1
|
Su X, Hildreth M, Rapaka S, Peng YJ, Nanduri J, Prabhakar NR. Adrenal epinephrine facilitates erythropoietin gene activation by hypoxia through β2 adrenergic receptor interaction with Hif-2α. Am J Physiol Regul Integr Comp Physiol 2025; 328:R75-R80. [PMID: 39585744 DOI: 10.1152/ajpregu.00201.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Hypobaric hypoxia (HH) occurring at high altitudes activates the sympathetic nervous system (SNS) and increases circulating erythropoietin (EPO) levels. EPO stimulates red blood cell production (erythropoiesis), enhancing oxygen transport in arterial blood to counteract hypoxemia. The present study tested the hypothesis that SNS contributes to EPO activation by HH through epinephrine (EPI) release from the adrenal medullae. Adult male C57B6 mice were exposed to 18 h of HH (0.4 atm), and renal EPO mRNA and plasma EPO levels were measured. HH increased EPO mRNA and plasma EPO levels, and SNS activation, as indicated by elevated plasma norepinephrine (NE) and EPI levels. In adrenal-medullectomized mice, HH-induced EPO response was reduced, correlating with decreased circulating NE and absence of EPI elevation. EPI, but not NE infusion, mimicked the effects of HH in room air-breathing mice. EPO responses to HH were reduced with β-adrenergic receptor (AR) blockade using dl-propranolol and in β2 adrenergic receptor knockout mice. Mice with heterozygous Hif-2α deficiency (Hif-2α+/-), but not Hif-1α+/-, showed attenuated EPO gene activation and elevated plasma EPO levels in response to HH and EPI infusion. These results demonstrate that adrenal EPI facilitates the EPO gene activation by HH through the interaction of β2 AR with HIF-2α.NEW & NOTEWORTHY Hypobaric hypoxia activates the sympathetic nervous system (SNS) and the erythropoietin (EPO) gene. Whether SNS activation by hypoxia influences the EPO gene activation is an unresolved question. The present study demonstrates that adrenal epinephrine facilitates hypoxia-induced EPO gene activation through the interaction of β2 adrenergic receptors (β2 ARs) with the transcriptional activator HIF-2α.
Collapse
Affiliation(s)
- Xiaoyu Su
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States
| | - Matthew Hildreth
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States
| | - Srikar Rapaka
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
2
|
Marrow JP, Alshamali R, Edgett BA, Allwood MA, Cochrane KLS, Al-Sabbag S, Ayoub A, Ask K, Hare GMT, Brunt KR, Simpson JA. Cardiomyocyte crosstalk with endothelium modulates cardiac structure, function, and ischemia-reperfusion injury susceptibility through erythropoietin. Front Physiol 2024; 15:1397049. [PMID: 39011088 PMCID: PMC11246973 DOI: 10.3389/fphys.2024.1397049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Erythropoietin (EPO) exerts non-canonical roles beyond erythropoiesis that are developmentally, structurally, and physiologically relevant for the heart as a paracrine factor. The role for paracrine EPO signalling and cellular crosstalk in the adult is uncertain. Here, we provided novel evidence showing cardiomyocyte restricted loss of function in Epo in adult mice induced hyper-compensatory increases in Epo expression by adjacent cardiac endothelial cells via HIF-2α independent mechanisms. These hearts showed concentric cellular hypertrophy, elevated contractility and relaxation, and greater resistance to ischemia-reperfusion injury. Voluntary exercise capacity compared to control hearts was improved independent of any changes to whole-body metabolism or blood O2 content or delivery (i.e., hematocrit). Our findings suggest cardiac EPO had a localized effect within the normoxic heart, which was regulated by cell-specific EPO-reciprocity between cardiomyocytes and endothelium. Within the heart, hyper-compensated endothelial Epo expression was accompanied by elevated Vegfr1 and Vegfb RNA, that upon pharmacological pan-inhibition of VEGF-VEGFR signaling, resulted in a paradoxical upregulation in whole-heart Epo. Thus, we provide the first evidence that a novel EPO-EPOR/VEGF-VEGFR axis exists to carefully mediate cardiac homeostasis via cardiomyocyte-endothelial EPO crosstalk.
Collapse
Affiliation(s)
- Jade P Marrow
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Razan Alshamali
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Brittany A Edgett
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Melissa A Allwood
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Kyla L S Cochrane
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Sara Al-Sabbag
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Anmar Ayoub
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Gregory M T Hare
- IMPART Investigator Team Canada, Guelph, ON, Canada
- Department of Anesthesiology and Pain Medicine, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Keith R Brunt
- IMPART Investigator Team Canada, Guelph, ON, Canada
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| |
Collapse
|
3
|
Allwood MA, Edgett BA, Platt MJ, Marrow JP, Coyle-Asbil B, Holjak EJB, Nelson VL, Bangali S, Alshamali R, Jacyniak K, Klein JM, Farquharson L, Romanova N, Northrup V, Ogilvie LM, Ayoub A, Ask K, Vickaryous MK, Hare GMT, Brunt KR, Simpson JA. Novel roles of cardiac-derived erythropoietin in cardiac development and function. J Mol Cell Cardiol 2024; 188:90-104. [PMID: 38382296 DOI: 10.1016/j.yjmcc.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
The role of erythropoietin (EPO) has extended beyond hematopoiesis to include cytoprotection, inotropy, and neurogenesis. Extra-renal EPO has been reported for multiple tissue/cell types, but the physiological relevance remains unknown. Although the EPO receptor is expressed by multiple cardiac cell types and human recombinant EPO increases contractility and confers cytoprotection against injury, whether the heart produces physiologically meaningful amounts of EPO in vivo is unclear. We show a distinct circadian rhythm of cardiac EPO mRNA expression in adult mice and increased mRNA expression during embryogenesis, suggesting physiological relevance to cardiac EPO production throughout life. We then generated constitutive, cardiomyocyte-specific EPO knockout mice driven by the Mlc2v promoter (EPOfl/fl:Mlc2v-cre+/-; EPOΔ/Δ-CM). During cardiogenesis, cardiac EPO mRNA expression and cellular proliferation were reduced in EPOΔ/Δ-CM hearts. However, in adult EPOΔ/Δ- CM mice, total heart weight was preserved through increased cardiomyocyte cross-sectional area, indicating the reduced cellular proliferation was compensated for by cellular hypertrophy. Echocardiography revealed no changes in cardiac dimensions, with modest reductions in ejection fraction, stroke volume, and tachycardia, whereas invasive hemodynamics showed increased cardiac contractility and lusitropy. Paradoxically, EPO mRNA expression in the heart was elevated in adult EPOΔ/Δ-CM, along with increased serum EPO protein content and hematocrit. Using RNA fluorescent in situ hybridization, we found that Epo RNA colocalized with endothelial cells in the hearts of adult EPOΔ/Δ-CM mice, identifying the endothelial cells as a cell responsible for the EPO hyper-expression. Collectively, these data identify the first physiological roles for cardiomyocyte-derived EPO. We have established cardiac EPO mRNA expression is a complex interplay of multiple cell types, where loss of embryonic cardiomyocyte EPO production results in hyper-expression from other cells within the adult heart.
Collapse
Affiliation(s)
- Melissa A Allwood
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; IMPART investigator Team, Canada
| | - Brittany A Edgett
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; Department of Pharmacology, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John, New Brunswick E2L 4L5, Canada; IMPART investigator Team, Canada; Department of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Mathew J Platt
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; IMPART investigator Team, Canada
| | - Jade P Marrow
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; IMPART investigator Team, Canada
| | - Bridget Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; IMPART investigator Team, Canada
| | - Emma J B Holjak
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; IMPART investigator Team, Canada
| | - Victoria L Nelson
- Department of Pharmacology, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John, New Brunswick E2L 4L5, Canada; IMPART investigator Team, Canada
| | - Swara Bangali
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Razan Alshamali
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; IMPART investigator Team, Canada
| | - Kathy Jacyniak
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Jorden M Klein
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Laura Farquharson
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nadya Romanova
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Victoria Northrup
- Department of Pharmacology, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John, New Brunswick E2L 4L5, Canada; IMPART investigator Team, Canada
| | - Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; IMPART investigator Team, Canada
| | - Anmar Ayoub
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Matthew K Vickaryous
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Gregory M T Hare
- Departments of Anesthesia & Physiology, St. Michel's Hospital, University of Toronto, Toronto, Ontario, Canada; IMPART investigator Team, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John, New Brunswick E2L 4L5, Canada; IMPART investigator Team, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; IMPART investigator Team, Canada.
| |
Collapse
|
4
|
Kartal B, Bozkurt MF, Alimoğullari E, Saçık U. The protective effect of erythropoietin on ischemia- reperfusion injury caused by ovarian torsion-detorsion in the experimental rat model. J Histotechnol 2022; 46:57-64. [DOI: 10.1080/01478885.2022.2122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Bahar Kartal
- Medical Faculty, Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Mehmet Fatih Bozkurt
- Department of Pathology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyon, Turkey
| | - Ebru Alimoğullari
- Department of Histology and Embryology, Medical Faculty, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Uygar Saçık
- Department of Histology and Embryology, Medical Faculty, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
5
|
Khafagi AT, Yehia MA, Helmy AK, Hassan W, Abdelhakim N. Effect of Erythropoietin-stimulating agent on uremic neuropathy in hemodialysis patients: a single-center open-label prospective study. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Uremic neuropathy is a distal sensorimotor polyneuropathy caused by uremic toxins; its severity is correlated with the degree of renal insufficiency. Erythropoietin (EPO) and erythropoietin receptors (EpoR) are produced in the peripheral nervous system. This is a single-center open-label prospective study was designed to investigate the possible effect of erythropoietin-stimulating agents (ESAs) on uremic neuropathy. Twenty-four newly diagnosed end-stage kidney disease (ESKD) patients were selected, clinical assessment, laboratory, and neurophysiological study were done at 1 and follow-up after 3 months. Patients were divided into two groups (group A received ESA and group B did not receive ESA).
Results
Eighteen patients completed the study, eight patients (44.4%) did not have symptoms but had electrophysiological findings of neuropathy (subclinical neuropathy). After 3 months of hemodialysis, patients in group A showed improvement of some electrophysiological features (ulnar MNCV; P = 0.016).
Conclusions
The use of ESA may improve uremic neuropathy in patients with newly diagnosed ESKD who have been started on hemodialysis.
Collapse
|
6
|
Hwang SJ, Lee HJ. Identification of differentially expressed genes in mouse embryonic stem cell under hypoxia. Genes Genomics 2020; 43:313-321. [PMID: 33094376 DOI: 10.1007/s13258-020-01009-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Under hypoxia, mouse embryonic stem cells (mESCs) lose the ability to self-renew and begin to differentiate through down-regulation of LIFR-STAT3 pathway via hypoxia-inducible factor-1α (HIF-1α). However, it remains largely unknown what kinds of factors are involved in hypoxia-induced differentiation of mESCs. PURPOSE This study aims to identify the differentially expressed genes (DEGs) in early differentiation of mESCs under hypoxia. METHODS Here we utilized a Genefishing techniqueTM to discover the new DEGs during hypoxia-induced early differentiation in CCE mESCs. Next, we investigated the role of DEGs using morphological observation, alkaline phosphatase (ALP) assay, STAT3 activation analysis, and biomarkers analysis for stemness. RESULTS We detected 19 DEGs under hypoxia and performed cloning with sequencing in six genes. We confirmed the expression patterns of five DEGs including H2afz and GOT1 by realtime PCR assay. Among them, H2afz was significantly decreased under hypoxia, depending on HIF-1α. H2afz-overexpressing CCE mESCs maintained their ALP activity and stem cell markers (Nanog and Rex1), even in hypoxic condition. On the other hand, the early differentiation markers such as FGF5 and STAT5a, which had been increased in hypoxic conditions, were reduced by H2afz overexpression. CONCLUSION We discovered that H2afz could be a new target gene that functions in hypoxia-induced differentiation in mESCs and have revealed that it is involved in maintaining the pluripotency of mESCs in the early stages of differentiation. These findings will provide insights into mechanisms of hypoxia-mediated differentiation of mESCs during early development.
Collapse
Affiliation(s)
- Su Jung Hwang
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyungnam, 50834, South Korea.,School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
| | - Hyo-Jong Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyungnam, 50834, South Korea. .,School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea.
| |
Collapse
|
7
|
Liu EY, Zheng ZX, Zheng BZ, Xia Y, Guo MS, Dong TT, Tsim KWK. Tectorigenin, an isoflavone aglycone from the rhizome of
Belamcanda chinensis
, induces neuronal expression of erythropoietin via accumulation of hypoxia‐inducible factor‐1α. Phytother Res 2019; 34:1329-1337. [DOI: 10.1002/ptr.6599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/22/2019] [Accepted: 12/01/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Etta Y. Liu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food ScienceSouth China Agricultural University Guangzhou China
- Shenzhen Key Laboratory of Edible and Medicinal BioresourcesSRI, The Hong Kong University of Science and Technology Shenzhen Shenzhen China
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| | - Zoey X. Zheng
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| | - Brody Z. Zheng
- Shenzhen Key Laboratory of Edible and Medicinal BioresourcesSRI, The Hong Kong University of Science and Technology Shenzhen Shenzhen China
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| | - Yingjie Xia
- Shenzhen Key Laboratory of Edible and Medicinal BioresourcesSRI, The Hong Kong University of Science and Technology Shenzhen Shenzhen China
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| | - Maggie S. Guo
- Shenzhen Key Laboratory of Edible and Medicinal BioresourcesSRI, The Hong Kong University of Science and Technology Shenzhen Shenzhen China
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| | - Tina T. Dong
- Shenzhen Key Laboratory of Edible and Medicinal BioresourcesSRI, The Hong Kong University of Science and Technology Shenzhen Shenzhen China
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| | - Karl W. K. Tsim
- Shenzhen Key Laboratory of Edible and Medicinal BioresourcesSRI, The Hong Kong University of Science and Technology Shenzhen Shenzhen China
- Division of Life Science, Center for Chinese MedicineThe Hong Kong University of Science and Technology Hong Kong
| |
Collapse
|
8
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
9
|
Zubareva EV, Nadezhdin SV, Burda YE, Nadezhdina NA, Gashevskaya A. Pleiotropic effects of Erythropoietin. Influence of Erythropoietin on processes of mesenchymal stem cells differentiation. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.33457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Structure and synthesis of Erythropoietin: Erythropoietin (EPO) is a glycoprotein hormone.Recombinant Erythropoietin (Epoetin): Human recombinant erythropoietin is characterised as a factor which stimulates differentiation and proliferation of erythroid precursor cells, and as a tissue protective factor.Anti-ischemic effects of recombinant Erythropoietin: Erythropoietin is one of the most perspective humoral agents which are involved in the preconditioning phenomenon.Erythropoietin receptors and signal transduction pathways: Erythropoietin effects on cells through their interconnection with erythropoietin receptors, which triggers complex intracellular signal cascades, such as JAK2/STAT signaling pathway, phosphatidylinositol 3-kinase (PI3K), protein kinase C, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB signaling pathways.Mechanisms of the effect of Erythropoietin on hematopoietic and non-hematopoietic cells and tissues: In addition to regulation of haemopoiesis, erythropoietin mediates bone formation as it has an effect on hematopoietic stem cells and osteoblastic niche, and this illustrates connection between the processes of haematopoiesis and osteopoiesis which take place in the red bone marrow.The effect of Erythropoietin on mesenchymal stem cells and process of bone tissue formation: Erythropoietin promotes mesenchymal stem cells proliferation, migration and differentiation in osteogenic direction. The evidence of which is expression of bone phenotype by cells under the influence of EPO, including activation of bone specific transcription factors Runx2, osteocalcin and bone sialoprotein.Conclusion: Erythropoietin has a pleiotropic effect on various types of cells and tissues. But the mechanisms which are involved in the process of bone tissue restoration via erythropoietin are still poorly understood.
Collapse
|
10
|
Asano R, Asai-Sato M, Matsukuma S, Mizushima T, Taguri M, Yoshihara M, Inada M, Fukui A, Suzuki Y, Miyagi Y, Miyagi E. Expression of erythropoietin messenger ribonucleic acid in wild-type MED12 uterine leiomyomas under estrogenic influence: new insights into related growth disparities. Fertil Steril 2019; 111:178-185. [DOI: 10.1016/j.fertnstert.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022]
|
11
|
Günal MY, Ozansoy M, Kılıç Ü, Keskin İ, Özdemir EM, Aslan İ, Eren Z, Ersavaş C, Kılıç E. Role of erythropoietin and its receptor in the development of endometriosis in rats. J Turk Ger Gynecol Assoc 2018; 20:41-46. [PMID: 29916217 PMCID: PMC6501872 DOI: 10.4274/jtgga.galenos.2018.2018.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Objective: Besides its hematopoietic function, erythropoietin (EPO) may protect tissues from degenerative disorders. As such, EPO and its receptors were revealed in nonhematopoietic cells, including stromal and endometrial epithelial cells. However, the role of EPO in endometrial disorders is still unknown. Here, we aimed to examine the role of EPO and its receptor activation in the development of endometriosis in rats. Material and Methods: Animals were treated with EPO, darbepoietin (the synthetic form of EPO) or EPO’s receptor activator, methoxy polyethylene glycol-epoetin beta (MIRCERA), after development of endometriosis. Endometriosis was induced by estrogen-administration following surgical attachment of endometrial surface on the inner abdominal wall. Treatments were started 3 weeks after induction of endometriosis and continued for the following 3 weeks. For the analysis of recurrence of endometriosis, additional analyses were conducted 3 weeks after cessation of treatments. Results: As compared with vehicle-treated animals, lesion size was reduced significantly and recurrence of endometriosis was not observed in all treatment groups. Histopathologic examination revealed that EPO and darbepoietin were more effective than MIRCERA- and vehicle-treated animals. Conclusion: Here we provide evidence that EPO is a promising candidate for the treatment of endometriosis. Our histopathologic results in particular indicate that EPO is more effective than its receptor activator MIRCERA in the development endometriosis.
Collapse
Affiliation(s)
- Mehmet Yalçın Günal
- Department of Physiology, Alanya Alaaddin Keykubat University School of Medicine, Antalya, Turkey,Regenerative and Restorative Medical Research Center (REMER), İstanbul Medipol University, İstanbul, Turkey
| | - Mehmet Ozansoy
- Department of Physiology, İstanbul Medipol University School of Medicine, İstanbul, Turkey,Regenerative and Restorative Medical Research Center (REMER), İstanbul Medipol University, İstanbul, Turkey
| | - Ülkan Kılıç
- Department of Medical Biology, University of Health Sciences School of Medicine, İstanbul, Turkey,Regenerative and Restorative Medical Research Center (REMER), İstanbul Medipol University, İstanbul, Turkey
| | - İlknur Keskin
- Department of Histology and Embryology, İstanbul Medipol University School of Medicine, İstanbul, Turkey,Regenerative and Restorative Medical Research Center (REMER), İstanbul Medipol University, İstanbul, Turkey
| | - Ekrem Musa Özdemir
- Experimental Animal Center, İstanbul Medipol University, İstanbul, Turkey
| | - İsmail Aslan
- Department of Pharmaceutical Technology, Yeditepe University School of Pharmacy, İstanbul, Turkey
| | - Zehra Eren
- Department of Nephrology, Yeditepe University School of Medicine, İstanbul, Turkey
| | - Cenk Ersavaş
- Department of General Surgery, İstanbul Medipol University School of Medicine, İstanbul, Turkey,Regenerative and Restorative Medical Research Center (REMER), İstanbul Medipol University, İstanbul, Turkey
| | - Ertuğrul Kılıç
- Department of Physiology, İstanbul Medipol University School of Medicine, İstanbul, Turkey,Regenerative and Restorative Medical Research Center (REMER), İstanbul Medipol University, İstanbul, Turkey
| |
Collapse
|
12
|
Haase VH. Oxygen sensors as therapeutic targets in kidney disease. Nephrol Ther 2018; 13 Suppl 1:S29-S34. [PMID: 28577740 DOI: 10.1016/j.nephro.2017.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/03/2023]
Abstract
Hypoxia is a common clinical problem that has profound effects on renal homeostasis. Prolyl-4-hydroxylases PHD1, 2 and 3 function as oxygen sensors and control the activity of hypoxia-inducible factor (HIF), an oxygen-sensitive transcription factor that regulates a multitude of hypoxia responses, which help cells and tissues to adapt to low oxygen environments. This review provides an overview of the molecular mechanisms that govern these hypoxia responses and discusses clinical experience with compounds that inhibit prolyl-4-hydroxylases to harness HIF responses for therapy in nephrology.
Collapse
Affiliation(s)
- Volker H Haase
- Department of medicine, Vanderbilt university medical center, Nashville, TN, USA; Departments of cancer biology and molecular physiology and biophysics, Vanderbilt university school of medicine, Nashville, TN, USA; Medical and research services, department of veterans affairs hospital, Tennessee Valley healthcare system, Nashville, TN, USA.
| |
Collapse
|
13
|
Westphal G, Niederberger E, Blum C, Wollman Y, Knoch TA, Rebel W, Debus J, Friedrich E. Erythropoietin and G-csf Receptors in Human Tumor Cells: Expression and Aspects regarding Functionality. TUMORI JOURNAL 2018; 88:150-9. [PMID: 12088257 DOI: 10.1177/030089160208800214] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and Background Recombinant human erythropoietin (Epo) and granulocyte-colony-stimulating factor (G-CSF) are used to stimulate hematopoiesis in patients with malignant diseases. These cytokines transduce their biological signal via the Epo receptor (EpoR) and G-CSF receptor (G-CSF-R) into the cell. We therefore investigated in human tumor cell lines the expression of these receptors in tumor cells as well as their response to Epo and G-CSF. Methods and Study Design The expression of EpoR and G-CSF-R mRNA was analyzed with reverse transcription-polymerase chain reaction (RT-PCR). EpoR protein expression was further monitored with Western blot and immunocytochemistry analysis. The cellular response to various concentrations of Epo was evaluated using 3[H]-thymidine uptake, Northern blot of c-fos expression and tyrosine kinase activity assay. The proliferation after G-CSF incubation was analyzed with the MTS assay. Results In this study EpoR mRNA and protein were detected in various human tumor cell lines. Treatment with Epo did not influence the proliferation rate of examined EpoR-positive tumor cell lines. Epo did not stimulate the tyrosine kinase activity nor did it affect the c-fos mRNA in these cell lines. G-CSF-R mRNA was only detected in two myeloid cell lines. Treatment with G-CSF did not increase the proliferation of these cells. Conclusions These results demonstrate that Epo and G-CSF did not modulate the growth rate of examined receptor-positive tumor cell lines; the presence of the Epo receptor seems not essential for cell growth of these tumor cells in cell culture.
Collapse
Affiliation(s)
- Gabriela Westphal
- Division of Radiobiology in Radiooncology, German Cancer Research Center (DKFZ), Heidelberg.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Reinhardt M, Dey S, Noguchi CT, Zhang Y, Krakoff J, Thearle MS. Non-hematopoietic effects of endogenous erythropoietin on lean mass and body weight regulation. Obesity (Silver Spring) 2016; 24:1530-6. [PMID: 27222253 PMCID: PMC4925195 DOI: 10.1002/oby.21537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To investigate the concurrent relationships between human plasma erythropoietin concentrations and energy expenditure (EE), body composition, plasma leptin concentrations, and associations with weight change. METHODS Plasma to measure erythropoietin and leptin; data for body composition; 24-h EE measured in a whole-room calorimeter; and 75 g oral glucose tolerance testing were available from 109 full-heritage Pima Indians (55% male) from a larger study designed to understand the causes of obesity. Seventy-nine subjects had data for weight at a later visit (mean follow-up = 4.3 ± 1.9 years) to calculate percent weight change per year. RESULTS Erythropoietin, adjusted for covariates, correlated with 24-h EE (r = 0.26, P = 0.007), sleeping EE (r = 0.29, P = 0.003), fat-free mass (r = 0.19, P = 0.05), and fat mass (r = 0.27, P = 0.005), but not insulin or glucose measures. The association of erythropoietin with 24-h EE was fully mediated by fat-free mass. Erythropoietin associated with leptin in women (ρ = 0.36, P = 0.01), but not in men (P = 0.9), independently from fat mass. The association of erythropoietin with percent weight change per year was in opposing directions (interaction: P = 0.002) in males (r = -0.35, P = 0.02) versus females (r = 0.37, P = 0.02). CONCLUSIONS Non-hematopoietic endogenous erythropoietin action may be involved in body weight regulation in opposing directions in men and women, i.e., weight loss in men and weight gain in women.
Collapse
Affiliation(s)
- Martin Reinhardt
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Germany
| | - Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Yuanyuan Zhang
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ
| | - Marie S. Thearle
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ
| |
Collapse
|
15
|
Asano R, Asai-Sato M, Miyagi Y, Mizushima T, Koyama-Sato M, Nagashima Y, Taguri M, Sakakibara H, Hirahara F, Miyagi E. Aberrant expression of erythropoietin in uterine leiomyoma: implications in tumor growth. Am J Obstet Gynecol 2015; 213:199.e1-8. [PMID: 25724399 DOI: 10.1016/j.ajog.2015.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/11/2015] [Accepted: 02/14/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Myomatous erythrocytosis syndrome is a rare complication of uterine leiomyoma caused by erythropoietin (EPO) that is produced by tumor cells. We assessed the EPO expression in leiomyomas and investigated the effects of EPO on the tumor growth. STUDY DESIGN Tissue samples were collected from 114 patients with uterine leiomyomas who underwent myomectomy or hysterectomy in Yokohama City University Hospital. From 17 patients, the corresponding normal myometrium was also collected. All samples were analyzed for EPO messenger RNA (mRNA) expression by real-time reverse transcription-polymerase chain reaction. EPO protein expression was determined by an enzyme-linked immunosorbent assay. The relationships between EPO expression and clinicopathological features were retrospectively analyzed using the patients' charts. Blood vessel density and maturity were assessed using hematoxylin-eosin staining and CD34 immunohistochemistry. RESULTS EPO mRNA expression was detected in 108 of 114, or 95%, of the leiomyomas. The mean EPO mRNA expression in the leiomyoma was higher than the corresponding normal myometrium (3836 ± 4122 vs 1455 ± 2141; P = .025 by Wilcoxon rank test). The EPO mRNA expression in the leiomyomas varied extensively among samples, ranging from undetectable levels to 18-fold above the mean EPO mRNA of normal myometrium. EPO protein production was observed concomitant with mRNA expression. A positive correlation of leiomyoma size and EPO mRNA expression was shown by Spearman rank correlation coefficient (ρ = 0.294; P = .001), suggesting the involvement of EPO in leiomyoma growth. The blood vessel maturity was also significantly increased in EPO-producing leiomyomas (high vessel maturity in high vs low EPO group: 67% vs 20%; P = .013 by Fisher exact test). CONCLUSION This report demonstrates that EPO is produced in most of conventional leiomyomas and supports a model in which EPO accelerates tumor growth, possibly by inducing vessel maturity. Our study suggests one possible mechanism by which some uterine leiomyomas reach a large size, and the understanding of EPO expression patterns in these tumors may be useful for management of the patients with leiomyomas.
Collapse
|
16
|
Abstract
Improved understanding of the oxygen-dependent regulation of erythropoiesis has provided new insights into the pathogenesis of anaemia associated with renal failure and has led to the development of novel therapeutic agents for its treatment. Hypoxia-inducible factor (HIF)-2 is a key regulator of erythropoiesis and iron metabolism. HIF-2 is activated by hypoxic conditions and controls the production of erythropoietin by renal peritubular interstitial fibroblast-like cells and hepatocytes. In anaemia associated with renal disease, erythropoiesis is suppressed due to inadequate erythropoietin production in the kidney, inflammation and iron deficiency; however, pharmacologic agents that activate the HIF axis could provide a physiologic approach to the treatment of renal anaemia by mimicking hypoxia responses that coordinate erythropoiesis with iron metabolism. This Review discusses the functional inter-relationships between erythropoietin, iron and inflammatory mediators under physiologic conditions and in relation to the pathogenesis of renal anaemia, as well as recent insights into the molecular and cellular basis of erythropoietin production in the kidney. It furthermore provides a detailed overview of current clinical experience with pharmacologic activators of HIF signalling as a novel comprehensive and physiologic approach to the treatment of anaemia.
Collapse
|
17
|
Erythropoietin and the heart: physiological effects and the therapeutic perspective. Int J Cardiol 2013; 171:116-25. [PMID: 24377712 DOI: 10.1016/j.ijcard.2013.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 10/08/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
Abstract
Erythropoietin (Epo) has been thought to act exclusively on erythroid progenitor cells. The identification of Epo receptor (EpoR) in non-haematopoietic cells and tissues including neurons, astrocytes, microglia, immune cells, cancer cell lines, endothelial cells, bone marrow stromal cells, as well as cells of myocardium, reproductive system, gastrointestinal tract, kidney, pancreas and skeletal muscle indicates that Epo has pleiotropic actions. Epo shows signals through protein kinases, anti-apoptotic proteins and transcription factors. In light of interest of administering recombinant human erythropoietin (rhEpo) and its analogues for limiting infarct size and left ventricular (LV) remodelling after acute myocardial infarction (AMI) in humans, the foremost studies utilising rhEpo are reviewed. The putative mechanisms involved in Epo-induced cardioprotection are related to the antiapoptotic, anti-inflammatory and angiogenic effects of Epo. Thus, cardioprotective potentials of rhEpo are reviewed in this article by focusing on clinical applicability. An overview of non-haematopoietic Epo analogues, which are a reliable alternative to the classic EpoR agonists and may prevent undesired side effects, is also provided.
Collapse
|
18
|
Lee HJ, Kim KW. Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro. Biomol Ther (Seoul) 2013; 20:280-5. [PMID: 24130924 PMCID: PMC3794524 DOI: 10.4062/biomolther.2012.20.3.280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 03/27/2012] [Accepted: 04/10/2012] [Indexed: 11/25/2022] Open
Abstract
The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-1α (HIF-1α). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-1α in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDA-CIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-1α protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-1α protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-1α.
Collapse
Affiliation(s)
- Hyo-Jong Lee
- College of Pharmacy, Inje University, Gimhae 621-749
| | | |
Collapse
|
19
|
Sanchis-Gomar F, Perez-Quilis C, Lippi G. Erythropoietin receptor (EpoR) agonism is used to treat a wide range of disease. Mol Med 2013; 19:62-4. [PMID: 23615965 DOI: 10.2119/molmed.2013.00025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/11/2013] [Indexed: 11/06/2022] Open
Abstract
The erythropoietin receptor (EpoR) was discovered and described in red blood cells (RBCs), stimulating its proliferation and survival. The target in humans for EpoR agonists drugs appears clear-to treat anemia. However, there is evidence of the pleitropic actions of erythropoietin (Epo). For that reason, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson's and Alzheimer's disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia). Unfortunately, the side effects of rhEpo are also evident. A new generation of nonhematopoietic EpoR agonists drugs (asialoEpo, Cepo and ARA 290) have been investigated and further developed. These EpoR agonists, without the erythropoietic activity of Epo, while preserving its tissue-protective properties, will provide better outcomes in ongoing clinical trials. Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.
Collapse
Affiliation(s)
- Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, University of Valencia, Research Foundation of the University Clinic Hospital of Valencia/INCLIVA, Valencia, Spain.
| | | | | |
Collapse
|
20
|
Zou S, Li X, Feng Y, Sun S, Li J, Egecioglu E, Billig H, Shao R. Comparison of the diagnostic values of circulating steroid hormones, VEGF-A, PIGF, and ADAM12 in women with ectopic pregnancy. J Transl Med 2013; 11:44. [PMID: 23421942 PMCID: PMC3585714 DOI: 10.1186/1479-5876-11-44] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/07/2013] [Indexed: 11/17/2022] Open
Abstract
Background Several peripheral proteins that might be useful for detecting the presence of ectopic pregnancy (EP) have been evaluated, but none have been proven entirely useful in the clinic. We investigated the presence and the possible changes in circulating molecules that distinguish between normal intrauterine pregnancy (IUP) and tubal ectopic pregnancy. Methods Non-pregnant women during the menstrual cycle, women with IUP, and women with tubal EP after informed consent. Serum levels of 17β-estradiol (E2), progesterone (P4), testosterone (T), beta-human chorionic gonadotropin (β-hCG), vascular endothelial growth factor-A (VEGF-A), placental growth factor (PIGF), and a distintegrin and metalloprotease protein 12 (ADAM12) were analyzed. Receiver operating characteristic analysis was used to assess the diagnostic discrimination of EP and gestational age-matched IUP. Results E2, P4, PIGF, and ADAM12 levels increased and β-hCG decreased throughout IUP. E2 and VEGF-A levels were significantly different between women with tubal EP and IUP. However, using a serum β-hCG cut-off of less than 1000 mIU/mL, P4 was significantly lower in women with tubal EP compared to IUP. Although E2 was inversely correlated with VEGF-A in women in the early stages of IUP, E2 was not correlated with VEGF-A in women with EP prior to tubal surgery. There were no significant differences in either PIGF or ADAM12 alone between women with tubal EP or IUP. Although no significant correlations were seen between E2 and PIGF or P4 and ADAM12 in women in the early stages of IUP, E2 was positively correlated with PIGF and P4 was positively correlated with ADAM12 in women with EP prior to tubal surgery. Our studies defined associations but not causality. Conclusions Individual measurements of serum E2 or VEGF-A levels are strongly related to early pregnancy outcomes for women with IUP and EP, and pregnancy-associated E2 and VEGF-A levels provide diagnostic accuracy for the presence of tubal EP. This study demonstrates that correlation analysis of E2/VEGF-A and E2/PIGF serum levels may be able to distinguish a tubal EP from a normal IUP.
Collapse
Affiliation(s)
- Shien Zou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
A classic physiologic response to systemic hypoxia is the increase in red blood cell production. Hypoxia-inducible factors (HIFs) orchestrate this response by inducing cell-type specific gene expression changes that result in increased erythropoietin (EPO) production in kidney and liver, in enhanced iron uptake and utilization and in adjustments of the bone marrow microenvironment that facilitate erythroid progenitor maturation and proliferation. In particular HIF-2 has emerged as the transcription factor that regulates EPO synthesis in the kidney and liver and plays a critical role in the regulation of intestinal iron uptake. Its key function in the hypoxic regulation of erythropoiesis is underscored by genetic studies in human populations that live at high-altitude and by mutational analysis of patients with familial erythrocytosis. This review provides a perspective on recent insights into HIF-controlled erythropoiesis and iron metabolism, and examines cell types that have EPO-producing capability. Furthermore, the review summarizes clinical syndromes associated with mutations in the O(2)-sensing pathway and the genetic changes that occur in high altitude natives. The therapeutic potential of pharmacologic HIF activation for the treatment of anemia is discussed.
Collapse
Affiliation(s)
- Volker H Haase
- Department of Medicine, Vanderbilt School of Medicine, Nashville, TN, USA.
| |
Collapse
|
22
|
Sorg H, Harder Y, Krueger C, Reimers K, Vogt PM. The nonhematopoietic effects of erythropoietin in skin regeneration and repair: from basic research to clinical use. Med Res Rev 2012; 33:637-64. [PMID: 22430919 DOI: 10.1002/med.21259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Erythropoietin (EPO) is the main regulator of red blood cell production but there exists also a variety of nonhematopoietic properties. More recent data show that EPO is also associated with the protection of tissues suffering from ischemia and reperfusion injury as well as with improved regeneration in various organ systems, in particular the skin. This review highlights the mechanisms of EPO in the different stages of wound healing and the reparative processes in the skin emphasizing pathophysiological mechanisms and potential clinical applications. There is clear evidence that EPO effectively influences all wound-healing phases in a dose-dependent manner. This includes inflammation, tissue, and blood vessel formation as well as the remodeling of the wound. The molecular mechanism is predominantly based on an increased expression of the endothelial and inducible nitric oxide (NO) synthase with a consecutive rapid supply of NO as well as an increased content of vascular endothelial growth factor (VEGF) in the wound. The improved understanding of the functions and regulatory mechanisms of EPO in the context of wound-healing problems and ischemia/reperfusion injury, especially during flap surgery, may lead to new considerations of this growth hormone for its regular clinical application in patients.
Collapse
Affiliation(s)
- Heiko Sorg
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, 30625, Hannover, Germany.
| | | | | | | | | |
Collapse
|
23
|
Angiogenic activity of classical hematopoietic cytokines. Leuk Res 2012; 36:537-43. [PMID: 22386730 DOI: 10.1016/j.leukres.2012.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/24/2012] [Accepted: 02/07/2012] [Indexed: 12/24/2022]
Abstract
Hematopoiesis is regulated by several cytokines with pleiotropic activity. Several evidences have clearly demonstrated that these molecules, formerly regarded as specific for the hematopoietic system, also affect certain endothelial cell functions and that hematopoietic factors clearly influence angiogenesis. This review article summarizes the most important literature data concerning this inconvertible relationship.
Collapse
|
24
|
Ribatti D. Angiogenic Effects of Erythropoietin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:199-234. [DOI: 10.1016/b978-0-12-394310-1.00005-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Hand CC, Brines M. Promises and pitfalls in erythopoietin-mediated tissue protection: are nonerythropoietic derivatives a way forward? J Investig Med 2011; 59:1073-82. [PMID: 20683348 PMCID: PMC3023830 DOI: 10.2310/jim.0b013e3181ed30bf] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
The essential biological role of erythropoietin (EPO) in maintaining erythrocyte mass has been well understood for many years. Although EPO is required for the maturation of red cells, it also has strong procoagulant effects on the vascular endothelium and platelets, which limit erythrocyte losses after hemorrhage. Like other members of the type 1 cytokine superfamily, EPO has multiple biological activities. For the past 10 years, multiple investigators have shown that EPO acts as a locally produced antagonist of proinflammatory cytokines that are generated by the innate immune response in response to infection, trauma, or metabolic stress. Specifically, EPO inhibits apoptosis of cells surrounding a locus of injury, reduces the influx of inflammatory cells, and recruits tissue-specific stem cells and endothelial progenitor cells. Available evidence suggests that these multiple, nonerythropoietic effects of EPO are mediated by a tissue protective receptor (TPR) that is distinct from the homodimeric receptor responsible for erythropoiesis. Notably, activation of the TPR requires a higher concentration of EPO than is needed for maximal erythropoiesis. Unfortunately, these higher concentrations of EPO also stimulate hematopoietic and procoagulant pathways, which can cause adverse effects and, therefore, potentially limit the clinical use of EPO for tissue protection. To circumvent these problems, the EPO molecule has been successfully modified in a variety of ways to interact only with the TPR. Early clinical experience has shown that these compounds appear to be safe, and proof of concept trials are ready to begin.
Collapse
|
26
|
|
27
|
Gillies RM, Robinson SP, McPhail LD, Carter ND, Murray JF. Immunohistochemical assessment of intrinsic and extrinsic markers of hypoxia in reproductive tissue: differential expression of HIF1α and HIF2α in rat oviduct and endometrium. J Mol Histol 2011; 42:341-54. [PMID: 21732047 PMCID: PMC3136703 DOI: 10.1007/s10735-011-9338-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/19/2011] [Indexed: 12/11/2022]
Abstract
Hypoxia is thought to be critical in regulating physiological processes within the female reproductive system, including ovulation, composition of the fluid in the oviductal/uterine lumens and ovarian follicle development. This study examined the localisation of exogenous (pimonidazole) and endogenous [hypoxia inducible factor 1α and 2α (HIF1α, -2α), glucose transporter type 1 (GLUT1) and carbonic anhydrase 9 (CAIX)] hypoxia-related antigens within the oviduct and uterus of the rat reproductive tract. The extent to which each endogenous antigen co-compartmentalised with pimonidazole was also assessed. Female Wistar Furth rats (n = 10) were injected intraperitoneally with pimonidazole (60 mg/kg) 1 h prior to death. Reproductive tissues were removed immediately following death and fixed in 4% paraformaldehyde before being embedded in paraffin. Serial sections were cut (6-7 μm thick) and antigens of interest identified using standard immunohistochemical procedures. The mucosal epithelia of the ampulla, isthmus and uterus were immunopositive for pimonidazole in most sections. Co-compartmentalisation of pimonidazole with HIF1α was only expressed in the mucosa of the uterus whilst co-compartmentalisation with HIF2α was observed in the mucosa of the ampulla, isthmus and uterus. Both GLUT1 and CAIX were co-compartmentalised with pimonidazole in mucosa of the isthmus and uterus. This study confirms that mucosal regions of the rat oviduct and uterus frequently experience severe hypoxia and there are compartment specific variations in expression of endogenous hypoxia-related antigens, including the HIF isoforms. The latter observation may relate to target gene specificity of HIF isoforms or perhaps HIF2α's responsiveness to non-hypoxic stimuli such as hypoglycaemia independently of HIF1α.
Collapse
Affiliation(s)
- Robert M Gillies
- School of Life Sciences, University of Westminster, 115 New Cavendish St., London, UK
| | | | | | | | | |
Collapse
|
28
|
Aihara Y, Fujiwara N, Yamazaki T, Kambe T, Nagao M, Hirose Y, Masuda S. Enhancing recombinant protein production in human cell lines with a constitutive transport element and mRNA export proteins. J Biotechnol 2011; 153:86-91. [PMID: 21473891 DOI: 10.1016/j.jbiotec.2011.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/05/2011] [Accepted: 03/29/2011] [Indexed: 11/16/2022]
Abstract
Recent research into mRNA maturation processes in the nucleus has identified a number of proteins involved in mRNA transcription, capping, splicing, end processing and export. Among them, the Tap-p15 heterodimer acts as an mRNA export receptor. Tap-p15 is recruited onto fully processed mRNA in the nucleus, which is ready for export to the cytoplasm, through associating with Aly or SR proteins on mRNA, or by directly associating with a constitutive transport element (CTE), an RNA element derived from type D retroviruses. mRNA containing a CTE is exported to the cytoplasm by directly associating with Tap-p15, even in the absence of Tap-recruiting proteins such as Aly or SR proteins on the mRNA. Here, we showed that the use of a CTE enhanced the expression of recombinant protein in human cell lines. The co-expression of reporter proteins and Tap-p15 also enhanced recombinant protein expression. Moreover, the use of a CTE and Tap-p15 synergistically further enhanced the recombinant protein expression. In addition to Tap-p15, several Tap-p15-recruiting proteins, including Aly and SR proteins, enhanced recombinant protein expression, albeit independently of the CTE. The incorporation of a CTE and Tap-p15-recruiting proteins into protein expression system is useful to increase recombinant protein yield in human cells.
Collapse
Affiliation(s)
- Yuki Aihara
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Lombardero M, Kovacs K, Scheithauer BW. Erythropoietin: a hormone with multiple functions. Pathobiology 2011; 78:41-53. [PMID: 21474975 DOI: 10.1159/000322975] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 11/22/2010] [Indexed: 12/17/2022] Open
Abstract
Erythropoietin (EPO), the main hemopoietic hormone synthesized by the kidney as well as by the liver in fetal life, is implicated in mammalian erythropoiesis. Production and secretion of EPO and the expression of its receptor (EPO-R) are regulated by tissue oxygenation. EPO and EPO-R, expressed in several tissues, exert pleiotropic activities and have different effects on nonhemopoietic cells. EPO is a cytokine with antiapoptotic activity and plays a potential neuroprotective and cardioprotective role against ischemia. EPO is also involved in angiogenesis, neurogenesis, and the immune response. EPO can prevent metabolic alterations, neuronal and vascular degeneration, and inflammatory cell activation. Consequently, EPO may be of therapeutic use for a variety of disorders. Many tumors express EPO and/or EPO-R, but the action of EPO on tumor cells remains controversial. It has been suggested that EPO promotes the proliferation and survival of cancer cells expressing EPO-R. On the other hand, other reports have concluded that EPO-R plays no role in tumor progression. This review provides a detailed insight into the nonhemopoietic role of EPO and its mechanism(s) of action which may lead to a better understanding of its potential therapeutic value in diverse clinical settings.
Collapse
Affiliation(s)
- Matilde Lombardero
- Department of Anatomy and Animal Production, Faculty of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain.
| | | | | |
Collapse
|
30
|
Ergun Y, Koc A, Dolapcioglu K, Akaydin Y, Dogruer G, Kontas T, Kozlu T, Aslan E. The protective effect of erythropoietin and dimethylsulfoxide on ischemia-reperfusion injury in rat ovary. Eur J Obstet Gynecol Reprod Biol 2010; 152:186-90. [DOI: 10.1016/j.ejogrb.2010.05.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/28/2010] [Accepted: 05/26/2010] [Indexed: 11/30/2022]
|
31
|
Lee HJ, Jeong CH, Cha JH, Kim KW. PKC-delta inhibitors sustain self-renewal of mouse embryonic stem cells under hypoxia in vitro. Exp Mol Med 2010; 42:294-301. [PMID: 20177147 DOI: 10.3858/emm.2010.42.4.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Under hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-1 alpha (HIF-1 alpha). Previous studies have demonstrated that PKC-delta is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-1 alpha in human cancer cells. Furthermore, activation of PKC-delta mediates cardiac differentiation of ESCs and hematopoietic stem cells. However, the role of PKC-delta in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we show the inhibition of PKC-delta activity prevents the early differentiation of mESCs under hypoxia using PKC-delta inhibitors, GF 109203X and rottlerin. Reduction of PKC-delta activity under hypoxia effectively decreased HIF-1 alpha protein levels and substantially recovered the expression of LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. Furthermore, PKC-delta inhibitors aid to sustain the expression of self-renewal markers and suppress the expression of early differentiation markers in mESCs under hypoxia. Taken together, these results suggest that PKC-delta inhibitors block the early differentiation of mESCs via destabilization of HIF-1 alpha under hypoxia.
Collapse
Affiliation(s)
- Hyo-Jong Lee
- Research Institute of Pharmaceutical Sciences, NeuroVascular Coordination Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
32
|
Abstract
The kidney is a highly sensitive oxygen sensor and plays a central role in mediating the hypoxic induction of red blood cell production. Efforts to understand the molecular basis of oxygen-regulated erythropoiesis have led to the identification of erythropoietin (EPO), which is essential for normal erythropoiesis and to the purification of hypoxia-inducible factor (HIF), the transcription factor that regulates EPO synthesis and mediates cellular adaptation to hypoxia. Recent insights into the molecular mechanisms that control and integrate cellular and systemic erythropoiesis-promoting hypoxia responses and their potential as a therapeutic target for the treatment of renal anemia are discussed in this review.
Collapse
Affiliation(s)
- Volker H Haase
- Department of Medicine, Vanderbilt School of Medicine, Nashville, Tennessee 37232, USA.
| |
Collapse
|
33
|
Turner JD, Mammis A, Prestigiacomo CJ. Erythropoietin for the Treatment of Subarachnoid Hemorrhage: A Review. World Neurosurg 2010; 73:500-7. [DOI: 10.1016/j.wneu.2010.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
|
34
|
Oxidative stress: Biomarkers and novel therapeutic pathways. Exp Gerontol 2010; 45:217-34. [PMID: 20064603 DOI: 10.1016/j.exger.2010.01.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 01/12/2023]
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
|
35
|
Maiese K, Hou J, Chong ZZ, Shang YC. Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology. ScientificWorldJournal 2009; 9:1072-104. [PMID: 19802503 PMCID: PMC2762199 DOI: 10.1100/tsw.2009.121] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
36
|
Bakan V, Ciralik H, Tolun FI, Atli Y, Mil A, Oztürk S. Protective effect of erythropoietin on torsion/detorsion injury in rat model. J Pediatr Surg 2009; 44:1988-94. [PMID: 19853760 DOI: 10.1016/j.jpedsurg.2009.02.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of the study is to investigate the effects of erythropoietin on torsion/detorsion injury in rats. METHODS Forty rats were divided randomly into 5 groups: group I (sham, S), sham operation; group II (torsion/detorsion 1, T/D(1)), 3 hours ischemia and 1 hour reperfusion; group III (torsion/detorsion 2, T/D(2)), 3 hours ischemia and 48 hours reperfusion; group IV (erythropoietin 1, EPO(1)), 3 hours ischemia, 1 hour reperfusion, and a single dose of EPO; and group V (erythropoietin 2, EPO(2)), 3 hours ischemia, 48 hours reperfusion, and 2 doses of EPO. Malondialdehyde (MDA) and nitric oxide (NO) levels and activities of superoxide dismutase and catalase were measured. Tissue damage to ovarian tissue was scored by histologic examination. Data were compared among groups with parametric tests. RESULTS The MDA levels in the S and EPO groups were significantly lower than the T/D groups (P < .001). Catalase and superoxide dismutase activities, and NO levels in the S and EPO groups were significantly higher than in the T/D groups (P < .05). Ovarian tissue damage in the S and EPO groups was significantly less than in the T/D groups (P < .05). Levels of all biochemical markers and ovarian tissue damage scores were similar among the S, EPO(1), and EPO(2) groups (P > .05). CONCLUSION Erythropoietin attenuates ischemia-reperfusion injury when given during the acute phase of ovarian torsion-detorsion in a rat model.
Collapse
Affiliation(s)
- Vedat Bakan
- Faculty of Medicine, Department of Pediatric Surgery, Sutcu Imam University, Kahramanmaras 46100, Turkey.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
In the haematopoietic system, the principal function of erythropoietin (EPO) is the regulation of RBC production. Consequently, following the cloning of the EPO gene, recombinant human EPO (rHuEPO) forms have been widely used for treatment of anaemia in chronic kidney disease and chemotherapy-induced anaemia in cancer patients. However, a steadily growing body of evidence indicates that the therapeutic benefits of rHuEPO could be far beyond the correction of anaemia. Several articles have been recently published on the tissue-protective, nonhaematological effects of rHuEPO that prevent ischaemia-induced tissue damage in several organs including the kidney.In this review, we focus on nonhaematological effects of rHuEPO in various experimental settings of acute and chronic kidney injury. Because this tissue-protective action of rHuEPO is not the result of correction of anaemia-related tissue hypoxia, we will also discuss potential molecular pathways involved. Finally, we will review the current literature on clinical studies with rHuEPO or analogous substances and progression of chronic kidney disease, and propose possible clinical renoprotective strategies.
Collapse
|
38
|
Yi JM, Kwon HY, Cho JY, Lee YJ. Estrogen and hypoxia regulate estrogen receptor alpha in a synergistic manner. Biochem Biophys Res Commun 2008; 378:842-6. [PMID: 19084502 DOI: 10.1016/j.bbrc.2008.11.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 11/30/2008] [Indexed: 02/07/2023]
Abstract
Hypoxia activates and degrades estrogen receptor alpha (ERalpha) in human breast cancer cells, which may play an important role in the development and progression of breast cancer. In this study, the synergistic effects of estrogen (E(2)) and hypoxia on ERalpha-mediated transactivation and ERalpha degradation were investigated. ERalpha-mediated transcriptional activity was synergistically increased by E(2) and hypoxia, as determined by the transient expression of ERalpha and ER-responsive reporter plasmids in HEK 293 cells. Twenty hours of E(2) and hypoxia treatment synergistically induced degradation of ERalpha by 95% via a proteasome-dependent pathway in MCF-7 cells. These results provide evidence that hypoxia may stimulate yet unknown factor(s), which can further stimulate ERalpha signal transduction pathways.
Collapse
Affiliation(s)
- Jinhyung Michael Yi
- Department of Bioscience and Biotechnology College of Engineering, Institute of Biotechnology, Sejong University, Kwang-Jin-Gu, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
39
|
Rabie T, Marti HH. Brain protection by erythropoietin: a manifold task. Physiology (Bethesda) 2008; 23:263-74. [PMID: 18927202 DOI: 10.1152/physiol.00016.2008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many hematopoietic growth factors are produced locally in the brain. Among these, erythropoietin (Epo), has a dominant role for neuroprotection, neurogenesis, and acting as a neurotrophic factor in the central nervous system. These functions make erythropoietin a good candidate for treating diseases associated with neuronal cell death.
Collapse
Affiliation(s)
- Tamer Rabie
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
40
|
Abstract
In the haematopoietic system, the principal function of erythropoietin (Epo) is the regulation of red blood cell production, mediated by its specific cell surface receptor (EpoR). Following the cloning of the Epo gene (EPO) and characterization of the selective haematopoietic action of Epo in erythroid lineage cells, recombinant Epo forms (epoetin-alfa, epoetin-beta and the long-acting analogue darbepoetin-alfa) have been widely used for treatment of anaemia in chronic kidney disease and chemotherapy-induced anaemia in cancer patients. Ubiquitous EpoR expression in non-erythroid cells has been associated with the discovery of diverse biological functions for Epo in non-haematopoietic tissues. During development, Epo-EpoR signalling is required not only for fetal liver erythropoiesis, but also for embryonic angiogenesis and brain development. A series of recent studies suggest that endogenous Epo-EpoR signalling contributes to wound healing responses, physiological and pathological angiogenesis, and the body's innate response to injury in the brain and heart. Epo and its novel derivatives have emerged as major tissue-protective cytokines that are being investigated in the first human studies involving neurological and cardiovascular diseases. This review focuses on the scientific evidence documenting the biological effects of Epo in non-haematopoietic tissues and discusses potential future applications of Epo and its derivatives in the clinic.
Collapse
Affiliation(s)
- Murat O Arcasoy
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
41
|
Maiese K, Chong ZZ, Li F, Shang YC. Erythropoietin: elucidating new cellular targets that broaden therapeutic strategies. Prog Neurobiol 2008; 85:194-213. [PMID: 18396368 PMCID: PMC2441910 DOI: 10.1016/j.pneurobio.2008.02.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/04/2008] [Accepted: 02/22/2008] [Indexed: 01/06/2023]
Abstract
Given that erythropoietin (EPO) is no longer believed to have exclusive biological activity in the hematopoietic system, EPO is now considered to have applicability in a variety of nervous system disorders that can overlap with vascular disease, metabolic impairments, and immune system function. As a result, EPO may offer efficacy for a broad number of disorders that involve Alzheimer's disease, cardiac insufficiency, stroke, trauma, and diabetic complications. During a number of clinical conditions, EPO is robust and can prevent metabolic compromise, neuronal and vascular degeneration, and inflammatory cell activation. Yet, use of EPO is not without its considerations especially in light of frequent concerns that may compromise clinical care. Recent work has elucidated a number of novel cellular pathways governed by EPO that can open new avenues to avert deleterious effects of this agent and offer previously unrecognized perspectives for therapeutic strategies. Obtaining greater insight into the role of EPO in the nervous system and elucidating its unique cellular pathways may provide greater cellular viability not only in the nervous system but also throughout the body.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
Unmitigated oxidative stress can lead to diminished cellular longevity, accelerated aging, and accumulated toxic effects for an organism. Current investigations further suggest the significant disadvantages that can occur with cellular oxidative stress that can lead to clinical disability in a number of disorders, such as myocardial infarction, dementia, stroke, and diabetes. New therapeutic strategies are therefore sought that can be directed toward ameliorating the toxic effects of oxidative stress. Here we discuss the exciting potential of the growth factor and cytokine erythropoietin for the treatment of diseases such as cardiac ischemia, vascular injury, neurodegeneration, and diabetes through the modulation of cellular oxidative stress. Erythropoietin controls a variety of signal transduction pathways during oxidative stress that can involve Janus-tyrosine kinase 2, protein kinase B, signal transducer and activator of transcription pathways, Wnt proteins, mammalian forkhead transcription factors, caspases, and nuclear factor kappaB. Yet, the biological effects of erythropoietin may not always be beneficial and may be poor tolerated in a number of clinical scenarios, necessitating further basic and clinical investigations that emphasize the elucidation of the signal transduction pathways controlled by erythropoietin to direct both successful and safe clinical care.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
43
|
Smirnova OV, Ostroukhova TY, Bogorad RL. JAK-STAT pathway in carcinogenesis: Is it relevant to cholangiocarcinoma progression. World J Gastroenterol 2007; 13:6478-91. [PMID: 18161917 PMCID: PMC4611286 DOI: 10.3748/wjg.v13.i48.6478] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The features of JAK-STAT signaling in liver cells are discussed in the current review. The role of this signaling cascade in carcinogenesis is accentuated. The possible involvement of this pathway and alteration of its elements are compared for normal cholangiocytes, cholangiocarcinoma predisposition and development. Prolactin and interleukin-6 are described in detail as the best studied examples. In addition, the non-classical nuclear translocation of cytokine receptors is discussed in terms of its possible implication to cholangiocarcinoma development.
Collapse
|
44
|
Noguchi CT, Asavaritikrai P, Teng R, Jia Y. Role of erythropoietin in the brain. Crit Rev Oncol Hematol 2007; 64:159-71. [PMID: 17482474 PMCID: PMC2083122 DOI: 10.1016/j.critrevonc.2007.03.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 01/12/2007] [Accepted: 03/14/2007] [Indexed: 11/21/2022] Open
Abstract
Multi-tissue erythropoietin receptor (EPO-R) expression provides for erythropoietin (EPO) activity beyond its known regulation of red blood cell production. This review highlights the role of EPO and EPO-R in brain development and neuroprotection. EPO-R brain expression includes neural progenitor cells (NPC), neurons, glial cells and endothelial cells. EPO is produced in brain in a hypoxia sensitive manner, stimulates NPC proliferation and differentiation, and neuron survival, and contributes to ischemic preconditioning. Mice lacking EPO or EPO-R exhibit increased neural cell apoptosis during development before embryonic death due to severe anemia. EPO administration provides neural protection in animal models of brain ischemia and trauma, reducing the extent of injury and damage. Intrinsic EPO production in brain and EPO stimulation of endothelial cells contribute to neuroprotection and these are of particular importance since only low levels of EPO appear to cross the blood-brain barrier when administered at high dose intravenously. The therapeutic potential of EPO for brain ischemia/trauma and neurodegenerative diseases has shown promise in early clinical trial and awaits further validation.
Collapse
Affiliation(s)
- Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1822, USA.
| | | | | | | |
Collapse
|
45
|
Pelekanou V, Kampa M, Kafousi M, Dambaki K, Darivianaki K, Vrekoussis T, Sanidas E, Tsiftsis DD, Stathopoulos EN, Castanas E. Erythropoietin and Its Receptor in Breast Cancer: Correlation with Steroid Receptors and Outcome. Cancer Epidemiol Biomarkers Prev 2007; 16:2016-23. [DOI: 10.1158/1055-9965.epi-06-1023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Zwezdaryk KJ, Coffelt SB, Figueroa YG, Liu J, Phinney DG, LaMarca HL, Florez L, Morris CB, Hoyle GW, Scandurro AB. Erythropoietin, a hypoxia-regulated factor, elicits a pro-angiogenic program in human mesenchymal stem cells. Exp Hematol 2007; 35:640-52. [PMID: 17379074 DOI: 10.1016/j.exphem.2007.01.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/18/2007] [Accepted: 01/19/2007] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The ability of erythropoietin (EPO) to elicit a pro-angiogenic effect on human mesenchymal stem cells (hMSC) was tested. hMSC are currently under study as therapeutic delivery agents that target tumor vessels. Hypoxia favors the differentiation of hMSC towards a pro-angiogenic program. However, the classical angiogenic factors, vascular endothelial growth factor and basic fibroblast growth factor, are not fully capable of restoring this effect. The hypoxia-regulated factor, EPO, induces angiogenesis in endothelial cells. Here, EPO's pro-angiogenic effect on hMSC was analyzed. METHODS hMSC were tested for EPO receptor expression by western blot, immunofluorescence, and flow cytometry assays. Downstream receptor signaling components JAK and STAT were measured by standard assays. Pro-angiogenesis effects mediated by EPO treatment of hMSC were measured by proliferation, cytokine, or pro-angiogenesis factor secretion, metalloprotease activation, migration, invasion, wound healing, and tubule formation assays. RESULTS hMSC express the cognate EPO receptor and are capable of promoting angiogenesis following EPO treatment in all the angiogenesis assays tested. EPO-treated hMSC proliferate and secrete pro-angiogenesis factors more readily than untreated hMSC. EPO leads to increased hMSC chemotaxis, migration, and activation of matrix metalloprotease-2. This treatment causes greater recruitment of vessels as measured in an in vivo angiogenesis assay. CONCLUSION EPO is capable of eliciting a pro-angiogenesis program in hMSC that instigates secretion of angiogenic factors and the subsequent recruitment of endothelium. This study defines a novel mechanism for tumor cell recruitment of blood vessels that is important to consider in the design of stem cell-based therapies.
Collapse
Affiliation(s)
- Kevin J Zwezdaryk
- Department of Microbiology & Immunology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Erythropoietin (Epo) has long been known to be the principal hematopoietic growth factor that regulates cellular proliferation and differentiation along the erythroid lineage. Recent studies have shown that Epo is a pleiotropic cytokine that is proangiogenic and exerts broad tissue-protective effects in diverse nonhematopoietic organs. Recombinant Epo (rEpo) has been widely used in the clinic to prevent or treat malignancy-associated anemia. A series of clinical trials have documented the efficacy of rEpo in reducing RBC transfusion requirements and improving quality of life in cancer patients, and a recent meta-analysis suggested a positive effect on survival. However, two randomized trials reported negative outcomes with rEpo, as patients in the rEpo arm fared worse than their placebo-treated counterparts with respect to progression-free survival. The expression of Epo receptor (EpoR) in cancer cells has raised the possibility that exogenous rEpo may exert direct effects on tumor cells associated with the potential for stimulation of proliferation, inhibition of apoptosis, or modulation of sensitivity to chemoradiation therapy. The presence of an autocrine-paracrine Epo-EpoR system in tumors and potential effects of Epo on tumor microenvironment and angiogenesis are consistent with a complex biology for Epo-EpoR signaling in cancer that requires further research. This review describes Epo and EpoR biology, focusing on the pleiotropic effects of Epo on nonhematopoietic tissues as well as the expression and function of EpoR in cancer cells.
Collapse
Affiliation(s)
- Matthew E Hardee
- Department of Pathology, Duke University Medical Center, Durham, NC 22710, USA
| | | | | | | | | |
Collapse
|
48
|
Feldman L, Wang Y, Rhim JS, Bhattacharya N, Loda M, Sytkowski AJ. Erythropoietin stimulates growth and STAT5 phosphorylation in human prostate epithelial and prostate cancer cells. Prostate 2006; 66:135-45. [PMID: 16161153 DOI: 10.1002/pros.20310] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Erythropoietin (Epo), the principal regulator of erythroid progenitor survival, growth, and differentiation, initiates its action by binding to its cognate cell surface receptor (EpoR). EpoR have been identified on a variety of non-hematopoietic cells, both normal and malignant, however, little is known about the function of EpoR on malignant cells. METHODS RT-PCR, Western blotting, and immunohistochemistry were used to demonstrate that prostate cancer cells express EpoR at both the gene and protein level. Cell proliferation assays and STAT5 phosphorylation were used to demonstrate Epo's mitogenic action and intracellular signaling, respectively. RESULTS We have demonstrated that transformed prostate epithelial and prostate cancer cell lines, as well as primary prostate tissue, express the EpoR. Importantly, the EpoR on prostate cells are functional, as demonstrated by the observation that each of the cell lines exhibited a dose-dependent proliferative response to Epo, and that Epo triggered STAT5b phosphorylation in the cells. CONCLUSION Human prostatic epithelial cells and prostate cancer cells express functional EpoR, and Epo serves as a growth factor for these cells. These results have implications for our understanding of normal prostatic growth and development and of the pathobiology of human prostate cancer.
Collapse
Affiliation(s)
- Laurie Feldman
- Laboratory for Cell and Molecular Biology, Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Hypoxia induces gene expression of specific genes such as erythropoietin (Epo) and vascular endothelial growth factor (VEGF) that allow physiological adaptation to the environmental conditions at the cellular, local, and systemic levels. Reduced oxygenation is also a common precursor of many pathological processes, including coronary artery defects, ischemia, and malignant tumour formation. The hypoxia-inducible transcription factor HIF-1, a heterodimer consisting of the oxygen-regulated alpha-subunit and the constitutively expressed beta or ARNT-subunit, serves as a master regulator of oxygen-dependent gene expression. We observed that upon hypoxic exposure of HeLa cells in tonometer, accumulation of HIF-1alpha occurred within two minutes, while reoxygenation strongly reduced HIF-1alpha levels within four to eight minutes. Thus, hypoxia leads to a rapid cellular adaptation. In another line of investigation, we analysed the impact of hypoxia-independent overexpression of Epo in transgenic mice. Despite a hematocrit of about 80% the transgenic mice did not develop hypertension or thromboembolic complications.
Collapse
Affiliation(s)
- U R Jewell
- Institute of Physiology, Zürich, Switzerland
| | | |
Collapse
|
50
|
Ogawa A, Terada S, Sakuragawa N, Masuda S, Nagao M, Miki M. Progesterone, but not 17beta-estradiol, up-regulates erythropoietin (EPO) production in human amniotic epithelial cells. J Biosci Bioeng 2005; 96:448-53. [PMID: 16233554 DOI: 10.1016/s1389-1723(03)70130-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Accepted: 08/16/2003] [Indexed: 11/25/2022]
Abstract
Human amniotic epithelial (HAE) cells have great potential for successful use in cell therapy, since they do not cause acute rejection upon allotransplantation. However, to date, HAE cells have not well been studied. We previously reported that HAE cells produce erythropoietin (EPO), which is known to be a regulator of hematopoiesis, and that the induction mechanism of HAE cells is unknown, although EPO production from HAE cells is not increased by hypoxia which induces several cell types to produce EPO. In this study, we determined whether female sex hormones, including progesterone and 17beta-estradiol, affect the EPO production of HAE cells. Bioactive measurement of EPO activity in the culture supernatants of HAE-SV40 cells, which were immortalized by transfection with a simian virus 40 large T antigen, revealed that EPO bioactivity was significantly increased by treatment with progesterone, but not 17beta-estradiol. Treatment of HAE-SV40 cells with progesterone transiently increased the EPO mRNA level by fivefold, while there was no change in response to 17beta-estradiol. Furthermore, the progesterone receptor (PR)-B was detected in both HAE cells and HAE-SV40 cells by Western blotting. These results suggest that EPO synthesis in HAE-SV40 cells is stimulated by progesterone, but not by 17beta-estradiol, and thus it is highly likely that the EPO synthesis of HAE cells is also regulated by progesterone.
Collapse
Affiliation(s)
- Akiko Ogawa
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | | | | | | | | | | |
Collapse
|