1
|
de Freitas Mathias PC, Dantas Rodrigues AM, Lisboa PC, Miranda RA, Malta A, Ribeiro TA, Barella LF, Dias G, Lima TAL, Gomes RM, de Moura EG, de Oliveira JC. Maternal Low-Protein Diet During Nursing Leads to Glucose-Insulin Dyshomeostasis and Pancreatic-Islet Dysfunction by Disrupting Glucocorticoid Responsiveness in Male Rats. BIOLOGY 2024; 13:1036. [PMID: 39765703 PMCID: PMC11673749 DOI: 10.3390/biology13121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Both perinatal malnutrition and elevated glucocorticoids are pivotal triggers of the growing global pandemic of metabolic diseases. Here, we studied the effects of metabolic stress responsiveness on glucose-insulin homeostasis and pancreatic-islet function in male Wistar offspring whose mothers underwent protein restriction during lactation. During the first two weeks after delivery, lactating dams were fed a low-protein (4% protein, LP group) or normal-protein diet (22.5% protein, NP group). At 90 days of age, male rat offspring were challenged with food deprivation (72 h of fasting), intracerebroventricular (icv) injection of dexamethasone (2 µL, 2.115 mmol/L) or chronic intraperitoneal injection of dexamethasone (1 mg/kg body weight/5 days). Body weight, food intake, intravenous glucose tolerance test (ivGTT) results, insulin secretion and biochemical parameters were assessed. LP rats did not display significant metabolic changes after long-term starvation (p > 0.05) or under the central effect of dexamethasone (p = 0.999). Chronic dexamethasone induced rapid hyperglycemia (~1.2-fold, p < 0.001) and hyperinsulinemia (NP: 65%; LP: 216%; p < 0.001), decreased insulin sensitivity (NP: ~2-fold; LP: ~4-fold; p < 0.001), reduced insulinemia (20%) and increased glycemia (35%) only in NP rats under ivGTT conditions (p < 0.001). Glucose and acetylcholine insulinotropic effects, as well as the muscarinic receptor antagonist response, were reduced by chronic dexamethasone only in pancreatic islets from NP rats (p < 0.05). The direct effect of dexamethasone on pancreatic islets reduced insulin secretion (NP: 60.2%, p < 0.001; LP: 33.8%, p < 0.001). Peripheral glucose-insulin dyshomeostasis and functional failure of pancreatic islets in LP rats, as evidenced by an impaired acute and chronic response to metabolic stress, may be due to excessive corticosterone action as a long-term consequence.
Collapse
Affiliation(s)
- Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá 87020-900, Brazil; (P.C.d.F.M.); (A.M.); (T.A.R.); (L.F.B.)
| | - Aline Milena Dantas Rodrigues
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop 78556-264, Brazil; (A.M.D.R.); (G.D.); (T.A.L.L.)
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (P.C.L.); (R.A.M.); (E.G.d.M.)
| | - Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (P.C.L.); (R.A.M.); (E.G.d.M.)
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá 87020-900, Brazil; (P.C.d.F.M.); (A.M.); (T.A.R.); (L.F.B.)
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá 87020-900, Brazil; (P.C.d.F.M.); (A.M.); (T.A.R.); (L.F.B.)
| | - Luiz Felipe Barella
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá 87020-900, Brazil; (P.C.d.F.M.); (A.M.); (T.A.R.); (L.F.B.)
| | - Ginislene Dias
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop 78556-264, Brazil; (A.M.D.R.); (G.D.); (T.A.L.L.)
| | - Thalyne Aparecida Leite Lima
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop 78556-264, Brazil; (A.M.D.R.); (G.D.); (T.A.L.L.)
| | - Rodrigo Mello Gomes
- Laboratory of Endocrine Physiology and Metabolism, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (P.C.L.); (R.A.M.); (E.G.d.M.)
| | - Júlio Cezar de Oliveira
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop 78556-264, Brazil; (A.M.D.R.); (G.D.); (T.A.L.L.)
| |
Collapse
|
2
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Branda JIF, de Almeida-Pititto B, Bensenor I, Lotufo PA, Ferreira SRG. Low Birth Weight, β-Cell Function and Insulin Resistance in Adults: The Brazilian Longitudinal Study of Adult Health. Front Endocrinol (Lausanne) 2022; 13:842233. [PMID: 35360053 PMCID: PMC8964259 DOI: 10.3389/fendo.2022.842233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Adverse intrauterine environment-reflected by low birth weight (LBW)-has been linked to insulin resistance and type 2 diabetes later in life. Whether β-cell function reduction and insulin resistance could be detected even in middle-aged adults without overt diabetes is less investigated. We examined the association of LBW with β-cell function and insulin sensitivity in non-diabetic middle-aged adults from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). METHODS This is a cross-sectional analysis of 2,634 ELSA-Brasil participants aged between 34 and 59 years, without diabetes. Participants were stratified according to LBW defined as <2.5 kg and their clinical data were compared. HOMA-IR, HOMA-β, HOMA-adiponectin, TyG index, QUICKI and TG/HDL were calculated and their association with LBW were tested using multiple linear regression including adjustments suggested by Directed Acyclic Graphs and propensity score matching was applied. RESULTS The sample (47.4 ± 6.3 years) was composed of 57.5% of women and 9% had LBW. Subjects with LBW and normal-weight reported similar BMI values at the age of 20 years and current BMI was slightly lower in the LBW group. In average, cardiometabolic risk profile and also indexes of β-cell function and insulin sensitivity were within normal ranges. In regression analysis, log-transformed HOMA-β-but not with the other indexes-was associated with LBW (p = 0.014) independent of sex, skin color, prematurity, and family history of diabetes. After applying propensity-score matching in a well-balanced sample, HOMA-AD and TG/HDL indexes were associated with LBW. CONCLUSION The association between LBW and insulin sensitivity markers may occur in healthy middle-aged adults before overt glucose metabolism disturbances. Our data are coherent with the detection of early life events consequent with insulin resistance markers that could contribute to the risk of glucose metabolism disturbances.
Collapse
Affiliation(s)
- Julia Ines F. Branda
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, Brazil
- Center of Clinical and Epidemiological Research at University of São Paulo, São Paulo, Brazil
| | - Bianca de Almeida-Pititto
- Center of Clinical and Epidemiological Research at University of São Paulo, São Paulo, Brazil
- Department of Preventive Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Isabela Bensenor
- Center of Clinical and Epidemiological Research at University of São Paulo, São Paulo, Brazil
- Department of Internal Medicine, Medical School, University of São Paulo, São Paulo, Brazil
| | - Paulo A. Lotufo
- Center of Clinical and Epidemiological Research at University of São Paulo, São Paulo, Brazil
- Department of Internal Medicine, Medical School, University of São Paulo, São Paulo, Brazil
| | - Sandra Roberta G. Ferreira
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, Brazil
- Center of Clinical and Epidemiological Research at University of São Paulo, São Paulo, Brazil
- *Correspondence: Sandra Roberta G. Ferreira,
| |
Collapse
|
4
|
Ruiz D, Regnier SM, Kirkley AG, Hara M, Haro F, Aldirawi H, Dybala MP, Sargis RM. Developmental exposure to the endocrine disruptor tolylfluanid induces sex-specific later-life metabolic dysfunction. Reprod Toxicol 2019; 89:74-82. [PMID: 31260803 DOI: 10.1016/j.reprotox.2019.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/16/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are implicated in the developmental mis-programming of energy metabolism. This study examined the impact of combined gestational and lactational exposure to the fungicide tolylfluanid (TF) on metabolic physiology in adult offspring. C57BL/6 J dams received standard rodent chow or the same diet containing 67 mg/kg TF. Offspring growth and metabolism were assessed up to 22 weeks of age. TF-exposed offspring exhibited reduced weaning weight. Body weight among female offspring remained low throughout the study, while male offspring matched controls by 17 weeks of age. Female offspring exhibited reduced glucose tolerance, markedly enhanced systemic insulin sensitivity, reduced adiposity, and normal gluconeogenic capacity during adulthood. In contrast, male offspring exhibited impaired glucose tolerance with unchanged insulin sensitivity, no differences in adiposity, and increased gluconeogenic capacity. These data indicate that developmental exposure to TF induces sex-specific metabolic disruptions that recapitulate key aspects of other in utero growth restriction models.
Collapse
Affiliation(s)
- Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Shane M Regnier
- Committee on Molecular Metabolism and Nutrition, Chicago, IL, United States; Pritzker School of Medicine, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Andrew G Kirkley
- Committee on Molecular Pathogenesis and Molecular Medicine, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Manami Hara
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Fidel Haro
- University of Chicago, Chicago, IL, United States
| | - Hani Aldirawi
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael P Dybala
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Chicago, IL, United States
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
5
|
Abstract
The prevalence of age-associated disease is increasing at a striking rate globally and there is evidence to suggest that the ageing process may actually begin before birth. It has been well-established that the status of both the maternal and early postnatal environments into which an individual is exposed can have huge implications for the risk of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity in later life. Therefore, the dissection of underlying molecular mechanisms to explain this phenomenon, known as 'developmental programming' is a highly investigated area of research. This book chapter will examine the epidemiological evidence and the animal models of suboptimal maternal and early postnatal environments and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those 'programmed' individuals who are known to be at-risk of age-associated disease.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
6
|
Ma D, Ozanne SE, Guest PC. Generation of the Maternal Low-Protein Rat Model for Studies of Metabolic Disorders. Methods Mol Biol 2018; 1735:201-206. [PMID: 29380313 DOI: 10.1007/978-1-4939-7614-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Poor nutrition during pregnancy leads to an increased risk of metabolic disorders and other diseases in the offspring. This can be modelled in animals through manipulation of the maternal diet. One such model is the maternal low-protein rat which gives rise to offspring characterized by insulin resistance. This chapter gives a detailed protocol for generation of the maternal low-protein rat, which has been used in the study of several disorders including diabetes and psychiatric disorders.
Collapse
Affiliation(s)
- Dan Ma
- Department of neurosciences, University of Cambridge, Cambridge, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
7
|
Wang N, Cheng J, Han B, Li Q, Chen Y, Xia F, Jiang B, Jensen MD, Lu Y. Exposure to severe famine in the prenatal or postnatal period and the development of diabetes in adulthood: an observational study. Diabetologia 2017; 60:262-269. [PMID: 27807599 DOI: 10.1007/s00125-016-4148-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/03/2016] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS Limited studies have compared the effect of prenatal or postnatal exposure to different severities of famine on the risk of developing diabetes. We aimed to measure the association between diabetes in adulthood and the exposure to different degrees of famine early in life (during the prenatal or postnatal period) during China's Great Famine (1959-1962). METHODS Data from 3967 individuals were included (a total of 2115 individuals from areas severely affected by famine, 1858 from moderately affected areas, 6 excluded due to missing data). A total of 2335 famine-exposed individuals were further divided into those exposed during the fetal stage, childhood or adolescence/young adulthood. We constructed a difference-in-differences model to compare HbA1c and fasting plasma glucose among the participants exposed to different degrees of famine intensity at different life stages. Logistic analyses were used as measures of the association between diabetes and the different levels of famine severity at different life stages. RESULTS Individuals who had been exposed to famine during the fetal period, childhood, and adolescence/adulthood and who had lived in a severely affected area had a 0.31%, 0.20% and 0.27% higher HbA1c, respectively, (all p < 0.01) compared with unexposed individuals. After adjusting for age, sex, smoking status, education level and waist circumference, participants exposed to severe famine during the fetal stage (OR 1.90, 95% CI 1.12, 3.21) and childhood (OR 1.44, 95% CI 1.06, 1.97) had significantly higher odds estimates. Unexposed participants living in severely and moderately affected areas had a comparable prevalence of diabetes (OR 1.22, 95% CI 0.80, 1.87). A significant interaction between famine exposure during the fetal and childhood periods and the level of severity in the area of exposure was found (p < 0.05). CONCLUSIONS/INTERPRETATION Exposure to severe famine in the fetal or childhood period may predict a higher HbA1c and an increased diabetes risk in adulthood. These results from China indicate that both the prenatal and postnatal period may offer critical time windows for the determination of the risk of diabetes.
Collapse
Affiliation(s)
- Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Jing Cheng
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Bing Han
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Qin Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Boren Jiang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Michael D Jensen
- Endocrine Research Unit, 5-194 Joseph, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
8
|
Costa SMR, Isganaitis E, Matthews TJ, Hughes K, Daher G, Dreyfuss JM, da Silva GAP, Patti ME. Maternal obesity programs mitochondrial and lipid metabolism gene expression in infant umbilical vein endothelial cells. Int J Obes (Lond) 2016; 40:1627-1634. [PMID: 27531045 PMCID: PMC5101152 DOI: 10.1038/ijo.2016.142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/24/2016] [Accepted: 06/25/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND/OBJECTIVES Maternal obesity increases risk for childhood obesity, but molecular mechanisms are not well understood. We hypothesized that primary umbilical vein endothelial cells (HUVEC) from infants of overweight and obese mothers would harbor transcriptional patterns reflecting offspring obesity risk. SUBJECTS/METHODS In this observational cohort study, we recruited 13 lean (pre-pregnancy body mass index (BMI) <25.0 kg m-2) and 24 overweight-obese ('ov-ob', BMI⩾25.0 kg m-2) women. We isolated primary HUVEC, and analyzed both gene expression (Primeview, Affymetrix) and cord blood levels of hormones and adipokines. RESULTS A total of 142 transcripts were differentially expressed in HUVEC from infants of overweight-obese mothers (false discovery rate, FDR<0.05). Pathway analysis revealed that genes involved in mitochondrial and lipid metabolism were negatively correlated with maternal BMI (FDR<0.05). To test whether these transcriptomic patterns were associated with distinct nutrient exposures in the setting of maternal obesity, we analyzed the cord blood lipidome and noted significant increases in the levels of total free fatty acids (lean: 95.5±37.1 μg ml-1, ov-ob: 124.1±46.0 μg ml-1, P=0.049), palmitate (lean: 34.5±12.7 μg ml-1, ov-ob: 46.3±18.4 μg ml-1, P=0.03) and stearate (lean: 20.8±8.2 μg ml-1, ov-ob: 29.7±17.2 μg ml-1, P=0.04), in infants of overweight-obese mothers. CONCLUSIONS Prenatal exposure to maternal obesity alters HUVEC expression of genes involved in mitochondrial and lipid metabolism, potentially reflecting developmentally programmed differences in oxidative and lipid metabolism.
Collapse
Affiliation(s)
- S M R Costa
- Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.,Research Division, Joslin Diabetes Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - E Isganaitis
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - T J Matthews
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - K Hughes
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - G Daher
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - J M Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - G A P da Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - M-E Patti
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Martin-Gronert MS, Fernandez-Twinn DS, Bushell M, Siddle K, Ozanne SE. Cell-autonomous programming of rat adipose tissue insulin signalling proteins by maternal nutrition. Diabetologia 2016; 59:1266-75. [PMID: 26965244 PMCID: PMC4861755 DOI: 10.1007/s00125-016-3905-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/03/2016] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS Individuals with a low birthweight have an increased risk of developing type 2 diabetes mellitus in adulthood. This is associated with peripheral insulin resistance. Here, we aimed to determine whether changes in insulin signalling proteins in white adipose tissue (WAT) can be detected prior to the onset of impaired glucose tolerance, determine whether these changes are cell-autonomous and identify the underlying mechanisms involved. METHODS Fourteen-month-old male rat offspring born to dams fed a standard protein (20%) diet or a low (8%) protein diet throughout gestation and lactation were studied. Fat distribution and adipocyte size were determined. Protein content and mRNA expression of key insulin signalling molecules were analysed in epididymal WAT and in pre-adipocytes that had undergone in vitro differentiation. RESULTS The offspring of low protein fed dams (LP offspring) had reduced visceral WAT mass, altered fat distribution and a higher percentage of small adipocytes in epididymal WAT. This was associated with reduced levels of IRS1, PI3K p110β, Akt1 and PKCζ proteins and of phospho-Akt Ser473. Corresponding mRNA transcript levels were unchanged. Similarly, in vitro differentiated adipocytes from LP offspring showed reduced protein levels of IRβ, IRS1, PI3K p85α and p110β subunits, and Akt1. Levels of Akt Ser473 and IRS1 Tyr612 phosphorylation were reduced, while IRS1 Ser307 phosphorylation was increased. CONCLUSIONS/INTERPRETATION Maternal protein restriction during gestation and lactation changes the distribution and morphology of WAT and reduces the levels of key insulin signalling proteins in the male offspring. This phenotype is retained in in vitro differentiated adipocytes, suggesting that programming occurs via cell-autonomous mechanism(s).
Collapse
Affiliation(s)
- Malgorzata S Martin-Gronert
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Box 289, Cambridge, CB2 OQQ, UK.
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Box 289, Cambridge, CB2 OQQ, UK
| | - Martin Bushell
- MRC Toxicology Unit, University of Leicester, Hodgkin Building, Leicester, UK
| | - Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Box 289, Cambridge, CB2 OQQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Box 289, Cambridge, CB2 OQQ, UK
| |
Collapse
|
10
|
Davis K, Chamseddine D, Harper JM. Nutritional limitation in early postnatal life and its effect on aging and longevity in rodents. Exp Gerontol 2016; 86:84-89. [PMID: 27167581 DOI: 10.1016/j.exger.2016.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 11/17/2022]
Abstract
Nutrient limitation in the form of chronic dietary restriction (DR), or more specifically a life-long reduction of total daily nutritional intake, was first shown to extend longevity in rats more than eight decades ago and is one of the most robust anti-aging interventions known. More recently, it has become apparent that dietary restriction limited to only the first few weeks of life in rodents is also capable of significantly impacting aging and longevity. The imposition of nutrient limitation is often achieved via the manipulation of litter size or the modulation of maternal nutrient intake during the lactational period. Not surprisingly, nutrient limited pups are smaller at weaning, and remain so throughout their life, while exhibiting signs of slowed aging. In this review, we discuss potential mechanisms that account for the anti-aging effects of postnatal undernutrition with an emphasis on those pathways that parallel changes seen with chronic DR.
Collapse
Affiliation(s)
- Kallie Davis
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA
| | - Douja Chamseddine
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA
| | - James M Harper
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA.
| |
Collapse
|
11
|
Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol Ther 2015; 154:21-35. [PMID: 26129625 DOI: 10.1016/j.pharmthera.2015.06.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/25/2015] [Indexed: 02/07/2023]
|
12
|
Lukaszewski MA, Eberlé D, Vieau D, Breton C. Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am J Physiol Endocrinol Metab 2013; 305:E1195-207. [PMID: 24045869 DOI: 10.1152/ajpendo.00231.2013] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epidemiological studies demonstrated initially that maternal undernutrition results in low birth weight with increased risk for long-lasting energy balance disorders. Maternal obesity and diabetes associated with high birth weight, excessive nutrition in neonates, and rapid catchup growth also increase the risk of adult-onset obesity. As stated by the Developmental Origin of Health and Disease concept, nutrient supply perturbations in the fetus or neonate result in long-term programming of individual body weight set point. Adipose tissue is a key fuel storage unit involved mainly in the maintenance of energy homeostasis. Studies in numerous animal models have demonstrated that the adipose tissue is the focus of developmental programming events in a sex- and depot-specific manner. In rodents, adipose tissue development is particularly active during the perinatal period, especially during the last week of gestation and during early postnatal life. In contrast to rodents, this process essentially takes place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several mechanisms of adipose tissue programming. Offspring from malnourished dams present adipose tissue with a series of alterations: impaired glucose uptake, insulin and leptin resistance, low-grade inflammation, modified sympathetic activity with reduced noradrenergic innervations, and thermogenesis. These modifications reprogram adipose tissue metabolism by changing fat distribution and composition and by enhancing adipogenesis, predisposing the offspring to fat accumulation. Subtle adipose tissue circadian rhythm changes are also observed. Inappropriate hormone levels, modified tissue sensitivity (especially glucocorticoid system), and epigenetic mechanisms are key factors for adipose tissue programming during the perinatal period.
Collapse
Affiliation(s)
- Marie-Amélie Lukaszewski
- Unité Environnement Périnatal et Croissance, UPRES EA 4489, Equipe Dénutritions Maternelles Périnatales, Université Lille-Nord de France, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
13
|
Lie S, Duffield JA, McMillen IC, Morrison JL, Ozanne SE, Pilgrim C, Muhlhausler BS. The effect of placental restriction on insulin signaling and lipogenic pathways in omental adipose tissue in the postnatal lamb. J Dev Orig Health Dis 2013; 4:421-9. [PMID: 24970733 DOI: 10.1017/s2040174413000202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intrauterine growth restriction (IUGR) followed by accelerated growth after birth is associated with an increased risk of abdominal (visceral) obesity and insulin resistance in adult life. The aim of the present study was to determine the impact of IUGR on mRNA expression and protein abundance of insulin signaling molecules in one of the major visceral fat depots, the omental adipose depot. IUGR was induced by placental restriction, and samples of omental adipose tissue were collected from IUGR (n = 9, 5 males, 4 females) and Control (n = 14, 8 males, 6 females) neonatal lambs at 21 days of age. The mRNA expression of the insulin signaling molecules, AMP-kinase (AMPK) and adipogenic/lipogenic genes was determined by qRT-PCR, and protein abundance by Western Blotting. AMPKα2 mRNA expression was increased in male IUGR lambs (0.015 ± 0.002 v. 0.0075 ± 0.0009, P < 0.001). The proportion of the AMPK pool that was phosphorylated (%P-AMPK) was lower in IUGR lambs compared with Controls independent of sex (39 ± 9% v. 100 ± 18%, P < 0.001). The mRNA expression and protein abundance of insulin signaling proteins and adipogenic/lipogenic genes was not different between groups. Thus, IUGR is associated with sex-specific alterations in the mRNA expression of AMPKα2 and a reduction in the percentage of the total AMPK pool that is phosphorylated in the omental adipose tissue of neonatal lambs, before the onset of visceral obesity. These molecular changes would be expected to promote lipid accumulation in the omental adipose depot and may therefore contribute to the onset of visceral adiposity in IUGR animals later in life.
Collapse
Affiliation(s)
- S Lie
- 1 Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, The University of South Australia, Adelaide, Australia
| | - J A Duffield
- 1 Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, The University of South Australia, Adelaide, Australia
| | - I C McMillen
- 1 Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, The University of South Australia, Adelaide, Australia
| | - J L Morrison
- 1 Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, The University of South Australia, Adelaide, Australia
| | - S E Ozanne
- 2 Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - C Pilgrim
- 2 Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - B S Muhlhausler
- 1 Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, The University of South Australia, Adelaide, Australia
| |
Collapse
|
14
|
Abstract
Intrauterine growth retardation has been linked to the development of type 2 diabetes later in life and the mechanisms underlying this phenomena are unknown. Epidemiological studies in humans show a distinct link with the exposure to an intrauterine insult that results in low birth weight and the development of type 2 diabetes in adulthood. Intrauterine growth retardation can be induced in rodent models by exposing the pregnant rat to a low protein diet, total calorie restriction, high dose glucocorticoids or inducing uteroplacental insufficiency, all which result in abnormalities in glucose homeostasis in the offspring later in life. Animal models of intrauterine growth retardation allow for a better characterization of changes in glucose homeostasis and corresponding changes in gene expression that can provide insight in the mechanisms by which intrauterine growth retardation leads to type 2 diabetes.
Collapse
|
15
|
Thompson RF, Einstein FH. Epigenetic basis for fetal origins of age-related disease. J Womens Health (Larchmt) 2013; 19:581-7. [PMID: 20136551 DOI: 10.1089/jwh.2009.1408] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The current concept of fetal origins of adult diseases describes in utero programming, or adaptation to a spectrum of adverse environmental conditions that ultimately leads to increased susceptibility to age-related diseases (e.g., type 2 diabetes and cardiovascular disease) later in life. Although the precise mechanism of this biological memory remains unclear, mounting evidence suggests an epigenetic basis. The increased susceptibility to chronic disease and involvement of multiple organ systems that is observed is analogous to the decline in resistance to disease that is typical of normal aging. Although the cumulative environment over the course of a lifetime can induce increasing epigenetic dysregulation, we propose that adverse events that occur during early development can induce significant additional dysregulation of the epigenome. Here, we describe the current evidence for fetal origins of adult disease and the associated role of epigenetic dysregulation. In addition, we present a new perspective on the induction of epigenetic alterations in utero, which subsequently lead to an aging phenotype marked by increased susceptibility to age-related diseases.
Collapse
|
16
|
Abstract
Developmental programming can be defined as a response to a specific challenge to the mammalian organism during a critical developmental time window that alters the trajectory of development with persistent effects on offspring phenotype and predisposition to future illness. We focus on the need for studies in relevant, well-characterized animal models in the context of recent research discoveries on the challenges, mechanisms and outcomes of developmental programming. We discuss commonalities and differences in general principles of developmental programming as they apply to several species, including humans. The consequences of these differences are discussed. Obesity, metabolic disorders and cardiovascular diseases are associated with the highest percentage of morbidity and mortality worldwide. Although many of the causes are associated with lifestyle, high-energy diets and lack of physical activity, recent evidence has linked developmental programming to the epidemic of metabolic diseases. A better understanding of comparative systems physiology of mother, fetus and neonate using information provided by rapid advances in molecular biology has the potential to improve the lifetime health of future generations by providing better women's health, diagnostic tools and preventative and therapeutic interventions in individuals exposed during their development to programming influences.
Collapse
Affiliation(s)
- C. Rabadán-Diehl
- Office of Global Health, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - P. Nathanielsz
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
17
|
Taurine Supplementation Restores Insulin Secretion and Reduces ER Stress Markers in Protein-Malnourished Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:129-39. [DOI: 10.1007/978-1-4614-6093-0_14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Batista TM, Ribeiro RA, da Silva PMR, Camargo RL, Lollo PCB, Boschero AC, Carneiro EM. Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet. Mol Nutr Food Res 2012; 57:423-34. [DOI: 10.1002/mnfr.201200345] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 10/11/2012] [Accepted: 10/23/2012] [Indexed: 01/05/2023]
Affiliation(s)
- Thiago M. Batista
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
| | - Rosane A. Ribeiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
- Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM); Universidade Federal do Rio de Janeiro (UFRJ); Macaé RJ Brazil
| | - Priscilla M. R. da Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
| | - Rafael L. Camargo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
| | - Pablo C. B. Lollo
- Departamento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
| | - Antonio C. Boschero
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
| | - Everardo M. Carneiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
| |
Collapse
|
19
|
Berends LM, Fernandez-Twinn DS, Martin-Gronert MS, Cripps RL, Ozanne SE. Catch-up growth following intra-uterine growth-restriction programmes an insulin-resistant phenotype in adipose tissue. Int J Obes (Lond) 2012; 37:1051-7. [PMID: 23229735 PMCID: PMC3734734 DOI: 10.1038/ijo.2012.196] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/05/2012] [Accepted: 10/28/2012] [Indexed: 12/22/2022]
Abstract
Background: It is now widely accepted that the early-life nutritional environment is important in determining susceptibility to metabolic diseases. In particular, intra-uterine growth restriction followed by accelerated postnatal growth is associated with an increased risk of obesity, type-2 diabetes and other features of the metabolic syndrome. The mechanisms underlying these observations are not fully understood. Aim: Using a well-established maternal protein-restriction rodent model, our aim was to determine if exposure to mismatched nutrition in early-life programmes adipose tissue structure and function, and expression of key components of the insulin-signalling pathway. Methods: Offspring of dams fed a low-protein (8%) diet during pregnancy were suckled by control (20%)-fed dams to drive catch-up growth. This ‘recuperated' group was compared with offspring of dams fed a 20% protein diet during pregnancy and lactation (control group). Epididymal adipose tissue from 22-day and 3-month-old control and recuperated male rats was studied using histological analysis. Expression and phosphorylation of insulin-signalling proteins and gene expression were assessed by western blotting and reverse-transcriptase PCR, respectively. Results: Recuperated offspring at both ages had larger adipocytes (P<0.001). Fasting serum glucose, insulin and leptin levels were comparable between groups but increased with age. Recuperated offspring had reduced expression of IRS-1 (P<0.01) and PI3K p110β (P<0.001) in adipose tissue. In adult recuperated rats, Akt phosphorylation (P<0.01) and protein levels of Akt-2 (P<0.01) were also reduced. Messenger RNA expression levels of these proteins were not different, indicating a post-transcriptional effect. Conclusion: Early-life nutrition programmes alterations in adipocyte cell size and impairs the protein expression of several insulin-signalling proteins through post-transcriptional mechanisms. These indices may represent early markers of insulin resistance and metabolic disease risk.
Collapse
Affiliation(s)
- L M Berends
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | |
Collapse
|
20
|
Eberle C, Ament C. Diabetic and metabolic programming: mechanisms altering the intrauterine milieu. ISRN PEDIATRICS 2012; 2012:975685. [PMID: 23213562 PMCID: PMC3508573 DOI: 10.5402/2012/975685] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/15/2012] [Indexed: 12/25/2022]
Abstract
A wealth of epidemiological, clinical, and experimental studies have been linked to poor intrauterine conditions as well as metabolic and associated cardiovascular changes postnatal. These are novel perspectives connecting the altered intrauterine milieu to a rising number of metabolic diseases, such as diabetes, obesity, and hypercholesterolemia as well as the Metabolic Syndrome (Met S). Moreover, metabolic associated atherosclerotic diseases are connected to perigestational maternal health. The "Thrifty Phenotype Hypothesis" introduced cross-generational links between poor conditions during gestation and metabolic as well as cardiovascular alterations postnatal. Still, mechanisms altering the intrauterine milieu causing metabolic and associated atherosclerotic diseases are currently poorly understood. This paper will give novel insights in fundamental concepts connected to specific molecular mechanisms "programming" diabetes and associated metabolic as well as cardiovascular diseases.
Collapse
Affiliation(s)
- Claudia Eberle
- Medical Clinic and Policlinic IV, Ludwig Maximilian University of Munich, 80336 Munich, Germany ; Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | | |
Collapse
|
21
|
Liu X, Qi Y, Gao H, Jiao Y, Gu H, Miao J, Yuan Z. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats. J Clin Biochem Nutr 2012; 52:43-8. [PMID: 23341697 PMCID: PMC3541418 DOI: 10.3164/jcbn.12-28] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 06/20/2012] [Indexed: 12/13/2022] Open
Abstract
It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Hofman PL, Regan F, Jefferies CA, Cutfield WS. Prematurity and programming: are there later metabolic sequelae? Metab Syndr Relat Disord 2012; 4:101-12. [PMID: 18370756 DOI: 10.1089/met.2006.4.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Low birth weight has a well-established association with early-onset insulin resistance and a later risk of adult diseases, including all aspects of the metabolic syndrome. Although most studies to date have focused on term low-birth-weight subjects, other low-birth-weight groups (such as prematurely born children) need evaluating. In this review, we demonstrate that prematurely born children have a metabolic profile very similar to term small-forgestational- age (SGA) children and may have a similar increased risk of the metabolic syndrome later in life. We propose mechanisms (in particular, epigenetic alterations and the higher risk of hypomethylation in prematurely born children) by which this could occur.
Collapse
Affiliation(s)
- Paul L Hofman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
23
|
Abstract
Type 2 diabetes (T2D), also known as non-insulin dependent diabetes mellitus, arises as a consequence of peripheral insulin resistance in combination with an inability of pancreatic islet β-cells to secrete adequate amounts of insulin. It is widely recognized that the current environment (e.g. an unhealthy diet and sedentary lifestyle) contributes to this process. In recent years, however, the role of the early environment, particularly nutrition, has emerged as an important factor capable of influencing health and disease risk of an individual, including risk of T2D. The impact of early environment on glucose metabolism has been extensively studied. Compelling evidence from epidemiological studies and animal models suggests that early nutrition can affect insulin action as a mediator of glucose homeostasis in peripheral tissues and as an important regulator of appetite and body weight. The early environment can also affect β-cell mass and function, and hence insulin secretion. The molecular mechanisms underlying the relationship between a suboptimal early environment and impaired insulin action and secretion is thought to include epigenetic modifications of the foetal genome, oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- M S Martin-Gronert
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
24
|
Abstract
The global prevalence of type-2 diabetes (T2D) has more than doubled in the last 30 years and is predicted to continue to rise at an alarming rate. The associated health and financial burdens are considerable. The aetiology of common forms of T2D is multifactorial and involves a complex interplay between genetic, epigenetic and environmental factors. The influential role of the environment, in particular our diet and sedentary lifestyles, in diabetes risk is well established. Of major concern is the increasing prevalence of early onset T2D or pre-diabetic characteristics in children. In recent years, the role of the early life environment in programming diabetes risk has been the focus of numerous human and animal studies. Historical studies highlighted an association between low birthweight, a proxy for suboptimal in utero growth, and diabetes risk in adulthood. Over more recent years it has become apparent that a variety of expositions, including maternal obesity and/or maternal diabetes, can have a significant effect on offspring health outcomes. Further complicating matters, paternal and transgenerational transmission of T2D can occur thus mediating a perpetuating cycle of disease risk between generations. It is imperative for the underlying mechanisms to be elucidated so that interventions can be introduced. In doing so, it may be possible to prevent, delay or reverse a pre-programmed risk for T2D induced by pre- and/or postnatal environmental factors to improve health outcomes and curb premature metabolic decline. This review presents evidence for how the early life environment may programme T2D risk and suggests some mechanisms by which this may occur.
Collapse
Affiliation(s)
- L M Berends
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
25
|
Ferland-McCollough D, Fernandez-Twinn DS, Cannell IG, David H, Warner M, Vaag AA, Bork-Jensen J, Brøns C, Gant TW, Willis AE, Siddle K, Bushell M, Ozanne SE. Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal diet in type 2 diabetes. Cell Death Differ 2012; 19:1003-12. [PMID: 22223106 PMCID: PMC3354052 DOI: 10.1038/cdd.2011.183] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 02/06/2023] Open
Abstract
Nutrition during early mammalian development permanently influences health of the adult, including increasing the risk of type 2 diabetes and coronary heart disease. However, the molecular mechanisms underlying such programming are poorly defined. Here we demonstrate that programmed changes in miRNA expression link early-life nutrition to long-term health. Specifically, we show that miR-483-3p is upregulated in adipose tissue from low-birth-weight adult humans and prediabetic adult rats exposed to suboptimal nutrition in early life. We demonstrate that manipulation of miR-483-3p levels in vitro substantially modulates the capacity of adipocytes to differentiate and store lipids. We show that some of these effects are mediated by translational repression of growth/differentiation factor-3, a target of miR-483-3p. We propose that increased miR-483-3p expression in vivo, programmed by early-life nutrition, limits storage of lipids in adipose tissue, causing lipotoxicity and insulin resistance and thus increasing susceptibility to metabolic disease.
Collapse
Affiliation(s)
| | - D S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - I G Cannell
- Koch Institute for Integrative Cancer Research, Massachussets Institue of Technology, Cambridge, MA, USA
| | - H David
- Koch Institute for Integrative Cancer Research, Massachussets Institue of Technology, Cambridge, MA, USA
| | - M Warner
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - A A Vaag
- Steno Diabetes Centre, Niels Steensens Vej 2, DK-2820 Gentofte, Denmark
| | - J Bork-Jensen
- Steno Diabetes Centre, Niels Steensens Vej 2, DK-2820 Gentofte, Denmark
| | - C Brøns
- Steno Diabetes Centre, Niels Steensens Vej 2, DK-2820 Gentofte, Denmark
| | - T W Gant
- MRC Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK
| | - A E Willis
- MRC Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK
| | - K Siddle
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - M Bushell
- MRC Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK
| | - S E Ozanne
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
26
|
Fetal stress and programming of hypoxic/ischemic-sensitive phenotype in the neonatal brain: mechanisms and possible interventions. Prog Neurobiol 2012; 98:145-65. [PMID: 22627492 DOI: 10.1016/j.pneurobio.2012.05.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/12/2022]
Abstract
Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxic-ischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other brain disorders.
Collapse
|
27
|
Vickers MH. Developmental programming of the metabolic syndrome - critical windows for intervention. World J Diabetes 2011; 2:137-48. [PMID: 21954418 PMCID: PMC3180526 DOI: 10.4239/wjd.v2.i9.137] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/15/2011] [Accepted: 08/31/2011] [Indexed: 02/05/2023] Open
Abstract
Metabolic disease results from a complex interaction of many factors, including genetic, physiological, behavioral and environmental influences. The recent rate at which these diseases have increased suggests that environmental and behavioral influences, rather than genetic causes, are fuelling the present epidemic. In this context, the developmental origins of health and disease hypothesis has highlighted the link between the periconceptual, fetal and early infant phases of life and the subsequent development of adult obesity and the metabolic syndrome. Although the mechanisms are yet to be fully elucidated, this programming was generally considered an irreversible change in developmental trajectory. Recent work in animal models suggests that developmental programming of metabolic disorders is potentially reversible by nutritional or targeted therapeutic interventions during the period of developmental plasticity. This review will discuss critical windows of developmental plasticity and possible avenues to ameliorate the development of postnatal metabolic disorders following an adverse early life environment.
Collapse
Affiliation(s)
- Mark H Vickers
- Mark H Vickers, Liggins Institute and the National Research Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
28
|
Abstract
Metabolic syndrome is reaching epidemic proportions, particularly in developing countries. In this review, we explore the concept-based on the developmental-origin-of-health-and-disease hypothesis-that reprogramming during critical times of fetal life can lead to metabolic syndrome in adulthood. Specifically, we summarize the epidemiological evidence linking prenatal stress, manifested by low birth weight, to metabolic syndrome and its individual components. We also review animal studies that suggest potential mechanisms for the long-term effects of fetal reprogramming, including the cellular response to stress and both organ- and hormone-specific alterations induced by stress. Although metabolic syndrome in adulthood is undoubtedly caused by multiple factors, including modifiable behavior, fetal life may provide a critical window in which individuals are predisposed to metabolic syndrome later in life.
Collapse
Affiliation(s)
- Paolo Rinaudo
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California 94115, USA.
| | | |
Collapse
|
29
|
Lukaszewski MA, Mayeur S, Fajardy I, Delahaye F, Dutriez-Casteloot I, Montel V, Dickes-Coopman A, Laborie C, Lesage J, Vieau D, Breton C. Maternal prenatal undernutrition programs adipose tissue gene expression in adult male rat offspring under high-fat diet. Am J Physiol Endocrinol Metab 2011; 301:E548-59. [PMID: 21712534 DOI: 10.1152/ajpendo.00011.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several studies have shown that maternal undernutrition leading to low birth weight predisposes offspring to the development of metabolic pathologies such as obesity. Using a model of prenatal maternal 70% food restriction diet (FR30) in rat, we evaluated whether postweaning high-fat (HF) diet would amplify the phenotype observed under standard diet. We investigated biological parameters as well as gene expression profile focusing on white adipose tissues (WAT) of adult offspring. FR30 procedure does not worsen the metabolic syndrome features induced by HF diet. However, FR30HF rats displayed catch-up growth to match the body weight of adult control HF animals, suggesting an increase of adiposity while showing hyperleptinemia and a blunted increase of corticosterone. Using quantitative RT-PCR array, we demonstrated that FR30HF rats exhibited leptin and Ob-Rb as well as many peptide precursor and receptor gene expression variations in WAT. We also showed that the expression of genes involved in adipogenesis was modified in FR30HF animals in a depot-specific manner. We observed an opposite variation of STAT3 phosphorylation levels, suggesting that leptin sensitivity is modified in WAT adult FR30 offspring. We demonstrated that 11β-HSD1, 11β-HSD2, GR, and MR genes are coexpressed in WAT and that FR30 procedure modifies gene expression levels, especially under HF diet. In particular, level variation of 11β-HSD2, whose protein expression was detected by Western blotting, may represent a novel mechanism that may affect WAT glucocorticoid sensitivity. Data suggest that maternal undernutrition differently programs the adult offspring WAT gene expression profile that may predispose for altered fat deposition.
Collapse
Affiliation(s)
- Marie-Amélie Lukaszewski
- Unité Environnement Périnatal et Croissance, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Villeneuve d'Ascq
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Barnes SK, Ozanne SE. Pathways linking the early environment to long-term health and lifespan. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:323-36. [PMID: 21147148 DOI: 10.1016/j.pbiomolbio.2010.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/21/2022]
Abstract
The intrauterine environment is a major contributor to normal physiological growth and development of an individual. Disturbances at this critical time can affect the long-term health of the offspring. Low birth weight individuals have strong correlations with increased susceptibility to type 2 diabetes and cardiovascular disease in later-life. These observations led to the Thrifty Phenotype Hypothesis which suggested that these associations arose because of the response of a growing fetus to a suboptimal environment such as poor nutrition. Animal models have shown that environmentally induced intrauterine growth restriction increases the risk of a variety of diseases later in life. These detrimental features are also observed in high birth weight offspring from mothers who were obese or consumed a high fat diet during gestation. Recent advances in our understanding of the mechanisms underlying this phenomenon have elucidated several potential candidates for the long-term effects of the early environment on the function and metabolism of a cell. These include: (1) Epigenetic alterations (e.g. DNA methylation and histone modifications), which regulate specific gene expression and can be influenced by the environment, both during gestation and early postnatal life and (2) Oxidative stress that changes the balance between reactive oxygen species generation (e.g. through mitochondrial dysfunction) and antioxidant defense capacity. This has permanent effects on cellular ageing such as regulation of telomere length. Further understanding of these processes will help in the development of therapeutic strategies to increase healthspan and reduced the burden of age-associated diseases.
Collapse
Affiliation(s)
- S K Barnes
- Metabolic Research Laboratories, University of Cambridge, Level 4, Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | | |
Collapse
|
31
|
Abstract
Dr. David Barker first popularized the concept of fetal origins of adult disease (FOAD). Since its inception, FOAD has received considerable attention. The FOAD hypothesis holds that events during early development have a profound impact on one's risk for development of future adult disease. Low birth weight, a surrogate marker of poor fetal growth and nutrition, is linked to coronary artery disease, hypertension, obesity, and insulin resistance. Clues originally arose from large 20th century, European birth registries. Today, large, diverse human cohorts and various animal models have extensively replicated these original observations. This review focuses on the pathogenesis related to FOAD and examines Dr. David Barker's landmark studies, along with additional human and animal model data. Implications of the FOAD extend beyond the low birth weight population and include babies exposed to stress, both nutritional and nonnutritional, during different critical periods of development, which ultimately result in a disease state. By understanding FOAD, health care professionals and policy makers will make this issue a high health care priority and implement preventive measures and treatment for those at higher risk for chronic diseases.
Collapse
|
32
|
Nüsken KD, Schneider H, Plank C, Trollmann R, Nüsken E, Rascher W, Dötsch J. Fetal programming of gene expression in growth-restricted rats depends on the cause of low birth weight. Endocrinology 2011; 152:1327-35. [PMID: 21266509 DOI: 10.1210/en.2010-1116] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Low birth weight and intrauterine growth restriction (IUGR) can be caused by numerous different conditions. In many experimental settings, however, these different causes are not accounted for. This study aimed at comparing the impact of two frequent causes of IUGR (low utero-placental blood flow vs. malnutrition) on fetal programming of gene expression. We studied offspring of dams treated by uterine artery ligation or sham operation compared with untreated controls and offspring of dams that were fed either a low protein or normal protein diet. After Cesarean section at term, placental and fetal hepatic expression of key "metabolic" and "vasoregulative" genes was investigated by quantitative RT-PCR. Ligation neonates showed IUGR, reduced expression of placental leptin, placental and hepatic IGF-I, hepatic inducible nitric oxide synthase, and increased expression of placental IGF binding protein 1, hepatic IGF-II receptor and erythropoietin (EPO). Low protein offspring also showed IUGR but increased expression of placental leptin; IGF-I; placental and hepatic inducible nitric oxide synthase; hepatic insulin, IGF-I, and IGF-II receptors; and reduced expression of placental IGF binding protein 1, IGF-II, leptin-receptor type A, placental and hepatic leptin receptor type B, and EPO. Expression was independent of sex, birth weight, fetal intrauterine position, and EPO expression. In conclusion, the impact of IUGR on fetal and placental gene expression depends on the cause of low birth weight. Therefore, morbidity after IUGR should be analyzed referring to its pathophysiological cause rather than referring to low birth weight itself. Fetal hypoxia as estimated by hepatic EPO expression does not seem to be a key regulator of transcriptional activity in our models.
Collapse
Affiliation(s)
- Kai-Dietrich Nüsken
- Department of Pediatrics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Nguyen LT, Muhlhausler BS, Botting KJ, Morrison JL. Maternal undernutrition alters fat cell size distribution, but not lipogenic gene expression, in the visceral fat of the late gestation guinea pig fetus. Placenta 2010; 31:902-9. [PMID: 20728936 DOI: 10.1016/j.placenta.2010.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/24/2010] [Accepted: 07/27/2010] [Indexed: 12/19/2022]
Abstract
This study investigated the development of adipose tissue in the guinea pig and the impact of maternal undernutrition on the structural and functional characteristics of perirenal adipose tissue in the dam and fetus. Date-mated guinea pigs were provided with either ad libitum feed (Control, C) or 85% of food intake per body weight of the Controls (Undernutrition, UN). Maternal (C, n = 6; UN, n = 7) perirenal adipose tissue (PAT) was collected at 60 d gestation and fetal PAT was collected at 50 d (C, n = 4) and 60 d (C, n = 8 and UN, n = 7) gestation (term, 69 d). The expression of stearoyl-CoA desaturase (SCD-1), fatty acid synthase (FAS), lipoprotein lipase (LPL), leptin and glycerol 3 phosphate dehydrogenase (G3PDH) mRNA and glucose transporters 1 and 4 (GLUT1 and GLUT4) was determined by Real Time PCR. There was no effect of maternal UN on total or relative PAT mass in the pregnant dam. There was an increase in G3PDH, but not LPL, leptin, FAS or GLUT4 mRNA expression, in UN dams compared to Controls (P < 0.05). In the fetal guinea pig there was no effect of maternal UN on total or relative PAT mass, however, the UN fetuses had a higher percentage of larger lipid locules in their PAT compared to Controls (P < 0.05). The expression of FAS, LPL, SCD-1, leptin, G3PDH and GLUT4 mRNA in PAT was not different between the Control and UN fetuses. These results support previous studies which have demonstrated that maternal undernutrition is associated with an increased accumulation of visceral adipose tissue in utero, and extend them by showing that maternal undernutrition results in early changes in the size distribution of lipid locules in visceral fat depots that precede changes in lipogenic gene expression.
Collapse
Affiliation(s)
- L T Nguyen
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | | | | | | |
Collapse
|
34
|
Abstract
There are many instances in life when the environment plays a critical role in the health outcomes of an individual, yet none more so than those experienced in fetal and neonatal life. One of the most detrimental environmental problems encountered during this critical growth period are changes in nutrition to the growing fetus and newborn. Disturbances in the supply of nutrients and oxygen to the fetus can not only lead to adverse fetal growth patterns, but they have also been associated with the development of features of metabolic syndrome in adult life. This fetal response has been termed developmental programming or the developmental origins of health and disease. The present review focuses on the epidemiological studies that identified this association and the importance that animal models have played in studying this concept. We also address the potential mechanisms that may underpin the developmental programming of future disease. It also highlights (i) how developmental plasticity, although beneficial for short-term survival, can subsequently programme glucose intolerance and insulin resistance in adult life by eliciting changes in key organ structures and the epigenome, and (ii) how aberrant mitochondrial function can potentially lead to the development of Type 2 diabetes and other features of metabolic syndrome.
Collapse
Affiliation(s)
- Matthew J Warner
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | | |
Collapse
|
35
|
Berleze KJ, Müller AP, Schweigert ID, Longoni A, Sordi F, de Assis AM, Rotta LN, de Souza DOG, Perry MLS. Gestational and postnatal low protein diet alters insulin sensitivity in female rats. Exp Biol Med (Maywood) 2009; 234:1437-44. [PMID: 19934364 DOI: 10.3181/0903-rm-111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nutrition during pregnancy and lactation can program an offspring's metabolism with regard to glucose and lipid homeostasis. A suboptimal environment during fetal, neonatal and infant development is associated with impaired glucose tolerance, type 2 diabetes and insulin resistance in later adult life. However, studies on the effects of a low protein diet imposed from the beginning of gestation until adulthood are scarce. This study's objective was to investigate the effects of a low protein diet imposed from the gestational period until 4 months of age on the parameters of glucose tolerance and insulin responsiveness in Wistar rats. The rats were divided into a low protein diet group and a control group and received a diet with either 7% or 25% protein, respectively. After birth, the rats received the same diet as their mothers, until 4 months of age. In the low protein diet group it was observed that: (i) the hepatic glycogen concentration and hepatic glycogen synthesis from glycerol were significantly greater than in the control group; (ii) the disposal of 2-deoxyglucose in soleum skeletal muscle slices was 29.8% higher than in the control group; (iii) there was both a higher glucose tolerance in the glucose tolerance test; and (iv) a higher insulin responsiveness in than in the control group. The results suggest that the low protein diet animals show higher glucose tolerance and insulin responsiveness relative to normally nourished rats. These findings were supported by the higher hepatic glycogen synthesis and the higher disposal of 2-deoxyglucose in soleum skeletal muscle found in the low protein diet rats.
Collapse
Affiliation(s)
- Kally J Berleze
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - anexo, Porto Alegre, RS 90035-003, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chamson-Reig A, Thyssen SM, Hill DJ, Arany E. Exposure of the pregnant rat to low protein diet causes impaired glucose homeostasis in the young adult offspring by different mechanisms in males and females. Exp Biol Med (Maywood) 2009; 234:1425-36. [PMID: 19657071 DOI: 10.3181/0902-rm-69] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The understanding of the mechanisms by which gender dimorphisms are involved in the modulation of insulin sensitivity and glucose tolerance can be crucial to unravel the development of type 2 diabetes. Rats treated with a low protein diet (LP, 8% protein content) during pregnancy and lactation have a reduced beta-cell mass at birth and a reduced insulin secretion at weaning. In this study we examined the effect of LP diet on glucose homeostasis from birth to adulthood when offspring previously exposed to LP were subsequently switched to control diet (C, 20% protein content) at weaning. The LP group had a reduced body weight after weaning compared to the C-fed rats, although their food intake was not significantly different. Furthermore, LP males had a significant increase in visceral adiposity relative to their body weight (P < 0.05). Intraperitoneal glucose tolerance test (IGTT) showed that glucose clearance was unchanged until 130 days of age when LP-fed females showed elevated blood glucose compared to C, despite similar plasma insulin levels. Females also demonstrated a significant reduction in mean pancreatic islet number, individual islet size and beta cell mass. However, no differences in IGTT or islet morphometry were observed in LP males, although basal insulin levels were twofold higher. Akt phosphorylation in response to insulin was reduced in adipose and skeletal muscle of adult rats following exposure to LP diet in early life when compared to control-fed animals, but this was only apparent in males. Plasma testosterone levels were also reduced in males at 130 days age. These data suggest that the development of impaired glucose homeostasis in offspring of LP-fed rats is likely to occur by different mechanisms in males and females.
Collapse
Affiliation(s)
- Astrid Chamson-Reig
- Lawson Health Research Institute, St. Joseph's Health Care, 268 Grosvenor Street, London, Ontario, N6A 4V2, Canada.
| | | | | | | |
Collapse
|
37
|
Sun L, Sadighi Akha AA, Miller RA, Harper JM. Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. J Gerontol A Biol Sci Med Sci 2009; 64:711-22. [PMID: 19414512 PMCID: PMC2691799 DOI: 10.1093/gerona/glp051] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 03/13/2009] [Indexed: 12/31/2022] Open
Abstract
Life span can be extended in rodents by restricting food availability (caloric restriction [CR]) or by providing food low in methionine (Meth-R). Here, we show that a period of food restriction limited to the first 20 days of life, via a 50% enlargement of litter size, shows extended median and maximal life span relative to mice from normal sized litters and that a Meth-R diet initiated at 12 months of age also significantly increases longevity. Furthermore, mice exposed to a CR diet show changes in liver messenger RNA patterns, in phosphorylation of Erk, Jnk2, and p38 kinases, and in phosphorylation of mammalian target of rapamycin and its substrate 4EBP1, HE-binding protein 1 that are not observed in liver from age-matched Meth-R mice. These results introduce new protocols that can increase maximal life span and suggest that the spectrum of metabolic changes induced by low-calorie and low-methionine diets may differ in instructive ways.
Collapse
Affiliation(s)
- Liou Sun
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, 48109-2200, USA
| | | | | | | |
Collapse
|
38
|
Iñiguez G, Ormazabal P, López T, Maldonado D, Avila A, Román R, Cassorla F. IGF-IR/ERK content and response to IGF-I and insulin in adipocytes from small for gestational age children. Growth Horm IGF Res 2009; 19:256-261. [PMID: 19217812 DOI: 10.1016/j.ghir.2008.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/20/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND/AIMS The GH-IGF-I axis plays an important role on pre/postnatal growth in humans, and IGF-I regulates cell proliferation, differentiation, and metabolic homeostasis. The adipose tissue has an important function in energy storage, and plays an endocrine role through the production of several hormones and growth factors. There are few studies in humans regarding IGF-I and Insulin receptor signaling in adipocytes, particularly from AGA and SGA children. METHODS We studied 22 healthy prepubertal children (6.1+/-0.4 years), born at term (11 SGA and 11 AGA), and normal BMI at the time of the study. Primary cell cultures were established from subcutaneous adipose tissue biopsies. Preadipocytes were differentiated and stimulated with IGF-I or insulin and we studied IGF-IR, IR, AKT, and ERK content and phosphorylation. RESULTS The SGA children were shorter than the AGA children (height SDS -2.14+/-0.11 vs. 0.02+/-0.19, p<0.05). A lower content of IGF-IR, IR, AKT, and ERK was observed in adipocytes from SGA compared with AGA children. IGF-I stimulation increased IGF-IR and ERK phosphorylation in adipocytes from AGA, but not from SGA children. CONCLUSION The lower content and reduced phosphorylation of IGF-I signaling observed in adipocytes from SGA children may be related to the metabolic abnormalities described in these children.
Collapse
Affiliation(s)
- German Iñiguez
- Institute for Maternal and Child Research (IDIMI), School of Medicine, University of Chile, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
39
|
Isganaitis E, Jimenez-Chillaron J, Woo M, Chow A, DeCoste J, Vokes M, Liu M, Kasif S, Zavacki AM, Leshan RL, Myers MG, Patti ME. Accelerated postnatal growth increases lipogenic gene expression and adipocyte size in low-birth weight mice. Diabetes 2009; 58:1192-200. [PMID: 19208909 PMCID: PMC2671035 DOI: 10.2337/db08-1266] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To characterize the hormonal milieu and adipose gene expression in response to catch-up growth (CUG), a growth pattern associated with obesity and diabetes risk, in a mouse model of low birth weight (LBW). RESEARCH DESIGN AND METHODS ICR mice were food restricted by 50% from gestational days 12.5-18.5, reducing offspring birth weight by 25%. During the suckling period, dams were either fed ad libitum, permitting CUG in offspring, or food restricted, preventing CUG. Offspring were killed at age 3 weeks, and gonadal fat was removed for RNA extraction, array analysis, RT-PCR, and evaluation of cell size and number. Serum insulin, thyroxine (T4), corticosterone, and adipokines were measured. RESULTS At age 3 weeks, LBW mice with CUG (designated U-C) had body weight comparable with controls (designated C-C); weight was reduced by 49% in LBW mice without CUG (designated U-U). Adiposity was altered by postnatal nutrition, with gonadal fat increased by 50% in U-C and decreased by 58% in U-U mice (P < 0.05 vs. C-C mice). Adipose expression of the lipogenic genes Fasn, AccI, Lpin1, and Srebf1 was significantly increased in U-C compared with both C-C and U-U mice (P < 0.05). Mitochondrial DNA copy number was reduced by >50% in U-C versus U-U mice (P = 0.014). Although cell numbers did not differ, mean adipocyte diameter was increased in U-C and reduced in U-U mice (P < 0.01). CONCLUSIONS CUG results in increased adipose tissue lipogenic gene expression and adipocyte diameter but not increased cellularity, suggesting that catch-up fat is primarily associated with lipogenesis rather than adipogenesis in this murine model.
Collapse
Affiliation(s)
- Elvira Isganaitis
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; the
| | | | - Melissa Woo
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; the
| | - Alice Chow
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; the
| | - Jennifer DeCoste
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; the
| | - Martha Vokes
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; the
| | - Manway Liu
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; the
| | - Simon Kasif
- Center for Advanced Genomic Technology, Boston University, Boston, Massachusetts; the
| | - Ann-Marie Zavacki
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and the
| | - Rebecca L. Leshan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Martin G. Myers
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Mary-Elizabeth Patti
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; the
- Corresponding author: Mary-Elizabeth Patti,
| |
Collapse
|
40
|
Orozco-Sólis R, Lopes de Souza S, Barbosa Matos RJ, Grit I, Le Bloch J, Nguyen P, Manhães de Castro R, Bolaños-Jiménez F. Perinatal undernutrition-induced obesity is independent of the developmental programming of feeding. Physiol Behav 2009; 96:481-92. [DOI: 10.1016/j.physbeh.2008.11.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 11/17/2008] [Accepted: 11/25/2008] [Indexed: 12/20/2022]
|
41
|
Garcia-Souza EP, da Silva SV, Félix GB, Rodrigues AL, de Freitas MS, Moura AS, Barja-Fidalgo C. Maternal protein restriction during early lactation induces GLUT4 translocation and mTOR/Akt activation in adipocytes of adult rats. Am J Physiol Endocrinol Metab 2008; 295:E626-36. [PMID: 18559980 DOI: 10.1152/ajpendo.00439.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological and experimental studies have demonstrated that early postnatal nutrition has been associated with long-term effects on glucose homeostasis in adulthood. Recently, our group demonstrated that undernutrition during early lactation affects the expression and activation of key proteins of the insulin signaling cascade in rat skeletal muscle during postnatal development. To elucidate the molecular mechanisms by which undernutrition during early life leads to changes in insulin sensitivity in peripheral tissues, we investigated the insulin signaling in adipose tissue. Adipocytes were isolated from epididymal fat pads of adult male rats that were the offspring of dams fed either a normal or a protein-free diet during the first 10 days of lactation. The cells were incubated with 100 nM insulin before the assays for immunoblotting analysis, 2-deoxyglucose uptake, immunocytochemistry for GLUT4, and/or actin filaments. Following insulin stimulation, adipocytes isolated from undernourished rats presented reduced tyrosine phosphorylation of IR and IRS-1 and increased basal phosphorylation of IRS-2, Akt, and mTOR compared with controls. Basal glucose uptake was increased in adipocytes from the undernourished group, and the treatment with LY294002 induced only a partial inhibition both in basal and in insulin-stimulated glucose uptake, suggesting an involvement of phosphoinositide 3-kinase activity. These alterations were accompanied by higher GLUT4 content in the plasma membrane and alterations in the actin cytoskeleton dynamics. These data suggest that early postnatal undernutrition impairs insulin sensitivity in adulthood by promoting changes in critical steps of insulin signaling in adipose tissue, which may contribute to permanent changes in glucose homeostasis.
Collapse
Affiliation(s)
- Erica Patrícia Garcia-Souza
- Departament of Pharmacology, Institute of Biology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brasil
| | | | | | | | | | | | | |
Collapse
|
42
|
Cripps RL, Green LR, Thompson J, Martin-Gronert MS, Monk M, Sheldon IM, Hanson MA, Hales C, Ozanne SE. The Effect of Maternal Body Condition Score Before and During Pregnancy on the Glucose Tolerance of Adult Sheep Offspring. Reprod Sci 2008; 15:448-56. [DOI: 10.1177/1933719107312161] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Roselle L. Cripps
- Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK,
| | - Lucy R. Green
- Institute of Developmental Sciences, Southampton General Hospital, Southampton, UK
| | | | | | - Melanie Monk
- Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Mark A. Hanson
- Institute of Developmental Sciences, Southampton General Hospital, Southampton, UK
| | - C.N. Hales
- Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Susan E. Ozanne
- Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
43
|
Abstract
This review focuses on different animal models of nutrient perturbations, inclusive of restrictive and excessive states mimicking human situations during pregnancy and lactation that cause aberrations in the offspring. These aberrations consist of diminished insulin sensitivity in the presence of defective insulin production. These phenotypic changes are due to altered peripheral tissue post-insulin receptor signaling mechanisms and pancreatic beta-islet insulin synthesis and secretion defects. While these changes during in utero or postnatal life serve as essential adaptations to overcome adverse conditions, they become maladaptive subsequently and set the stage for type 2 diabetes mellitus. Pregnancy leads to gestational diabetes with trans-generational propagation of the insulin resistant phenotype. This is in response to the metabolically aberrant maternal in utero environment, and tissue specific epigenetic perturbations that permanently alter expression of critical genes transmitted to future generations. These heritable aberrations consisting of altered DNA methylation and histone modifications remodel chromatin and affect transcription of key genes. Along with an altered in utero environment, these chromatin modifications contribute to the world-wide epidemic of type 2 diabetes mellitus, with nutrient excess dominating in developed and nutrient restriction in developing countries.
Collapse
Affiliation(s)
- Sherin U Devaskar
- Division of Neonatology & Developmental Biology and the Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752, USA.
| | | |
Collapse
|
44
|
Abstract
It is widely accepted that an association exists between the intrauterine environment in which a fetus grows and develops and the subsequent development of type 2 diabetes. Any disturbance in maternal ability to provide nutrients and oxygen to the fetus can lead to fetal intrauterine growth restriction (IUGR). Here we will review IUGR in rodent models, in which maternal metabolism has been experimentally manipulated to investigate the molecular basis of the relationship between IUGR and development of type 2 diabetes in later life, and the identification of the molecular derangements in specific metabolically - sensitive organs/tissues.
Collapse
Affiliation(s)
- M S Martin-Gronert
- Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
45
|
Abstract
Obesity and type 2 diabetes are serious health issues in the developed world and are becoming increasingly important on a global scale. Furthermore, the marked increases in both childhood obesity and type 2 diabetes will translate to further increases in adult obesity, diabetes and associated co-morbidities in the near future; as such it has been ranked as a critical public health threat. It is a widely held view that the primary cause of obesity is the development of an obesogenic environment, due to ease of access to highly calorific food and reduced energy expenditure in work and leisure activities. In addition there is strong evidence for a genetic component to human obesity with the identification of a number of genes associated with human obesity. However, on its own the genetic component of this condition cannot account for the dramatic increase in the prevalence of obesity in recent years. Of relevance and as highlighted by epidemiological and experimental studies, is the relationship between the periconceptual, fetal and early infant phases of life and the subsequent development of adult obesity. The terms “developmental programming” and the “Developmental Origins of Adult Health and Disease” are preferentially used to describe these relationships. Despite initial controversy when these relationships were first suggested, both prospective clinical and experimental studies have clearly shown that the propensity to develop abnormalities of cardiovascular, endocrine and metabolic homeostasis in adulthood are increased when fetal development has been adversely affected. This pathogenesis is not based on genetic defects but on altered gene expression seen as a result of fetal adaptation to an adverse intrauterine environment. The relative role of genetic versus environmental factors and the mechanisms underlying developmental programming remain speculative. It is generally argued that in response to an adverse intrauterine environment, the fetus adapts its physiological development to maximise its immediate chances for survival. Owing to the plasticity of the fetus, these adaptations may include resetting of metabolic homeostasis and endocrine systems and the down-regulation of growth, commonly reflected in an altered birth phenotype. It is thought that whilst these changes in fetal physiology (i.e. the prenatal environment) may be beneficial for short term survivalin uterothey may be maladaptive in postnatal life, contributing to poor health outcomes when offspring are exposed to catch-up growth, diet-induced obesity and other factors. The “predictive adaptive response” hypothesis proposes that the degree of mismatch between the pre- and postnatal environments is a major determinant of subsequent disease. This review will address recent work in animal models and observations in the clinical and epidemiological settings onin uteroadaptations and subsequent development of obesity and type 2 diabetes.
Collapse
|
46
|
Fernandez-Twinn DS, Ozanne SE. Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav 2006; 88:234-43. [PMID: 16782139 DOI: 10.1016/j.physbeh.2006.05.039] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fetal programming is gaining momentum as a highly documented phenomenon which links poor early growth to adult disease. It is backed up by large cohorts in epidemiological studies worldwide and has been tested in various animal models. The root causes of programming link closely with maternal condition during pregnancy, and therefore the fetal environment. Suboptimal fetal environments due to poor or inadequate nutrition, infection, anemia, hypertension, inflammation, gestational diabetes or hypoxia in the mother expose the fetus to hormonal, growth factor, cytokine or adipokine cues. These in turn act to alter metabolic, immune system, vascular, hemodynamics, renal, growth and mitochondrial parameters respectively and most evidently in the later stages of life where they impact on the individual as poor glucose homeostasis, insulin resistance, type 2 diabetes, hypertension, cardiovascular disease, obesity and heart disease. These events are compounded by over-nutrition or lifestyle choices which are in conflict with the programming of the fetus. We and others have utilised various species to test the early life programming hypothesis and to identify key molecular mechanisms. With parallel studies of human cohorts, these molecular markers can be validated as realistic targets for intervention.
Collapse
Affiliation(s)
- D S Fernandez-Twinn
- Department of Clinical Biochemistry, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QR, United Kingdom.
| | | |
Collapse
|
47
|
Oak SA, Tran C, Pan G, Thamotharan M, Devaskar SU. Perturbed skeletal muscle insulin signaling in the adult female intrauterine growth-restricted rat. Am J Physiol Endocrinol Metab 2006; 290:E1321-30. [PMID: 16449300 DOI: 10.1152/ajpendo.00437.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the molecular mechanism(s) linking fetal adaptations in intrauterine growth restriction (IUGR) to adult maladaptations of type 2 diabetes mellitus, we investigated the effect of prenatal seminutrient restriction, modified by early postnatal ad libitum access to nutrients (CM/SP) or seminutrient restriction (SM/SP), vs. early postnatal seminutrient restriction alone (SM/CP) or control nutrition (CM/CP) on the skeletal muscle postreceptor insulin-signaling pathway in the adult offspring. The altered in utero hormonal/metabolic milieu was associated with no change in basal total IRS-1, p85, and p110beta subunits of PI 3-kinase, PKCtheta, and PKCzeta concentrations but an increase in basal IRS-2 (P < 0.05) only in the CM/SP group and an increase in basal phospho (p)-PDK-1 (P < 0.05), p-Akt (P < 0.05), and p-PKCzeta (P < 0.05) concentrations in the CM/SP and SM/SP groups. Insulin-stimulated increases in p-PDK-1 (P < 0.05) and p-Akt (P < 0.0007), with no increase in p-PKCzeta, were seen in both CM/SP and SM/SP groups. SHP2 (P < 0.03) and PTP1B (P < 0.03) increased only in SM/SP with no change in PTEN in CM/SP and SM/SP groups. Aberrations in kinase and phosphatase moieties in the adult IUGR offspring were initiated in utero but further sculpted by the early postnatal nutritional state. Although the CM/SP group demonstrated enhanced kinase activation, the SM/SP group revealed an added increase in phosphatase concentrations with the net result of heightened basal insulin sensitivity in both groups. The inability to further respond to exogenous insulin was due to the key molecular distal roadblock consisting of resistance to phosphorylate and activate PKCzeta necessary for GLUT4 translocation. This protective adaptation may become maladaptive and serve as a forerunner for gestational and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Shilpa A Oak
- Division of Neonatology and Developmental Biology, David Geffen School at Medicine at University of California at Los Angeles, CA 90095-1752, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
A considerable body of scientific evidence now links major diseases of middle-older age, such as the metabolic syndrome, diabetes mellitus and atherosclerotic heart disease, to in utero and perinatal events. Based on replicated epidemiological observations in humans, and experimental evidence in animal models, the data suggest that a period of plasticity during development imposes permanent influences on the way that the organism adapts to the surrounding environment many years later, perhaps via epigenetic and other post-translational modifications of genetic programming, such as regulation of the cell cycle and hormonal programming of metabolic pathways. A critical period appears to be the third trimester, hitherto considered as deprivation of nutrition or other essential factors in utero. Here this review discusses the recent evidence that the critical period also involves the third trimester ex utero, as occurs in prematurity. Data are provided demonstrating insulin resistance compensated by hyperinsulinemia in children born prematurely, whether born appropriate for gestational age or small for gestational age, and comparable in degree with that seen in those born at term with intrauterine growth retardation. Potential mechanisms and implications for treatment of the metabolic consequences of prematurity are discussed within the framework of the fetal salvage hypothesis.
Collapse
Affiliation(s)
- Wayne S Cutfield
- a Liggins Institute, University of Auckland, Auckland, New Zealand.
| | - Paul L Hofman
- b Liggins Institute, University of Auckland, Auckland, New Zealand. p.hofman@ auckland.ac.nz
| | - Mark A Sperling
- c Department of Pediatric Endocrinology, Diabetes and Metabolism, Children's Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA, 15213-2583, USA.
| |
Collapse
|
49
|
Fernandez-Twinn DS, Ekizoglou S, Wayman A, Petry CJ, Ozanne SE. Maternal low-protein diet programs cardiac beta-adrenergic response and signaling in 3-mo-old male offspring. Am J Physiol Regul Integr Comp Physiol 2006; 291:R429-36. [PMID: 16914429 DOI: 10.1152/ajpregu.00608.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Low birth weight in humans is associated with an increased risk of cardiovascular disease. Humans with heart failure have a reduced beta-adrenergic response. The aim of this study was to investigate the hemodynamic response to the beta-adrenergic agonist isoproterenol and to identify molecular deficiencies that may be predictive of cardiac failure in a low-birth weight rodent model that develops insulin resistance and type 2 diabetes in adulthood. Wistar rats were fed a control or a low-protein (LP) diet throughout pregnancy and lactation. The resting heart rate and blood pressure of the 3-mo-old male offspring of these dams, termed "control" and "LP" groups, respectively, and their responses to isoproterenol (ISO) infusion were monitored by radiotelemetry. The protein expression of beta-adrenergic signaling components was also measured by Western blot analysis. Basal heart rate was increased in LP offspring (P<0.04), although mean arterial pressure was comparable with controls. Chronotropic effects of ISO were blunted in LP offspring with significant delays to maximal response (P=0.01), a shorter duration of response (P=0.03), and a delayed return to baseline (P=0.01) at the lower dose (0.1 microg.kg-1.min-1). At the higher dose (1.0 microg.kg-1.min-1 ISO), inotropic response was blunted (P=0.03) but quicker (P=0.001). In heart tissue of LP offspring, beta1-adrenergic receptor expression was reduced (P<0.03). beta1-Adrenergic receptor kinase and both stimulatory and inhibitory G protein levels remained unchanged, whereas beta-arrestin levels were higher (P<0.03). Finally, insulin receptor-beta expression was reduced in LP offspring (P<0.012). LP offspring have reduced beta-adrenergic responsiveness and attenuated adrenergic and insulin signaling, suggesting that intrauterine undernutrition alters heart failure risk.
Collapse
Affiliation(s)
- Denise S Fernandez-Twinn
- Department of Clinical Biochemistry, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK.
| | | | | | | | | |
Collapse
|
50
|
Lee YY, Park KS, Pak YK, Lee HK. The role of mitochondrial DNA in the development of type 2 diabetes caused by fetal malnutrition. J Nutr Biochem 2005; 16:195-204. [PMID: 15808323 DOI: 10.1016/j.jnutbio.2004.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 10/12/2004] [Accepted: 11/05/2004] [Indexed: 01/06/2023]
Abstract
Epidemiological studies have revealed strong and reproducible links between indices of poor fetal growth and susceptibility to the development of glucose intolerance and insulin resistance syndrome in adult life. To explain these associations, the thrifty phenotype hypothesis has been proposed. Mitochondrial DNA abnormalities have been known to cause insulin deficiency, insulin resistance and diabetes mellitus. In this review, we propose that mitochondrial dysfunction is a link between malnutrition during early life and disease in adult life. The potential mechanism for mitochondrial dysfunction will be focused on availability of the taurine and nucleotides, and imprinting on the genes.
Collapse
Affiliation(s)
- Yun Yong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744, South Korea
| | | | | | | |
Collapse
|