1
|
Lutsiv T, Hussan H, Thompson HJ. Ecosystemic Approach to Understanding Gut Microbiome-Mediated Prevention of Colorectal Cancer. Cancer J 2024; 30:329-344. [PMID: 39312453 DOI: 10.1097/ppo.0000000000000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Humans and their associated microorganisms coexist in complex symbiotic relationships. Continuously advancing research is demonstrating the crucial role of host-associated microbiota in the pathophysiology and etiology of disease and in mediating the prevention thereof. As an exemplar, the gut microbiota, especially colonic bacteria, have been extensively studied in colorectal cancer (CRC), and the growing body of evidence establishes new oncomicrobes and their oncometabolites associated with the initiation and promotion of carcinogenesis. Herein, we discuss the importance of approaching the gut microbiome as an ecosystem rather than an assortment of individual factors, especially in the context of cancer prevention. Furthermore, we argue that a dietary pattern effectively drives multiple nodes of the gut microbial ecosystem toward disease- or health-promoting qualities. In the modern circumstances of excessive consumption of ultraprocessed and animal-based foods and concomitant escalation of chronic disease burden worldwide, we focus on whole food-derived dietary fiber as a key to establishing a health-promoting eubiosis in the gut.
Collapse
|
2
|
Tian S, Liao X, Chen S, Wu Y, Chen M. Genetic association of the gut microbiota with epigenetic clocks mediated by inflammatory cytokines: a Mendelian randomization analysis. Front Immunol 2024; 15:1339722. [PMID: 38903525 PMCID: PMC11186987 DOI: 10.3389/fimmu.2024.1339722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND A new aging biomarker epigenetic clock has been developed. There exists a close link between aging and gut microbiota, which may be mediated by inflammatory cytokines. However, the relationship between the epigenetic clock, gut microbiota, and the mediating substances is unclear. METHODS Two large genome-wide association meta-analyses were analyzed by two-sample Mendelian randomization. The results between gut microbiota and epigenetic clock were investigated using the four methods (Inverse variance weighted, MR-Egger, weighted median, MR-PRESSO). Genetic correlation was measured by Linked disequilibrium score regression (LDSC). The correctness of the study direction was checked by the Steiger test. Cochran's Q statistic and MR-Egger intercept were used as sensitivity analyses of the study. The two-step method was used to examine the mediating role of inflammatory cytokines. We use the Benjamini-Hochberg correction method to correct the P value. RESULTS After FDR correction, multiple bacterial genera were significantly or suggestively associated with four epigenetic clocks (GrimAge, HannumAge, IEAA, PhenoAge). And we detected several inflammatory factors acting as mediators of gut microbiota and epigenetic clocks. CONCLUSION This study provides genetic evidence for a positive and negative link between gut microbiota and aging risk. We hope that by elucidating the genetic relationship and potential mechanisms between aging and gut microbiota, we will provide new avenues for continuing aging-related research and treatment.
Collapse
Affiliation(s)
- Siyu Tian
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Xingyu Liao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Siqi Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Yu Wu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Min Chen
- Department of Colorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Bin P, Liu W, Zhang X, Liu B, Zhu G. A novel antibacterial strategy for targeting the bacterial methionine biosynthesis pathway. Int J Antimicrob Agents 2024; 63:107057. [PMID: 38072168 DOI: 10.1016/j.ijantimicag.2023.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024]
Abstract
Bacterial pathogens reprogramme their metabolic networks to support growth and establish infection at specific sites. Bacterial central metabolism has been considered attractive for developing antimicrobial drugs; however, most metabolic enzymes are conserved between humans and bacteria. This study found that blockade of methionine biosynthesis in Citrobacter rodentium and Salmonella enteritidis inhibited bacterial growth and activity of the type III secretion system, resulting in severe defects in colonization and pathogenicity. In addition, α-methyl-methionine was found to inhibit the activity of methionine biosynthetic enzyme MetA, and consequently reduce the virulence and pathogenicity of enteric pathogens. These findings highlight the crucial role of methionine in bacterial virulence, and describe a potential new drug target.
Collapse
Affiliation(s)
- Peng Bin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Centre for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and AgriProduct Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wanyang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Centre for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and AgriProduct Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaojie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Centre for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and AgriProduct Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Baobao Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Centre for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and AgriProduct Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Centre for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and AgriProduct Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Chen T, Chen Y, Li K, Chen Z, Zhao Q, Fan Y, Liu Y, Zhang S, Hao Z. Ginkgo biloba Extract Preventively Intervenes in Citrobacter Rodentium-Induced Colitis in Mice. Nutrients 2023; 15:2008. [PMID: 37111225 PMCID: PMC10145670 DOI: 10.3390/nu15082008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) represents a highly recurrent gastrointestinal disorder and global public health issue. However, it lacks effective and safe strategies for its control. Although Ginkgo biloba extract (GBE) has been suggested to exhibit preventive and therapeutic activity for the control of IBD, whether its activity is associated with its ability to modulate intestinal microbiota remains to be addressed. To investigate the effect of GBE on controlling IBD, a Citrobacter Rodentium (CR)-induced mouse colitis model was used, and then histopathological examinations, biochemical assays, immunohistochemistry, and immunoblotting were performed to detect histological changes, cytokines, and tight junction (TJ) proteins in the intestine samples. We also studied 16s rRNA to detect changes in intestinal microbiota and used GC-MS to determine the microbiota-related metabolites short chain fatty acids (SCFAs). The results of our studies revealed that pre-treatment with GBE was sufficient for protecting the animals from CR-induced colitis. As a mechanism for GBE activity, GBE treatment was able to modulate the intestinal microbiota and increase the SCFAs capable of decreasing the pro-inflammatory factors and up-regulating the anti-inflammatory factors while elevating the intestinal-barrier-associated proteins to maintain the integrity of the intestines. Accordingly, our results led to a strong suggestion that GBE should be seriously considered in the preventive control of CR-induced colitis and in the development of effective and safe therapeutic strategies for controlling IBD.
Collapse
Affiliation(s)
- Tingting Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kaiyuan Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Zhuo Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Qingyu Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yimeng Fan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Suxia Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| |
Collapse
|
5
|
Milk Fat Globule Membrane Relieves Fatigue via Regulation of Oxidative Stress and Gut Microbiota in BALB/c Mice. Antioxidants (Basel) 2023; 12:antiox12030712. [PMID: 36978962 PMCID: PMC10045747 DOI: 10.3390/antiox12030712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Milk fat globule membranes (MFGMs) are complex structures that incorporate bioactive proteins and lipids to assist in infant development. However, the antifatigue and antioxidant potentials of MFGM have not been investigated. In this study, repeated force swimming measured fatigue in male BALB/c mice fed MFGM and saline for 18 weeks. The MFGM supplementation increased the time to exhaustion by 42.7% at 6 weeks and 30.6% at 14 weeks (p < 0.05). Fatigue and injury-related biomarkers, including blood glucose, lactic acid, and lactate dehydrogenase, were ameliorated after free swimming (p < 0.05). The activity of antioxidant enzymes in blood serum increased at 18 weeks, while malondialdehyde (MDA) content decreased by 45.0% after the MFGM supplementation (p < 0.05). The Pearson correlation analysis showed a high correlation between fatigue-related indices and antioxidant levels. The increased protein expression of hepatic Nrf2 reduced the protein expression of Caspase-3 in the gastrocnemius muscle (p < 0.05). Moreover, the MFGM supplementation increased the relative abundance of Bacteroides, Butyricimonas, and Anaerostipes. Our results demonstrate that MFGM may maintain redox homeostasis to relieve fatigue, suggesting the potential application of MFGM as an antifatigue and antioxidant dietary supplement.
Collapse
|
6
|
Zhang G, Zhang J, Yan S, Hao M, Fei C, Ji D, Mao C, Tong H, Lu T, Su L. Study on the plasma metabolomics of Schisandra chinensis polysaccharide against ulcerative colitis and its correlation with gut microbes metabolism. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2023. [DOI: 10.1016/j.cjac.2023.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
7
|
Smith AD, Chen C, Cheung L, Dawson HD. Raw potato starch alters the microbiome, colon and cecal gene expression, and resistance to Citrobacter rodentium infection in mice fed a Western diet. Front Nutr 2023; 9:1057318. [PMID: 36704785 PMCID: PMC9871501 DOI: 10.3389/fnut.2022.1057318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Resistant starches (RS) are fermented in the cecum and colon to produce short-chain fatty acids and other microbial metabolites that can alter host physiology and the composition of the microbiome. We previously showed that mice fed a Total Western Diet (TWD) based on NHANES data that mimics the composition of a typical American diet, containing resistant potato starch (RPS), produced concentration dependent changes to the cecal short-chain fatty acids, the microbiome composition as well as gene expression changes in the cecum and colon that were most prevalent in mice fed the 10% RPS diet. We were then interested in whether feeding TWD/RPS would alter the resistance to bacterial-induced colitis caused by Citrobacter rodentium (Cr), a mouse pathogen that shares 66.7% of encoded genes with Enteropathogenic Escherichia coli. Mice were fed the TWD for 6 weeks followed by a 3-weeks on the RPS diets before infecting with Cr. Fecal Cr excretion was monitored over time and fecal samples were collected for 16S sequencing. Mice were euthanized on day 12 post-infection and cecal contents collected for 16S sequencing. Cecum and colon tissues were obtained for gene expression analysis, histology and to determine the level of mucosa-associated Cr. Feeding RPS increased the percentage of mice productively infected by Cr and fecal Cr excretion on day 4 post-infection. Mice fed the TWD/10% RPS diet also had greater colonization of colonic tissue at day 12 post-infection and colonic pathology. Both diet and infection altered the fecal and cecal microbiome composition with increased levels of RPS resulting in decreased α-diversity that was partially reversed by Cr infection. RNASeq analysis identified several mechanistic pathways that could be associated with the increased colonization of Cr-infected mice fed 10% RPS. In the distal colon we found a decrease in enrichment for genes associated with T cells, B cells, genes associated with the synthesis of DHA-derived SPMs and VA metabolism/retinoic acid signaling. We also found an increase in the expression of the potentially immunosuppressive gene, Ido1. These results suggest that high-level consumption of RPS in the context of a typical American diet, may alter susceptibility to gastrointestinal bacterial infections.
Collapse
|
8
|
Zhang Y, Wang T, Wan Z, Bai J, Xue Y, Dai R, Wang M, Peng Q. Alterations of the intestinal microbiota in age-related macular degeneration. Front Microbiol 2023; 14:1069325. [PMID: 37089564 PMCID: PMC10113553 DOI: 10.3389/fmicb.2023.1069325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose Age-related macular degeneration (AMD) is the leading cause of vision loss in those over the age of 50. Recently, intestinal microbiota has been reported to be involved in the pathogenesis of ocular diseases. The purpose of this study was to discover more about the involvement of the intestinal microbiota in AMD patients. Methods Fecal samples from 30 patients with AMD (AMD group) and 17 age- and sex-matched healthy controls (control group) without any fundus disease were collected. DNA extraction, PCR amplification, and 16S rRNA gene sequencing of the samples were performed to identify intestinal microbial alterations. Further, we used BugBase for phenotypic prediction and PICRUSt2 for KEGG Orthology (KO) as well as metabolic feature prediction. Results The intestinal microbiota was found to be significantly altered in the AMD group. The AMD group had a significantly lower level of Firmicutes and relatively higher levels of Proteobacteria and Bacteroidota compared to those in the control group. At the genus level, the AMD patient group showed a considerably higher proportion of Escherichia-Shigella and lower proportions of Blautia and Anaerostipes compared with those in the control group. Phenotypic prediction revealed obvious differences in the four phenotypes between the two groups. PICRUSt2 analysis revealed KOs and pathways associated with altered intestinal microbiota. The abundance of the top eight KOs in the AMD group was higher than that in the control group. These KOs were mainly involved in lipopolysaccharide biosynthesis. Conclusion The findings of this study indicated that AMD patients had different gut microbiota compared with healthy controls, and that AMD pathophysiology might be linked to changes in gut-related metabolic pathways. Therefore, intestinal microbiota might serve as non-invasive indicators for AMD clinical diagnosis and possibly also as AMD treatment targets.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyu Wang
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhao Bai
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawen Xue
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rushun Dai
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Rushun Dai,
| | - Minli Wang
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Minli Wang,
| | - Qing Peng
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Qing Peng,
| |
Collapse
|
9
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Lund PJ, Gates LA, Leboeuf M, Smith SA, Chau L, Lopes M, Friedman ES, Saiman Y, Kim MS, Shoffler CA, Petucci C, Allis CD, Wu GD, Garcia BA. Stable isotope tracing in vivo reveals a metabolic bridge linking the microbiota to host histone acetylation. Cell Rep 2022; 41:111809. [PMID: 36516747 PMCID: PMC9994635 DOI: 10.1016/j.celrep.2022.111809] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/09/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota influences acetylation on host histones by fermenting dietary fiber into butyrate. Although butyrate could promote histone acetylation by inhibiting histone deacetylases, it may also undergo oxidation to acetyl-coenzyme A (CoA), a necessary cofactor for histone acetyltransferases. Here, we find that epithelial cells from germ-free mice harbor a loss of histone H4 acetylation across the genome except at promoter regions. Using stable isotope tracing in vivo with 13C-labeled fiber, we demonstrate that the microbiota supplies carbon for histone acetylation. Subsequent metabolomic profiling revealed hundreds of labeled molecules and supported a microbial contribution to host fatty acid metabolism, which declined in response to colitis and correlated with reduced expression of genes involved in fatty acid oxidation. These results illuminate the flow of carbon from the diet to the host via the microbiota, disruptions to which may affect energy homeostasis in the distal gut and contribute to the development of colitis.
Collapse
Affiliation(s)
- Peder J Lund
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leah A Gates
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Marylene Leboeuf
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Sarah A Smith
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lillian Chau
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariana Lopes
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elliot S Friedman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yedidya Saiman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Soo Kim
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clarissa A Shoffler
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Petucci
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Gary D Wu
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Sauvaitre T, Van Landuyt J, Durif C, Roussel C, Sivignon A, Chalancon S, Uriot O, Van Herreweghen F, Van de Wiele T, Etienne-Mesmin L, Blanquet-Diot S. Role of mucus-bacteria interactions in Enterotoxigenic Escherichia coli (ETEC) H10407 virulence and interplay with human microbiome. NPJ Biofilms Microbiomes 2022; 8:86. [PMID: 36266277 PMCID: PMC9584927 DOI: 10.1038/s41522-022-00344-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
The intestinal mucus layer has a dual role in human health constituting a well-known microbial niche that supports gut microbiota maintenance but also acting as a physical barrier against enteric pathogens. Enterotoxigenic Escherichia coli (ETEC), the major agent responsible for traveler's diarrhea, is able to bind and degrade intestinal mucins, representing an important but understudied virulent trait of the pathogen. Using a set of complementary in vitro approaches simulating the human digestive environment, this study aimed to describe how the mucus microenvironment could shape different aspects of the human ETEC strain H10407 pathophysiology, namely its survival, adhesion, virulence gene expression, interleukin-8 induction and interactions with human fecal microbiota. Using the TNO gastrointestinal model (TIM-1) simulating the physicochemical conditions of the human upper gastrointestinal (GI) tract, we reported that mucus secretion and physical surface sustained ETEC survival, probably by helping it to face GI stresses. When integrating the host part in Caco2/HT29-MTX co-culture model, we demonstrated that mucus secreting-cells favored ETEC adhesion and virulence gene expression, but did not impede ETEC Interleukin-8 (IL-8) induction. Furthermore, we proved that mucosal surface did not favor ETEC colonization in a complex gut microbial background simulated in batch fecal experiments. However, the mucus-specific microbiota was widely modified upon the ETEC challenge suggesting its role in the pathogen infectious cycle. Using multi-targeted in vitro approaches, this study supports the major role played by mucus in ETEC pathophysiology, opening avenues in the design of new treatment strategies.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France.,Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Josefien Van Landuyt
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Claude Durif
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Charlène Roussel
- Université Laval, Nutrition and Functional Foods Institute (INAF), 2440 Bd Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada
| | - Adeline Sivignon
- Université Clermont Auvergne, UMR 1071 Inserm, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), 63000, Clermont-Ferrand, France
| | - Sandrine Chalancon
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Ophélie Uriot
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Florence Van Herreweghen
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Tom Van de Wiele
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France.
| |
Collapse
|
12
|
Tchitchek N, Nguekap Tchoumba O, Pires G, Dandou S, Campagne J, Churlaud G, Fourcade G, Hoffmann TW, Strozzi F, Gaal C, Bonny C, Le Chatelier E, Erlich SD, Sokol H, Klatzmann D. Low-dose interleukin-2 shapes a tolerogenic gut microbiota that improves autoimmunity and gut inflammation. JCI Insight 2022; 7:159406. [PMID: 35917175 PMCID: PMC9536277 DOI: 10.1172/jci.insight.159406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Gut microbiota dysbiosis is associated with inflammatory bowel diseases and with cardiometabolic, neurological, and autoimmune diseases. Gut microbiota composition has a direct effect on the immune system, and vice versa, and it has a particular effect on Treg homeostasis. Low-dose IL-2 (IL-2LD) stimulates Tregs and is a promising treatment for autoimmune and inflammatory diseases. We aimed to evaluate the impact of IL-2LD on gut microbiota and correlatively on the immune system. We used 16S ribosomal RNA profiling and metagenomics to characterize gut microbiota of mice and humans treated or not with IL-2LD. We performed fecal microbiota transplantation (FMT) from IL-2LD–treated to naive recipient mice and evaluated its effects in models of gut inflammation and diabetes. IL-2LD markedly affected gut microbiota composition in mice and humans. Transfer of an IL-2–tuned microbiota by FMT protected C57BL/6J mice from dextran sulfate sodium–induced colitis and prevented diabetes in NOD mice. Metagenomic analyses highlighted a role for several species affected by IL-2LD and for microbial pathways involved in the biosynthesis of amino acids, short-chain fatty acids, and L-arginine. Our results demonstrate that IL-2LD induced changes in gut microbiota that are involved in the immunoregulatory effects of IL-2LD and suggest a crosstalk between Tregs and gut microbiota. These results provide potentially novel insight for understanding the mode of action of Treg-directed therapies.
Collapse
Affiliation(s)
- Nicolas Tchitchek
- Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | | | - Gabriel Pires
- Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | - Sarah Dandou
- Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | - Julien Campagne
- Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | - Guillaume Churlaud
- Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | - Gwladys Fourcade
- Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | - Thomas W Hoffmann
- Micalis Institute, Institut National de la Recherche Agronomique, University Paris-Saclay, Paris, France
| | | | | | | | | | | | - Harry Sokol
- Department of Gastroenterology and Inflammation, Saint-Antoine Hospital, Paris, France
| | - David Klatzmann
- Immunology-Immunopathology-Immunotherapy (I3), Sorbonne Université, Paris, France
| |
Collapse
|
13
|
Martins FH, Rajan A, Carter HE, Baniasadi HR, Maresso AW, Sperandio V. Interactions between Enterohemorrhagic Escherichia coli (EHEC) and Gut Commensals at the Interface of Human Colonoids. mBio 2022; 13:e0132122. [PMID: 35638758 PMCID: PMC9239246 DOI: 10.1128/mbio.01321-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/03/2022] Open
Abstract
The interactions between the gut microbiota and pathogens are complex and can determine the outcome of an infection. Enterohemorrhagic Escherichia coli (EHEC) is a major human enteric pathogen that colonizes the colon through attaching and effacing (AE) lesions and uses microbiota-derived molecules as cues to control its virulence. Different gut commensals can modulate EHEC virulence. However, the lack of an animal model that recapitulates the human pathophysiology of EHEC infection makes it challenging to investigate how variations in microbiota composition could affect host susceptibility to this pathogen. Here, we addressed these interactions building from simple to more complex in vitro systems, culminating with the use of the physiological relevant human colonoids as a model to study the interactions between EHEC and different gut commensals. We demonstrated that Bacteroides thetaiotaomicron and Enterococcus faecalis enhance virulence expression and AE lesion formation in cultured epithelial cells, as well as on the colonic epithelium, while commensal E. coli did not affect these phenotypes. Importantly, in the presence of these three commensals together, virulence and AE lesion are enhanced. Moreover, we identified specific changes in the metabolic landscape promoted by different members of the gut microbiota and showed that soluble factors released by E. faecalis can increase EHEC virulence gene expression. Our study highlights the importance of interspecies bacterial interactions and chemical exchange in the modulation of EHEC virulence. IMPORTANCE Enterohemorrhagic E. coli (EHEC) is a natural human pathogen that poorly colonizes mice. Hence, the use of murine models to understand features of EHEC infection is a challenge. In this study, we use human colonoids as a physiologically relevant model to study interactions between EHEC and gut commensals. We demonstrate that the ability of EHEC to form AE lesions on the intestinal epithelium is enhanced by the presence of certain gut commensals, such as B. thetaiotaomicron and E. faecalis, while it is not affected by commensal E. coli. Furthermore, we show that commensal bacteria differently impact the metabolic landscape. These data suggest that microbiota compositions can differentially modulate EHEC-mediated disease.
Collapse
Affiliation(s)
- Fernando H. Martins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah E. Carter
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hamid R. Baniasadi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Sauvaitre T, Van Herreweghen F, Delbaere K, Durif C, Van Landuyt J, Fadhlaoui K, Huille S, Chaucheyras-Durand F, Etienne-Mesmin L, Blanquet-Diot S, Van de Wiele T. Lentils and Yeast Fibers: A New Strategy to Mitigate Enterotoxigenic Escherichia coli (ETEC) Strain H10407 Virulence? Nutrients 2022; 14:nu14102146. [PMID: 35631287 PMCID: PMC9144138 DOI: 10.3390/nu14102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/10/2023] Open
Abstract
Dietary fibers exhibit well-known beneficial effects on human health, but their anti-infectious properties against enteric pathogens have been poorly investigated. Enterotoxigenic Escherichia coli (ETEC) is a major food-borne pathogen that causes acute traveler’s diarrhea. Its virulence traits mainly rely on adhesion to an epithelial surface, mucus degradation, and the secretion of two enterotoxins associated with intestinal inflammation. With the increasing burden of antibiotic resistance worldwide, there is an imperious need to develop novel alternative strategies to control ETEC infections. This study aimed to investigate, using complementary in vitro approaches, the inhibitory potential of two dietary-fiber-containing products (a lentil extract and yeast cell walls) against the human ETEC reference strain H10407. We showed that the lentil extract decreased toxin production in a dose-dependent manner, reduced pro-inflammatory interleukin-8 production, and modulated mucus-related gene induction in ETEC-infected mucus-secreting intestinal cells. We also report that the yeast product reduced ETEC adhesion to mucin and Caco-2/HT29-MTX cells. Both fiber-containing products strengthened intestinal barrier function and modulated toxin-related gene expression. In a complex human gut microbial background, both products did not elicit a significant effect on ETEC colonization. These pioneering data demonstrate the promising role of dietary fibers in controlling different stages of the ETEC infection process.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Florence Van Herreweghen
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Karen Delbaere
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Claude Durif
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Khaled Fadhlaoui
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | | | - Frédérique Chaucheyras-Durand
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, CEDEX, F-31702 Blagnac, France
| | - Lucie Etienne-Mesmin
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Correspondence: ; Tel.: +33-(0)4-73-17-83-90
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| |
Collapse
|
15
|
Transcriptional Profiling of the Small Intestine and the Colon Reveals Modulation of Gut Infection with Citrobacter rodentium According to the Vitamin A Status. Nutrients 2022; 14:nu14081563. [PMID: 35458125 PMCID: PMC9026425 DOI: 10.3390/nu14081563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
Vitamin A (VA) deficiency and diarrheal diseases are both serious public health issues worldwide. VA deficiency is associated with impaired intestinal barrier function and increased risk of mucosal infection-related mortality. The bioactive form of VA, retinoic acid, is a well-known regulator of mucosal integrity. Using Citrobacter rodentium-infected mice as a model for diarrheal diseases in humans, previous studies showed that VA-deficient (VAD) mice failed to clear C. rodentium as compared to their VA-sufficient (VAS) counterparts. However, the distinct intestinal gene responses that are dependent on the host’s VA status still need to be discovered. The mRNAs extracted from the small intestine (SI) and the colon were sequenced and analyzed on three levels: differential gene expression, enrichment, and co-expression. C. rodentium infection interacted differentially with VA status to alter colon gene expression. Novel functional categories downregulated by this pathogen were identified, highlighted by genes related to the metabolism of VA, vitamin D, and ion transport, including improper upregulation of Cl− secretion and disrupted HCO3− metabolism. Our results suggest that derangement of micronutrient metabolism and ion transport, together with the compromised immune responses in VAD hosts, may be responsible for the higher mortality to C. rodentium under conditions of inadequate VA.
Collapse
|
16
|
Keely SJ, Barrett KE. Intestinal secretory mechanisms and diarrhea. Am J Physiol Gastrointest Liver Physiol 2022; 322:G405-G420. [PMID: 35170355 PMCID: PMC8917926 DOI: 10.1152/ajpgi.00316.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/31/2023]
Abstract
One of the primary functions of the intestinal epithelium is to transport fluid and electrolytes to and from the luminal contents. Under normal circumstances, absorptive and secretory processes are tightly regulated such that absorption predominates, thereby enabling conservation of the large volumes of water that pass through the intestine each day. However, in conditions of secretory diarrhea, this balance becomes dysregulated, so that fluid secretion, driven primarily by Cl- secretion, overwhelms absorptive capacity, leading to increased loss of water in the stool. Secretory diarrheas are common and include those induced by pathogenic bacteria and viruses, allergens, and disruptions to bile acid homeostasis, or as a side effect of many drugs. Here, we review the cellular and molecular mechanisms by which Cl- and fluid secretion in the intestine are regulated, how these mechanisms become dysregulated in conditions of secretory diarrhea, currently available and emerging therapeutic approaches, and how new strategies to exploit intestinal secretory mechanisms are successfully being used in the treatment of constipation.
Collapse
Affiliation(s)
- Stephen J Keely
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Kim E Barrett
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, California
| |
Collapse
|
17
|
Nagase N, Ikeda Y, Tsuji A, Kitagishi Y, Matsuda S. Efficacy of probiotics on the modulation of gut microbiota in the treatment of diabetic nephropathy. World J Diabetes 2022; 13:150-160. [PMID: 35432750 PMCID: PMC8984564 DOI: 10.4239/wjd.v13.i3.150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are insufficient. The number of patients with DN has been increasing in Asian countries because of westernization of dietary lifestyle, which may be associated with the following changes in gut microbiota. Alterations in the gut microbiota composition can lead to an imbalanced gastrointestinal environment that promotes abnormal production of metabolites and/or inflammatory status. Functional microenvironments of the gut could be changed in the different stages of DN. In particular, altered levels of short chain fatty acids, D-amino acids, and reactive oxygen species biosynthesis in the gut have been shown to be relevant to the pathogenesis of the DN. So far, evidence suggests that the gut microbiota may play a key role in determining networks in the development of DN. Interventions directing the gut microbiota deserve further investigation as a new protective therapy in DN. In this review, we discuss the potential roles of the gut microbiota and future perspectives in the protection and/or treatment of kidneys.
Collapse
Affiliation(s)
- Nozomi Nagase
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
18
|
Fu Q, Zhou S, Yu M, Lu Y, He G, Huang X, Huang Y. Portulaca oleracea Polysaccharides Modulate Intestinal Microflora in Aged Rats in vitro. Front Microbiol 2022; 13:841397. [PMID: 35308364 PMCID: PMC8931684 DOI: 10.3389/fmicb.2022.841397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
To explore the effect of Portulaca oleracea polysaccharides (POP) in regulating intestinal microflora in aged rats in vitro, its intestinal microbial composition was analyzed by 16 S rDNA high-throughput sequencing, and the level of short-chain fatty acids in fermentation broth was determined by LC-MS. POP significantly upregulated the relative abundance of Lactobacillus, Eggerthella, and Paraprevotella and significantly downregulated Escherichia_Shigella, Bacteroides, and Eubacterium nodatum groups. The pH value and ammonia nitrogen level decreased significantly in the POP-treated group, resulting in a more short-chain fatty acid consumption which changed the acid-base environment of the fermentation broth. In conclusion, POP is beneficial to aged rats because it can regulate intestinal flora, promote the growth of probiotics, and inhibit the reproduction of pathogenic bacteria.
Collapse
Affiliation(s)
- Qiang Fu
- College of Medicine, Jinggangshan University, Ji’an, China
- Ji’an Key Laboratory of Biomedicine, Ji’an, China
| | - Siyi Zhou
- College of Medicine, Jinggangshan University, Ji’an, China
- Ji’an Key Laboratory of Biomedicine, Ji’an, China
| | - Mengting Yu
- College of Medicine, Jinggangshan University, Ji’an, China
- Ji’an Key Laboratory of Biomedicine, Ji’an, China
| | - Yang Lu
- College of Medicine, Jinggangshan University, Ji’an, China
- Ji’an Key Laboratory of Biomedicine, Ji’an, China
| | - Genhe He
- School of Life Sciences, Jinggangshan University, Ji’an, China
| | - Xiaoliu Huang
- College of Medicine, Jinggangshan University, Ji’an, China
- Ji’an Key Laboratory of Biomedicine, Ji’an, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
19
|
Khan I, Bai Y, Zha L, Ullah N, Ullah H, Shah SRH, Sun H, Zhang C. Mechanism of the Gut Microbiota Colonization Resistance and Enteric Pathogen Infection. Front Cell Infect Microbiol 2021; 11:716299. [PMID: 35004340 PMCID: PMC8733563 DOI: 10.3389/fcimb.2021.716299] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
The mammalian gut microbial community, known as the gut microbiota, comprises trillions of bacteria, which co-evolved with the host and has an important role in a variety of host functions that include nutrient acquisition, metabolism, and immunity development, and more importantly, it plays a critical role in the protection of the host from enteric infections associated with exogenous pathogens or indigenous pathobiont outgrowth that may result from healthy gut microbial community disruption. Microbiota evolves complex mechanisms to restrain pathogen growth, which included nutrient competition, competitive metabolic interactions, niche exclusion, and induction of host immune response, which are collectively termed colonization resistance. On the other hand, pathogens have also developed counterstrategies to expand their population and enhance their virulence to cope with the gut microbiota colonization resistance and cause infection. This review summarizes the available literature on the complex relationship occurring between the intestinal microbiota and enteric pathogens, describing how the gut microbiota can mediate colonization resistance against bacterial enteric infections and how bacterial enteropathogens can overcome this resistance as well as how the understanding of this complex interaction can inform future therapies against infectious diseases.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Habib Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Syed Rafiq Hussain Shah
- Department of Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hui Sun
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Abstract
The gut microbiota plays a crucial role in susceptibility to enteric pathogens, including Citrobacter rodentium, a model extracellular mouse pathogen that colonizes the colonic mucosa. C. rodentium infection outcomes vary between mouse strains, with C57BL/6 and C3H/HeN mice clearing and succumbing to the infection, respectively. Kanamycin (Kan) treatment at the peak of C57BL/6 mouse infection with Kan-resistant C. rodentium resulted in relocalization of the pathogen from the colonic mucosa and cecum to solely the cecal luminal contents; cessation of the Kan treatment resulted in rapid clearance of the pathogen. We now show that in C3H/HeN mice, following Kan-induced displacement of C. rodentium to the cecum, the pathogen stably colonizes the cecal lumens of 65% of the mice in the absence of continued antibiotic treatment, a phenomenon that we term antibiotic-induced bacterial commensalization (AIBC). AIBC C. rodentium was well tolerated by the host, which showed few signs of inflammation; passaged AIBC C. rodentium robustly infected naive C3H/HeN mice, suggesting that the AIBC state is transient and did not select for genetically avirulent C. rodentium mutants. Following withdrawal of antibiotic treatment, 35% of C3H/HeN mice were able to prevent C. rodentium commensalization in the gut lumen. These mice presented a bloom of a commensal species, Citrobacter amalonaticus, which inhibited the growth of C. rodentiumin vitro in a contact-dependent manner and the luminal growth of AIBC C. rodentiumin vivo. Overall, our data suggest that commensal species can confer colonization resistance to closely related pathogenic species.
Collapse
|
21
|
Liang Q, Vallance BA. What's for dinner? How Citrobacter rodentium's metabolism helps it thrive in the competitive gut. Curr Opin Microbiol 2021; 63:76-82. [PMID: 34243134 DOI: 10.1016/j.mib.2021.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023]
Abstract
Enteric bacterial infections impose a significant and global health burden on society, and their threat is increasing in concert with a rise in antibiotic resistance. There is thus a great need to quickly develop new antimicrobial treatments and interest is growing in targeting pathogen nutrition and metabolism. In this review, we highlight recent research on the metabolism of Citrobacter rodentium, a murine-specific relative of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC). We focus on the mechanisms by which C. rodentium acquires nutrients as well as the distinct metabolic strategies that C. rodentium employs in varying spatiotemporal niches. We propose that identifying and targeting nutrients found essential for bacterial pathogenesis is an attractive anti-microbial approach in the new post-antibiotic era.
Collapse
Affiliation(s)
- Qiaochu Liang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children's Hospital and University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
22
|
Quin C, Ghosh S, Dai C, Barnett JA, Garner AM, Yoo RKH, Zandberg WF, Botta A, Gorzelak MA, Gibson DL. Maternal Intake of Dietary Fat Pre-Programs Offspring's Gut Ecosystem Altering Colonization Resistance and Immunity to Infectious Colitis in Mice. Mol Nutr Food Res 2021; 65:e2000635. [PMID: 33559319 DOI: 10.1002/mnfr.202000635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/02/2021] [Indexed: 11/10/2022]
Abstract
SCOPE The transgenerational impact of dietary fat remains unclear. Here, the role of maternal fat consumption as a modulator of gut microbial communities and infectious disease outcomes in their offspring is explored. METHODS AND RESULTS C57BL/6 mice are fed isocaloric high-fat diets throughout breeding, gestation and lactation. Diets contained either milk fat (MF), olive oil (OO) or corn oil (CO), with or without fish oil. The pups born to maternally exposed mice are weaned on to chow and raised into adulthood. At 8 weeks, the offsprings are either euthanized for colonic 16S rRNA analysis or challenged with the enteric pathogen, Citrobacter rodentium. Maternal CO exposure resulted in unique clustering of bacterial communities in offspring compared with MF and OO. Diets rich in CO reduced survival in offspring challenged with C. rodentium. The addition of fish oil did not improve mortality caused by CO and worsened disease outcomes when combined with OO. Unlike the unsaturated diets, MF is protective with and without fish oil. CONCLUSIONS Overall, these data reveal that maternal intake of fatty acids do have transgenerational impacts on their offspring's bacteriome and enteric infection risk. Based on this study, saturated fats should be included in maternal diets.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Sanjoy Ghosh
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Chuanbin Dai
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jacqueline A Barnett
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Alexander M Garner
- Department of Chemistry Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Rachael K H Yoo
- Department of Chemistry Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Wesley F Zandberg
- Department of Chemistry Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Amy Botta
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Monika A Gorzelak
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Deanna L Gibson
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
23
|
Hopkins EGD, Frankel G. Overview of the Effect of Citrobacter rodentium Infection on Host Metabolism and the Microbiota. Methods Mol Biol 2021; 2291:399-418. [PMID: 33704766 DOI: 10.1007/978-1-0716-1339-9_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Citrobacter rodentium is a natural enteric mouse pathogen that models human intestinal diseases, such as pathogenic E. coli infections, ulcerative colitis, and colon cancer. Upon reaching the monolayer of intestinal epithelial cells (IECs) lining the gut, a complex web of interactions between the host, the pathogen, and the microbiota ensues. A number of studies revealed surprisingly rapid changes in IEC bioenergetics upon infection, involving a switch from oxidative phosphorylation to aerobic glycolysis, leading to mucosal oxygenation and subsequent changes in microbiota composition. Microbiome studies have revealed a bloom in Enterobacteriaceae during C. rodentium infection in both resistant (i.e., C57BL/6) and susceptible (i.e., C3H/HeN) strains of mice concomitant with a depletion of butyrate-producing Clostridia. The emerging understanding that dysbiosis of cholesterol metabolism is induced by enteric infection further confirms the pivotal role immunometabolism plays in disease outcome. Inversely, the host and microbiota also impact upon the progression of infection, from the susceptibility of the distal colon to C. rodentium colonization to clearance of the pathogen, both via opsonization from the host adaptive immune system and out competition by the resident microbiota. Further complicating this compendium of interactions, C. rodentium exploits microbiota metabolites to fine-tune virulence gene expression and promote colonization. This chapter summarizes the current knowledge of the myriad of pathogen-host-microbiota interactions that occur during the progression of C. rodentium infection in mice and the broader implications of these findings on our understanding of enteric disease.
Collapse
Affiliation(s)
- Eve G D Hopkins
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
24
|
The Protective Role of Probiotics against Colorectal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8884583. [PMID: 33488940 PMCID: PMC7803265 DOI: 10.1155/2020/8884583] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths worldwide and a major global public health problem. With the rapid development of the economy, the incidence of CRC has increased linearly. Accumulating evidence indicates that changes in the gut microenvironment, such as undesirable changes in the microbiota composition, provide favorable conditions for intestinal inflammation and shaping the tumor growth environment, whereas administration of certain probiotics can reverse this situation to a certain extent. This review summarizes the roles of probiotics in the regulation of CRC, such as enhancing the immune barrier, regulating the intestinal immune state, inhibiting pathogenic enzyme activity, regulating CRC cell proliferation and apoptosis, regulating redox homeostasis, and reprograming intestinal microbial composition. Abundant studies have provided a theoretical foundation for the roles of probiotics in CRC prevention and treatment, but their mechanisms of action remain to be investigated, and further clinical trials are warranted for the application of probiotics in the target population.
Collapse
|
25
|
Cannon T, Sinha A, Trudeau LE, Maurice CF, Gruenheid S. Characterization of the intestinal microbiota during Citrobacter rodentium infection in a mouse model of infection-triggered Parkinson's disease. Gut Microbes 2020; 12:1-11. [PMID: 33064969 PMCID: PMC7575009 DOI: 10.1080/19490976.2020.1830694] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that has been shown to be influenced by the intestinal milieu. The gut microbiota is altered in PD patients, and murine studies have begun suggesting a causative role for the gut microbiota in progression of PD. We have previously shown that repeated infection with the intestinal murine pathogen Citrobacter rodentium resulted in the development of PD-like pathology in Pink1-/- mice compared to wild-type littermates. This addendum aims to expand this work by characterizing the gut microbiota during C. rodentium infection in our Pink1-/- PD model. We observed little disturbance to the fecal microbiota diversity both between infection timepoints and between Pink1-/- and wild-type control littermates. However, the level of short-chain fatty acids appeared to be altered over the course of infection with butyric acid significantly increasing in Pink1-/- mice and isobutyric acid increasing in wild-type mice.
Collapse
Affiliation(s)
- Tyler Cannon
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anshul Sinha
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, Department of Neuroscience, GRSNC, Université de Montréal, Montreal, QC, Canada
| | - Corinne F. Maurice
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada,CONTACT Samantha Gruenheid Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Yadav M, Chauhan NS. Overview of the rules of the microbial engagement in the gut microbiome: a step towards microbiome therapeutics. J Appl Microbiol 2020; 130:1425-1441. [PMID: 33022786 DOI: 10.1111/jam.14883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Human gut microbiome is a diversified, resilient, immuno-stabilized, metabolically active and physiologically essential component of the human body. Scientific explorations have been made to seek in-depth information about human gut microbiome establishment, microbiome functioning, microbiome succession, factors influencing microbial community dynamics and the role of gut microbiome in health and diseases. Extensive investigations have proposed the microbiome therapeutics as a futuristic medicine for various physiological and metabolic disorders. A comprehensive outlook of microbial colonization, host-microbe interactions, microbial adaptation, commensal selection and immuno-survivability is still required to catalogue the essential genetic and physiological features for the commensal engagement. Evolution of a structured human gut microbiome relies on the microbial flexibility towards genetic, immunological and physiological adaptation in the human gut. Key features for commensalism could be utilized in developing tailor-made microbiome-based therapy to overcome various physiological and metabolic disorders. This review describes the key genetics and physiological traits required for host-microbe interaction and successful commensalism to institute a human gut microbiome.
Collapse
Affiliation(s)
- M Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - N S Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
27
|
Wu Y, Wan J, Choe U, Pham Q, Schoene NW, He Q, Li B, Yu L, Wang TTY. Interactions Between Food and Gut Microbiota: Impact on Human Health. Annu Rev Food Sci Technol 2020; 10:389-408. [PMID: 30908952 DOI: 10.1146/annurev-food-032818-121303] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the relationship between food and the gut microbiota, their interactions, and how each modulates the other is critical for successful promotion of human health. This review seeks to summarize ( a) the current knowledge on the effects of food and food components on gut microbiota and ( b) the association between gut microbiota, consumption of food, and food bioactive components and the resulting beneficial health outcomes. Our goal is to provide state-of-the-art information on food and gut microbiota interactions and to stimulate discussions and research approaches that will move the field forward.
Collapse
Affiliation(s)
- Yanbei Wu
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, People's Republic of China.,Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA; .,Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Jiawei Wan
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA; .,Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Uyory Choe
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA; .,Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Quynhchi Pham
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA;
| | - Norberta W Schoene
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA;
| | - Qiang He
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Thomas T Y Wang
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA;
| |
Collapse
|
28
|
Quin C, Vollman DM, Ghosh S, Haskey N, Estaki M, Pither J, Barnett JA, Jay MN, Birnie BW, Gibson DL. Fish oil supplementation reduces maternal defensive inflammation and predicts a gut bacteriome with reduced immune priming capacity in infants. THE ISME JOURNAL 2020; 14:2090-2104. [PMID: 32398661 PMCID: PMC7368083 DOI: 10.1038/s41396-020-0672-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
Habitual supplementation of fish oil is thought to provide benefits to the developing infant; however, the effects on infant microbial establishment and immune development are unknown. A 6-month observational cohort study was conducted where 47 out of 91 women self-administered dietary fish oil during breastfeeding. Infant stool and mothers' breast milk were collected each month over 6 months. Gas chromatography was used to quantify breast milk fatty acids and high-throughput sequencing was used to assess the infant fecal microbiota. Immune markers and parent-reported questionnaires were used to assess infant immunity and health up to 2 years. Our results reveal that fish oil supplementation decreased secretory immunoglobulin A and increased IL-10 production in lactating women along with increased breast milk eicosapentaenoic acid, and this corresponded to increased abundances of fecal Bifidobacterium and Lactobacillus spp. in their infants. Docosahexaenoic acid levels in breast milk aligned with decreases in infant gut bacterial richness and the predicted bacterial phenotypes suggested that fish oil lowers commensal traits involved in pathogen colonization resistance. Despite this, there were no differences in sickness incidence in toddlers. This study revealed that fish oil associates with decreases in breast milk defensive inflammatory responses and corresponds with infant fecal microbiota with anti-inflammatory potential.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Deanna M Vollman
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Sanjoy Ghosh
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Natasha Haskey
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Mehrbod Estaki
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Jason Pither
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Jacqueline A Barnett
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - Michael N Jay
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - Blake W Birnie
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - Deanna L Gibson
- Department of Biology Okanagan Campus, University of British Columbia, Kelowna, BC, Canada.
- Department of Medicine, Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
29
|
Chen Y, Liao C, Huang Y, Chen M, Huang C, Chen W, Chiu Y. Proteome and microbiota analysis highlight Lactobacillus plantarum TWK10 supplementation improves energy metabolism and exercise performance in mice. Food Sci Nutr 2020; 8:3525-3534. [PMID: 32724615 PMCID: PMC7382123 DOI: 10.1002/fsn3.1635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus plantarum TWK10 (LP10) is a probiotic known to improve endurance exercise performance. Here, we analyze the proteomics and metagenomic changes in a LP10 supplemented mouse model. Male ICR mice were divided into two groups (n = 8) to receive by oral gavage either vehicle or of LP10 for 6 weeks. Proteins changes by LP10 treatment were subjected to the Ingenuity Pathway Analysis (IPA) to provide corroborative evidence for differential regulation of molecular and cellular functions affecting metabolic processes. Fecal samples were obtained from each mouse, and the microbial community profile analyzed by pyrosequencing of the 16S rRNA genes. Of the 880 identified proteins, 25 proteins were significantly downregulated and 44 proteins were significantly upregulated in the LP10 treated compared to vehicle group. LP10 supplementation shift in the gut microbiota to butyrate-producing members and provided from lipid oxidation since peroxisomal fatty acid oxidation in liver.
Collapse
Affiliation(s)
- Yi‐Ming Chen
- College of physical educationHubei Normal UniversityHuangshiChina
| | - Chen‐Chung Liao
- Proteomics Research CenterNational Yang‐Ming UniversityTaipeiTaiwan
| | - Yen‐Chun Huang
- Institute of Biochemistry and Molecular BiologyNational Yang‐Ming UniversityTaipeiTaiwan
| | - Ming‐Yi Chen
- General Education CenterNational Taipei University of Nursing and Health SciencesTaipeiTaiwan
| | - Chi‐Chang Huang
- Graduate Institute of Sports ScienceNational Taiwan Sport UniversityTaoyuanTaiwan
| | - Wen‐Chyuan Chen
- Center for General EducationChang Gung University of Science and TechnologyTaoyuanTaiwan
- Department of Otorhinolaryngology‐Head and Neck SurgerySleep CenterLinkou‐Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Yen‐Shuo Chiu
- Department of OrthopedicsShuang Ho HospitalTaipei Medical UniversityTaipeiTaiwan
- School of Nutrition and Health SciencesCollege of NutritionTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
30
|
Colombo SAP, Grencis RK. Immunity to Soil-Transmitted Helminths: Evidence From the Field and Laboratory Models. Front Immunol 2020; 11:1286. [PMID: 32655568 PMCID: PMC7324686 DOI: 10.3389/fimmu.2020.01286] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Infection with soil-transmitted helminths (STH) remains a major burden on global health and agriculture. Our understanding of the immunological mechanisms that govern whether an individual is resistant or susceptible to infection is derived primarily from model infections in rodents. Typically, experimental infections employ an artificially high, single bolus of parasites that leads to rapid expulsion of the primary infection and robust immunity to subsequent challenges. However, immunity in natura is generated slowly, and is only partially effective, with individuals in endemic areas retaining low-level infections throughout their lives. Therefore, there is a gap between traditional model STH systems and observations in the field. Here, we review the immune response to traditional model STH infections in the laboratory. We compare these data to studies of natural infection in humans and rodents in endemic areas, highlighting crucial differences between experimental and natural infection. We then detail the literature to date on the use of "trickle" infections to experimentally model the kinetics of natural infection.
Collapse
Affiliation(s)
- Stefano A. P. Colombo
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Richard K. Grencis
- Division of Infection, Immunity and Respiratory Medicine, Wellcome Trust Centre for Cell Matrix Research, Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
31
|
Verdugo-Meza A, Ye J, Dadlani H, Ghosh S, Gibson DL. Connecting the Dots Between Inflammatory Bowel Disease and Metabolic Syndrome: A Focus on Gut-Derived Metabolites. Nutrients 2020; 12:E1434. [PMID: 32429195 PMCID: PMC7285036 DOI: 10.3390/nu12051434] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The role of the microbiome in health and disease has gained considerable attention and shed light on the etiology of complex diseases like inflammatory bowel disease (IBD) and metabolic syndrome (MetS). Since the microorganisms inhabiting the gut can confer either protective or harmful signals, understanding the functional network between the gut microbes and the host provides a comprehensive picture of health and disease status. In IBD, disruption of the gut barrier enhances microbe infiltration into the submucosae, which enhances the probability that gut-derived metabolites are translocated from the gut to the liver and pancreas. Considering inflammation and the gut microbiome can trigger intestinal barrier dysfunction, risk factors of metabolic diseases such as insulin resistance may have common roots with IBD. In this review, we focus on the overlap between IBD and MetS, and we explore the role of common metabolites in each disease in an attempt to connect a common origin, the gut microbiome and derived metabolites that affect the gut, liver and pancreas.
Collapse
Affiliation(s)
- Andrea Verdugo-Meza
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Jiayu Ye
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Hansika Dadlani
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
- Department of Medicine, University of British Columbia, Okanagan campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
32
|
Putting the microbiota to work: Epigenetic effects of early life antibiotic treatment are associated with immune-related pathways and reduced epithelial necrosis following Salmonella Typhimurium challenge in vitro. PLoS One 2020; 15:e0231942. [PMID: 32339193 PMCID: PMC7185588 DOI: 10.1371/journal.pone.0231942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/04/2020] [Indexed: 01/03/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is an animal welfare and public health concern due to its ability to parasite livestock and potentially contaminate pork products. To reduce Salmonella shedding and the risk of pork contamination, antibiotic therapy is used and can contribute to antimicrobial resistance. Here we hypothesized that immune system education by the microbiota can play a role in intestinal resilience to infection. We used amoxicillin (15mg/Kg) to modulate the intestinal microbiome of 10 piglets, paired with same age pigs that received a placebo (n = 10) from 0 to 14 days of age. Animals were euthanized at 4-weeks old. Each pig donated colon sections for ex vivo culture (n = 20 explants/pig). Explants were inoculated with S. Typhimurium, PBS or LPS (n = 6 explants/pig/group, plus technical controls). The gut bacteriome was characterized by sequencing of the 16S rRNA at 7, 21 days of age, and upon in vitro culture. Explants response to infection was profiled through high-throughput mRNA sequencing. In vivo antibiotic treatment led to β-diversity differences between groups at all times (P<0.05), while α-diversity did not differ between amoxicillin and placebo groups on day 21 and at euthanasia (P<0.03 on day 7). Explant microbiomes were not different from in vivo. In vitro challenge with S. Typhimurium led to lower necrosis scores in explants from amoxicillin-treated pigs, when compared to explants placebo-treated pigs (P<0.05). This was coupled with the activation of immune-related pathways in explants from amoxicillin-treated pigs (IL-2 production, NO production, BCR activation), when compared to placebo-treated pigs. In addition, several DNA repair and intestinal wound healing pathways were also only activated in explants from amoxicillin-treated pigs. Taken together, these findings suggest that immune education by the amoxicillin-disturbed microbiota may have contributed to mitigate intestinal lesions following pathogen exposure.
Collapse
|
33
|
Faecal neutrophil elastase-antiprotease balance reflects colitis severity. Mucosal Immunol 2020; 13:322-333. [PMID: 31772324 PMCID: PMC7039808 DOI: 10.1038/s41385-019-0235-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/04/2023]
Abstract
Given the global burden of diarrheal diseases on healthcare it is surprising how little is known about the drivers of disease severity. Colitis caused by infection and inflammatory bowel disease (IBD) is characterised by neutrophil infiltration into the intestinal mucosa and yet our understanding of neutrophil responses during colitis is incomplete. Using infectious (Citrobacter rodentium) and chemical (dextran sulphate sodium; DSS) murine colitis models, as well as human IBD samples, we find that faecal neutrophil elastase (NE) activity reflects disease severity. During C. rodentium infection intestinal epithelial cells secrete the serine protease inhibitor SerpinA3N to inhibit and mitigate tissue damage caused by extracellular NE. Mice suffering from severe infection produce insufficient SerpinA3N to control excessive NE activity. This activity contributes to colitis severity as infection of these mice with a recombinant C. rodentium strain producing and secreting SerpinA3N reduces tissue damage. Thus, uncontrolled luminal NE activity is involved in severe colitis. Taken together, our findings suggest that NE activity could be a useful faecal biomarker for assessing disease severity as well as therapeutic target for both infectious and chronic inflammatory colitis.
Collapse
|
34
|
Roubaud-Baudron C, Ruiz VE, Swan AM, Vallance BA, Ozkul C, Pei Z, Li J, Battaglia TW, Perez-Perez GI, Blaser MJ. Long-Term Effects of Early-Life Antibiotic Exposure on Resistance to Subsequent Bacterial Infection. mBio 2019; 10:e02820-19. [PMID: 31874917 PMCID: PMC6935859 DOI: 10.1128/mbio.02820-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022] Open
Abstract
Early-life antibiotic exposure may provoke long-lasting microbiota perturbation. Since a healthy gut microbiota confers resistance to enteric pathogens, we hypothesized that early-life antibiotic exposure would worsen the effects of a bacterial infection encountered as an adult. To test this hypothesis, C57BL/6 mice received a 5-day course of tylosin (macrolide), amoxicillin (β-lactam), or neither (control) early in life and were challenged with Citrobacter rodentium up to 80 days thereafter. The early-life antibiotic course led to persistent alterations in the intestinal microbiota and even with pathogen challenge 80 days later worsened the subsequent colitis. Compared to exposure to amoxicillin, exposure to tylosin led to greater disease severity and microbiota perturbation. Transferring the antibiotic-perturbed microbiota to germfree animals led to worsened colitis, indicating that the perturbed microbiota was sufficient for the increased disease susceptibility. These experiments highlight the long-term effects of early-life antibiotic exposure on susceptibility to acquired pathogens.IMPORTANCE The gastrointestinal microbiota protects hosts from enteric infections; while antibiotics, by altering the microbiota, may diminish this protection. We show that after early-life exposure to antibiotics host susceptibility to enhanced Citrobacter rodentium-induced colitis is persistent and that this enhanced disease susceptibility is transferable by the antibiotic-altered microbiota. These results strongly suggest that early-life antibiotics have long-term consequences on the gut microbiota and enteropathogen infection susceptibility.
Collapse
Affiliation(s)
- Claire Roubaud-Baudron
- CHU Bordeaux, Pôle de Gérontologie Clinique, Bordeaux, France
- University of Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
- Department of Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Victoria E Ruiz
- Department of Medicine, New York University Langone Medical Center, New York, New York, USA
- Department of Biology, St. Francis College, Brooklyn, New York, USA
| | - Alexander M Swan
- Department of Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ceren Ozkul
- Department of Medicine, New York University Langone Medical Center, New York, New York, USA
- Department of Pharmaceutical Microbiology, Hacettepe University School of Pharmacy, Ankara, Turkey
| | - Zhiheng Pei
- Department of Pathology, New York University Langone Medical Center, New York, New York, USA
| | - Jackie Li
- Department of Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Thomas W Battaglia
- Department of Medicine, New York University Langone Medical Center, New York, New York, USA
| | | | - Martin J Blaser
- Department of Medicine, New York University Langone Medical Center, New York, New York, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
35
|
Molecular Mechanisms That Define Redox Balance Function in Pathogen-Host Interactions-Is There a Role for Dietary Bioactive Polyphenols? Int J Mol Sci 2019; 20:ijms20246222. [PMID: 31835548 PMCID: PMC6940965 DOI: 10.3390/ijms20246222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
To ensure a functional immune system, the mammalian host must detect and respond to the presence of pathogenic bacteria during infection. This is accomplished in part by generating reactive oxygen species (ROS) that target invading bacteria; a process that is facilitated by NADPH oxidase upregulation. Thus, bacterial pathogens must overcome the oxidative burst produced by the host innate immune cells in order to survive and proliferate. In this way, pathogenic bacteria develop virulence, which is related to the affinity to secrete effector proteins against host ROS in order to facilitate microbial survival in the host cell. These effectors scavenge the host generated ROS directly, or alternatively, manipulate host cell signaling mechanisms designed to benefit pathogen survival. The redox-balance of the host is important for the regulation of cell signaling activities that include mitogen-activated protein kinase (MAPK), p21-activated kinase (PAK), phosphatidylinositol 3-kinase (PI3K)/Akt, and nuclear factor κB (NF-κB) pathways. An understanding of the function of pathogenic effectors to divert host cell signaling is important to ascertain the mechanisms underlying pathogen virulence and the eventual host–pathogen relationship. Herein, we examine the effectors produced by the microbial secretion system, placing emphasis on how they target molecular signaling mechanisms involved in a host immune response. Moreover, we discuss the potential impact of bioactive polyphenols in modulating these molecular interactions that will ultimately influence pathogen virulence.
Collapse
|
36
|
Pomegranate peel extract reduced colonic damage and bacterial translocation in a mouse model of infectious colitis induced by Citrobacter rodentium. Nutr Res 2019; 73:27-37. [PMID: 31841745 DOI: 10.1016/j.nutres.2019.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/09/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
The pomegranate fruit peel is a rich source of polyphenols including punicalins, punicalagins, and ellagic acids, but is considered an agricultural waste product. Pomegranate derived products have been reported to have a wide variety of health promoting benefits including antibacterial properties in vitro but there is limited evidence of their antibacterial properties in vivo. The purpose of this study was to test the in vivo antibacterial properties of a pomegranate peel extract (PPX) containing punicalin, punicalagin, and ellagic acid. C3H/He mice were orally pre-treated with water or PPX prior to infection with the mouse bacterial pathogen, Citrobacter rodentium (Cr) that mimics many aspects of human enteropathogenic Escherichia coli infections. Fecal excretion of Cr was monitored and mice were euthanized on day 12 post-infection to assess Cr colonization of the colon and spleen, histological changes, and gene expression. PPX-treatment reduced Cr infection induced weight loss and mortality that was observed in water-treated infected mice. However, Cr colonization of the colon and clearance was unaffected by PPX-treatment. Consistent with this, PPX treatment did not alter the potent Th1/Th17 pro-inflammatory response elicited by Cr infection. Significant colonization of the spleen was only seen in water-treated infected mice and was inversely correlated with the dose of PPX administered. PPX treatment decreased the extent of Cr-induced colon damage that correlated with decreased mortality and reduced colonization of the spleen. Thus, a pomegranate peel extract contains bioactive compounds that mitigate the deleterious effects of an in vivo infection with the model enteropathogenic bacteria, Cr.
Collapse
|
37
|
Luo P, Yang Z, Chen B, Zhong X. The multifaceted role of CARD9 in inflammatory bowel disease. J Cell Mol Med 2019; 24:34-39. [PMID: 31696662 PMCID: PMC6933369 DOI: 10.1111/jcmm.14770] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) involves a dysregulated immune response to the gut microbiota. Emerging evidence has demonstrated that dysfunctions in caspase recruitment domain‐containing protein 9 (CARD9) may contribute to the pathogenesis of IBD. Interestingly, an allelic series of Card9 variants have both a common predisposing and rare protective function in IBD patients. In this review, we provide mechanistic insights into the role of the CARD9 adaptor molecule in intestinal inflammation and determine a potential CARD9‐targeting therapeutic approach against IBD.
Collapse
Affiliation(s)
- Ping Luo
- Department of Breast Surgery, Nanchang Third Hospital, Nanchang, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Chen
- Surgery Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | | |
Collapse
|
38
|
Bajaj JS, Sharma A, Dudeja PK. Targeting Gut Microbiome Interactions in Service-Related Gastrointestinal and Liver Diseases of Veterans. Gastroenterology 2019; 157:1180-1183.e1. [PMID: 31404532 PMCID: PMC7249241 DOI: 10.1053/j.gastro.2019.07.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jasmohan S Bajaj
- Virginia Commonwealth University and Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.
| | - Arun Sharma
- Office of Research and Development, Veterans Affairs, Washington, DC
| | - Pradeep K Dudeja
- University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
39
|
Citrobacter rodentium-host-microbiota interactions: immunity, bioenergetics and metabolism. Nat Rev Microbiol 2019; 17:701-715. [PMID: 31541196 DOI: 10.1038/s41579-019-0252-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Citrobacter rodentium is an extracellular enteric mouse-specific pathogen used to model infections with human pathogenic Escherichia coli and inflammatory bowel disease. C. rodentium injects type III secretion system effectors into intestinal epithelial cells (IECs) to target inflammatory, metabolic and cell survival pathways and establish infection. While the host responds to infection by activating innate and adaptive immune signalling, required for clearance, the IECs respond by rapidly shifting bioenergetics to aerobic glycolysis, which leads to oxygenation of the epithelium, an instant expansion of mucosal-associated commensal Enterobacteriaceae and a decline of obligate anaerobes. Moreover, infected IECs reprogramme intracellular metabolic pathways, characterized by simultaneous activation of cholesterol biogenesis, import and efflux, leading to increased serum and faecal cholesterol levels. In this Review we summarize recent advances highlighting the intimate relationship between C. rodentium pathogenesis, metabolism and the gut microbiota.
Collapse
|
40
|
Mackos AR, Allen JM, Kim E, Ladaika CA, Gharaibeh RZ, Moore C, Parry NMA, Boyaka PN, Bailey MT. Mice Deficient in Epithelial or Myeloid Cell Iκκβ Have Distinct Colonic Microbiomes and Increased Resistance to Citrobacter rodentium Infection. Front Immunol 2019; 10:2062. [PMID: 31552024 PMCID: PMC6746829 DOI: 10.3389/fimmu.2019.02062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
The colonic microenvironment, stemming from microbial, immunologic, stromal, and epithelial factors, serves as an important determinant of the host response to enteric pathogenic colonization. Infection with the enteric bacterial pathogen Citrobacter rodentium elicits a strong mucosal Th1-mediated colitis and monocyte-driven inflammation activated via the classical NF-κB pathway. Research has focused on leukocyte-mediated signaling as the main driver for C. rodentium-induced colitis, however we hypothesize that epithelial cell NF-κB also contributes to the exacerbation of infectious colitis. To test this hypothesis, compartmentalized classical NF-κB defective mice, via the deletion of IKKβ in either intestinal epithelial cells (IKKβΔIEC) or myeloid-derived cells (IKKβΔMY), and wild type (WT) mice were challenged with C. rodentium. Both pathogen colonization and colonic histopathology were significantly reduced in IKKβ-deficient mice compared to WT mice. Interestingly, colonic IL-10, RegIIIγ, TNF-α, and iNOS gene expression were increased in IKKβ-deficient mice in the absence of bacterial challenge. This was associated with increased p52, which is involved with activation of NF-κβ through the alternative pathway. IKKβ-deficient mice also had distinct differences in colonic tissue-associated and luminal microbiome that may confer protection against C. rodentium. Taken together, these data demonstrate that classical NF-κB signaling can lead to enhanced enteric pathogen colonization and resulting colonic histopathology.
Collapse
Affiliation(s)
- Amy R Mackos
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Jacob M Allen
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Chris A Ladaika
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Raad Z Gharaibeh
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States.,Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC, United States
| | - Cathy Moore
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Nicola M A Parry
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Michael T Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
41
|
George NS, Cheung L, Luthria DL, Santin M, Dawson HD, Bhagwat AA, Smith AD. Pomegranate peel extract alters the microbiome in mice and dysbiosis caused by Citrobacter rodentium infection. Food Sci Nutr 2019; 7:2565-2576. [PMID: 31428344 PMCID: PMC6694437 DOI: 10.1002/fsn3.1106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/08/2019] [Indexed: 12/28/2022] Open
Abstract
Treatment of mice with a pomegranate peel extract (PPX) decreased the pathogenicity of Citrobacter rodentium (Cr) infections. Here, we investigate the effects of PPX on the microbiome of uninfected or Cr-infected C3H/HeNCr mice by 16S rRNA gene sequencing. Mice were treated with water or PPX for 14 days, feces were collected, and then, the mice were infected with Cr and feces collected again at day 6 postinfection. DNA was isolated from the fecal samples and subjected to 16S rRNA gene sequencing to determine the microbial composition. Differences in the composition of the microbiome were observed for untreated and PPX-treated mice with PPX mice having decreased diversity. PPX treatment decreased the Firmicutes/Bacteroidetes ratio by increasing Bacteroidetes and decreasing Firmicutes levels. The decrease in Firmicutes was driven by a large reduction in Lactobacillus. PPX treatment increased the abundance of Proteobacteria and Verrucomicrobiae and decreased Actinobacteria. The relative abundance of Cr reached 22% in water-treated but only 5% in PPX-treated infected mice. These results suggest that consumption of pomegranate polyphenols altered the microbiome, making it more resistant to displacement by infection with Cr, indicating that pomegranate polyphenols may mitigate the pathogenic effects of food-borne bacterial pathogens.
Collapse
Affiliation(s)
- Nadja S. George
- Environmental Microbial and Food Safety LabBeltsville Agricultural Research CenterAgricultural Research Service, Department of AgricultureBeltsvilleMaryland
| | - Lumei Cheung
- Diet Genomics and Immunology LabBeltsville Human Nutrition Research CenterAgricultural Research Service, Department of AgricultureBeltsvilleMaryland
| | - Devanand L. Luthria
- Composition Methods Development LabBeltsville Human Nutrition Research CenterAgricultural Research Service, Department of AgricultureBeltsvilleMaryland
| | - Monica Santin
- Environmental Microbial and Food Safety LabBeltsville Agricultural Research CenterAgricultural Research Service, Department of AgricultureBeltsvilleMaryland
| | - Harry D. Dawson
- Diet Genomics and Immunology LabBeltsville Human Nutrition Research CenterAgricultural Research Service, Department of AgricultureBeltsvilleMaryland
| | - Arvind A. Bhagwat
- Environmental Microbial and Food Safety LabBeltsville Agricultural Research CenterAgricultural Research Service, Department of AgricultureBeltsvilleMaryland
- Present address:
Central Chinmaya Mission TrustPowaiMumbaiIndia
| | - Allen D. Smith
- Diet Genomics and Immunology LabBeltsville Human Nutrition Research CenterAgricultural Research Service, Department of AgricultureBeltsvilleMaryland
| |
Collapse
|
42
|
Missailidis D, Annesley SJ, Fisher PR. Pathological Mechanisms Underlying Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Diagnostics (Basel) 2019; 9:E80. [PMID: 31330791 PMCID: PMC6787592 DOI: 10.3390/diagnostics9030080] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The underlying molecular basis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is not well understood. Characterized by chronic, unexplained fatigue, a disabling payback following exertion ("post-exertional malaise"), and variably presenting multi-system symptoms, ME/CFS is a complex disease, which demands a concerted biomedical investigation from disparate fields of expertise. ME/CFS research and patient treatment have been challenged by the lack of diagnostic biomarkers and finding these is a prominent direction of current work. Despite these challenges, modern research demonstrates a tangible biomedical basis for the disorder across many body systems. This evidence is mostly comprised of disturbances to immunological and inflammatory pathways, autonomic and neurological dysfunction, abnormalities in muscle and mitochondrial function, shifts in metabolism, and gut physiology or gut microbiota disturbances. It is possible that these threads are together entangled as parts of an underlying molecular pathology reflecting a far-reaching homeostatic shift. Due to the variability of non-overlapping symptom presentation or precipitating events, such as infection or other bodily stresses, the initiation of body-wide pathological cascades with similar outcomes stemming from different causes may be implicated in the condition. Patient stratification to account for this heterogeneity is therefore one important consideration during exploration of potential diagnostic developments.
Collapse
Affiliation(s)
- Daniel Missailidis
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia.
| |
Collapse
|
43
|
Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019; 9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We now have an increased understanding of the genetics, cell biology, and physiology of electrolyte transport processes in the mammalian intestine, due to the availability of sophisticated methodologies ranging from genome wide association studies to CRISPR-CAS technology, stem cell-derived organoids, 3D microscopy, electron cryomicroscopy, single cell RNA sequencing, transgenic methodologies, and tools to manipulate cellular processes at a molecular level. This knowledge has simultaneously underscored the complexity of biological systems and the interdependence of multiple regulatory systems. In addition to the plethora of mammalian neurohumoral factors and their cross talk, advances in pyrosequencing and metagenomic analyses have highlighted the relevance of the microbiome to intestinal regulation. This article provides an overview of our current understanding of electrolyte transport processes in the small and large intestine, their regulation in health and how dysregulation at multiple levels can result in disease. Intestinal electrolyte transport is a balance of ion secretory and ion absorptive processes, all exquisitely dependent on the basolateral Na+ /K+ ATPase; when this balance goes awry, it can result in diarrhea or in constipation. The key transporters involved in secretion are the apical membrane Cl- channels and the basolateral Na+ -K+ -2Cl- cotransporter, NKCC1 and K+ channels. Absorption chiefly involves apical membrane Na+ /H+ exchangers and Cl- /HCO3 - exchangers in the small intestine and proximal colon and Na+ channels in the distal colon. Key examples of our current understanding of infectious, inflammatory, and genetic diarrheal diseases and of constipation are provided. © 2019 American Physiological Society. Compr Physiol 9:947-1023, 2019.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
44
|
Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proc Natl Acad Sci U S A 2019; 116:15140-15149. [PMID: 31182588 PMCID: PMC6660755 DOI: 10.1073/pnas.1814558116] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Functional loss of gut barrier integrity with subsequent increased antigen trafficking and occurrence of low-grade intestinal inflammation precede the onset of type 1 diabetes (T1D) in patients and preclinical models, thus suggesting that these events are mechanistically linked to the autoimmune pathogenesis of the disease. However, a causal relationship between increased intestinal permeability and autoimmune diabetes was never demonstrated. Our data show that breakage of gut barrier continuity leads to activation of islet-reactive T cells in the intestine, thus triggering autoimmune diabetes. An important implication of our findings is that restoration of a healthy gut barrier through microbiota and diet modulation in diabetes-prone individuals could reduce intestinal activation of islet-reactive T cells and prevent T1D occurrence. Low-grade intestinal inflammation and alterations of gut barrier integrity are found in patients affected by extraintestinal autoimmune diseases such as type 1 diabetes (T1D), but a direct causal link between enteropathy and triggering of autoimmunity is yet to be established. Here, we found that onset of autoimmunity in preclinical models of T1D is associated with alterations of the mucus layer structure and loss of gut barrier integrity. Importantly, we showed that breakage of the gut barrier integrity in BDC2.5XNOD mice carrying a transgenic T cell receptor (TCR) specific for a beta cell autoantigen leads to activation of islet-reactive T cells within the gut mucosa and onset of T1D. The intestinal activation of islet-reactive T cells requires the presence of gut microbiota and is abolished when mice are depleted of endogenous commensal microbiota by antibiotic treatment. Our results indicate that loss of gut barrier continuity can lead to activation of islet-specific T cells within the intestinal mucosa and to autoimmune diabetes and provide a strong rationale to design innovative therapeutic interventions in “at-risk” individuals aimed at restoring gut barrier integrity to prevent T1D occurrence.
Collapse
|
45
|
Yang H, Yu HB, Bhinder G, Ryz NR, Lee J, Yang H, Fotovati A, Gibson DL, Turvey SE, Reid GS, Vallance BA. TLR9 limits enteric antimicrobial responses and promotes microbiota-based colonisation resistance during Citrobacter rodentium infection. Cell Microbiol 2019; 21:e13026. [PMID: 30893495 DOI: 10.1111/cmi.13026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/15/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022]
Abstract
Mammalian cells express an array of toll-like receptors to detect and respond to microbial pathogens, including enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC). These clinically important attaching and effacing (A/E) pathogens infect the apical surface of intestinal epithelial cells, causing inflammation as well as severe diarrheal disease. Because EPEC and EHEC are human-specific, the related murine pathogen Citrobacter rodentium has been widely used to define how hosts defend against A/E pathogens. This study explored the role of TLR9, a receptor that recognises unmethylated CpG dinucleotides present in bacterial DNA, in promoting host defence against C. rodentium. Infected Tlr9-/- mice suffered exaggerated intestinal damage and carried significantly higher (10-100 fold) pathogen burdens in their intestinal tissues as compared with wild type (WT) mice. C. rodentium infection also induced increased antimicrobial responses, as well as hyperactivation of NF-κB signalling in the intestines of Tlr9-/- mice. These changes were associated with accelerated depletion of the intestinal microbiota in Tlr9-/- mice as compared with WT mice. Notably, antibiotic-based depletion of the gut microbiota in WT mice prior to infection increased their susceptibility to the levels seen in Tlr9-/- mice. Our results therefore indicate that TLR9 signalling suppresses intestinal antimicrobial responses, thereby promoting microbiota-mediated colonisation resistance against C. rodentium infection.
Collapse
Affiliation(s)
- Hyungjun Yang
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Hong B Yu
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Ganive Bhinder
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Natasha R Ryz
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia Lee
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Hong Yang
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Abbas Fotovati
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Deanna L Gibson
- Department of Biology, The Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregor S Reid
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
Anderson SJ, Lockhart JS, Estaki M, Quin C, Hirota SA, Alston L, Buret AG, Hancock TM, Petri B, Gibson DL, Morck DW. Effects of Azithromycin on Behavior, Pathologic Signs, and Changes in Cytokines, Chemokines, and Neutrophil Migration in C57BL/6 Mice Exposed to Dextran Sulfate Sodium. Comp Med 2019; 69:4-15. [PMID: 30545428 PMCID: PMC6382047 DOI: 10.30802/aalas-cm-18-000001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/08/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022]
Abstract
Here we characterized the murine dextran sulfate sodium (DSS) model of acute colitis. Specifically, we evaluated azithromycin and metronidazole treatment regimens to assess their effects on animal wellbeing, pathologic changes, barrier function, cytokine and chemokine profiles, and neutrophil migration in colon tissue. Azithromycin treatment significantly reduced the severity of colitis, as assessed through body weight change, water consumption, macroscopic lesions, and animal behaviors (activity level, climbing, and grooming), but did not alter food consumption or feeding behavior. Mucosal barrier function (evaluated by using FITC-labeled dextran) was decreased after DSS exposure; azithromycin did not significantly alter barrier function in mice with colitis, whereas metronidazole exacerbated the colitis-related deficit in barrier function. In addition, metronidazole appeared to exacerbate disease as assessed through water consumption and animal behaviors (overall activity, climbing, grooming, and drinking) but had no effect on weight loss, macroscopic lesions, or eating behavior. Pathologic changes were typical for DSS treatment. Antibiotic treatment resulted in reduced levels of proinflammatory cytokines and chemokines and decreased neutrophil adhesion and emigration in DSS-exposed mice. The results highlight the importance of clinical and behavioral assessments in addition to laboratory evaluation as tools to evaluate animal welfare and therapeutic efficacy in disease models. Data from this study suggest that azithromycin may convey some benefits in the mouse DSS colitis model through modulation of the immune response, including neutrophil migration into tissues, whereas metronidazole may exacerbate colitis.
Collapse
Affiliation(s)
- Stefanie J Anderson
- Animal Health Unit, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Joey S Lockhart
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Mehrbod Estaki
- Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | - Candice Quin
- Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | - Simon A Hirota
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Laurie Alston
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Trina M Hancock
- Animal Health Unit, University of Calgary, Calgary, Alberta, Canada
| | - Björn Petri
- Department of Microbiology, Immunology, and Infectious Diseases, Department of Physiology and Pharmacology, Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | - Douglas W Morck
- Animal Health Unit, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada;,
| |
Collapse
|
47
|
Dam B, Misra A, Banerjee S. Role of Gut Microbiota in Combating Oxidative Stress. OXIDATIVE STRESS IN MICROBIAL DISEASES 2019:43-82. [DOI: 10.1007/978-981-13-8763-0_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
48
|
Gagné-Sansfacon J, Langlois A, Langlois MJ, Coulombe G, Tremblay S, Vaillancourt-Lavigueur V, Qu CK, Menendez A, Rivard N. The tyrosine phosphatase Shp-2 confers resistance to colonic inflammation by driving goblet cell function and crypt regeneration. J Pathol 2018; 247:135-146. [PMID: 30376595 PMCID: PMC6519201 DOI: 10.1002/path.5177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/30/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022]
Abstract
The Src homology‐2 domain‐containing tyrosine phosphatase 2 (SHP‐2) regulates many cellular processes, including proliferation, differentiation and survival. Polymorphisms in the gene encoding SHP‐2 are associated with an increased susceptibility to develop ulcerative colitis. We recently reported that intestinal epithelial cell (IEC)‐specific deletion of Shp‐2 in mice (Shp‐2IEC‐KO) leads to chronic colitis and colitis‐associated cancer. This suggests that SHP‐2‐dependent signaling protects the colonic epithelium against inflammation and colitis‐associated cancer development. To verify this hypothesis, we generated mice expressing the Shp‐2 E76K activated form specifically in IEC. Our results showed that sustained Shp‐2 activation in IEC increased intestine and crypt length, correlating with increased cell proliferation and migration. Crypt regeneration capacity was also markedly enhanced, as revealed by ex vivo organoid culture. Shp‐2 activation alters the secretory cell lineage, as evidenced by increased goblet cell numbers and mucus secretion. Notably, these mice also demonstrated elevated ERK signaling in IEC and exhibited resistance against both chemical‐ and Citrobacter rodentium‐induced colitis. In contrast, mice with IEC‐specific Shp‐2 deletion displayed reduced ERK signaling and rapidly developed chronic colitis. Remarkably, expression of an activated form of Braf in Shp‐2‐deficient mice restored ERK activation, goblet cell production and prevented colitis. Altogether, our results indicate that chronic activation of Shp‐2/ERK signaling in the colonic epithelium confers resistance to mucosal erosion and colitis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jessica Gagné-Sansfacon
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Ariane Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Geneviève Coulombe
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Sarah Tremblay
- Department of Microbiology and Infectiology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Vanessa Vaillancourt-Lavigueur
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Cheng-Kui Qu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alfredo Menendez
- Department of Microbiology and Infectiology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
49
|
Microbiota and Pathogen Proteases Modulate Type III Secretion Activity in Enterohemorrhagic Escherichia coli. mBio 2018; 9:mBio.02204-18. [PMID: 30514785 PMCID: PMC6282197 DOI: 10.1128/mbio.02204-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The gut microbiota is usually regarded as providing colonization resistance against enteric pathogens. However, some pathogens evolved to thrive with the aid of certain members of the microbiota. Several Gram-negative bacteria employ type three secretion systems (T3SSs), which are molecular syringes that deliver effector proteins to host cells, hijacking host cell function. Here we show that the T3SS of enterohemorrhagic E. coli (EHEC) is cleaved by self and microbiota-derived proteases. Self-cleavage limits effector translocation, while cleavage by the microbiota member Bacteroides thetaiotamicron (Bt) exacerbates effector translocation and lesion formation on epithelial cells. Enteric pathogens have complex interactions with the gut microbiota. Most of what is known about them has focused on microbiota-derived metabolites or small molecules that serve as nutrients and/or signals to aid in growth or transcriptionally regulate virulence gene expression. A common virulence strategy is to express a type III secretion system (T3SS), which is a molecular syringe deployed by many Gram-negative pathogens to hijack host cell function. Enterohemorrhagic Escherichia coli (EHEC) requires its T3SS to colonize the intestinal tract and cause disease. Here we report that a prominent member of the intestinal microbiota, Bacteroides thetaiotamicron (Bt), secretes proteases that cleave the translocon of the T3SS of EHEC to enhance effector translocation into host cells. This is in contrast from an endogenous protease from EHEC itself (namely, EspP) that cleaves the translocon protein EspB in a different site to limit effector translocation. The EspB protein forms the T3SS pore in mammalian cells, and pore proteins are conserved in the T3SSs from several pathogens. This is the first demonstration of a commensal species directly processing a pathogen’s T3SS, posing a new paradigm for how the microbiota can influence the severity of disease caused by bacterial pathogens. Because T3SSs are employed by many pathogens, this phenomenon has broad implications to commensal-pathogen relationships.
Collapse
|
50
|
Lamas B, Michel ML, Waldschmitt N, Pham HP, Zacharioudaki V, Dupraz L, Delacre M, Natividad JM, Costa GD, Planchais J, Sovran B, Bridonneau C, Six A, Langella P, Richard ML, Chamaillard M, Sokol H. Card9 mediates susceptibility to intestinal pathogens through microbiota modulation and control of bacterial virulence. Gut 2018; 67:1836-1844. [PMID: 28790160 DOI: 10.1136/gutjnl-2017-314195] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVE In association with innate and adaptive immunity, the microbiota controls the colonisation resistance against intestinal pathogens. Caspase recruitment domain 9 (CARD9), a key innate immunity gene, is required to shape a normal gut microbiota. Card9-/- mice are more susceptible to the enteric mouse pathogen Citrobacter rodentium that mimics human infections with enteropathogenic and enterohaemorrhagic Escherichia coli. Here, we examined how CARD9 controls C. rodentium infection susceptibility through microbiota-dependent and microbiota-independent mechanisms. DESIGN C. rodentium infection was assessed in conventional and germ-free (GF) wild-type (WT) and Card9-/- mice. To explore the impact of Card9-/-microbiota in infection susceptibility, GF WT mice were colonised with WT (WT→GF) or Card9-/- (Card9-/- →GF) microbiota before C. rodentium infection. Microbiota composition was determined by 16S rDNA gene sequencing. Inflammation severity was determined by histology score and lipocalin level. Microbiota-host immune system interactions were assessed by quantitative PCR analysis. RESULTS CARD9 controls pathogen virulence in a microbiota-independent manner by supporting a specific humoral response. Higher susceptibility to C. rodentium-induced colitis was observed in Card9-/- →GF mice. The microbiota of Card9-/- mice failed to outcompete the monosaccharide-consuming C. rodentium, worsening the infection severity. A polysaccharide-enriched diet counteracted the ecological advantage of C. rodentium and the defective pathogen-specific antibody response in Card9-/- mice. CONCLUSIONS CARD9 modulates the susceptibility to intestinal infection by controlling the pathogen virulence in a microbiota-dependent and microbiota-independent manner. Genetic susceptibility to intestinal pathogens can be overridden by diet intervention that restores humoural immunity and a competing microbiota.
Collapse
Affiliation(s)
- Bruno Lamas
- Sorbonne University - Université Pierre et Marie Curie (UPMC), Paris, France.,Avenir Team Gut Microbiota and Immunity, Equipe de Recherche Labélisée (ERL) 1157, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité Mixte de Recherche (UMR) 7203, Centre National de Recherche Scientifique (CNRS), Paris, France.,Laboratoire de BioMolécules (LBM), Centre Hospitalo-Universitaire (CHU) Saint-Antoine 27 rue de Chaligny, Paris, France.,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Marie-Laure Michel
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Nadine Waldschmitt
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.,INSERM U1019, Team 11, Equipe FRM, INSERM, Lille, France
| | | | - Vassiliki Zacharioudaki
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.,INSERM U1019, Team 11, Equipe FRM, INSERM, Lille, France
| | - Louise Dupraz
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Myriam Delacre
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.,INSERM U1019, Team 11, Equipe FRM, INSERM, Lille, France
| | - Jane M Natividad
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Gregory Da Costa
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Julien Planchais
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Bruno Sovran
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Chantal Bridonneau
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Adrien Six
- Department of Immunology-Immunopathology-Immunotherapy, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS959, Paris, France
| | - Philippe Langella
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Mathias L Richard
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Mathias Chamaillard
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.,INSERM U1019, Team 11, Equipe FRM, INSERM, Lille, France
| | - Harry Sokol
- Sorbonne University - Université Pierre et Marie Curie (UPMC), Paris, France.,Avenir Team Gut Microbiota and Immunity, Equipe de Recherche Labélisée (ERL) 1157, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Unité Mixte de Recherche (UMR) 7203, Centre National de Recherche Scientifique (CNRS), Paris, France.,Laboratoire de BioMolécules (LBM), Centre Hospitalo-Universitaire (CHU) Saint-Antoine 27 rue de Chaligny, Paris, France.,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, France.,Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hopitaux de Paris, UPMC, Paris, France
| |
Collapse
|