired Ca2+-signaling, which reflects changes in neurotransmission in the cerebral cortex in vitro. METHODS We used mixed neuroglial cortical cell cultures derived from Sip1 mutant mice. The cells were loaded with a fluorescent ratiometric calcium-sensitive probe Fura-2 AM and epileptiform activity was modeled by excluding magnesium ions from the external media or adding a GABA(A) receptor antagonist, bicuculline. Intracellular calcium dynamics were recorded using fluorescence microscopy. To identify the level of gene expression, the Real-Time PCR method was used. RESULTS It was found that cortical neurons isolated from homozygous (Sip1fl/fl) mice with the Sip1 mutation demonstrate suppressed Ca2+ signals in models of epileptiform activity in vitro. Wild-type cortical neurons are characterized by synchronous high-frequency and high-amplitude Ca2+ oscillations occurring in all neurons of the network in response to Mg2+-free medium and bicuculline. But cortical Sip1fl/fl neurons only single Ca2+ pulses or attenuated Ca2+ oscillations are recorded and only in single neurons, while most of the cell network does not respond to these stimuli. This signal deficiency of Sip1fl/fl neurons correlates with a suppressed expression level of the genes encoding the subunits of NMDA, AMPA, and KA receptors; protein kinases PKA, JNK, CaMKII; and also the transcription factor Hif1α. These negative effects were partially abolished when Sip1fl/fl neurons are grown in media with anti-inflammatory cytokine IL-10. IL-10 increases the expression of the above-mentioned genes but not to the level of expression in wild-type. At the same time, the amplitudes of Ca2+ signals increase in response to the selective agonists of NMDA, AMPA and KA receptors, and the proportion of neurons responding with Ca2+ oscillations to a Mg2+-free medium and bicuculline increases. CONCLUSION IL-10 restores neurotransmission in neuronal networks with the Sip1 mutation by regulating the expression of genes encoding signaling proteins.
Collapse
Affiliation(s)
- Maria V Turovskaya
- Laboratory of Intracellular Signaling, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," Russia
| | - Ekaterina A Epifanova
- Laboratory of Genetic Engineering Technologies, Lobachevsky State University of Nizhni Novgorod, Russia
| | - Victor S Tarabykin
- Laboratory of Genetic Engineering Technologies, Lobachevsky State University of Nizhni Novgorod, Russia
| | - Alexei A Babaev
- Laboratory of Genetic Engineering Technologies, Lobachevsky State University of Nizhni Novgorod, Russia
| | - Egor A Turovsky
- Laboratory of Intracellular Signaling, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," Russia.,Laboratory of Genetic Engineering Technologies, Lobachevsky State University of Nizhni Novgorod, Russia
| |
Collapse
|
21
|
Statin Treatment-Induced Development of Type 2 Diabetes: From Clinical Evidence to Mechanistic Insights. Int J Mol Sci 2020; 21:ijms21134725. [PMID: 32630698 PMCID: PMC7369709 DOI: 10.3390/ijms21134725] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Statins are the gold-standard treatment for the prevention of primary and secondary cardiovascular disease, which is the leading cause of mortality worldwide. Despite the safety and relative tolerability of statins, observational studies, clinical trials and meta-analyses indicate an increased risk of developing new-onset type 2 diabetes mellitus (T2DM) after long-term statin treatment. It has been shown that statins can impair insulin sensitivity and secretion by pancreatic β-cells and increase insulin resistance in peripheral tissues. The mechanisms involved in these processes include, among others, impaired Ca2+ signaling in pancreatic β-cells, down-regulation of GLUT-4 in adipocytes and compromised insulin signaling. In addition, it has also been described that statins’ impact on epigenetics may also contribute to statin-induced T2DM via differential expression of microRNAs. This review focuses on the evidence and mechanisms by which statin therapy is associated with the development of T2DM. This review describes the multifactorial combination of effects that most likely contributes to the diabetogenic effects of statins. Clinically, these findings should encourage clinicians to consider diabetes monitoring in patients receiving statin therapy in order to ensure early diagnosis and appropriate management.
Collapse
|
22
|
Alassaf A, Ishahak M, Bowles A, Agarwal A. Microelectrode Array based Functional Testing of Pancreatic Islet Cells. MICROMACHINES 2020; 11:mi11050507. [PMID: 32429597 PMCID: PMC7281363 DOI: 10.3390/mi11050507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022]
Abstract
Electrophysiological techniques to characterize the functionality of islets of Langerhans have been limited to short-term, one-time recordings such as a patch clamp recording. We describe the use of microelectrode arrays (MEAs) to better understand the electrophysiology of dissociated islet cells in response to glucose in a real-time, non-invasive method over prolonged culture periods. Human islets were dissociated into singular cells and seeded onto MEA, which were cultured for up to 7 days. Immunofluorescent imaging revealed that several cellular subtypes of islets; β, δ, and γ cells were present after dissociation. At days 1, 3, 5, and 7 of culture, MEA recordings captured higher electrical activities of islet cells under 16.7 mM glucose (high glucose) than 1.1 mM glucose (low glucose) conditions. The fraction of the plateau phase (FOPP), which is the fraction of time with spiking activity recorded using the MEA, consistently showed distinguishably greater percentages of spiking activity with high glucose compared to the low glucose for all culture days. In parallel, glucose stimulated insulin secretion was measured revealing a diminished insulin response after day 3 of culture. Additionally, MEA spiking profiles were similar to the time course of insulin response when glucose concentration is switched from 1.1 to 16.7 mM. Our analyses suggest that extracellular recordings of dissociated islet cells using MEA is an effective approach to rapidly assess islet functionality, and could supplement standard assays such as glucose stimulate insulin response.
Collapse
Affiliation(s)
- Ahmad Alassaf
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.A.); (M.I.); (A.B.)
- DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Department of Medical Equipment Technology, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Matthew Ishahak
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.A.); (M.I.); (A.B.)
- DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Annie Bowles
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.A.); (M.I.); (A.B.)
- DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.A.); (M.I.); (A.B.)
- DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Correspondence: ; Tel.: +305-243-8925
| |
Collapse
|
23
|
Zhang IX, Ren J, Vadrevu S, Raghavan M, Satin LS. ER stress increases store-operated Ca 2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells. J Biol Chem 2020; 295:5685-5700. [PMID: 32179650 PMCID: PMC7186166 DOI: 10.1074/jbc.ra120.012721] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin secretion and increased peripheral insulin resistance. Unremitting endoplasmic reticulum (ER) stress can lead to beta-cell apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely understood. To determine the interrelationship between ER stress and beta-cell function, here we treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress-inducer tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the unfolded protein response. Beta cells treated with TM also exhibited concomitant alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry. TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 mm glucose, and YM58483 blocked this secretion. Taken together, these results support a critical role for ER Ca2+ depletion-activated Ca2+ current in mediating Ca2+-induced insulin secretion in response to ER stress.
Collapse
Affiliation(s)
- Irina X Zhang
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Jianhua Ren
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | | | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan 48105.
| |
Collapse
|
24
|
Idevall-Hagren O, Tengholm A. Metabolic regulation of calcium signaling in beta cells. Semin Cell Dev Biol 2020; 103:20-30. [PMID: 32085965 DOI: 10.1016/j.semcdb.2020.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) regulates a vast number of cellular functions, including insulin secretion from beta cells. The major physiological insulin secretagogue, glucose, triggers [Ca2+]cyt oscillations in beta cells. Synchronization of the oscillations among the beta cells within an islet underlies the generation of pulsatile insulin secretion. This review describes the mechanisms generating [Ca2+]cyt oscillations, the interactions between [Ca2+]cyt and cell metabolism, as well as the contribution of various organelles to the shaping of [Ca2+]cyt signals and insulin secretion. It also discusses how Ca2+ signals are coordinated and spread throughout the islets and data indicating that altered Ca2+ signaling is associated with beta cell dysfunction and development of type 2 diabetes.
Collapse
Affiliation(s)
- Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
25
|
Kim D, Hogan JO, White C. Ca 2+ oscillations in rat carotid body type 1 cells in normoxia and hypoxia. Am J Physiol Cell Physiol 2020; 318:C430-C438. [PMID: 31913694 DOI: 10.1152/ajpcell.00442.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the mechanisms by which carotid body glomus (type 1) cells produce spontaneous Ca2+ oscillations in normoxia and hypoxia. In cells perfused with normoxic solution at 37°C, we observed relatively uniform, low-frequency Ca2+ oscillations in >60% of cells, with each cell showing its own intrinsic frequency and amplitude. The mean frequency and amplitude of Ca2+ oscillations were 0.6 ± 0.1 Hz and 180 ± 42 nM, respectively. The duration of each Ca2+ oscillation ranged from 14 to 26 s (mean of ∼20 s). Inhibition of inositol (1,4,5)-trisphosphate receptor and store-operated Ca2+ entry (SOCE) using 2-APB abolished Ca2+ oscillations. Inhibition of endoplasmic reticulum Ca2+-ATPase (SERCA) using thapsigargin abolished Ca2+ oscillations. ML-9, an inhibitor of STIM1 translocation, also strongly reduced Ca2+ oscillations. Inhibitors of L- and T-type Ca2+ channels (Cav; verapamil>nifedipine>TTA-P2) markedly reduced the frequency of Ca2+ oscillations. Thus, Ca2+ oscillations observed in normoxia were caused by cyclical Ca2+ fluxes at the ER, which was supported by Ca2+ influx via Ca2+ channels. Hypoxia (2-5% O2) increased the frequency and amplitude of Ca2+ oscillations, and Cav inhibitors (verapamil>nifedipine>>TTA-P2) reduced these effects of hypoxia. Our study shows that Ca2+ oscillations represent the basic Ca2+ signaling mechanism in normoxia and hypoxia in CB glomus cells.
Collapse
Affiliation(s)
- Donghee Kim
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - James O Hogan
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Carl White
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
26
|
Korchynska S, Krassnitzer M, Malenczyk K, Prasad RB, Tretiakov EO, Rehman S, Cinquina V, Gernedl V, Farlik M, Petersen J, Hannes S, Schachenhofer J, Reisinger SN, Zambon A, Asplund O, Artner I, Keimpema E, Lubec G, Mulder J, Bock C, Pollak DD, Romanov RA, Pifl C, Groop L, Hökfelt TGM, Harkany T. Life-long impairment of glucose homeostasis upon prenatal exposure to psychostimulants. EMBO J 2020; 39:e100882. [PMID: 31750562 PMCID: PMC6939201 DOI: 10.15252/embj.2018100882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
Maternal drug abuse during pregnancy is a rapidly escalating societal problem. Psychostimulants, including amphetamine, cocaine, and methamphetamine, are amongst the illicit drugs most commonly consumed by pregnant women. Neuropharmacology concepts posit that psychostimulants affect monoamine signaling in the nervous system by their affinities to neurotransmitter reuptake and vesicular transporters to heighten neurotransmitter availability extracellularly. Exacerbated dopamine signaling is particularly considered as a key determinant of psychostimulant action. Much less is known about possible adverse effects of these drugs on peripheral organs, and if in utero exposure induces lifelong pathologies. Here, we addressed this question by combining human RNA-seq data with cellular and mouse models of neuroendocrine development. We show that episodic maternal exposure to psychostimulants during pregnancy coincident with the intrauterine specification of pancreatic β cells permanently impairs their ability of insulin production, leading to glucose intolerance in adult female but not male offspring. We link psychostimulant action specifically to serotonin signaling and implicate the sex-specific epigenetic reprogramming of serotonin-related gene regulatory networks upstream from the transcription factor Pet1/Fev as determinants of reduced insulin production.
Collapse
Affiliation(s)
- Solomiia Korchynska
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Maria Krassnitzer
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Katarzyna Malenczyk
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Rashmi B Prasad
- Department of Clinical Sciences, Diabetes and Endocrinology CRCSkåne University Hospital MalmöMalmöSweden
| | - Evgenii O Tretiakov
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Sabah Rehman
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Valentina Cinquina
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Victoria Gernedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Julian Petersen
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Sophia Hannes
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Julia Schachenhofer
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Sonali N Reisinger
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Alice Zambon
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Olof Asplund
- Department of Clinical Sciences, Diabetes and Endocrinology CRCSkåne University Hospital MalmöMalmöSweden
| | - Isabella Artner
- Stem Cell CenterLund UniversityLundSweden
- Endocrine Cell Differentiation and FunctionLund University Diabetes CenterLund UniversityMalmöSweden
| | - Erik Keimpema
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Gert Lubec
- Paracelsus Medical UniversitySalzburgAustria
| | - Jan Mulder
- Science for Life LaboratoryKarolinska InstitutetSolnaSweden
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Daniela D Pollak
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Roman A Romanov
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Christian Pifl
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology CRCSkåne University Hospital MalmöMalmöSweden
- Institute for Molecular Medicine Finland (FIMM)Helsinki UniversityHelsinkiFinland
| | | | - Tibor Harkany
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
- Department of NeuroscienceKarolinska InstitutetSolnaSweden
| |
Collapse
|
27
|
IgGs from patients with amyotrophic lateral sclerosis and diabetes target Ca Vα 2δ1 subunits impairing islet cell function and survival. Proc Natl Acad Sci U S A 2019; 116:26816-26822. [PMID: 31826954 PMCID: PMC6936400 DOI: 10.1073/pnas.1911956116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We provide evidence of a mechanistic link between ALS and T2DM. Our data show that a subgroup of ALS-T2DM patients have sera that enhance CaV1 channel-mediated Ca2+ influx and exaggerate [Ca2+]i. These effects occur because the sera accommodate cytotoxic IgG autoantibodies that immunocapture CaVα2δ1 subunits. As a consequence, impairments in [Ca2+]i dynamics, mitochondrial function, insulin secretion, and cell viability appear. We could clarify not only the identity of this serum factor but also the molecular mechanisms underlying its effects on the islet cells. Our findings may lay the foundation for a treatment strategy for this complex and severe group of diabetic patients. Patients with amyotrophic lateral sclerosis (ALS) often show hallmarks of type 2 diabetes mellitus (T2DM). However, the causal link between ALS and T2DM has remained a mystery. We now demonstrate that 60% of ALS patients with T2DM (ALS-T2DM) have sera that exaggerated K+-induced increases in cytosolic free Ca2+ concentration ([Ca2+]i) in mouse islet cells. The effect was attributed to the presence of pathogenic immunoglobulin Gs (IgGs) in ALS-T2DM sera. The pathogenic IgGs immunocaptured the voltage-dependent Ca2+ (CaV) channel subunit CaVα2δ1 in the plasma membrane enhancing CaV1 channel-mediated Ca2+ influx and [Ca2+]i, resulting in impaired mitochondrial function. Consequently, impairments in [Ca2+]i dynamics, insulin secretion, and cell viability occurred. These data reveal that patients with ALS-T2DM carry cytotoxic ALS-T2DM-IgG autoantibodies that serve as a causal link between ALS and T2DM by immunoattacking CaVα2δ1 subunits. Our findings may lay the foundation for a pharmacological treatment strategy for patients suffering from a combination of these diseases.
Collapse
|
28
|
Calcium Signaling in ß-cell Physiology and Pathology: A Revisit. Int J Mol Sci 2019; 20:ijms20246110. [PMID: 31817135 PMCID: PMC6940736 DOI: 10.3390/ijms20246110] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic beta (β) cell dysfunction results in compromised insulin release and, thus, failed regulation of blood glucose levels. This forms the backbone of the development of diabetes mellitus (DM), a disease that affects a significant portion of the global adult population. Physiological calcium (Ca2+) signaling has been found to be vital for the proper insulin-releasing function of β-cells. Calcium dysregulation events can have a dramatic effect on the proper functioning of the pancreatic β-cells. The current review discusses the role of calcium signaling in health and disease in pancreatic β-cells and provides an in-depth look into the potential role of alterations in β-cell Ca2+ homeostasis and signaling in the development of diabetes and highlights recent work that introduced the current theories on the connection between calcium and the onset of diabetes.
Collapse
|
29
|
Abstract
Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.
Collapse
Affiliation(s)
- Pavel A. Brodskiy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 205 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 205 McCourtney Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
30
|
Bertram R, Satin LS, Sherman AS. Closing in on the Mechanisms of Pulsatile Insulin Secretion. Diabetes 2018; 67:351-359. [PMID: 29463575 PMCID: PMC5828455 DOI: 10.2337/dbi17-0004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023]
Abstract
Insulin secretion from pancreatic islet β-cells occurs in a pulsatile fashion, with a typical period of ∼5 min. The basis of this pulsatility in mouse islets has been investigated for more than four decades, and the various theories have been described as either qualitative or mathematical models. In many cases the models differ in their mechanisms for rhythmogenesis, as well as other less important details. In this Perspective, we describe two main classes of models: those in which oscillations in the intracellular Ca2+ concentration drive oscillations in metabolism, and those in which intrinsic metabolic oscillations drive oscillations in Ca2+ concentration and electrical activity. We then discuss nine canonical experimental findings that provide key insights into the mechanism of islet oscillations and list the models that can account for each finding. Finally, we describe a new model that integrates features from multiple earlier models and is thus called the Integrated Oscillator Model. In this model, intracellular Ca2+ acts on the glycolytic pathway in the generation of oscillations, and it is thus a hybrid of the two main classes of models. It alone among models proposed to date can explain all nine key experimental findings, and it serves as a good starting point for future studies of pulsatile insulin secretion from human islets.
Collapse
Affiliation(s)
- Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL
| | - Leslie S Satin
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
31
|
Thoke HS, Thorsteinsson S, Stock RP, Bagatolli LA, Olsen LF. The dynamics of intracellular water constrains glycolytic oscillations in Saccharomyces cerevisiae. Sci Rep 2017; 7:16250. [PMID: 29176686 PMCID: PMC5701229 DOI: 10.1038/s41598-017-16442-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
We explored the dynamic coupling of intracellular water with metabolism in yeast cells. Using the polarity-sensitive probe 6-acetyl-2-dimethylaminonaphthalene (ACDAN), we show that glycolytic oscillations in the yeast S. cerevisiae BY4743 wild-type strain are coupled to the generalized polarization (GP) function of ACDAN, which measures the physical state of intracellular water. We analysed the oscillatory dynamics in wild type and 24 mutant strains with mutations in many different enzymes and proteins. Using fluorescence spectroscopy, we measured the amplitude and frequency of the metabolic oscillations and ACDAN GP in the resting state of all 25 strains. The results showed that there is a lower and an upper threshold of ACDAN GP, beyond which oscillations do not occur. This critical GP range is also phenomenologically linked to the occurrence of oscillations when cells are grown at different temperatures. Furthermore, the link between glycolytic oscillations and the ACDAN GP value also holds when ATP synthesis or the integrity of the cell cytoskeleton is perturbed. Our results represent the first demonstration that the dynamic behaviour of a metabolic process can be regulated by a cell-wide physical property: the dynamic state of intracellular water, which represents an emergent property.
Collapse
Affiliation(s)
- Henrik S Thoke
- Center for Biomembrane Physics (MEMPHYS), Odense M, Denmark.,Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| | - Sigmundur Thorsteinsson
- Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| | - Roberto P Stock
- Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| | - Luis A Bagatolli
- Center for Biomembrane Physics (MEMPHYS), Odense M, Denmark.,Yachay EP and Yachay Tech, Yachay City of Knowledge, 100650, Urcuquí-Imbabura, Ecuador
| | - Lars F Olsen
- Center for Biomembrane Physics (MEMPHYS), Odense M, Denmark. .,Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark.
| |
Collapse
|
32
|
Duarte J, Januario C, Martins N. A chaotic bursting-spiking transition in a pancreatic beta-cells system: Observation of an interior glucose-induced crisis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2017; 14:821-842. [PMID: 28608700 DOI: 10.3934/mbe.2017045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nonlinear systems are commonly able to display abrupt qualitative changes (or transitions) in the dynamics. A particular type of these transitions occurs when the size of a chaotic attractor suddenly changes. In this article, we present such a transition through the observation of a chaotic interior crisis in the Deng bursting-spiking model for the glucose-induced electrical activity of pancreatic β-cells. To this chaos-chaos transition corresponds precisely the change between the bursting and spiking dynamics, which are central and key dynamical regimes that the Deng model is able to perform. We provide a description of the crisis mechanism at the bursting-spiking transition point in terms of time series variations and based on certain amplitudes of invariant intervals associated with return maps. Using symbolic dynamics, we are able to accurately compute the points of a curve representing the transition between the bursting and spiking regimes in a biophysical meaningfully parameter space. The analysis of the chaotic interior crisis is complemented by means of topological invariants with the computation of the topological entropy and the maximum Lyapunov exponent. Considering very recent developments in the literature, we construct analytical solutions triggering the bursting-spiking transition in the Deng model. This study provides an illustration of how an integrated approach, involving numerical evidences and theoretical reasoning within the theory of dynamical systems, can directly enhance our understanding of biophysically motivated models.
Collapse
Affiliation(s)
- Jorge Duarte
- Instituto Superior de Engenharia de Lisboa - ISEL, Department of Mathematics, Rua Conselheiro Emídio Navarro 1, 1949-014 Lisboa, Portugal.
| | | | | |
Collapse
|
33
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
34
|
Félix-Martínez GJ, Godínez-Fernández JR. Modeling the spatiotemporal distribution of Ca
2+
during action potential firing in human pancreatic
β
-cells. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa669f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Bernitt E, Döbereiner HG. Spatiotemporal Patterns of Noise-Driven Confined Actin Waves in Living Cells. PHYSICAL REVIEW LETTERS 2017; 118:048102. [PMID: 28186815 DOI: 10.1103/physrevlett.118.048102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Cells utilize waves of polymerizing actin to reshape their morphologies, which is central to physiological and pathological processes alike. Here, we force dorsal actin waves to propagate on one-dimensional domains with periodic boundary conditions, which results in striking spatiotemporal patterns with a clear signature of noise-driven dynamics. We show that these patterns can be very closely reproduced with a noise-driven active medium at coherence resonance.
Collapse
Affiliation(s)
- Erik Bernitt
- Institut für Biophysik, Universität Bremen, 28359 Bremen, Germany
| | | |
Collapse
|
36
|
Effect of different glucose supply conditions on neuronal energy metabolism. Cogn Neurodyn 2016; 10:563-571. [PMID: 27891203 DOI: 10.1007/s11571-016-9401-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/21/2022] Open
Abstract
The glucose-excited neurons in brain can sense blood glucose levels and reflect different firing states, which are mainly associated with regulation of blood glucose and energy demand in the brain. In this paper, a new model of glucose-excited neuron in hypothalamus is proposed. The firing properties and energy consumption of this type of neuron under conditions of different glucose levels are simulated and analyzed. The results show that the firing rate and firing duration of the neuron both increase with increasing extracellular glucose levels, but the maximum energy power for an AP is reduced. Further study suggests that the neuron firstly absorbs energy substrates (e.g. glucose) from the blood to prepare for the high energy demand of high-frequency spikes.
Collapse
|
37
|
Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis. PLoS One 2016; 11:e0152869. [PMID: 27138453 PMCID: PMC4854486 DOI: 10.1371/journal.pone.0152869] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger pathway interactions will improve understanding of critical regulatory sites, how different GPCRs interact and pharmacological targets for modulating insulin secretion in type 2 diabetes.
Collapse
|
38
|
Bahlouli S, Mokaddem A, Hamdache F, Riane H, Kameche M. Fractal Behavior of the Pancreatic β-Cell Near the Percolation Threshold: Effect of the KATP Channel On the Electrical Response. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2016; 13:112-121. [PMID: 26886736 DOI: 10.1109/tcbb.2015.2415797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The molecular system built with true chemical bonds or strong molecular interaction can be described using conceptual mathematical tools. Modeling of the natural generated ionic currents on the human pancreatic β-cell activity had been already studied using complicated analytical models. In our present contribution, we prove the same using our simple electrical model. The ionic currents are associated with different proteins membrane channels (K-Ca, K(v), K(ATP), Ca(v)-L) and Na/Ca Exchanger (NCX). The proteins are Ohmic conductors and are modeled by conductance randomly distributed. Switches are placed in series with conductances in order to highlight the channel activity. However, the KATP channel activity is stimulated by glucose, and the NCX's conductance change according to the intracellular calcium concentration. The percolation threshold of the system is calculated by the fractal nature of the infinite cluster using the Tarjan's depth-first-search algorithm. It is shown that the behavior of the internal concentration of Ca(2+) and the membrane potential are modulated by glucose. The results confirm that the inhibition of KATP channels depolarizes the membrane and increases the influx of [Ca(2+)]i through NCX and Ca(v)-L channel for high glucose concentrations.
Collapse
|
39
|
Modeling K,ATP--dependent excitability in pancreatic islets. Biophys J 2015; 107:2016-26. [PMID: 25418087 DOI: 10.1016/j.bpj.2014.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/22/2014] [Accepted: 09/30/2014] [Indexed: 11/23/2022] Open
Abstract
In pancreatic ?-cells, K,ATP channels respond to changes in glucose to regulate cell excitability and insulin release. Confirming a high sensitivity of electrical activity to K,ATP activity, mutations that cause gain of K,ATP function cause neonatal diabetes. Our aim was to quantitatively assess the contribution of K,ATP current to the regulation of glucose-dependent bursting by reproducing experimentally observed changes in excitability when K,ATP conductance is altered by genetic manipulation. A recent detailed computational model of single cell pancreatic ?-cell excitability reproduces the ?-cell response to varying glucose concentrations. However, initial simulations showed that the model underrepresents the significance of K,ATP activity and was unable to reproduce K,ATP conductance-dependent changes in excitability. By altering the ATP and glucose dependence of the L-type Ca(2+) channel and the Na-K ATPase to better fit experiment, appropriate dependence of excitability on K,ATP conductance was reproduced. Because experiments were conducted in islets, which contain cell-to-cell variability, we extended the model from a single cell to a three-dimensional model (10×10×10 cell) islet with 1000 cells. For each cell, the conductance of the major currents was allowed to vary as was the gap junction conductance between cells. This showed that single cell glucose-dependent behavior was then highly variable, but was uniform in coupled islets. The study highlights the importance of parameterization of detailed models of ?-cell excitability and suggests future experiments that will lead to improved characterization of ?-cell excitability and the control of insulin secretion.
Collapse
|
40
|
Lebreton F, Pirog A, Belouah I, Bosco D, Berney T, Meda P, Bornat Y, Catargi B, Renaud S, Raoux M, Lang J. Slow potentials encode intercellular coupling and insulin demand in pancreatic beta cells. Diabetologia 2015; 58:1291-9. [PMID: 25788295 DOI: 10.1007/s00125-015-3558-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/23/2015] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Ion fluxes constitute a major integrative signal in beta cells that leads to insulin secretion and regulation of gene expression. Understanding these electrical signals is important for deciphering the endogenous algorithms used by islets to attain homeostasis and for the design of new sensors for monitoring beta cell function. METHODS Mouse and human islets were cultured on multielectrode arrays (MEAs) for 3-13 days. Extracellular electrical activities received on each electrode were continuously amplified and recorded for offline characterisation. RESULTS Differential band-pass filtering of MEA recordings of mouse islets showed two extracellular voltage waveforms: action potentials (lasting 40-60 ms) and very robust slow potentials (SPs, lasting 800-1,500 ms), the latter of which have not been described previously. The frequency of SPs directly correlated with glucose concentration, peaked at 10 mmol/l glucose and was further augmented by picomolar concentrations of glucagon-like peptide-1. SPs required the closure of ATP-dependent potassium channels as they were induced by glucose or glibenclamide but were not elicited by KCl-induced depolarisation. Pharmacological tools and the use of beta cell specific knockout mice showed that SPs reflected cell coupling via connexin 36. Moreover, increasing and decreasing glucose ramps showed hysteresis with reduced glucose sensitivity during the decreasing phase. SPs were also observed in human islets and could be continuously recorded over 24 h. CONCLUSIONS/INTERPRETATION This novel electrical signature reflects the syncytial function of the islets and is specific to beta cells. Moreover, the observed hysteresis provides evidence for an endogenous algorithm naturally present in islets to protect against hypoglycaemia.
Collapse
Affiliation(s)
- Fanny Lebreton
- CNRS UMR 5248, Chimie et Biologie des Membranes et Nano-objets, Université de Bordeaux, Batiment B14, Allée Geoffroy St Hilaire, CS90063, 33615, Pessac, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pecze L, Schwaller B. Characterization and modeling of Ca2+ oscillations in mouse primary mesothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:632-45. [DOI: 10.1016/j.bbamcr.2014.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
42
|
Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes. Mol Aspects Med 2015; 42:61-77. [PMID: 25637831 DOI: 10.1016/j.mam.2015.01.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes (T2DM) results when increases in beta cell function and/or mass cannot compensate for rising insulin resistance. Numerous studies have documented the longitudinal changes in metabolism that occur during the development of glucose intolerance and lead to T2DM. However, the role of changes in insulin secretion, both amount and temporal pattern, has been understudied. Most of the insulin secreted from pancreatic beta cells of the pancreas is released in a pulsatile pattern, which is disrupted in T2DM. Here we review the evidence that changes in beta cell pulsatility occur during the progression from glucose intolerance to T2DM in humans, and contribute significantly to the etiology of the disease. We review the evidence that insulin pulsatility improves the efficacy of secreted insulin on its targets, particularly hepatic glucose production, but also examine evidence that pulsatility alters or is altered by changes in peripheral glucose uptake. Finally, we summarize our current understanding of the biophysical mechanisms responsible for oscillatory insulin secretion. Understanding how insulin pulsatility contributes to normal glucose homeostasis and is altered in metabolic disease states may help improve the treatment of T2DM.
Collapse
|
43
|
60 Hz electric field changes the membrane potential during burst phase in pancreatic β-cells: in silico analysis. Acta Biotheor 2014; 62:133-43. [PMID: 24643285 DOI: 10.1007/s10441-014-9214-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
The production, distribution and use of electricity can generate low frequency electric and magnetic fields (50-60 Hz). Considering that some studies showed adverse effects on pancreatic β-cells exposed to these fields; the present study aimed to analyze the effects of 60 Hz electric fields on membrane potential during the silent and burst phases in pancreatic β-cells using a mathematical model. Sinusoidal 60 Hz electric fields with amplitude ranging from 0.5 to 4 mV were applied on pancreatic β-cells model. The sinusoidal electric field changed burst duration, inter-burst intervals (silent phase) and spike sizes. The parameters above presented dose-dependent response with the voltage amplitude applied. In conclusion, theoretical analyses showed that a 60 Hz electric field with low amplitudes changes the membrane potential in pancreatic β-cells.
Collapse
|
44
|
Abstract
Mathematical modeling of the electrical activity of the pancreatic β-cell has been extremely important for understanding the cellular mechanisms involved in glucose-stimulated insulin secretion. Several models have been proposed over the last 30 y, growing in complexity as experimental evidence of the cellular mechanisms involved has become available. Almost all the models have been developed based on experimental data from rodents. However, given the many important differences between species, models of human β-cells have recently been developed. This review summarizes how modeling of β-cells has evolved, highlighting the proposed physiological mechanisms underlying β-cell electrical activity.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- CK, Chay-Keizer
- CRAC, calcium release-activated current
- Ca2+, calcium ions
- DOM, dual oscillator model
- ER, endoplasmic reticulum
- F6P, fructose-6-phosphate
- FBP, fructose-1,6-bisphosphate
- GLUT, glucose transporter
- GSIS, glucose-stimulated insulin secretion
- HERG, human eter à-go-go related gene
- IP3R, inositol-1,4,5-trisphosphate receptors
- KATP, ATP-sensitive K+ channels
- KCa, Ca2+-dependent K+ channels
- Kv, voltage-dependent K+ channels
- MCU, mitochondrial Ca2+ uniporter
- NCX, Na+/Ca2+ exchanger
- PFK, phosphofructokinase
- PMCA, plasma membrane Ca2+-ATPase
- ROS, reactive oxygen species
- RyR, ryanodine receptors
- SERCA, sarco-endoplasmic reticulum Ca2+-ATPase
- T2D, Type 2 Diabetes
- TCA, trycarboxylic acid cycle
- TRP, transient receptor potential
- VDCC, voltage-dependent Ca2+ channels
- Vm, membrane potential
- [ATP]i, cytosolic ATP
- [Ca2+]i, intracellular calcium concentration
- [Ca2+]m, mitochondrial calcium
- [Na+], Na+ concentration
- action potentials
- bursting
- cAMP, cyclic AMP
- calcium
- electrical activity
- ion channels
- mNCX, mitochondrial Na+/Ca2+ exchanger
- mathematical model
- β-cell
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Department of Electrical Engineering; Universidad
Autónoma Metropolitana-Iztapalapa; México, DF,
México
- Correspondence to: Gerardo J
Félix-Martínez;
| | | |
Collapse
|
45
|
Turovsky EA, Turovskaya MV, Dolgacheva LP, Zinchenko VP, Dynnik VV. Acetylcholine promotes Ca2+ and NO-oscillations in adipocytes implicating Ca2+→NO→cGMP→cADP-ribose→Ca2+ positive feedback loop--modulatory effects of norepinephrine and atrial natriuretic peptide. PLoS One 2013; 8:e63483. [PMID: 23696827 PMCID: PMC3656004 DOI: 10.1371/journal.pone.0063483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/03/2013] [Indexed: 02/05/2023] Open
Abstract
PURPOSE This study investigated possible mechanisms of autoregulation of Ca(2+) signalling pathways in adipocytes responsible for Ca(2+) and NO oscillations and switching phenomena promoted by acetylcholine (ACh), norepinephrine (NE) and atrial natriuretic peptide (ANP). METHODS Fluorescent microscopy was used to detect changes in Ca(2+) and NO in cultures of rodent white adipocytes. Agonists and inhibitors were applied to characterize the involvement of various enzymes and Ca(2+)-channels in Ca(2+) signalling pathways. RESULTS ACh activating M3-muscarinic receptors and Gβγ protein dependent phosphatidylinositol 3 kinase induces Ca(2+) and NO oscillations in adipocytes. At low concentrations of ACh which are insufficient to induce oscillations, NE or α1, α2-adrenergic agonists act by amplifying the effect of ACh to promote Ca(2+) oscillations or switching phenomena. SNAP, 8-Br-cAMP, NAD and ANP may also produce similar set of dynamic regimes. These regimes arise from activation of the ryanodine receptor (RyR) with the implication of a long positive feedback loop (PFL): Ca(2+)→NO→cGMP→cADPR→Ca(2+), which determines periodic or steady operation of a short PFL based on Ca(2+)-induced Ca(2+) release via RyR by generating cADPR, a coagonist of Ca(2+) at the RyR. Interplay between these two loops may be responsible for the observed effects. Several other PFLs, based on activation of endothelial nitric oxide synthase or of protein kinase B by Ca(2+)-dependent kinases, may reinforce functioning of main PFL and enhance reliability. All observed regimes are independent of operation of the phospholipase C/Ca(2+)-signalling axis, which may be switched off due to negative feedback arising from phosphorylation of the inositol-3-phosphate receptor by protein kinase G. CONCLUSIONS This study presents a kinetic model of Ca(2+)-signalling system operating in adipocytes and integrating signals from various agonists, which describes it as multivariable multi feedback network with a family of nested positive feedback.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Mariya V. Turovskaya
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Ludmila P. Dolgacheva
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Valery P. Zinchenko
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Vladimir V. Dynnik
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Department of System Biochemistry, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
- * E-mail:
| |
Collapse
|
46
|
Store-operated calcium entry could prevent continuous spiking of membrane potential to sustain normal intracellular calcium oscillations and normal potential bursting in pancreatic β-cells. Math Biosci 2013; 243:240-50. [PMID: 23541786 DOI: 10.1016/j.mbs.2013.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 03/06/2013] [Accepted: 03/12/2013] [Indexed: 12/16/2022]
Abstract
We propose a dynamical store-operated calcium entry (SOCE) model to analyze the complex role of SOCE in modulating calcium oscillations and electrical activity in pancreatic β-cells and provide a new mathematical insight. Using this model, we simulate the SOCE role in a number of cases with different SOCE conductances. When the SOCE conductance is set to 0 or very small (5 pS), our numerical simulation conforms to the experimental observation that endoplasmic reticulum (ER) calcium can sustain normal calcium oscillations and the depletion of ER calcium transforms the normal calcium oscillations into a sustained calcium increase with oscillations of much higher frequency and much smaller amplitude, and transforms the normal membrane potential oscillations to a pattern of continuous spiking. When the SOCE conductance is increased to 20 pS and the ER calcium is depleted, our numerical simulation conforms to the other experimental observation that the normal calcium and potential oscillations are sustained and augmented a little bit. Moreover, the oscillation frequency is increased a very little bit. A further increase of the conductance to 35 pS slows down the oscillation a little bit. This numerical evidence suggests that a sufficiently large SOCE can prevent the continuous spiking of membrane potential to sustain the normal calcium oscillations and the normal membrane potential bursting. A careful examination of our simulated dynamics of the ATP/ADP ratio, the ATP-sensitive outward K(+) current, and the voltage-gated inward Ca(2+) current reveals that intracellular periodic Ca(2+) peaks perhaps resulted from SOCE might play a role in stabilizing the membrane potential at its resting level (avoiding the continuous spiking) for a certain period of time by accelerating ATP consumption, reducing the ratio ATP/ADP, opening the ATP-sensitive potassium channel, and repolarizing the membrane potential.
Collapse
|
47
|
Salvucci M, Neufeld Z, Newsholme P. Mathematical model of metabolism and electrophysiology of amino acid and glucose stimulated insulin secretion: in vitro validation using a β-cell line. PLoS One 2013; 8:e52611. [PMID: 23520444 PMCID: PMC3592881 DOI: 10.1371/journal.pone.0052611] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 11/20/2012] [Indexed: 12/29/2022] Open
Abstract
We integrated biological experimental data with mathematical modelling to gain insights into the role played by L-alanine in amino acid-stimulated insulin secretion (AASIS) and in D-glucose-stimulated insulin secretion (GSIS), details important to the understanding of complex β-cell metabolic coupling relationships. We present an ordinary differential equations (ODEs) based simplified kinetic model of core metabolic processes leading to ATP production (glycolysis, TCA cycle, L-alanine-specific reactions, respiratory chain, ATPase and proton leak) and Ca(2+) handling (essential channels and pumps in the plasma membrane) in pancreatic β-cells and relate these to insulin secretion. Experimental work was performed using a clonal rat insulin-secreting cell line (BRIN-BD11) to measure the consumption or production of a range of important biochemical parameters (D-glucose, L-alanine, ATP, insulin secretion) and Ca(2+) levels. These measurements were then used to validate the theoretical model and fine-tune the parameters. Mathematical modelling was used to predict L-lactate and L-glutamate concentrations following D-glucose and/or L-alanine challenge and Ca(2+) levels upon stimulation with a non metabolizable L-alanine analogue. Experimental data and mathematical model simulations combined suggest that L-alanine produces a potent insulinotropic effect via both a stimulatory impact on β-cell metabolism and as a direct result of the membrane depolarization due to Ca(2+) influx triggered by L-alanine/Na(+) co-transport. Our simulations indicate that both high intracellular ATP and Ca(2+) concentrations are required in order to develop full insulin secretory responses. The model confirmed that K(+) ATP channel independent mechanisms of stimulation of intracellular Ca(2+) levels, via generation of mitochondrial coupling messengers, are essential for promotion of the full and sustained insulin secretion response in β-cells.
Collapse
Affiliation(s)
- Manuela Salvucci
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
48
|
Fridlyand LE, Jacobson DA, Philipson LH. Ion channels and regulation of insulin secretion in human β-cells: a computational systems analysis. Islets 2013; 5:1-15. [PMID: 23624892 PMCID: PMC3662377 DOI: 10.4161/isl.24166] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In mammals an increase in glucose leads to block of ATP dependent potassium channels in pancreatic β cells leading to membrane depolarization. This leads to the repetitive firing of action potentials that increases calcium influx and triggers insulin granule exocytosis. Several important differences between species in this process suggest that a dedicated human-oriented approach is advantageous as extrapolating from rodent data may be misleading in several respects. We examined depolarization-induced spike activity in pancreatic human islet-attached β-cells employing whole-cell patch-clamp methods. We also reviewed the literature concerning regulation of insulin secretion by channel activity and constructed a data-based computer model of human β cell function. The model couples the Hodgkin-Huxley-type ionic equations to the equations describing intracellular Ca²⁺ homeostasis and insulin release. On the basis of this model we employed computational simulations to better understand the behavior of action potentials, calcium handling and insulin secretion in human β cells under a wide range of experimental conditions. This computational system approach provides a framework to analyze the mechanisms of human β cell insulin secretion.
Collapse
|
49
|
Granqvist E, Wysham D, Hazledine S, Kozlowski W, Sun J, Charpentier M, Martins TV, Haleux P, Tsaneva-Atanasova K, Downie JA, Oldroyd GE, Morris RJ. Buffering capacity explains signal variation in symbiotic calcium oscillations. PLANT PHYSIOLOGY 2012; 160:2300-10. [PMID: 23027664 PMCID: PMC3510149 DOI: 10.1104/pp.112.205682] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Legumes form symbioses with rhizobial bacteria and arbuscular mycorrhizal fungi that aid plant nutrition. A critical component in the establishment of these symbioses is nuclear-localized calcium (Ca(2+)) oscillations. Different components on the nuclear envelope have been identified as being required for the generation of the Ca(2+) oscillations. Among these an ion channel, Doesn't Make Infections1, is preferentially localized on the inner nuclear envelope and a Ca(2+) ATPase is localized on both the inner and outer nuclear envelopes. Doesn't Make Infections1 is conserved across plants and has a weak but broad similarity to bacterial potassium channels. A possible role for this cation channel could be hyperpolarization of the nuclear envelope to counterbalance the charge caused by the influx of Ca(2+) into the nucleus. Ca(2+) channels and Ca(2+) pumps are needed for the release and reuptake of Ca(2+) from the internal store, which is hypothesized to be the nuclear envelope lumen and endoplasmic reticulum, but the release mechanism of Ca(2+) remains to be identified and characterized. Here, we develop a mathematical model based on these components to describe the observed symbiotic Ca(2+) oscillations. This model can recapitulate Ca(2+) oscillations, and with the inclusion of Ca(2+)-binding proteins it offers a simple explanation for several previously unexplained phenomena. These include long periods of frequency variation, changes in spike shape, and the initiation and termination of oscillations. The model also predicts that an increase in buffering capacity in the nucleoplasm would cause a period of rapid oscillations. This phenomenon was observed experimentally by adding more of the inducing signal.
Collapse
|
50
|
Catacuzzeno L, Fioretti B, Franciolini F. A theoretical study on the role of Ca2+-activated K+ channels in the regulation of hormone-induced Ca2+ oscillations and their synchronization in adjacent cells. J Theor Biol 2012; 309:103-12. [DOI: 10.1016/j.jtbi.2012.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 11/24/2022]
|