1
|
Lin X, Xia L, Zhou Y, Xie J, Tuo Q, Lin L, Liao D. Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5. Int J Mol Sci 2025; 26:4240. [PMID: 40362481 PMCID: PMC12072030 DOI: 10.3390/ijms26094240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Bile acids and their corresponding intestinal epithelial receptors, the farnesoid X receptor (FXR), the G protein-coupled bile acid receptor (TGR5), play crucial roles in the physiological and pathological processes of intestinal epithelial cells. These acids and receptors are involved in the regulation of intestinal absorption, signal transduction, cellular proliferation and repair, cellular senescence, energy metabolism, and the modulation of gut microbiota. A comprehensive literature search was conducted using PubMed, employing keywords such as bile acid, bile acid receptor, FXR (nr1h4), TGR5 (gpbar1), intestinal epithelial cells, proliferation, differentiation, senescence, energy metabolism, gut microbiota, inflammatory bowel disease (IBD), colorectal cancer (CRC), and irritable bowel syndrome (IBS), with a focus on publications available in English. This review examines the diverse effects of bile acid signaling and bile receptor pathways on the proliferation, differentiation, senescence, and energy metabolism of intestinal epithelial cells. Additionally, it explores the interactions between bile acids, their receptors, and the microbiota, as well as the implications of these interactions for host health, particularly in relation to prevalent intestinal diseases. Finally, the review highlights the importance of developing highly specific ligands for FXR and TGR5 receptors in the context of metabolic and intestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.L.); (L.X.); (Y.Z.); (J.X.); (Q.T.); (L.L.)
| |
Collapse
|
2
|
Galsgaard KD, Modvig IM, Holst JJ. Understanding the release mechanisms and secretion patterns for glucagon-like peptide-1 using the isolated perfused intestine as a model. Biochem Soc Trans 2025; 53:BST20241062. [PMID: 39887325 DOI: 10.1042/bst20241062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
In the gastrointestinal (GI) tract, food is digested and absorbed while GI hormones are secreted from the enteroendocrine cells (EECs). These hormones regulate food intake, glucose homeostasis, digestion, GI motility, and metabolism. Although ECCs may express more than a single hormone, the ECCs usually secrete only one or a few hormones. The pattern of EEC secretion varies along the length of the GI tract as the different EEC types are scattered in different densities along the GI tract. Following bariatric surgery, a postprandial hypersecretion of certain GI hormones occurs which contributes to the postsurgery weight loss. Mimicking this postprandial hypersecretion of GI hormones by targeting endogenous EEC secretion, using specific modulators of receptors, ion channels, and transporters found on specific EECs, to induce weight loss is a current research aim. To achieve this, a more complete understanding of the release mechanisms, expression of receptors, transporters, and the secretion pattern of the different ECC types is needed. Using the vascularly perfused intestinal model, it is possible to obtain a detailed knowledge of these release mechanisms by evaluating the effects on secretion of blocking or stimulating specific receptors, ion channels, and transporters as well as evaluating nutrient handling and absorption in each of the different sections of the intestine. This mini-review will focus on how the isolated perfused intestine has been used in our group as a model to investigate the nutrient-induced release mechanisms of ECCs with a focus on glucagon-like peptide-1 secreting cells.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida M Modvig
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Alcaino C, Reimann F, Gribble FM. Incretin hormones and obesity. J Physiol 2024:10.1113/JP286293. [PMID: 39576749 PMCID: PMC7617301 DOI: 10.1113/jp286293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play critical roles in co-ordinating postprandial metabolism, including modulation of insulin secretion and food intake. They are secreted from enteroendocrine cells in the intestinal epithelium following food ingestion, and act at multiple target sites including pancreatic islets and the brain. With the recent development of agonists targeting GLP-1 and GIP receptors for the treatment of type 2 diabetes and obesity, and the ongoing development of new incretin-based drugs with improved efficacy, there is great interest in understanding the physiology and pharmacology of these hormones.
Collapse
Affiliation(s)
- Constanza Alcaino
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Frank Reimann
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Fiona M Gribble
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| |
Collapse
|
4
|
Holst JJ. GLP-1 physiology in obesity and development of incretin-based drugs for chronic weight management. Nat Metab 2024; 6:1866-1885. [PMID: 39160334 DOI: 10.1038/s42255-024-01113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
The introduction of the highly potent incretin receptor agonists semaglutide and tirzepatide has marked a new era in the treatment of type 2 diabetes and obesity. With normalisation of glycated haemoglobin levels and weight losses around 15-25%, therapeutic goals that were previously unrealistic are now within reach, and clinical trials have documented that these effects are associated with reduced risk of cardiovascular events and premature mortality. Here, I review this remarkable development from the earliest observations of glucose lowering and modest weight losses with native glucagon-like peptide (GLP)-1 and short acting compounds, to the recent development of highly active formulations and new molecules. I will classify these agents as GLP-1-based therapies in the understanding that these compounds or combinations may have actions on other receptors as well. The physiology of GLP-1 is discussed as well as its mechanisms of actions in obesity, in particular, the role of sensory afferents and GLP-1 receptors in the brain. I provide details regarding the development of GLP-1 receptor agonists for anti-obesity therapy and discuss the possible mechanism behind their beneficial effects on adverse cardiovascular events. Finally, I highlight new pharmacological developments, including oral agents, and discuss important questions regarding maintenance therapy.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences. Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Burchat N, Vidola J, Pfreundschuh S, Sharma P, Rizzolo D, Guo GL, Sampath H. Intestinal Stearoyl-CoA Desaturase-1 Regulates Energy Balance via Alterations in Bile Acid Homeostasis. Cell Mol Gastroenterol Hepatol 2024; 18:101403. [PMID: 39278403 PMCID: PMC11546130 DOI: 10.1016/j.jcmgh.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND & AIMS Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid assimilation and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism. Here, we investigated a novel role for intestinal SCD1 in the regulation of systemic energy balance. METHODS To interrogate the role of intestinal SCD1 in modulating whole body metabolism, intestine-specific Scd1 knockout (iKO) mice were maintained on standard chow diet or challenged with a high-fat diet (HFD). Studies included analyses of bile acid content and composition, and metabolic phenotyping, including body composition, indirect calorimetry, glucose tolerance analyses, quantification of the composition of the gut microbiome, and assessment of bile acid signaling pathways. RESULTS iKO mice displayed elevated plasma and hepatic bile acid content and decreased fecal bile acid excretion, associated with increased expression of the ileal bile acid uptake transporter, Asbt. In addition, the alpha and beta diversity of the gut microbiome was reduced in iKO mice, with several alterations in microbe species being associated with the observed increases in plasma bile acids. These increases in plasma bile acids were associated with increased expression of TGR5 targets, including Dio2 in brown adipose tissue and elevated plasma glucagon-like peptide-1 levels. Upon HFD challenge, iKO mice had reduced metabolic efficiency apparent through decreased weight gain despite higher food intake. Concomitantly, energy expenditure was increased, and glucose tolerance was improved in HFD-fed iKO mice. CONCLUSIONS Our results indicate that deletion of intestinal SCD1 has significant impacts on bile acid homeostasis and whole-body energy balance, likely via activation of TGR5.
Collapse
Affiliation(s)
- Natalie Burchat
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Jeanine Vidola
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Sarah Pfreundschuh
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Priyanka Sharma
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Daniel Rizzolo
- Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Grace L Guo
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey; Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Harini Sampath
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey; Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey.
| |
Collapse
|
6
|
Liu H, Guo X, Jiang K, Shi B, Liu L, Hou R, Chen G, Farag MA, Yan N, Liu L. Dietary polyphenols regulate appetite mechanism via gut-brain axis and gut homeostasis. Food Chem 2024; 446:138739. [PMID: 38412807 DOI: 10.1016/j.foodchem.2024.138739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Nowadays, due to the rise of fast-food consumption, the metabolic diseases are increasing as a result of high-sugar and high-fat diets. Therefore, there is an urgent need for natural, healthy and side-effect-free diets in daily life. Whole grain supplementation can enhance satiety and regulate energy metabolism, effects that have been attributed to polyphenol content. Dietary polyphenols interact with gut microbiota to produce intermediate metabolites that can regulate appetite while also enhancing prebiotic effects. This review considers how interactions between gut metabolites and dietary polyphenols might regulate appetite by acting on the gut-brain axis. In addition, further advances in the study of dietary polyphenols and gut microbial metabolites on energy metabolism and gut homeostasis are summarized. This review contributes to a better understanding of how dietary polyphenols regulate appetite via the gut-brain axis, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Boshan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao 266101, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
7
|
Yuan P, Ma R, Hu L, Li R, Wang P, Lin S, Huang J, Wen H, Huang L, Li H, Feng B, Chen H, Liu Y, Zhang X, Lin Y, Xu S, Li J, Zhuo Y, Hua L, Che L, Wu D, Fang Z. Zearalenone Decreases Food Intake by Disrupting the Gut-Liver-Hypothalamus Axis Signaling via Bile Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8200-8213. [PMID: 38560889 DOI: 10.1021/acs.jafc.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Zearalenone (ZEN) is a mycotoxin that is harmful to humans and animals. In this study, female and male rats were exposed to ZEN, and the results showed that ZEN reduced the farnesoid X receptor (FXR) expression levels in the liver and disrupted the enterohepatic circulation of bile acids (BAs). A decrease in food intake induced by ZEN was negatively correlated with an increase in the level of total BAs. BA-targeted metabolomics revealed that ZEN increased glycochenodeoxycholic acid levels and decreased the ratio of conjugated BAs to unconjugated BAs, which further increased the hypothalamic FXR expression levels. Preventing the increase in total BA levels induced by ZEN via Lactobacillus rhamnosus GG intervention restored the appetite. In conclusion, ZEN disrupted the enterohepatic circulation of BAs to decrease the level of food intake. This study reveals a possible mechanism by which ZEN affects food intake and provides a new approach to decrease the toxic effects of ZEN.
Collapse
Affiliation(s)
- Peiqiang Yuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Rongman Ma
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Liang Hu
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Ran Li
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Peng Wang
- College of Biology Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Sen Lin
- Key Laboratory of Urban Agriculture in South China, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Jiancai Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Hongmei Wen
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Lingjie Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Hua Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Hong Chen
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Yuntao Liu
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Lun Hua
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| |
Collapse
|
8
|
Burchat N, Vidola J, Pfreundschuh S, Sharma P, Rizzolo D, Guo GL, Sampath H. Intestinal stearoyl-CoA desaturase-1 regulates energy balance via alterations in bile acid homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575400. [PMID: 38260602 PMCID: PMC10802577 DOI: 10.1101/2024.01.12.575400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background and Aims Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid esterification and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism. Here we investigated a novel role for intestinal SCD1 in the regulation of systemic energy balance. Methods To interrogate the role of intestinal SCD1 in modulating whole body metabolism, intestine-specific Scd1 knockout (iKO) mice were maintained on standard chow diet or challenged with a high-fat diet (HFD). Studies included analyses of bile acid content and composition, metabolic phenotyping including body composition, indirect calorimetry, glucose tolerance analyses, and assessment of bile acid signaling pathways. Results iKO mice displayed elevated plasma and hepatic bile acid content and decreased fecal bile acid excretion, associated with increased expression of the ileal bile acid uptake transporter, Asbt . These increases were associated with increased expression of TGR5 targets, including Dio2 in brown adipose tissue and elevated plasma glucagon-like peptide-1 levels. Upon HFD challenge, iKO mice had reduced metabolic efficiency apparent through decreased weight gain despite higher food intake. Concomitantly, energy expenditure was increased, and glucose tolerance was improved in HFD-fed iKO mice. Conclusion Our results indicate that deletion of intestinal SCD1 has significant impacts on bile acid metabolism and whole-body energy balance, likely via activation of TGR5.
Collapse
|
9
|
Abdel-Rahman I, Alharbi AA, Alsaedi MZ, Alharbi NMA, Al-Mughassil SB, Al-Bahar ZA, Donkol AR, Baghdadi H, Alanzi ME, El Sayed SM. Significant Promising Effects of Bariatric Surgery on the Biochemical Control of Glycemia and Lipidemia in Diabetic Patients in Western Saudi Arabia: A Tertiary Center Experience and a Retrospective Study. Cureus 2024; 16:e53295. [PMID: 38435872 PMCID: PMC10905210 DOI: 10.7759/cureus.53295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The prevalence of obesity has increased globally and is associated with many comorbidities such as type 2 diabetes and fatty liver and cardiovascular diseases. Bariatric surgery is considered an effective intervention for achieving weight loss and controlling lipidemia and glycemia. OBJECTIVES This Saudi retrospective observational study evaluates the clinical and biochemical benefits following bariatric surgery to obese diabetic patients. Methodology: After gaining ethical committee approval, data was collected from the patients' medical records at a tertiary medical center (King Fahad General Hospital, Al-Madinah Al-Munawwarah, Saudi Arabia). The total sample size was 61 patients, of whom 78.33% (n=48) had a body mass index (BMI) of 40 or greater (obese class III). RESULTS Following bariatric surgery, there were statistically significant reductions (p<0.001) in BMI and HbA1C (decreased from 45.53±7.791 kg/m2 and 7.9±1.82% to 33.42±6.18 kg/m2 and 6.06±1.35%, respectively, after surgery). Likewise, significant reductions (p<0.001) occurred to serum total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides that decreased from 234.4±26.7 mg/dl, 152.2±19.4 mg/dl, and 187.3±24.6 mg/dl to 158.4±17.3 mg/dl, 95.6±15.7 mg/dl, and 132.5±19.5 mg/dl, respectively. Interestingly, serum high-density lipoprotein (HDL) significantly increased (p<0.001) from 43.8±6.2 mg/dl to 52.3±4.6 mg/dl. Using the novel clinical therapeutic index, bariatric surgery decreased BMI by about 26.6%. Using the novel biochemical therapeutic index, bariatric surgery decreased HbA1C, serum total cholesterol, serum LDL cholesterol, and serum triglycerides by about 22.99%, 32.42%, 37.18%, and 29.26%, respectively, while serum HDL increased by about 19.4%. CONCLUSION Bariatric surgery is an effective intervention for obese diabetic patients resulting in weight loss, better control of diabetes and hyperlipidemia, and the metabolic profile. It is also recommended in Saudi Arabia for the high prevalence of obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Ibrahim Abdel-Rahman
- Department of Surgery, Faculty of Medicine, Al-Rayyan Medical Colleges, Al-Madinah Al-Munawwarah, SAU
- Department of General Surgery, Obesity Center, King Fahad General Hospital, Al-Madinah Al-Munawwarah, SAU
| | - Abdulhamid Awadh Alharbi
- Department of General Surgery, Obesity Center, King Fahad General Hospital, Al-Madinah Al-Munawwarah, SAU
| | - Maryam Zain Alsaedi
- College of Medicine, Faculty of Medicine, Al-Rayyan Medical Colleges, Al-Madinah Al-Munawwarah, SAU
| | | | | | - Zainab Anwar Al-Bahar
- College of Medicine, Faculty of Medicine, Al-Rayyan Medical Colleges, Al-Madinah Al-Munawwarah, SAU
| | - Abdel-Raheem Donkol
- Department of General Surgery, Obesity Center, King Fahad General Hospital, Al-Madinah Al-Munawwarah, SAU
- Department of General Surgery, Faculty of Medicine, Aswan University, Aswan, EGY
| | - Hussam Baghdadi
- Department of Clinical Biochemistry and Molecular Medicine, Faculty of Medicine, Taibah University, Al-Madinah Al-Munawwarah, SAU
| | - Mariam Eid Alanzi
- Division of Diabetology, Diabetes Center, Al-Madinah General Hospital, King Salman Bin Abdul-Aziz Medical City, Al-Madinah Health Cluster, Al-Madinah Al-Munawwarah, SAU
| | - Salah Mohamed El Sayed
- Department of Clinical Biochemistry and Molecular Medicine, Faculty of Medicine, Taibah University, Al-Madinah Al-Munawwarah, SAU
- Department of Clinical Biochemistry, Faculty of Medicine, Sohag University, Sohag, EGY
| |
Collapse
|
10
|
Hibberd TJ, Ramsay S, Spencer-Merris P, Dinning PG, Zagorodnyuk VP, Spencer NJ. Circadian rhythms in colonic function. Front Physiol 2023; 14:1239278. [PMID: 37711458 PMCID: PMC10498548 DOI: 10.3389/fphys.2023.1239278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
A rhythmic expression of clock genes occurs within the cells of multiple organs and tissues throughout the body, termed "peripheral clocks." Peripheral clocks are subject to entrainment by a multitude of factors, many of which are directly or indirectly controlled by the light-entrainable clock located in the suprachiasmatic nucleus of the hypothalamus. Peripheral clocks occur in the gastrointestinal tract, notably the epithelia whose functions include regulation of absorption, permeability, and secretion of hormones; and in the myenteric plexus, which is the intrinsic neural network principally responsible for the coordination of muscular activity in the gut. This review focuses on the physiological circadian variation of major colonic functions and their entraining mechanisms, including colonic motility, absorption, hormone secretion, permeability, and pain signalling. Pathophysiological states such as irritable bowel syndrome and ulcerative colitis and their interactions with circadian rhythmicity are also described. Finally, the classic circadian hormone melatonin is discussed, which is expressed in the gut in greater quantities than the pineal gland, and whose exogenous use has been of therapeutic interest in treating colonic pathophysiological states, including those exacerbated by chronic circadian disruption.
Collapse
Affiliation(s)
- Timothy J. Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stewart Ramsay
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Phil G. Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | | | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
11
|
Li S, Liu M, Cao S, Liu B, Li D, Wang Z, Sun H, Cui Y, Shi Y. The Mechanism of the Gut-Brain Axis in Regulating Food Intake. Nutrients 2023; 15:3728. [PMID: 37686760 PMCID: PMC10490484 DOI: 10.3390/nu15173728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
With the increasing prevalence of energy metabolism disorders such as diabetes, cardiovascular disease, obesity, and anorexia, the regulation of feeding has become the focus of global attention. The gastrointestinal tract is not only the site of food digestion and absorption but also contains a variety of appetite-regulating signals such as gut-brain peptides, short-chain fatty acids (SCFAs), bile acids (BAs), bacterial proteins, and cellular components produced by gut microbes. While the central nervous system (CNS), as the core of appetite regulation, can receive and integrate these appetite signals and send instructions to downstream effector organs to promote or inhibit the body's feeding behaviour. This review will focus on the gut-brain axis mechanism of feeding behaviour, discussing how the peripheral appetite signal is sensed by the CNS via the gut-brain axis and the role of the central "first order neural nuclei" in the process of appetite regulation. Here, elucidation of the gut-brain axis mechanism of feeding regulation may provide new strategies for future production practises and the treatment of diseases such as anorexia and obesity.
Collapse
Affiliation(s)
- Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
12
|
Mezhibovsky E, Tveter KM, Villa-Rodriguez JA, Bacalia K, Kshatriya D, Desai N, Cabales A, Wu Y, Sui K, Duran RM, Bello NT, Roopchand DE. Grape Polyphenols May Prevent High-Fat Diet-Induced Dampening of the Hypothalamic-Pituitary-Adrenal Axis in Male Mice. J Endocr Soc 2023; 7:bvad095. [PMID: 37538101 PMCID: PMC10396072 DOI: 10.1210/jendso/bvad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 08/05/2023] Open
Abstract
Context Chronic high-fat diet (HFD) consumption causes obesity associated with retention of bile acids (BAs) that suppress important regulatory axes, such as the hypothalamic-pituitary-adrenal axis (HPAA). HFD impairs nutrient sensing and energy balance due to a dampening of the HPAA and reduced production and peripheral metabolism of corticosterone (CORT). Objective We assessed whether proanthocyanidin-rich grape polyphenol (GP) extract can prevent HFD-induced energy imbalance and HPAA dysregulation. Methods Male C57BL6/J mice were fed HFD or HFD supplemented with 0.5% w/w GPs (HFD-GP) for 17 weeks. Results GP supplementation reduced body weight gain and liver fat while increasing circadian rhythms of energy expenditure and HPAA-regulating hormones, CORT, leptin, and PYY. GP-induced improvements were accompanied by reduced mRNA levels of Il6, Il1b, and Tnfa in ileal or hepatic tissues and lower cecal abundance of Firmicutes, including known BA metabolizers. GP-supplemented mice had lower concentrations of circulating BAs, including hydrophobic and HPAA-inhibiting BAs, but higher cecal levels of taurine-conjugated BAs antagonistic to farnesoid X receptor (FXR). Compared with HFD-fed mice, GP-supplemented mice had increased mRNA levels of hepatic Cyp7a1 and Cyp27a1, suggesting reduced FXR activation and more BA synthesis. GP-supplemented mice also had reduced hepatic Abcc3 and ileal Ibabp and Ostβ, indicative of less BA transfer into enterocytes and circulation. Relative to HFD-fed mice, CORT and BA metabolizing enzymes (Akr1d1 and Srd5a1) were increased, and Hsd11b1 was decreased in GP supplemented mice. Conclusion GPs may attenuate HFD-induced weight gain by improving hormonal control of the HPAA and inducing a BA profile with less cytotoxicity and HPAA inhibition, but greater FXR antagonism.
Collapse
Affiliation(s)
- Esther Mezhibovsky
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Kevin M Tveter
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jose A Villa-Rodriguez
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Karen Bacalia
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Dushyant Kshatriya
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nikhil Desai
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Alrick Cabales
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ke Sui
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Rocio M Duran
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nicholas T Bello
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
13
|
Masse KE, Lu VB. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1169624. [PMID: 37560311 PMCID: PMC10407565 DOI: 10.3389/fendo.2023.1169624] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal tract hosts the largest ecosystem of microorganisms in the body. The metabolism of ingested nutrients by gut bacteria produces novel chemical mediators that can influence chemosensory cells lining the gastrointestinal tract. Specifically, hormone-releasing enteroendocrine cells which express a host of receptors activated by these bacterial metabolites. This review will focus on the activation mechanisms of glucagon-like peptide-1 releasing enteroendocrine cells by the three main bacterial metabolites produced in the gut: short-chain fatty acids, secondary bile acids and indoles. Given the importance of enteroendocrine cells in regulating glucose homeostasis and food intake, we will also discuss therapies based on these bacterial metabolites used in the treatment of metabolic diseases such as diabetes and obesity. Elucidating the mechanisms gut bacteria can influence cellular function in the host will advance our understanding of this fundamental symbiotic relationship and unlock the potential of harnessing these pathways to improve human health.
Collapse
Affiliation(s)
| | - Van B. Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
14
|
Brubaker PL. The Molecular Determinants of Glucagon-like Peptide Secretion by the Intestinal L cell. Endocrinology 2022; 163:6717959. [PMID: 36156130 DOI: 10.1210/endocr/bqac159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/19/2022]
Abstract
The intestinal L cell secretes a diversity of biologically active hormones, most notably the glucagon-like peptides, GLP-1 and GLP-2. The highly successful introduction of GLP-1-based drugs into the clinic for the treatment of patients with type 2 diabetes and obesity, and of a GLP-2 analog for patients with short bowel syndrome, has led to the suggestion that stimulation of the endogenous secretion of these peptides may serve as a novel therapeutic approach in these conditions. Situated in the intestinal epithelium, the L cell demonstrates complex relationships with not only circulating, paracrine, and neural regulators, but also ingested nutrients and other factors in the lumen, most notably the microbiota. The integrated input from these numerous secretagogues results in a variety of temporal patterns in L cell secretion, ranging from minutes to 24 hours. This review combines the findings of traditional, physiological studies with those using newer molecular approaches to describe what is known and what remains to be elucidated after 5 decades of research on the intestinal L cell and its secreted peptides, GLP-1 and GLP-2.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
15
|
Cook JR, Kohan AB, Haeusler RA. An Updated Perspective on the Dual-Track Model of Enterocyte Fat Metabolism. J Lipid Res 2022; 63:100278. [PMID: 36100090 PMCID: PMC9593242 DOI: 10.1016/j.jlr.2022.100278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023] Open
Abstract
The small intestinal epithelium has classically been envisioned as a conduit for nutrient absorption, but appreciation is growing for a larger and more dynamic role for enterocytes in lipid metabolism. Considerable gaps remain in our knowledge of this physiology, but it appears that the enterocyte's structural polarization dictates its behavior in fat partitioning, treating fat differently based on its absorption across the apical versus the basolateral membrane. In this review, we synthesize existing data and thought on this dual-track model of enterocyte fat metabolism through the lens of human integrative physiology. The apical track includes the canonical pathway of dietary lipid absorption across the apical brush-border membrane, leading to packaging and secretion of those lipids as chylomicrons. However, this track also reserves a portion of dietary lipid within cytoplasmic lipid droplets for later uses, including the "second-meal effect," which remains poorly understood. At the same time, the enterocyte takes up circulating fats across the basolateral membrane by mechanisms that may include receptor-mediated import of triglyceride-rich lipoproteins or their remnants, local hydrolysis and internalization of free fatty acids, or enterocyte de novo lipogenesis using basolaterally absorbed substrates. The ultimate destinations of basolateral-track fat may include fatty acid oxidation, structural lipid synthesis, storage in cytoplasmic lipid droplets, or ultimate resecretion, although the regulation and purposes of this basolateral track remain mysterious. We propose that the enterocyte integrates lipid flux along both of these tracks in order to calibrate its overall program of lipid metabolism.
Collapse
Affiliation(s)
- Joshua R. Cook
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA,Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Alison B. Kohan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca A. Haeusler
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA,Department of Pathology and Cell Biology; Columbia University College of Physicians and Surgeons, New York, NY, USA,For correspondence: Rebecca A. Haeusler
| |
Collapse
|
16
|
Duszka K. Versatile Triad Alliance: Bile Acid, Taurine and Microbiota. Cells 2022; 11:2337. [PMID: 35954180 PMCID: PMC9367564 DOI: 10.3390/cells11152337] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Taurine is the most abundant free amino acid in the body, and is mainly derived from the diet, but can also be produced endogenously from cysteine. It plays multiple essential roles in the body, including development, energy production, osmoregulation, prevention of oxidative stress, and inflammation. Taurine is also crucial as a molecule used to conjugate bile acids (BAs). In the gastrointestinal tract, BAs deconjugation by enteric bacteria results in high levels of unconjugated BAs and free taurine. Depending on conjugation status and other bacterial modifications, BAs constitute a pool of related but highly diverse molecules, each with different properties concerning solubility and toxicity, capacity to activate or inhibit receptors of BAs, and direct and indirect impact on microbiota and the host, whereas free taurine has a largely protective impact on the host, serves as a source of energy for microbiota, regulates bacterial colonization and defends from pathogens. Several remarkable examples of the interaction between taurine and gut microbiota have recently been described. This review will introduce the necessary background information and lay out the latest discoveries in the interaction of the co-reliant triad of BAs, taurine, and microbiota.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Joyce SA, O'Malley D. Bile acids, bioactive signalling molecules in interoceptive gut-to-brain communication. J Physiol 2022; 600:2565-2578. [PMID: 35413130 PMCID: PMC9325455 DOI: 10.1113/jp281727] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
Aside from facilitating solubilisation and absorption of dietary lipids and lipid-soluble vitamins, amphipathic bile acids (BAs) also act as bioactive signalling molecules. A plethora of conjugated or unconjugated primary and bacterially modified secondary BA moieties have been identified, with significant divergence between species. These molecules are excreted into the external environment of the intestinal lumen, yet nuclear and membrane receptors that are sensitive to BAs are expressed internally in the liver, intestinal and neural tissues, amongst others. The diversity of BAs and receptors underpins the multitude of distinct bioactive functions attributed to BAs, but also hampers elucidation of the physiological mechanisms underpinning these actions. In this Topical Review, we have considered the potential of BAs as cross-barrier signalling molecules that contribute to interoceptive pathways informing the central nervous system of environmental changes in the gut lumen. Activation of BAs on FGF19 -secreting enterocytes, enteroendocrine cells coupled to sensory nerves or intestinal immune cells would facilitate indirect signalling, whereas direct activation of BA receptors in the brain is likely to occur primarily under pathophysiological conditions when concentrations of BAs are elevated.
Collapse
Affiliation(s)
- Susan A. Joyce
- School of Biochemistry and Cell BiologyUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Dervla O'Malley
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of PhysiologyCollege of Medicine and HealthUniversity College CorkCorkIreland
| |
Collapse
|
18
|
Holst JJ. Glucagon-like peptide-1: Are its roles as endogenous hormone and therapeutic wizard congruent? J Intern Med 2022; 291:557-573. [PMID: 34982496 DOI: 10.1111/joim.13433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a peptide derived from differential processing of the precursor for the hormone glucagon. It is secreted predominantly by endocrine cells in the gut epithelium in response to nutrient stimulation. Studies from the last 35 years have given us an idea about its physiological functions. On the basis of some of its many actions, it has also been developed into a pharmaceutical agent for the treatment of obesity and type 2 diabetes (T2DM). It is currently positioned as the most effective anti-obesity agent available and is recommended in both national and international guidelines as an effective second-in line treatment for T2DM, in particular in patients with increased cardiovascular risk. In this review, I first discuss whether the processing of proglucagon may also result in GLP-1 formation in the pancreas and in glucagon in the gut. Next, I discuss the relationship between the physiological actions of GLP-1 and the therapeutic effects of the GLP-1 receptor agonists, which are far from being congruent and generally poorly understood. These relationships illustrate both the difficulties and the benefits of bridging results obtained in the laboratory with those emerging from the clinic.
Collapse
Affiliation(s)
- Jens J Holst
- NovoNordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Ma H, Li X, Yang H, Qiu Y, Xiao W. The Pathology and Physiology of Ileostomy. Front Nutr 2022; 9:842198. [PMID: 35529469 PMCID: PMC9072868 DOI: 10.3389/fnut.2022.842198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
An ileostomy is a surgery that is commonly performed to protect low pelvic anastomoses or prevent high-risk anastomotic leakages. However, various postoperative complications remain of major concern. After an ileostomy, the distal intestinal segment is left open for an extended period and is in a non-functional state. Consequently, the intestinal mucosa, smooth muscle, and microbiota undergo significant changes that are closely related to postoperative recovery and complications. A systematic description of these changes is necessary to understand the relationship among them and take more effective measures for postoperative intervention.
Collapse
Affiliation(s)
- Haitao Ma
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaolong Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
20
|
Holst JJ, Jepsen SL, Modvig I. GLP-1 – Incretin and pleiotropic hormone with pharmacotherapy potential. Increasing secretion of endogenous GLP-1 for diabetes and obesity therapy. Curr Opin Pharmacol 2022; 63:102189. [DOI: 10.1016/j.coph.2022.102189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 02/09/2023]
|
21
|
Boscaini S, Leigh SJ, Lavelle A, García-Cabrerizo R, Lipuma T, Clarke G, Schellekens H, Cryan JF. Microbiota and body weight control: Weight watchers within? Mol Metab 2022; 57:101427. [PMID: 34973469 PMCID: PMC8829807 DOI: 10.1016/j.molmet.2021.101427] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite several decades of research, managing body weight remains an unsolved clinical problem. Health problems associated with dysregulated body weight, such as obesity and cachexia, exhibit several gut microbiota alterations. There is an increased interest in utilising the gut microbiota for body weight control, as it responds to intervention and plays an important role in energy extraction from food, as well as biotransformation of nutrients. SCOPE OF THE REVIEW This review provides an overview of the role of the gut microbiota in the physiological and metabolic alterations observed in two body weight dysregulation-related disorders, namely obesity and cachexia. Second, we assess the available evidence for different strategies, including caloric restriction, intermittent fasting, ketogenic diet, bariatric surgery, probiotics, prebiotics, synbiotics, high-fibre diet, and fermented foods - effects on body weight and gut microbiota composition. This approach was used to give insights into the possible link between body weight control and gut microbiota configuration. MAJOR CONCLUSIONS Despite extensive associations between body weight and gut microbiota composition, limited success could be achieved in the translation of microbiota-related interventions for body weight control in humans. Manipulation of the gut microbiota alone is insufficient to alter body weight and future research is needed with a combination of strategies to enhance the effects of lifestyle interventions.
Collapse
Affiliation(s)
- Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Timothy Lipuma
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
22
|
Pedersen MGB, Søndergaard E, Nielsen CB, Johannsen M, Gormsen LC, Møller N, Jessen N, Rittig N. Oral lactate slows gastric emptying and suppresses appetite in young males. Clin Nutr 2022; 41:517-525. [PMID: 35016146 DOI: 10.1016/j.clnu.2021.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Lactate serves as an alternative energy fuel but is also an important signaling metabolite. We aimed to investigate whether oral lactate administration affects appetite-regulating hormones, slows gastric emptying rate, and dampens appetite. METHODS Ten healthy male volunteers were investigated on two separate occasions: 1) following oral ingestion of D/L-Na-lactate and 2) following oral ingestion of isotonic iso-voluminous NaCl and intravenous iso-lactemic D/L-Na-lactate infusions. Appetite was evaluated by questionnaires and ad libitum meal tests were performed at the end of each study day. Gastric emptying rate was evaluated using the acetaminophen test. RESULTS Plasma concentrations of growth differential factor 15 (GDF15, primary outcome) increased following oral and iv administration of lactate (p < 0.001) with no detectable difference between interventions (p = 0.15). Oral lactate administration lowered plasma concentrations of acylated ghrelin (p = 0.02) and elevated glucagon like peptide-1 (GLP-1, p = 0.045), insulin (p < 0.001), and glucagon (p < 0.001) compared with iv administration. Oral lactate administration slowed gastric emptying (p < 0.001), increased the feeling of being "full" (p = 0.008) and lowered the "anticipated future food intake" (p = 0.007) compared with iv administration. Food intake during the ad libitum meal test did not differ between the two study days. CONCLUSION Oral lactate administration has a direct effect on the upper gastrointestinal tract, affecting gut hormone secretion, motility and appetite sensations which cannot be mediated through lactate in the systemic circulation alone. These data suggest that compounds rich in lactate may be useful in the treatment of metabolic disease. CLINICAL TRIAL REGISTRY NUMBER NCT0429981, https://clinicaltrials.gov/ct2/show/NCT04299815.
Collapse
Affiliation(s)
- Mette Glavind Bülow Pedersen
- Medical/Steno Aarhus Research Laboratory, Aarhus University, Aarhus University Hospital, Palle Juul-Jensens Blvd 165, 8200 Aarhus N, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 8200 Aarhus N, Denmark.
| | - Esben Søndergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 8200 Aarhus N, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Camilla Bak Nielsen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 43, 8200 Aarhus N, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 43, 8200 Aarhus N, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Blvd. 165, 8200 Aarhus N, Denmark
| | - Niels Møller
- Medical/Steno Aarhus Research Laboratory, Aarhus University, Aarhus University Hospital, Palle Juul-Jensens Blvd 165, 8200 Aarhus N, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 8200 Aarhus N, Denmark
| | - Nikolaj Rittig
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 8200 Aarhus N, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| |
Collapse
|
23
|
Yde J, Wu Q, Borg JF, Fenton RA, Moeller HB. A systems-level analysis of bile acids effects on rat colon epithelial cells. Am J Physiol Gastrointest Liver Physiol 2022; 322:G34-G48. [PMID: 34643455 DOI: 10.1152/ajpgi.00178.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 01/31/2023]
Abstract
Bile acid diarrhea is a chronic condition caused by increased delivery of bile acids to the colon. The underlying mechanisms remain to be elucidated. To investigate genes involved in bile acid diarrhea, systems-level analyses were used on a rat bile acid diarrhea model. Twelve male Wistar Munich rats, housed in metabolic cages, were fed either control or bile acid-mixed (1% wt/wt) diets for 10 days. Food intake, water intake, urine volume, body weight, and fecal output were monitored daily. After euthanasia, colonic epithelial cells were isolated using calcium chelation and processed for systems-level analyses, that is, RNA-sequencing transcriptomics and mass spectrometry proteomics. Bile acid-fed rats suffered diarrhea, indicated by increased drinking, feces weight, and fecal water content compared with control rats. Urine output was unchanged. With bile acid feeding, RNA-sequencing revealed 204 increased and 401 decreased mRNAs; mass spectrometry revealed 183 increased and 111 decreased proteins. Among the altered genes were genes associated with electrolyte and water transport (including Slc12a7, Clca4, and Aqp3) and genes associated with bile acid transport (Slc2b1, Abcg2, Slc51a, Slc51b, and Fabps). Correlation analysis showed a significant positive correlation (Pearson's r = 0.28) between changes in mRNA expression and changes in protein expression. However, caution must be exercised in making a direct correlation between experimentally determined transcriptomes and proteomes. Genes associated with bile acid transport responded to bile acid feeding, suggesting that colonic bile acid transport also occur by regulated protein facilitated mechanisms in addition to passive diffusion. In summary, the study provides annotated rat colonic epithelial cell transcriptome and proteome with response to bile acid feeding.NEW & NOTEWORTHY Feeding rats with a bile acid caused changes in fecal output, underlining this bile acid diarrhea model's usefulness. Colonic epithelial expression of genes associated with facilitated transport of bile acids was altered during bile acid feeding. The study raises the possibility of regulated colonic transepithelial transport of bile acids in response to luminal bile acids. In addition, this study provides annotated rat colonic epithelial cell transcriptome and proteome with response to bile acid feeding.
Collapse
Affiliation(s)
- Jonathan Yde
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Johan F Borg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hanne B Moeller
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
Kiriyama Y, Nochi H. Physiological Role of Bile Acids Modified by the Gut Microbiome. Microorganisms 2021; 10:68. [PMID: 35056517 PMCID: PMC8777643 DOI: 10.3390/microorganisms10010068] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) are produced from cholesterol in the liver and are termed primary BAs. Primary BAs are conjugated with glycine and taurine in the liver and then released into the intestine via the gallbladder. After the deconjugation of glycine or taurine by the gut microbiome, primary BAs are converted into secondary BAs by the gut microbiome through modifications such as dehydroxylation, oxidation, and epimerization. Most BAs in the intestine are reabsorbed and transported to the liver, where both primary and secondary BAs are conjugated with glycine or taurine and rereleased into the intestine. Thus, unconjugated primary Bas, as well as conjugated and unconjugated secondary BAs, have been modified by the gut microbiome. Some of the BAs reabsorbed from the intestine spill into the systemic circulation, where they bind to a variety of nuclear and cell-surface receptors in tissues, whereas some of the BAs are not reabsorbed and bind to receptors in the terminal ileum. BAs play crucial roles in the physiological regulation of various tissues. Furthermore, various factors, such as diet, age, and antibiotics influence BA composition. Here, we review recent findings regarding the physiological roles of BAs modified by the gut microbiome in the metabolic, immune, and nervous systems.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
- Laboratory of Neuroendocrinology, Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
| |
Collapse
|
25
|
Ní Dhonnabháín R, Xiao Q, O’Malley D. Aberrant Gut-To-Brain Signaling in Irritable Bowel Syndrome - The Role of Bile Acids. Front Endocrinol (Lausanne) 2021; 12:745190. [PMID: 34917022 PMCID: PMC8669818 DOI: 10.3389/fendo.2021.745190] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Functional bowel disorders such as irritable bowel syndrome (IBS) are common, multifactorial and have a major impact on the quality of life of individuals diagnosed with the condition. Heterogeneity in symptom manifestation, which includes changes in bowel habit and visceral pain sensitivity, are an indication of the complexity of the underlying pathophysiology. It is accepted that dysfunctional gut-brain communication, which incorporates efferent and afferent branches of the peripheral nervous system, circulating endocrine hormones and local paracrine and neurocrine factors, such as host and microbially-derived signaling molecules, underpins symptom manifestation. This review will focus on the potential role of hepatic bile acids in modulating gut-to-brain signaling in IBS patients. Bile acids are amphipathic molecules synthesized in the liver, which facilitate digestion and absorption of dietary lipids. They are also important bioactive signaling molecules however, binding to bile acid receptors which are expressed on many different cell types. Bile acids have potent anti-microbial actions and thereby shape intestinal bacterial profiles. In turn, bacteria with bile salt hydrolase activity initiate the critical first step in transforming primary bile acids into secondary bile acids. Individuals with IBS are reported to have altered microbial profiles and modified bile acid pools. We have assessed the evidence to support a role for bile acids in the pathophysiology underlying the manifestation of IBS symptoms.
Collapse
Affiliation(s)
- Róisín Ní Dhonnabháín
- Department of Physiology, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Qiao Xiao
- Department of Physiology, College of Medicine and Health, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dervla O’Malley
- Department of Physiology, College of Medicine and Health, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Holst JJ, Andersen DB, Grunddal KV. Actions of glucagon-like peptide-1 receptor ligands in the gut. Br J Pharmacol 2021; 179:727-742. [PMID: 34235727 DOI: 10.1111/bph.15611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 12/11/2022] Open
Abstract
The incretin hormone glucagon-like peptide-1 (GLP-1) is inactivated by the enzyme dipeptidyl peptidase-4 even before it leaves the gut, but it seems to act predominantly via activation of intestinal sensory neurons expressing GLP-1 receptors. Thus, activation of vagal afferents is probably responsible for its effects on appetite and food intake, gastrointestinal secretion and motility, and pancreatic endocrine secretion. However, GLP-1 receptors are widely expressed in the gastrointestinal (GI) tract, including epithelial cells in the stomach, and the Brunner glands, in endocrine cells of the gut epithelium, and on mucosal lymphocytes. In this way, GLP-1 may have important local actions of epithelial protection and endocrine signalling and may interact with the immune system. We review the formation and release of GLP-1 from the endocrine L cells and its fate after release and describe the localization of its receptor throughout the GI tract and discuss its direct or indirect actions in the GI tract.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences and NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Bjørklund Andersen
- Department of Biomedical Sciences and NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Villum Grunddal
- Department of Biomedical Sciences and NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
The Hormetic Effect of Metformin: "Less Is More"? Int J Mol Sci 2021; 22:ijms22126297. [PMID: 34208371 PMCID: PMC8231127 DOI: 10.3390/ijms22126297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Metformin (MTF) is the first-line therapy for type 2 diabetes (T2DM). The euglycemic effect of MTF is due to the inhibition of hepatic glucose production. Literature reports that the principal molecular mechanism of MTF is the activation of 5′-AMP-activated protein kinase (AMPK) due to the decrement of ATP intracellular content consequent to the inhibition of Complex I, although this effect is obtained only at millimolar concentrations. Conversely, micromolar MTF seems to activate the mitochondrial electron transport chain, increasing ATP production and limiting oxidative stress. This evidence sustains the idea that MTF exerts a hormetic effect based on its concentration in the target tissue. Therefore, in this review we describe the effects of MTF on T2DM on the principal target organs, such as liver, gut, adipose tissue, endothelium, heart, and skeletal muscle. In particular, data indicate that all organs, except the gut, accumulate MTF in the micromolar range when administered in therapeutic doses, unmasking molecular mechanisms that do not depend on Complex I inhibition.
Collapse
|
28
|
Arora T, Vanslette AM, Hjorth SA, Bäckhed F. Microbial regulation of enteroendocrine cells. MED 2021; 2:553-570. [DOI: 10.1016/j.medj.2021.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
|
29
|
Xie C, Huang W, Young RL, Jones KL, Horowitz M, Rayner CK, Wu T. Role of Bile Acids in the Regulation of Food Intake, and Their Dysregulation in Metabolic Disease. Nutrients 2021; 13:1104. [PMID: 33800566 PMCID: PMC8066182 DOI: 10.3390/nu13041104] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Bile acids are cholesterol-derived metabolites with a well-established role in the digestion and absorption of dietary fat. More recently, the discovery of bile acids as natural ligands for the nuclear farnesoid X receptor (FXR) and membrane Takeda G-protein-coupled receptor 5 (TGR5), and the recognition of the effects of FXR and TGR5 signaling have led to a paradigm shift in knowledge regarding bile acid physiology and metabolic health. Bile acids are now recognized as signaling molecules that orchestrate blood glucose, lipid and energy metabolism. Changes in FXR and/or TGR5 signaling modulates the secretion of gastrointestinal hormones including glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), hepatic gluconeogenesis, glycogen synthesis, energy expenditure, and the composition of the gut microbiome. These effects may contribute to the metabolic benefits of bile acid sequestrants, metformin, and bariatric surgery. This review focuses on the role of bile acids in energy intake and body weight, particularly their effects on gastrointestinal hormone secretion, the changes in obesity and T2D, and their potential relevance to the management of metabolic disorders.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
| | - Weikun Huang
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- The ARC Center of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Richard L. Young
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute, Adelaide 5005, Australia
| | - Karen L. Jones
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Michael Horowitz
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Christopher K. Rayner
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Tongzhi Wu
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (W.H.); (R.L.Y.); (K.L.J.); (M.H.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
30
|
Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021; 13:nu13030883. [PMID: 33803183 PMCID: PMC8000029 DOI: 10.3390/nu13030883] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract can assess the nutrient composition of ingested food. The nutrient-sensing mechanisms in specialised epithelial cells lining the gastrointestinal tract, the enteroendocrine cells, trigger the release of gut hormones that provide important local and central feedback signals to regulate nutrient utilisation and feeding behaviour. The evidence for nutrient-stimulated secretion of two of the most studied gut hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), along with the known cellular mechanisms in enteroendocrine cells recruited by nutrients, will be the focus of this review. The mechanisms involved range from electrogenic transporters, ion channel modulation and nutrient-activated G-protein coupled receptors that converge on the release machinery controlling hormone secretion. Elucidation of these mechanisms will provide much needed insight into postprandial physiology and identify tractable dietary approaches to potentially manage nutrition and satiety by altering the secreted gut hormone profile.
Collapse
|
31
|
Hunt JE, Hartmann B, Schoonjans K, Holst JJ, Kissow H. Dietary Fiber Is Essential to Maintain Intestinal Size, L-Cell Secretion, and Intestinal Integrity in Mice. Front Endocrinol (Lausanne) 2021; 12:640602. [PMID: 33716991 PMCID: PMC7953038 DOI: 10.3389/fendo.2021.640602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/19/2021] [Indexed: 12/25/2022] Open
Abstract
Dietary fiber has been linked to improved gut health, yet the mechanisms behind this association remain poorly understood. One proposed mechanism is through its influence on the secretion of gut hormones, including glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2). We aimed to: 1) investigate the impact of a fiber deficient diet on the intestinal morphological homeostasis; 2) evaluate L-cell secretion; and 3) to ascertain the role of GLP-1, GLP-2 and Takeda G protein-receptor-5 (TGR5) signaling in the response using GLP-1 receptor, GLP-2 receptor and TGR5 knockout mice. Female C57BL/6JRj mice (n = 8) either received a standard chow diet or were switched to a crude fiber-deficient diet for a short (21 days) and long (112 days) study period. Subsequent identical experiments were performed in GLP-1 receptor, GLP-2 receptor and TGR5 knockout mice. The removal of fiber from the diet for 21 days resulted in a decrease in small intestinal weight (p < 0.01) and a corresponding decrease in intestinal crypt depth in the duodenum, jejunum and ileum (p < 0.001, p < 0.05, and p < 0.01, respectively). Additionally, colon weight was decreased (p < 0.01). These changes were associated with a decrease in extractable GLP-1, GLP-2 and PYY in the colon (p < 0.05, p < 0.01, and p < 0.01). However, we could not show that the fiber-dependent size decrease was dependent on GLP-1 receptor, GLP-2 receptor or TGR5 signaling. Intestinal permeability was increased following the removal of fiber for 112 days. In conclusion, our study highlights the importance of dietary fiber to maintain intestinal weight, colonic L-cell secretion and intestinal integrity.
Collapse
Affiliation(s)
- Jenna Elizabeth Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristina Schoonjans
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Kuhre RE, Deacon CF, Holst JJ, Petersen N. What Is an L-Cell and How Do We Study the Secretory Mechanisms of the L-Cell? Front Endocrinol (Lausanne) 2021; 12:694284. [PMID: 34168620 PMCID: PMC8218725 DOI: 10.3389/fendo.2021.694284] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Synthetic glucagon-like peptide-1 (GLP-1) analogues are effective anti-obesity and anti-diabetes drugs. The beneficial actions of GLP-1 go far beyond insulin secretion and appetite, and include cardiovascular benefits and possibly also beneficial effects in neurodegenerative diseases. Considerable reserves of GLP-1 are stored in intestinal endocrine cells that potentially might be mobilized by pharmacological means to improve the body's metabolic state. In recognition of this, the interest in understanding basic L-cell physiology and the mechanisms controlling GLP-1 secretion, has increased considerably. With a view to home in on what an L-cell is, we here present an overview of available data on L-cell development, L-cell peptide expression profiles, peptide production and secretory patterns of L-cells from different parts of the gut. We conclude that L-cells differ markedly depending on their anatomical location, and that the traditional definition of L-cells as a homogeneous population of cells that only produce GLP-1, GLP-2, glicentin and oxyntomodulin is no longer tenable. We suggest to sub-classify L-cells based on their differential peptide contents as well as their differential expression of nutrient sensors, which ultimately determine the secretory responses to different stimuli. A second purpose of this review is to describe and discuss the most frequently used experimental models for functional L-cell studies, highlighting their benefits and limitations. We conclude that no experimental model is perfect and that a comprehensive understanding must be built on results from a combination of models.
Collapse
Affiliation(s)
- Rune E. Kuhre
- Department of Obesity Pharmacology, Novo Nordisk, Måløv, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Rune E. Kuhre, ;
| | - Carolyn F. Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
33
|
Boer GA, Holst JJ. Incretin Hormones and Type 2 Diabetes-Mechanistic Insights and Therapeutic Approaches. BIOLOGY 2020; 9:biology9120473. [PMID: 33339298 PMCID: PMC7766765 DOI: 10.3390/biology9120473] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary When we ingest a meal, our intestine secretes hormones that are released into the bloodstream. Amongst these hormones are the incretins hormones which stimulate the release of insulin from the pancreas which is essential for the regulation of in particular postprandial glucose concentrations. In patients with type 2 diabetes, the effect of the incretins is diminished. This is thought to contribute importantly to the pathophysiology of the disease. However, in pharmacological amounts, the incretins may still influence insulin secretion and metabolism. Much research has therefore been devoted to the development of incretin-based therapies for type 2 diabetes. These therapies include compounds that strongly resemble the incretins, hereby stimulating their effects as well as inhibitors of the enzymatic degradation of the hormones, thereby increasing the concentration of incretins in the blood. Both therapeutic approaches have been implemented successfully, but research is still ongoing aimed at the development of further optimized therapies. Abstract Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from the gut upon nutrient stimulation and regulate postprandial metabolism. These hormones are known as classical incretin hormones and are responsible for a major part of postprandial insulin release. The incretin effect is severely reduced in patients with type 2 diabetes, but it was discovered that administration of GLP-1 agonists was capable of normalizing glucose control in these patients. Over the last decades, much research has been focused on the development of incretin-based therapies for type 2 diabetes. These therapies include incretin receptor agonists and inhibitors of the incretin-degrading enzyme dipeptidyl peptidase-4. Especially the development of diverse GLP-1 receptor agonists has shown immense success, whereas studies of GIP monotherapy in patients with type 2 diabetes have consistently been disappointing. Interestingly, both GIP-GLP-1 co-agonists and GIP receptor antagonists administered in combination with GLP-1R agonists appear to be efficient with respect to both weight loss and control of diabetes, although the molecular mechanisms behind these effects remain unknown. This review describes our current knowledge of the two incretin hormones and the development of incretin-based therapies for treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Geke Aline Boer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Correspondence: ; Tel.: +45-2875-7518
| |
Collapse
|
34
|
Tough IR, Schwartz TW, Cox HM. Synthetic G protein-coupled bile acid receptor agonists and bile acids act via basolateral receptors in ileal and colonic mucosa. Neurogastroenterol Motil 2020; 32:e13943. [PMID: 32656959 DOI: 10.1111/nmo.13943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The G protein-coupled bile acid (BA) receptor, GPBA (previously named TGR5), mediates BA gastrointestinal (GI) activities. Our aim was to elucidate the mucosal and motility responses to selective GPBA agonists compared with conjugated BA (eg, taurodeoxycholate, TDCA) in mouse and human colon. METHODS Ion transport responses to GPBA agonists or BAs were measured in mucosal preparations with intact submucous innervation, from C57Bl/6, PYY-/-, or GPBA-/- mice and compared with GPBA signaling in human colon. We also investigated the mechanisms underlying GPBA agonism in mucosae and on natural fecal pellet propulsion. KEY RESULTS GPBA agonist Merck V stimulated basolateral responses involving peptide YY (PYY), cholinergic, and 5-HT mechanisms in colonic mucosa. The PYY-mediated GPBA signal was glucose-sensitive. Luminal TDCA crossed the epithelial lining via the apical sodium-dependent BA transporter (ASBT) and its inhibitor, GSK2330672 significantly reduced luminal, but not basolateral TDCA activity. Merck V also slowed natural fecal pellet progression in wild-type and PYY-/- colons but not in GPBA-/- colon, while TDCA increased motility in wild-type colon. The antimotile GPBA effect was reversed by blockade of glucagon-like peptide 1 (GLP-1) receptors or nitric oxide synthase, indicating involvement of GLP-1 and nitric oxide. CONCLUSIONS & INFERENCES We conclude that several different targets within the lamina propria express GPBA, including L cells (that release PYY and GLP-1), enterochromaffin cells and neurons (that release 5-HT), and other enteric neurons. Furthermore, luminal-conjugated BAs require transport across the epithelium via ASBT in order to activate basolateral GPBA.
Collapse
Affiliation(s)
- Iain R Tough
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Thue W Schwartz
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, University of Copenhagen, Copenhagen, Denmark
| | - Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| |
Collapse
|
35
|
Xie C, Jones KL, Rayner CK, Wu T. Enteroendocrine Hormone Secretion and Metabolic Control: Importance of the Region of the Gut Stimulation. Pharmaceutics 2020; 12:790. [PMID: 32825608 PMCID: PMC7559385 DOI: 10.3390/pharmaceutics12090790] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
It is now widely appreciated that gastrointestinal function is central to the regulation of metabolic homeostasis. Following meal ingestion, the delivery of nutrients from the stomach into the small intestine (i.e., gastric emptying) is tightly controlled to optimise their subsequent digestion and absorption. The complex interaction of intraluminal nutrients (and other bioactive compounds, such as bile acids) with the small and large intestine induces the release of an array of gastrointestinal hormones from specialised enteroendocrine cells (EECs) distributed in various regions of the gut, which in turn to regulate gastric emptying, appetite and postprandial glucose metabolism. Stimulation of gastrointestinal hormone secretion, therefore, represents a promising strategy for the management of metabolic disorders, particularly obesity and type 2 diabetes mellitus (T2DM). That EECs are distributed distinctively between the proximal and distal gut suggests that the region of the gut exposed to intraluminal stimuli is of major relevance to the secretion profile of gastrointestinal hormones and associated metabolic responses. This review discusses the process of intestinal digestion and absorption and their impacts on the release of gastrointestinal hormones and the regulation of postprandial metabolism, with an emphasis on the differences between the proximal and distal gut, and implications for the management of obesity and T2DM.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Christopher K. Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
36
|
Lewis JE, Miedzybrodzka EL, Foreman RE, Woodward ORM, Kay RG, Goldspink DA, Gribble FM, Reimann F. Selective stimulation of colonic L cells improves metabolic outcomes in mice. Diabetologia 2020; 63:1396-1407. [PMID: 32342115 PMCID: PMC7286941 DOI: 10.1007/s00125-020-05149-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Insulin-like peptide-5 (INSL5) is found only in distal colonic L cells, which co-express glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). GLP-1 is a well-known insulin secretagogue, and GLP-1 and PYY are anorexigenic, whereas INSL5 is considered orexigenic. We aimed to clarify the metabolic impact of selective stimulation of distal colonic L cells in mice. METHODS Insl5 promoter-driven expression of Gq-coupled Designer Receptor Exclusively Activated by Designer Drugs (DREADD) was employed to activate distal colonic L cells (LdistalDq). IPGTT and food intake were assessed with and without DREADD activation. RESULTS LdistalDq cell stimulation with clozapine N-oxide (CNO; 0.3 mg/kg i.p.) increased plasma GLP-1 and PYY (2.67- and 3.31-fold, respectively); INSL5 was not measurable in plasma but was co-secreted with GLP-1 and PYY in vitro. IPGTT (2 g/kg body weight) revealed significantly improved glucose tolerance following CNO injection. CNO-treated mice also exhibited reduced food intake and body weight after 24 h, and increased defecation, the latter being sensitive to 5-hydroxytryptamine (5-HT) receptor 3 inhibition. Pre-treatment with a GLP1 receptor-blocking antibody neutralised the CNO-dependent improvement in glucose tolerance but did not affect the reduction in food intake, and an independent group of animals pair-fed to the CNO-treatment group demonstrated attenuated weight loss. Pre-treatment with JNJ-31020028, a neuropeptide Y receptor type 2 antagonist, abolished the CNO-dependent effect on food intake. Assessment of whole body physiology in metabolic cages revealed LdistalDq cell stimulation increased energy expenditure and increased activity. Acute CNO-induced food intake and glucose homeostasis outcomes were maintained after 2 weeks on a high-fat diet. CONCLUSIONS/INTERPRETATION This proof-of-concept study demonstrates that selective distal colonic L cell stimulation has beneficial metabolic outcomes. Graphical abstract.
Collapse
Affiliation(s)
- Jo E Lewis
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Emily L Miedzybrodzka
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Rachel E Foreman
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Orla R M Woodward
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Richard G Kay
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Deborah A Goldspink
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK.
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK.
| |
Collapse
|
37
|
Hunt JE, Billeschou A, Windeløv JA, Hartmann B, Ullmer C, Holst JJ, Kissow H. Pharmacological activation of TGR5 promotes intestinal growth via a GLP-2-dependent pathway in mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G980-G987. [PMID: 32308039 DOI: 10.1152/ajpgi.00062.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide (GLP)-1 and -2-secreting L cells have been shown to express the bile acid receptor Takeda G protein-receptor-5 (TGR5) and increase secretion upon receptor activation. Previous studies have explored GLP-1 secretion following acute TGR5 activation, but chronic activation and GLP-2 responses have not been characterized. In this study, we aimed to investigate the consequences of pharmacological TGR5 receptor activation on L cell hormone production in vivo using the specific TGR5 agonist RO5527239 and the GLP-2 receptor knockout mouse. Here, we show that 1) TGR5 receptor activation led to increased GLP-1 and GLP-2 content in the colon, which 2) was associated with an increased small intestinal weight that 3) was GLP-2 dependent. Additionally, we report that TGR5-mediated gallbladder filling occurred independently of GLP-2 signaling. In conclusion, we demonstrate that pharmacological TGR5 receptor activation stimulates L cells, triggering GLP-2-dependent intestinal adaption in mice.NEW & NOTEWORTHY Using the specific Takeda G protein-receptor-5 (TGR5) agonist RO5527239 and GLP-2 receptor knockout mice, we show that activation of TGR5 led to the increase in colonic GLP-1 and GLP-2 concomitant with a GLP-2 dependent growth response in the proximal portion of the small intestine.
Collapse
Affiliation(s)
- Jenna Elizabeth Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Billeschou
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Limited, Basel, Switzerland
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Calderon G, McRae A, Rievaj J, Davis J, Zandvakili I, Linker-Nord S, Burton D, Roberts G, Reimann F, Gedulin B, Vella A, LaRusso NF, Camilleri M, Gribble FM, Acosta A. Ileo-colonic delivery of conjugated bile acids improves glucose homeostasis via colonic GLP-1-producing enteroendocrine cells in human obesity and diabetes. EBioMedicine 2020; 55:102759. [PMID: 32344198 PMCID: PMC7186521 DOI: 10.1016/j.ebiom.2020.102759] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background The bile acid (BA) pathway plays a role in regulation of food intake and glucose metabolism, based mainly on findings in animal models. Our aim was to determine whether the BA pathway is altered and correctable in human obesity and diabetes. Methods We conducted 3 investigations: 1) BA receptor pathways were studied in NCI-H716 enteroendocrine cell (EEC) line, whole human colonic mucosal tissue and in human colonic EEC isolated by Fluorescence-activated Cell Sorting (ex vivo) from endoscopically-obtained biopsies colon mucosa; 2) We characterized the BA pathway in 307 participants by measuring during fasting and postprandial levels of FGF19, 7αC4 and serum BA; 3) In a placebo-controlled, double-blind, randomised, 28-day trial, we studied the effect of ileo-colonic delivery of conjugated BAs (IC-CBAS) on glucose metabolism, incretins, and lipids, in participants with obesity and diabetes. Findings Human colonic GLP-1-producing EECs express TGR5, and upon treatment with bile acids in vitro, human EEC differentially expressed GLP-1 at the protein and mRNA level. In Ussing Chamber, GLP-1 release was stimulated by Taurocholic acid in either the apical or basolateral compartment. FGF19 was decreased in obesity and diabetes compared to controls. When compared to placebo, IC-CBAS significantly decreased postprandial glucose, fructosamine, fasting insulin, fasting LDL, and postprandial FGF19 and increased postprandial GLP-1 and C-peptide. Increase in faecal BA was associated with weight loss and with decreased fructosamine. Interpretations In humans, BA signalling machinery is expressed in colonic EECs, deficient in obesity and diabetes, and when stimulated with IC-CBAS, improved glucose homeostasis. ClinicalTrials.gov number, NCT02871882, NCT02033876. Funding Research support and drug was provided by Satiogen Pharmaceuticals (San Diego, CA). AA, MC, and NFL report grants (AA- C-Sig P30DK84567, K23 DK114460; MC- NIH R01 DK67071; NFL- R01 DK057993) from the NIH. JR was supported by an Early Career Grant from Society for Endocrinology.
Collapse
Affiliation(s)
- Gerardo Calderon
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Alison McRae
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Juraj Rievaj
- University of Cambridge, UK; Current affiliation: Dosage Form Design & Development, AstraZeneca Granta Park, Cambridge CB21 6GH, UK
| | - Judith Davis
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Inuk Zandvakili
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Sara Linker-Nord
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Duane Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Geoffrey Roberts
- Current affiliation: Dosage Form Design & Development, AstraZeneca Granta Park, Cambridge CB21 6GH, UK
| | | | | | - Adrian Vella
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | | | - Andres Acosta
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States.
| |
Collapse
|
39
|
Modvig IM, Christiansen CB, Rehfeld JF, Holst JJ, Veedfald S. CCK-1 and CCK-2 receptor agonism do not stimulate GLP-1 and neurotensin secretion in the isolated perfused rat small intestine or GLP-1 and PYY secretion in the rat colon. Physiol Rep 2020; 8:e14352. [PMID: 31984675 PMCID: PMC6983481 DOI: 10.14814/phy2.14352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/30/2022] Open
Abstract
Gastrin and cholecystokinin (CCK) are hormones released from endocrine cells in the antral stomach (gastrin), the duodenum, and the jejunum (CCK). Recent reports, based on secretion experiments in an enteroendocrine cell line (NCI-H716) and gastrin receptor expression in proglucagon-expressing cells from the rat colon, suggested that gastrin could be a regulator of glucagon-like peptide-1 (GLP-1) secretion. To investigate these findings, we studied the acute effects of CCK-8 (a CCK1/CCK2 (gastrin) receptor agonist) and gastrin-17 (a CCK2(gastrin) receptor agonist) in robust ex vivo models: the isolated perfused rat small intestine and the isolated perfused rat colon. Small intestines from Wistar rats (n = 6), were perfused intraarterially over 80 min. During the perfusion, CCK (1 nmol/L) and gastrin (1 nmol/L) were infused over 10-min periods separated by washout/baseline periods. Colons from Wistar rats (n = 6) were perfused intraarterially over 100 min. During the perfusion, CCK (1 nmol/L), vasoactive intestinal peptide (VIP) (10 nmol/L), and glucose-dependent insulinotropic polypeptide (GIP) (1 nmol/L) were infused over 10-min periods separated by washout/baseline periods. In the perfused rat small intestines neither CCK nor gastrin stimulated the release of GLP-1 or neurotensin. In the perfused rat colon, neither CCK or VIP stimulated GLP-1 or peptide YY (PYY) release, but GIP stimulated both GLP-1 and PYY release. In both sets of experiments, bombesin, a gastrin-releasing peptide analog, served as a positive control. Our findings do not support the suggestion that gastrin or CCK participate in the acute regulation of intestinal GLP-1 secretion, but that GIP may play a role in the regulation of hormone secretion from the colon.
Collapse
Affiliation(s)
- Ida M. Modvig
- Department of Biomedical SciencesThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Translational Metabolic PhysiologyNNF Center for Basic Metabolic ResearchThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Charlotte B. Christiansen
- Department of Biomedical SciencesThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Translational Metabolic PhysiologyNNF Center for Basic Metabolic ResearchThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jens F. Rehfeld
- Department of Clinical BiochemistryRigshospitaletCopenhagenDenmark
| | - Jens J. Holst
- Department of Biomedical SciencesThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Translational Metabolic PhysiologyNNF Center for Basic Metabolic ResearchThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Simon Veedfald
- Department of Biomedical SciencesThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
40
|
Ahmad TR, Haeusler RA. Bile acids in glucose metabolism and insulin signalling - mechanisms and research needs. Nat Rev Endocrinol 2019; 15:701-712. [PMID: 31616073 PMCID: PMC6918475 DOI: 10.1038/s41574-019-0266-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Of all the novel glucoregulatory molecules discovered in the past 20 years, bile acids (BAs) are notable for the fact that they were hiding in plain sight. BAs were well known for their requirement in dietary lipid absorption and biliary cholesterol secretion, due to their micelle-forming properties. However, it was not until 1999 that BAs were discovered to be endogenous ligands for the nuclear receptor FXR. Since that time, BAs have been shown to act through multiple receptors (PXR, VDR, TGR5 and S1PR2), as well as to have receptor-independent mechanisms (membrane dynamics, allosteric modulation of N-acyl phosphatidylethanolamine phospholipase D). We now also have an appreciation of the range of physiological, pathophysiological and therapeutic conditions in which endogenous BAs are altered, raising the possibility that BAs contribute to the effects of these conditions on glycaemia. In this Review, we highlight the mechanisms by which BAs regulate glucose homeostasis and the settings in which endogenous BAs are altered, and provide suggestions for future research.
Collapse
Affiliation(s)
- Tiara R Ahmad
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
41
|
Martin AM, Sun EW, Keating DJ. Mechanisms controlling hormone secretion in human gut and its relevance to metabolism. J Endocrinol 2019; 244:R1-R15. [PMID: 31751295 PMCID: PMC6892457 DOI: 10.1530/joe-19-0399] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022]
Abstract
The homoeostatic regulation of metabolism is highly complex and involves multiple inputs from both the nervous and endocrine systems. The gut is the largest endocrine organ in our body and synthesises and secretes over 20 different hormones from enteroendocrine cells that are dispersed throughout the gut epithelium. These hormones include GLP-1, PYY, GIP, serotonin, and CCK, each of whom play pivotal roles in maintaining energy balance and glucose homeostasis. Some are now the basis of several clinically used glucose-lowering and weight loss therapies. The environment in which these enteroendocrine cells exist is also complex, as they are exposed to numerous physiological inputs including ingested nutrients, circulating factors and metabolites produced from neighbouring gut microbiome. In this review, we examine the diverse means by which gut-derived hormones carry out their metabolic functions through their interactions with different metabolically important organs including the liver, pancreas, adipose tissue and brain. Furthermore, we discuss how nutrients and microbial metabolites affect gut hormone secretion and the mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Alyce M Martin
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Emily W Sun
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Damien J Keating
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Correspondence should be addressed to D J Keating:
| |
Collapse
|
42
|
Yu Y, Villalobos-Hernandez EC, Pradhananga S, Baker CC, Keating C, Grundy D, Lomax AE, Reed DE. Deoxycholic acid activates colonic afferent nerves via 5-HT 3 receptor-dependent and -independent mechanisms. Am J Physiol Gastrointest Liver Physiol 2019; 317:G275-G284. [PMID: 31216174 DOI: 10.1152/ajpgi.00016.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Increased bile acids in the colon can evoke increased epithelial secretion resulting in diarrhea, but little is known about whether colonic bile acids contribute to abdominal pain. This study aimed to investigate the mechanisms underlying activation of colonic extrinsic afferent nerves and their neuronal cell bodies by a major secondary bile acid, deoxycholic acid (DCA). All experiments were performed on male C57BL/6 mice. Afferent sensitivity was evaluated using in vitro extracellular recordings from mesenteric nerves in the proximal colon (innervated by vagal and spinal afferents) and distal colon (spinal afferents only). Neuronal excitability of cultured dorsal root ganglion (DRG) and nodose ganglion (NG) neurons was examined with perforated patch clamp. Colonic 5-HT release was assessed using ELISA, and 5-HT immunoreactive enterochromaffin (EC) cells were quantified. Intraluminal DCA increased afferent nerve firing rate concentration dependently in both proximal and distal colon. This DCA-elicited increase was significantly inhibited by a 5-HT3 antagonist in the proximal colon but not in the distal colon, which may be in part due to lower 5-HT immunoreactive EC cell density and lower 5-HT levels in the distal colon following DCA stimulation. DCA increased the excitability of DRG neurons, whereas it decreased the excitability of NG neurons. DCA potentiated mechanosensitivity of high-threshold spinal afferents independent of 5-HT release. Together, this study suggests that DCA can excite colonic afferents via direct and indirect mechanisms but the predominant mechanism may differ between vagal and spinal afferents. Furthermore, DCA increased mechanosensitivity of high-threshold spinal afferents and may be a mechanism of visceral hypersensitivity.NEW & NOTEWORTHY Deoxycholic acid (DCA) directly excites spinal afferents and, to a lesser extent, indirectly via mucosal 5-HT release. DCA potentiates mechanosensitivity of high-threshold spinal afferents independent of 5-HT release. DCA increases vagal afferent firing in proximal colon via 5-HT release but directly inhibits the excitability of their cell bodies.
Collapse
Affiliation(s)
- Yang Yu
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | - Sabindra Pradhananga
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Corey C Baker
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Christopher Keating
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - David Grundy
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|