1
|
Li H, Zhuang P, Liu X, Li Y, Ao Y, Tian Y, Jia W, Zhang Y, Jiao J. Marine N-3 Fatty Acids Mitigate Hyperglycemia in Prediabetes by Improving Muscular Glucose Transporter 4 Translocation and Glucose Homeostasis. RESEARCH (WASHINGTON, D.C.) 2025; 8:0683. [PMID: 40302785 PMCID: PMC12038161 DOI: 10.34133/research.0683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have been proposed to benefit cardiometabolic health. However, the relationship between the intake of DHA and EPA and type 2 diabetes (T2D) risk remains equivocal, and the effects of DHA and EPA on skeletal muscle, the primary organ for glucose metabolism, merit further investigation. Here, we show that habitual fish oil supplementation was associated with a 9% lower T2D risk and significantly interacted with variants at GLUT4 in a prospective cohort of 48,358 people with prediabetes. Muscular metabolome analysis in the animal study revealed that DHA and EPA altered branched-chain amino acids, creatine, and glucose oxidation-related metabolites, concurrently with elevated muscular glycogen synthase and pyruvate dehydrogenase contents that promoted glucose disposal. Further myotube investigation revealed that DHA and EPA promoted muscular GLUT4 translocation by elevating Rab GTPases and target-SNARE expression. Together, DHA and EPA supplementation provides a promising approach for T2D prevention through targeting muscular glucose homeostasis, including enhancing GLUT4 translocation, glycogen synthesis, and aerobic glycolysis.
Collapse
Affiliation(s)
- Haoyu Li
- Department of Endocrinology, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Reources and High-value Utilization, College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Xiaohui Liu
- Department of Endocrinology, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
- Department of Nutrition, School of Public Health,
Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yin Li
- Department of Nutrition, School of Public Health,
Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yang Ao
- Department of Nutrition, School of Public Health,
Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yimei Tian
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Reources and High-value Utilization, College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Wei Jia
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Reources and High-value Utilization, College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Reources and High-value Utilization, College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
- Department of Nutrition, School of Public Health,
Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
2
|
Liao J, Zhang P, Yin J, Zhang X. New insights into the effects of dietary amino acid composition on meat quality in pigs: A review. Meat Sci 2025; 221:109721. [PMID: 39642438 DOI: 10.1016/j.meatsci.2024.109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Pork is an affordable protein source with higher nutrient density. In recent years, meat quality in pigs is getting increasing attention, which has a direct impact on the economic value of pork. Dietary amino acids play a key role in pig production, not only regulating pig growth and health, but also contributing significantly to meat quality. In this review, we discuss the effect of skeletal muscle composition on meat quality. Importantly, we summarize the levels of essential amino acids (EAAs), such as lysine, methionine, threonine, tryptophan and branched-chain amino acids (BCAAs), in diets for finishing pigs to improve meat quality. The beneficial effects of flavor amino acids on meat quality, including flavor production, muscle fiber-type composition and intramuscular fat deposition, are further systematically summarized. We also focus on the impact of dietary amino acid levels on environmental benefits, although research in this area is still limited. Considering that the previously established EAA requirements are based on the principle of maximizing growth rate and feed conversion, this review will provide new insights into the effects of dietary amino acids on aspects of meat quality and highlight the current gaps to promote future research.
Collapse
Affiliation(s)
- Jialong Liao
- Frontier Science Center of Molecular Design Breeding, Ministry of Education, Beijing 100193, China; State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pengguang Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingdong Yin
- Frontier Science Center of Molecular Design Breeding, Ministry of Education, Beijing 100193, China; State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- Frontier Science Center of Molecular Design Breeding, Ministry of Education, Beijing 100193, China; State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Chen H, Wang X, Zhang J, Xie D, Pu Y. Exploration of TCM syndrome types of the material basis and risk prediction of Wilson disease liver fibrosis based on 1H NMR metabolomics. J Pharm Biomed Anal 2024; 245:116167. [PMID: 38663257 DOI: 10.1016/j.jpba.2024.116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/23/2024]
Abstract
Wilson disease (WD) is an autosomal recessive disorder characterized by abnormal copper metabolism. The accumulation of copper in the liver can progress to liver fibrosis and, ultimately, cirrhosis, which is a primary cause of death in WD patients. Metabonomic technology offers an effective approach to investigate the traditional Chinese medicine (TCM) syndrome types of WD-related liver fibrosis by monitoring the alterations in small molecule metabolites within the body. In this study, we employed 1H-Nuclear Magnetic Resonance (1H NMR) metabonomics to assess the metabolic profiles associated with five TCM syndrome types of WD-related liver fibrosis and analyzed the diagnostic and predictive capabilities of various metabolites. The study found a variety of metabolites, each with varying levels of diagnostic and predictive capabilities. Furthermore, the discerned differential metabolic pathways were primarily associated with various pathways involving carbohydrate metabolism, amino acid metabolism, and lipid metabolism. This study has identified various characteristic metabolic markers and pathways associated with different TCM syndromes of liver fibrosis in WD, providing a substantial foundation for investigating the mechanisms underlying these TCM syndromes.
Collapse
Affiliation(s)
- Hong Chen
- The First Clinical Medical College of Anhui University of Chinese Medicine, Hefei, China
| | - Xie Wang
- The First Clinical Medical College of Anhui University of Chinese Medicine, Hefei, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China.
| | - Daojun Xie
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yue Pu
- The First Clinical Medical College of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Lu X, Yang R, Chen Y, Chen D. NAD metabolic therapy in metabolic dysfunction-associated steatotic liver disease: Possible roles of gut microbiota. iScience 2024; 27:109174. [PMID: 38405608 PMCID: PMC10884928 DOI: 10.1016/j.isci.2024.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly named non-alcoholic fatty liver disease (NAFLD), is induced by alterations of hepatic metabolism. As a critical metabolites function regulator, nicotinamide adenine dinucleotide (NAD) nowadays has been validated to be effective in the treatment of diet-induced murine model of MASLD. Additionally, gut microbiota has been reported to have the potential to prevent MASLD by dietary NAD precursors metabolizing together with mammals. However, the underlying mechanism remains unclear. In this review, we hypothesized that NAD enhancing mitochondrial activity might reshape a specific microbiota signature, and improve MASLD progression demonstrated by fecal microbiota transplantation. Here, this review especially focused on the mechanism of Microbiota-Gut-Liver Axis together with NAD metabolism for the MASLD progress. Notably, we found significant changes in Prevotella associated with NAD in a gut microbiome signature of certain MASLD patients. With the recent researches, we also inferred that Prevotella can not only regulate the level of NAD pool by boosting the carbon metabolism, but also play a vital part in regulating the branched-chain amino acid (BCAA)-related fatty acid metabolism pathway. Altogether, our results support the notion that the gut microbiota contribute to the dietary NAD precursors metabolism in MASLD development and the dietary NAD precursors together with certain gut microbiota may be a preventive or therapeutic strategy in MASLD management.
Collapse
Affiliation(s)
- Xinyi Lu
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Rui Yang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Yu Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Daozhen Chen
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
- Department of Laboratory, Haidong Second People’s Hospital, Haidong 810699, China
| |
Collapse
|
5
|
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X, Zhuang A. Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity. J Exp Clin Cancer Res 2023; 42:291. [PMID: 37924140 PMCID: PMC10623764 DOI: 10.1186/s13046-023-02845-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023] Open
Abstract
Metabolic reprogramming of amino acids has been increasingly recognized to initiate and fuel tumorigenesis and survival. Therefore, there is emerging interest in the application of amino acid metabolic strategies in antitumor therapy. Tremendous efforts have been made to develop amino acid metabolic node interventions such as amino acid antagonists and targeting amino acid transporters, key enzymes of amino acid metabolism, and common downstream pathways of amino acid metabolism. In addition to playing an essential role in sustaining tumor growth, new technologies and studies has revealed amino acid metabolic reprograming to have wide implications in the regulation of antitumor immune responses. Specifically, extensive crosstalk between amino acid metabolism and T cell immunity has been reported. Tumor cells can inhibit T cell immunity by depleting amino acids in the microenvironment through nutrient competition, and toxic metabolites of amino acids can also inhibit T cell function. In addition, amino acids can interfere with T cells by regulating glucose and lipid metabolism. This crucial crosstalk inspires the exploitation of novel strategies of immunotherapy enhancement and combination, owing to the unprecedented benefits of immunotherapy and the limited population it can benefit. Herein, we review recent findings related to the crosstalk between amino acid metabolism and T cell immunity. We also describe possible approaches to intervene in amino acid metabolic pathways by targeting various signaling nodes. Novel efforts to combine with and unleash potential immunotherapy are also discussed. Hopefully, some strategies that take the lead in the pipeline may soon be used for the common good.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| |
Collapse
|
6
|
Renaud V, Faucher M, Dubois MJ, Pilon G, Varin T, Marette A, Bazinet L. Impact of a Whey Protein Hydrolysate Treated by Electrodialysis with Ultrafiltration Membrane on the Development of Metabolic Syndrome and the Modulation of Gut Microbiota in Mice. Int J Mol Sci 2023; 24:12968. [PMID: 37629151 PMCID: PMC10454911 DOI: 10.3390/ijms241612968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The development of Metabolic Syndrome (MetS) affects a large number of people around the world and represents a major issue in the field of health. Thus, it is important to implement new strategies to reduce its prevalence, and various approaches are currently under development. Recently, an eco-friendly technology named electrodialysis with ultrafiltration membrane (EDUF) was used successfully for the first time at a semi-industrial scale to produce three fractions concentrated in bioactive peptides (BPs) from an enzymatically hydrolyzed whey protein concentrate (WPC): the initial (F1), the final (F2) and the recovery fraction (F3), and it was demonstrated in vitro that F3 exhibited interesting DPP-IV inhibitory effects. Therefore, the present study aimed to evaluate the effect of each fraction on in vivo models of obesity. A daily dose of 312.5 mg/kg was administered to High Fat/High Sucrose diet (HFHS) induced C57BL6/J mice for eight weeks. The physiological parameters of each group and alterations of their gut microbiota by the fractions were assessed. Little effect of the different fractions was demonstrated on the physiological state of the mice, probably due to the digestion process of the BP content. However, there were changes in the gut microbiota composition and functions of mice treated with F3.
Collapse
Affiliation(s)
- Valentine Renaud
- Institute of Nutrition and Functional Food (INAF) and Department of Food Sciences, Pavillon Paul-Comtois, Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (M.F.); (M.-J.D.); (G.P.); (T.V.); (A.M.)
- Laboratoire de Transformation Alimentaire et Procédés ElectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Pavillon Paul Comtois, Université Laval, Québec, QC G1V 0A6, Canada
| | - Mélanie Faucher
- Institute of Nutrition and Functional Food (INAF) and Department of Food Sciences, Pavillon Paul-Comtois, Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (M.F.); (M.-J.D.); (G.P.); (T.V.); (A.M.)
- Laboratoire de Transformation Alimentaire et Procédés ElectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Pavillon Paul Comtois, Université Laval, Québec, QC G1V 0A6, Canada
| | - Marie-Julie Dubois
- Institute of Nutrition and Functional Food (INAF) and Department of Food Sciences, Pavillon Paul-Comtois, Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (M.F.); (M.-J.D.); (G.P.); (T.V.); (A.M.)
- Québec Heart and Lung Institute, Department of medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Food (INAF) and Department of Food Sciences, Pavillon Paul-Comtois, Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (M.F.); (M.-J.D.); (G.P.); (T.V.); (A.M.)
- Québec Heart and Lung Institute, Department of medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Thibault Varin
- Institute of Nutrition and Functional Food (INAF) and Department of Food Sciences, Pavillon Paul-Comtois, Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (M.F.); (M.-J.D.); (G.P.); (T.V.); (A.M.)
- Québec Heart and Lung Institute, Department of medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - André Marette
- Institute of Nutrition and Functional Food (INAF) and Department of Food Sciences, Pavillon Paul-Comtois, Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (M.F.); (M.-J.D.); (G.P.); (T.V.); (A.M.)
- Québec Heart and Lung Institute, Department of medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Food (INAF) and Department of Food Sciences, Pavillon Paul-Comtois, Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (M.F.); (M.-J.D.); (G.P.); (T.V.); (A.M.)
- Laboratoire de Transformation Alimentaire et Procédés ElectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Pavillon Paul Comtois, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Marrone G, Serra A, Miele L, Biolato M, Liguori A, Grieco A, Gasbarrini A. Branched chain amino acids in hepatic encephalopathy and sarcopenia in liver cirrhosis: Evidence and uncertainties. World J Gastroenterol 2023; 29:2905-2915. [PMID: 37274800 PMCID: PMC10237095 DOI: 10.3748/wjg.v29.i19.2905] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
Liver cirrhosis is commonly associated with nutritional alterations, reported in 20% of patients with compensated disease and over 60% of patients with decompensated cirrhosis. Nutritional disturbances are associated with a worse prognosis and increased risk of complication. Serum levels of branched-chain amino acids (BCAAs) are decreased in patients with liver cirrhosis. The imbalance of amino acids levels has been suggested to be associated with the development of complications, such as hepatic encephalopathy and sarcopenia, and to affect the clinical presentation and prognosis of these patients. Several studies investigated the efficacy of BCAAs supplementation as a therapeutic option in liver cirrhosis, but uncertainties remain about the real efficacy, the best route of administration, and dosage.
Collapse
Affiliation(s)
- Giuseppe Marrone
- Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Amato Serra
- Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Luca Miele
- Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Marco Biolato
- Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Antonio Liguori
- Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Antonio Grieco
- Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Antonio Gasbarrini
- Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
8
|
Moissl AP, Lorkowski S, Meinitzer A, Pilz S, Scharnagl H, Delgado GE, Kleber ME, Krämer BK, Pieske B, Grübler MR, Brussee H, von Lewinski D, Toplak H, Fahrleitner-Pammer A, März W, Tomaschitz A. Association of branched-chain amino acids with mortality-the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. iScience 2023; 26:106459. [PMID: 37020954 PMCID: PMC10067756 DOI: 10.1016/j.isci.2023.106459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Branched-chain amino acids (BCAAs) are effectors of metabolic diseases, but their impact on mortality is largely unknown. We investigated the association of BCAA with risk factors and mortality in 2,236 participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study using linear and Cox regression. Adiponectin, hemoglobin, C-peptide, hemoglobin A1c, and homoarginine showed the strongest association with BCAA concentration (all p < 0.001). During a median follow-up of 10.5 years, 715 participants died, including 450 cardiovascular-related deaths. BCAA concentrations were inversely associated with the risk of all-cause and cardiovascular mortality (HR [95% CI] per 1-SD increase in log-BCAA: 0.75 [0.69-0.82] and 0.72 [0.65-0.80], respectively) after adjustment for potential confounders. BCAAs are directly associated with metabolic risk but inversely with mortality in persons with intermediate-to-high cardiovascular risk. Further studies are warranted to evaluate the diagnostic and therapeutic utility of BCAA in the context of cardiovascular diseases.
Collapse
|
9
|
Mendelian Randomization Analysis Provides Insights into the Pathogenesis of Serum Levels of Branched-Chain Amino Acids in Cardiovascular Disease. Metabolites 2023; 13:metabo13030403. [PMID: 36984843 PMCID: PMC10059809 DOI: 10.3390/metabo13030403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Several observational studies have indicated an association between high serum levels of branched-chain amino acids (BCAAs) and an increased risk of cardiovascular disease (CVD). To assess whether theses associations reflect causality, we carried out two-sample Mendelian randomization (MR). Single-nucleotide polymorphisms (SNPs) associated with BCAA were evaluated in 10 studies, including 24,925 participants. The association between SNPs and coronary artery disease (CAD) were assessed using summary estimates from the CARDIoGRAMplusC4D consortium. Further MR analysis of BCAAs and seven CVD outcomes was performed. The BCAA-raising gene functions were also analyzed. MR analyses revealed a risk-increasing causal relationship between serum BCAA concentrations and CAD (odds ratio 1.08; 95% confidence interval (CI) 1.02–1.14), which was partly mediated by blood pressure and type 2 diabetes. BCAA also demonstrated a causal relationship with ischemic CVD events induced by plaque rupture and thrombosis (false discovery rate <0.05). Two BCAA-raising genes (MRL33 and CBLN1) were preferentially associated with myocardial infarction risk in the presence of atherosclerosis (p < 0.003). Functional analysis of the BCAA-raising genes suggested the causal involvement of two pathophysiological pathways, including glucose metabolism (PPM1K and TRMT61A) related to plaque progression, and the newly discovered neuroendocrine disorders regulating blood pressure (MRPL33, CBLN1, and C2orf16) related to plaque rupture and thrombosis. This comprehensive MR analysis provided insights into the potential causal mechanisms linking BCAA with CVD risk and suggested targeting neuroendocrine disorders as a potential strategy for the prevention of CVD. These results warrant further studies to elucidate the mechanisms underlying these reported causal associations.
Collapse
|
10
|
Goodarzi P, Habibi M, Gorton MW, Walsh K, Tarkesh F, Fuhrig M, Pezeshki A. Dietary Isoleucine and Valine: Effects on Lipid Metabolism and Ureagenesis in Pigs Fed with Protein Restricted Diets. Metabolites 2023; 13:89. [PMID: 36677013 PMCID: PMC9861042 DOI: 10.3390/metabo13010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
A mixture of valine (Val) and isoleucine (Ile) not only decreases the negative impact of very low protein (VLP) diets on the growth of pigs, but also influences the nitrogen (N) balance and lipid metabolism; however, the underlying pathways are not well understood. This study aimed to investigate the effect of dietary Val and Ile on lipogenesis, lipolysis, and ureagenesis under protein restriction. After one week of acclimation, forty three-week-old pigs were randomly assigned to following dietary treatments (n = 8/group) for 5 weeks: positive control (PC): normal protein diet; negative control (NC): VLP diet; HV: NC supplemented with Val; HI: NC supplemented with Ile; and HVI: NC supplemented with both Val and Ile. HVI partially improved the body weight and completely recovered the feed intake (FI) of pigs fed with NC. HVI increased thermal radiation and improved the glucose clearance. HVI had a lower blood triglyceride than PC and blood urea N than NC. NC and HV promoted lipogenesis by increasing the transcript of fatty acid synthase (FAS) in the liver and lipoprotein lipase (LPL) in adipose tissue but reducing hormone-sensitive lipase (HSL) in the liver. HVI reduced the increased rate of lipogenesis induced by the NC group through normalizing the mRNA abundance of hepatic FAS, sterol regulatory element binding transcription factor 1, and HSL and LPL in adipose tissue. NC, HV, HI, and HVI reduced the ureagenesis by decreasing the protein abundance of carbamoyl phosphate synthetase I, ornithine transcarboxylase, and arginosuccinate lyase in the liver. Overall, HVI improved the growth, FI, and glucose clearance, and decreased the rate of lipogenesis induced by VLP diets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
11
|
Doestzada M, Zhernakova DV, C L van den Munckhof I, Wang D, Kurilshikov A, Chen L, Bloks VW, van Faassen M, Rutten JHW, Joosten LAB, Netea MG, Wijmenga C, Riksen NP, Zhernakova A, Kuipers F, Fu J. Systematic analysis of relationships between plasma branched-chain amino acid concentrations and cardiometabolic parameters: an association and Mendelian randomization study. BMC Med 2022; 20:485. [PMID: 36522747 PMCID: PMC9753387 DOI: 10.1186/s12916-022-02688-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids that are associated with an increased risk of cardiometabolic diseases (CMD). However, there are still only limited insights into potential direct associations between BCAAs and a wide range of CMD parameters, especially those remaining after correcting for covariates and underlying causal relationships. METHODS To shed light on these relationships, we systematically characterized the associations between plasma BCAA concentrations and a large panel of 537 CMD parameters (including atherosclerosis-related parameters, fat distribution, plasma cytokine concentrations and cell counts, circulating concentrations of cardiovascular-related proteins and plasma metabolites) in 1400 individuals from the Dutch population cohort LifeLines DEEP and 294 overweight individuals from the 300OB cohort. After correcting for age, sex, and BMI, we assessed associations between individual BCAAs and CMD parameters. We further assessed the underlying causality using Mendelian randomization. RESULTS A total of 838 significant associations were detected for 409 CMD parameters. BCAAs showed both common and specific associations, with the most specific associations being detected for isoleucine. Further, we found that obesity status substantially affected the strength and direction of associations for valine, which cannot be corrected for using BMI as a covariate. Subsequent univariable Mendelian randomization (UVMR), after removing BMI-associated SNPs, identified seven significant causal relationships from four CMD traits to BCAA levels, mostly for diabetes-related parameters. However, no causal effects of BCAAs on CMD parameters were supported. CONCLUSIONS Our cross-sectional association study reports a large number of associations between BCAAs and CMD parameters. Our results highlight some specific associations for isoleucine, as well as obesity-specific effects for valine. MR-based causality analysis suggests that altered BCAA levels can be a consequence of diabetes and alteration in lipid metabolism. We found no MR evidence to support a causal role for BCAAs in CMD. These findings provide evidence to (re)evaluate the clinical importance of individual BCAAs in CMD diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Marwah Doestzada
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia
| | - Inge C L van den Munckhof
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daoming Wang
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lianmin Chen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joost H W Rutten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department for Genomics Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.,Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, European Institute of Healthy Ageing (ERIBA), Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. .,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
Du JY, Shu L, Zhou YT, Zhang L. Branched-chain amino acids supplementation has beneficial effects on the progression of liver cirrhosis: A meta-analysis. World J Clin Cases 2022; 10:10984-10996. [PMID: 36338230 PMCID: PMC9631141 DOI: 10.12998/wjcc.v10.i30.10984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 09/19/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Liver cirrhosis (LC) is currently the 11th most common cause of death and 15th cause of morbidity globally. The treatment of LC is mainly aimed at etiological intervention, lifestyle intervention, prevention and treatment of complications and nutritional treatment. Nutritional treatment of LC mainly includes increasing dietary intake, food intake time and branched-chain amino acids (BCAAs). Despite the recommendation of BCAAs in some guidelines, adverse effects have been reported in studies so the efficacy and safety of BCAAs remain controversial. Currently, BCAAs have been widely used in chronic liver disease, while the summary of the effect of BCAAs on long-term prognosis is rare.
AIM To determine the effects of BCAAs in patients with LC.
METHODS The PubMed, Cochrane Library, Embase and Web of Science databases were searched. The retrieval deadline was 1 October 2021 and there were no language restrictions set in the retrieval. The study was performed in strict accordance with the inclusion and exclusion criteria. Nine studies were finally included. The primary outcome was complications of LC. The secondary outcomes were nutritional status and liver function. This meta-analysis used the Review Manager, version 5 statistical package (Cochrane Collaboration, Oxford, England) for analysis.
RESULTS The analysis included nine studies that consisted of 1080 patients (554 in the BCAA groups and 526 in the control groups). The nine studies were randomized control trials (RCTs). The quality of the studies was assessed using the risk of bias method recommended by the Cochrane Collaboration. BCAAs reduced the rate of complications in LC patients [Risk ratio: 0.70, 95% confidence interval (CI): 0.56-0.88, P = 0.002] and improved patients’ albumin levels [std mean difference SMD: 0.26, 95%CI: 0.12-0.40, P = 0.0002]. Meanwhile, BCAAs significantly ameliorated the levels of alanine transaminase (SMD: -2.03, 95%CI: -2.52 to -1.53, P < 0.00001) and aspartate aminotransferase (SMD: -1.8, 95%CI: -2.14 to -1.46, P < 0.00001). Meanwhile, glucose in the LC was significantly increased in BCAA-treated patients (MD: 13.04, 95%CI: 6.81-19.89, P = 0.0002).
CONCLUSION BCAAs reduce the incidence of complications in patients with LC and ameliorate nutritional status.
Collapse
Affiliation(s)
- Jia-Yu Du
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610000, Sichuan Province, China
| | - Liu Shu
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu-Tian Zhou
- Department of Geriatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan Province, China
| | - Li Zhang
- Department of Geriatrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
13
|
Hellmich C, Wojtowicz EE. You are what you eat: How to best fuel your immune system. Front Immunol 2022; 13:1003006. [PMID: 36211413 PMCID: PMC9533172 DOI: 10.3389/fimmu.2022.1003006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Normal bone marrow (BM) homeostasis ensures consistent production of progenitor cells and mature blood cells. This requires a reliable supply of nutrients in particular free fatty acids, carbohydrates and protein. Furthermore, rapid changes can occur in response to stress such as infection which can alter the demand for each of these metabolites. In response to infection the haematopoietic stem cells (HSCs) must respond and expand rapidly to facilitate the process of emergency granulopoiesis required for the immediate immune response. This involves a shift from the use of glycolysis to oxidative phosphorylation for energy production and therefore an increased demand for metabolites. Thus, the right balance of each dietary component helps to maintain not only normal homeostasis but also the ability to quickly respond to systemic stress. In addition, some dietary components can drive chronic inflammatory changes in the absence of infection or immune stress, which in turn can impact on overall immune function. The optimal nutrition for the best immunological outcomes would therefore be a diet that supports the functions of immune cells allowing them to initiate effective responses against pathogens but also to resolve the response rapidly when necessary and to avoid any underlying chronic inflammation. In this review we discuss how these key dietary components can alter immune function, what is their impact on bone marrow metabolism and how changes in dietary intake of each of these can improve the outcomes of infections.
Collapse
Affiliation(s)
- Charlotte Hellmich
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Edyta E. Wojtowicz
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
14
|
Modulation of hyperglycemia by sodium alginate is associated with changes of serum metabolite and gut microbiota in mice. Carbohydr Polym 2022; 291:119359. [DOI: 10.1016/j.carbpol.2022.119359] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022]
|
15
|
Prokopidis K, Kirwan RP, Giannos P, Triantafyllidis KK, Kechagias KS, Forbes SC, Candow DG. The impact of branched-chain amino acid supplementation on measures of glucose homeostasis in individuals with hepatic disorders: A systematic review of clinical studies. J Hum Nutr Diet 2022; 36:603-611. [PMID: 35996869 DOI: 10.1111/jhn.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Branched chain amino acid (BCAA) supplementation may influence glucose metabolism in individuals with impaired glycemic profile. This systematic review investigated the effects of isolated BCAA supplementation on measures of glucose homeostasis in individuals with hepatic disorders. METHODS We searched PubMed, Web of Science, Cochrane Library, and Scopus for published clinical trials that investigated the effects of isolated BCAA supplementation on measures of glucose homeostasis, including serum glucose and insulin, glycated hemoglobin (HbA1c) levels, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) scores. RESULTS Eleven trials met the inclusion criteria. Only one study revealed a decrease in serum glucose from BCAA supplementation compared to three studies that showed increases. Five studies demonstrated no significant changes in serum glucose, and two studies displayed no changes in HbA1c following BCAA supplementation. Serum levels of insulin were decreased in three studies, remained unchanged in one, whilst increased in the remaining three studies. BCAA supplementation reduced HOMA-IR scores in two studies, increased HOMA-IR scores in another two or resulted in no changes in two other studies. CONCLUSIONS BCAA supplementation in isolation had no effect on overall glucose homeostasis in individuals with hepatic disorders, although some improvements on serum insulin levels and HOMA-IR scores were observed. Overall, there is little evidence to support the utilization of BCAA supplementation as a potential nutritional strategy for improving measures of glucose homeostasis in individuals with hepatic disorders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Richard P Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Panagiotis Giannos
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | | | - Konstantinos S Kechagias
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK.,Department of Nutrition & Dietetics, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Scott C Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| |
Collapse
|
16
|
Lu W, Hu C. Molecular biomarkers for gestational diabetes mellitus and postpartum diabetes. Chin Med J (Engl) 2022; 135:1940-1951. [PMID: 36148588 PMCID: PMC9746787 DOI: 10.1097/cm9.0000000000002160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Gestational diabetes mellitus (GDM) is a growing public health problem worldwide that threatens both maternal and fetal health. Identifying individuals at high risk for GDM and diabetes after GDM is particularly useful for early intervention and prevention of disease progression. In the last decades, a number of studies have used metabolomics, genomics, and proteomic approaches to investigate associations between biomolecules and GDM progression. These studies clearly demonstrate that various biomarkers reflect pathological changes in GDM. The established markers have potential use as screening and diagnostic tools in GDM and in postpartum diabetes research. In the present review, we summarize recent studies of metabolites, single-nucleotide polymorphisms, microRNAs, and proteins associated with GDM and its transition to postpartum diabetes, with a focus on their predictive value in screening and diagnosis.
Collapse
Affiliation(s)
- Wenqian Lu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai 201400, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai 201400, China
| |
Collapse
|
17
|
Iwai S, Hasegawa T, Ikeda HO, Tsujikawa A. Branched Chain Amino Acids Promote ATP Production Via Translocation of Glucose Transporters. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 35930269 PMCID: PMC9363681 DOI: 10.1167/iovs.63.9.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We have previously shown that maintenance of ATP levels is a promising strategy for preventing neuronal cell death, and that branched chain amino acids (BCAAs) enhanced cellular ATP levels in cultured cells and antagonized cell death. BCAAs attenuated photoreceptor degeneration and retinal ganglion cell death in rodent models of retinal degeneration or glaucoma. This study aimed to elucidate the mechanisms through which BCAAs enhance ATP production. Methods Intracellular ATP concentration was measured in HeLa cells under glycolysis and citric acid cycle inhibited conditions. Next, glucose uptake was quantified in HeLa cells and in 661W retinal photoreceptor-derived cells under glycolysis inhibition, endoplasmic reticulum stress, and glucose transporters (GLUTs) inhibited conditions, by measuring the fluorescence of fluorescently labeled deoxy-glucose analog using flow cytometry. Then, the intracellular behavior of GLUT1 and GLUT3 were observed in HeLa or 661W cells transfected with enhanced green fluorescent protein-GLUTs. Results BCAAs recovered intracellular ATP levels during glycolysis inhibition and during citric acid cycle inhibition. BCAAs significantly increased glucose uptake and recovered decreased glucose uptake induced by endoplasmic reticulum stress or glycolysis inhibition. However, BCAAs were unable to increase intracellular ATP levels or glucose uptake when GLUTs were inhibited. Fluorescence microscopy revealed that supplementation of BCAAs enhanced the translocation of GLUTs proteins to the plasma membrane over time. Conclusions BCAAs increase ATP production by promoting glucose uptake through promotion of glucose transporters translocation to the plasma membrane. These results may help expand the clinical application of BCAAs in retinal neurodegenerative diseases, such as glaucoma and retinal degeneration.
Collapse
Affiliation(s)
- Sachiko Iwai
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoko Hasegawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
18
|
Lee HA, Chang Y, Sung PS, Yoon EL, Lee HW, Yoo JJ, Lee YS, An J, Song DS, Cho YY, Kim SU, Kim YJ. Therapeutic mechanisms and beneficial effects of non-antidiabetic drugs in chronic liver diseases. Clin Mol Hepatol 2022; 28:425-472. [PMID: 35850495 PMCID: PMC9293616 DOI: 10.3350/cmh.2022.0186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
The global burden of chronic liver disease (CLD) is substantial. Due to the limited indication of and accessibility to antiviral therapy in viral hepatitis and lack of effective pharmacological treatment in nonalcoholic fatty liver disease, the beneficial effects of antidiabetics and non-antidiabetics in clinical practice have been continuously investigated in patients with CLD. In this narrative review, we focused on non-antidiabetic drugs, including ursodeoxycholic acid, silymarin, dimethyl4,4'-dimethoxy-5,6,5',6'-dimethylenedixoybiphenyl-2,2'-dicarboxylate, L-ornithine L-aspartate, branched chain amino acids, statin, probiotics, vitamin E, and aspirin, and summarized their beneficial effects in CLD. Based on the antioxidant, anti-inflammatory properties, and regulatory functions in glucose or lipid metabolism, several non-antidiabetic drugs have shown beneficial effects in improving liver histology, aminotransferase level, and metabolic parameters and reducing risks of hepatocellular carcinoma and mortality, without significant safety concerns, in patients with CLD. Although the effect as the centerpiece management in patients with CLD is not robust, the use of these non-antidiabetic drugs might be potentially beneficial as an adjuvant or combined treatment strategy.
Collapse
Affiliation(s)
- Han Ah Lee
- Departments of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Young Chang
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Pil Soo Sung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eileen L. Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Jeong-Ju Yoo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Do Seon Song
- Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Youn Cho
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Yeh WY, Lin YL, Yang WY, Chou CH, Wu YHS, Chen YC. Functional chicken-liver hydrolysates ameliorate insulin resistance and cognitive decline in streptozotocin-induced diabetic mice. Poult Sci 2022; 101:101887. [PMID: 35477132 PMCID: PMC9058603 DOI: 10.1016/j.psj.2022.101887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/22/2022] Open
Abstract
As part of the slaughtering processing in Taiwan, approximately 10,000 metric tons of broiler livers are produced yearly. However, these livers are regarded as waste. Our team has successfully developed a functional chicken-liver hydrolysate (CLH) with several useful activities. It has been reported that there is a positive relationship between diabetes mellitus (DM) patients and cognitive decline. To maximize broiler-livers' utilization and add value, we investigated the modulative effects of the CLHs on glucose homeostasis and cognitive decline in streptozotocin (STZ) induced diabetic mice. After a 9-wk experiment, CLH supplementation lowered blood glucose by increasing GLUT4 protein expressions in the brains, livers, and muscles of STZ-induced mice (P < 0.05). CLHs also enhanced antioxidant capacities in the livers and brains of STZ-induced mice. Amended memory and alternation behavior were tested by using water and Y-maze assays (P < 0.05). Besides, STZ-induced mice with CLH supplementation had less contracted neuron bodies in the hippocampus and lower (P < 0.05) Aβ depositions in the dentate gyrus area. Less AGE accumulation and apoptosis-related proteins (RAGE, JNK, and activated Caspase 3) in the brains of STZ-induced mice were also detected by supplementing CLHs (P < 0.05). In conclusion, the results from this study offer not only scientific evidence on the amelioration of insulin resistance and cognitive decline in hyperglycemia but also add value to this byproduct.
Collapse
Affiliation(s)
- Wei-Yu Yeh
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Wen-Yuan Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Chung-Hsi Chou
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center, National Taiwan University, Taipei City 106, Taiwan
| | - Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan.
| |
Collapse
|
20
|
Zeng S, Wang Z, Zhang P, Yin Z, Huang X, Tang X, Shi L, Guo K, Liu T, Wang M, Qiu H. Machine learning approach identifies meconium metabolites as potential biomarkers of neonatal hyperbilirubinemia. Comput Struct Biotechnol J 2022; 20:1778-1784. [PMID: 35495115 PMCID: PMC9027383 DOI: 10.1016/j.csbj.2022.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiota plays an important role in the early stages of human life. Our previous study showed that the abundance of intestinal flora involved in galactose metabolism was altered and correlated with increased serum bilirubin levels in children with jaundice. We conducted the present study to systematically evaluate alterations in the meconium metabolome of neonates with jaundice and search for metabolic markers associated with neonatal jaundice. Methods We included 68 neonates with neonatal hyperbilirubinemia, also known as neonatal jaundice (NJ) and 68 matched healthy controls (HC), collected meconium samples from them at birth, and performed metabolomic analysis via liquid chromatography-mass spectrometry. Results Gut metabolites enabled clearly distinguishing the neonatal jaundice (NJ) and healthy control (HC) groups. We also identified the compositions of the gut metabolites that differed significantly between the NJ and HC groups; these differentially significant metabolites were enriched in aminyl tRNA biosynthesis; pantothenic acid and coenzyme biosynthesis; and the valine, leucine and isoleucine biosynthesis pathways. Gut branched-chain amino acid (BCAA) levels were positively correlated with serum bilirubin levels, and the area under the receiver operating characteristic curve of the random forest classifier model based on BCAAs, proline, methionine, phenylalanine and total bilirubin reached 96.9%, showing good potential for diagnostic applications. Machine learning-based causal inference analysis revealed the causal effect of BCAAs on serum total bilirubin and NJ. Conclusions Altered gut metabolites in neonates with jaundice showed that increased BCAAs and total serum bilirubin were positively correlated. BCAAs proline, methionine, phenylalanine are potential biomarkers of NJ.
Collapse
Key Words
- AUROC, the area under the ROC
- BCAA, branched-chain amino acid
- Gut microbiota
- HC, healthy controls
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LC-MS, liquid chromatography-mass spectrometry
- MSUD, maple syrup urine disease
- Machine learning
- NJ, neonatal jaundice
- OPLS-DA, orthogonal partial least squares-discriminant analysis
- PCA, the principal component analysis
- PLS, partial least-squares regression
- ROC, receiver operating characteristic
- branched-chain amino acid
- causal inference
- metabolome
- neonatal hyperbilirubinemia
Collapse
Affiliation(s)
- Shujuan Zeng
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Guangdong 518116, China
| | - Zhangxing Wang
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Guangdong 518109, China
| | - Peng Zhang
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Guangdong 518109, China
| | - Zhaoqing Yin
- Division of Neonatology, The People's Hospital of Dehong Autonomous Prefecture, Mangshi, Yunnan 678400, China
| | - Xunbin Huang
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Guangdong 518116, China
| | - Xisheng Tang
- Oncology Department, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Lindong Shi
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Guangdong 518116, China
| | - Kaiping Guo
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Guangdong 518116, China
| | - Ting Liu
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Guangdong 518116, China
| | - Mingbang Wang
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai 201102, China
- Microbiome Therapy Center, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Huixian Qiu
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Guangdong 518116, China
| |
Collapse
|
21
|
Cui C, Wu C, Wang J, Zheng X, Ma Z, Zhu P, Guan W, Zhang S, Chen F. Leucine supplementation during late gestation globally alters placental metabolism and nutrient transport via modulation of the PI3K/AKT/mTOR signaling pathway in sows. Food Funct 2022; 13:2083-2097. [PMID: 35107470 DOI: 10.1039/d1fo04082k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a previously published study we reported that sow dietary leucine supplementation during late pregnancy significantly improved newborn piglet birth weight by stimulating protein synthesis in the longissimus dorsi muscle. However, there is still limited knowledge as to whether leucine can exert its effects on the placenta, one of the most important temporal organs during pregnancy, to promote maternal-fetal nutrient supply and thus contribute to fetal intrauterine development. Therefore, we tested this hypothesis in the present study. In total, 150 sows at day 90 of gestation were divided into three groups and fed with either a control diet (CON), CON + 0.4% Leu or CON + 0.8% Leu, respectively, until parturition. Placental metabolomics, full spectrum amino acids and nutrient transporters were systematically analyzed after sample collection. The results indicated that Leu supplementation led to an altered placental metabolism with an increased number of metabolites related to glycolysis and the oxidation of fatty acids, as well as elevated levels of amino acid accumulation in the placenta. In addition, nutrient transporters of amino acids, glucose and fatty acids in the placenta were globally up-regulated and several enzymes related to energy metabolism, including hexokinase, succinate dehydrogenase, lactated hydrogenase, glycogen phosphorylase and hydroxyacyl-CoA-dehydrogenase, were also significantly increased with no change observed in the antioxidative status of those groups with Leu supplementation. Furthermore, the phosphorylation of PI3K, Akt, and mTOR was enhanced in the placenta of sows undergoing Leu treatment. Collectively, we concluded that supplementing the diets of sows with Leu during late gestation globally altered placental metabolism and promoted maternal-fetus nutrient transport (amino acids, glucose, and fatty acids) via modulation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Chang Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Caichi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Ziwei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Pengwei Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
22
|
Ismaiel A, Bucsa C, Farcas A, Leucuta DC, Popa SL, Dumitrascu DL. Effects of Branched-Chain Amino Acids on Parameters Evaluating Sarcopenia in Liver Cirrhosis: Systematic Review and Meta-Analysis. Front Nutr 2022; 9:749969. [PMID: 35155535 PMCID: PMC8828569 DOI: 10.3389/fnut.2022.749969] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Sarcopenia is a major element of malnutrition in liver cirrhosis (LC) and is present in 30-70% of this population, being associated with a poor overall prognosis due to related complications such as hepatic encephalopathy, ascites, and portal hypertension. This systematic review and meta-analysis aimed to evaluate the effects of branched-chain amino acids (BCAA) supplementation on several parameters used to assess sarcopenia in LC. MATERIALS AND METHODS A comprehensive systematic electronic search was performed in PubMed, EMBASE, Scopus, Cochrane Library, and ClinicalTrials.gov databases using predefined keywords. We included full articles that satisfied the inclusion and exclusion criteria. Quality assessment of included studies was conducted using Cochrane Collaboration's tool and NHLBI quality assessment tools for interventional and observational studies, respectively. The principal summary outcome was the mean difference (MD) in the evaluated parameters. We performed a pre- and post-intervention analysis and comparison between two intervention groups (BCAA vs. controls) of the evaluated parameters when applicable. RESULTS A total of 12 studies involving 1,225 subjects were included in our qualitative synthesis and five in our quantitative synthesis. At baseline vs. post-intervention assessment, subjects receiving BCAA supplementation were found to have a significant improvement in skeletal muscle index (SMI) (-0.347 [95% CI -0.628-0.067; p-value 0.015]) and mid-arm muscle circumference (MAMC) (-1.273 [95% CI (-2.251-0.294; p-value 0.011]). However, no improvements were reported in handgrip (-0.616 [95% CI -2.818-1.586; p-value 0.584]) and triceps subcutaneous fat (1.10 [95% CI -0.814-3.014; p-value 0.263]). CONCLUSION Following BCAA supplementation, several parameters used to evaluate sarcopenia in LC patients were found to be improved, including SMI and MAMC. Nevertheless, no improvements were seen in handgrip and triceps subcutaneous fat. Results should be interpreted with caution due to the limited methodological quality of the included studies.
Collapse
Affiliation(s)
- Abdulrahman Ismaiel
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Camelia Bucsa
- Drug Information Research Center, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea Farcas
- Drug Information Research Center, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel-Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stefan-Lucian Popa
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan L. Dumitrascu
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Bioactivities of In Vitro Transepithelial Transported Peptides from Cooked Chicken Breast. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Silva JVV, Ganesan S, Wickramasinghe HKJP, Stepanchenko N, Kaya CA, Beitz DC, Appuhamy JADRN. Effects of branched-chain amino acids on glucose uptake and lactose synthesis rates in bovine mammary epithelial cells and lactating mammary tissue slices. J Dairy Sci 2021; 105:1717-1730. [PMID: 34802743 DOI: 10.3168/jds.2021-20950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022]
Abstract
Even though supplementations of essential AA (EAA) are often related to increased lactose yields in dairy cows, underlying mechanisms connecting EAA availability to the mammary glands and lactose synthesis are poorly understood. The objective of this study was to examine the effects of branched-chain AA (BCAA) including Leu, Ile, and Val on (1) glucose transporter (GLUT1) abundance and glucose uptake, (2) the abundance of proteins regulating lactose synthesis pathway, and (3) fractional synthesis rates of lactose (FSR) using bovine mammary epithelial cells (BMEC) and mammary tissues slices (MTS). The BMEC (n = 4) were allocated randomly to regular Dulbecco's Modified Eagle Medium with Ham's F12 (DMEM/F12) media (+EAA) or +EAA deficient (by 90%) in all EAA (-EAA), all BCAA (-BCAA), only Leu (-Leu), only Ile (-Ile) or only Val (-Val). Western immunoblotting analyses, depletion of glucose in media, and a proteomic analysis were performed to determine the abundance of GLUT1 in the cell membrane, net glucose uptake, and the abundance of enzymes involved in lactose synthesis pathway in BMEC, respectively. The MTS (n = 6) were allocated randomly to DMEM/F12 media having all EAA and 13C-glucose at concentrations similar to plasma concentrations of cows (+EAAp), and +EAAp deprived of all BCAA (-BCAAp) or only Leu (-Leup) for 3 h. The 13C enrichments of free glucose pool in MTS (EGlu-free) and the enrichments of glucose incorporated into lactose in MTS and media [ELactose-bound (T&M)] were determined and used in calculating FSR. In BMEC, -BCAA increased the fraction of total GLUT1 translocated to the cell membrane and the fraction that was potentially glycosylated compared with +EAA. Among individual BCAA, only -Leu was associated with a 63% increase in GLUT1 translocated to the cell membrane and a 40% increase in glucose uptake of BMEC. The -BCAA tended to be related to a 75% increase in the abundance of hexokinase in BMEC. Deprivation of Leu tended to increase glucose uptake of MTS but did not affect EGlu-free, ELactose-bound (T&M), or FSR relative to +EAAp. On the other hand, -BCAAp did not affect glucose uptake of MTS but was related to lower ELactose-bound (T&M), or FSR relative to +EAAp. Considering together, decreasing Leu supply to mammary tissues enhances GLUT1 and thus glucose uptake, which, however, does not affect lactose synthesis rates. Moreover, the deficiency of other BCAA, Ile, and Val alone or together with the deficiency of Leu seemed to decrease lactose synthesis rates without affecting glucose uptake. The data also emphasize the importance of addressing the effect of the supply of other nutrients to the mammary glands than the precursor supply in describing the synthesis of a milk component.
Collapse
Affiliation(s)
- J V V Silva
- Department of Animal Science, Iowa State University, Ames 50011
| | - S Ganesan
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - N Stepanchenko
- Department of Animal Science, Iowa State University, Ames 50011
| | - C A Kaya
- Department of Livestock and Crop Production, Dicle University, Diyarbakir, 21280, Turkey
| | - D C Beitz
- Department of Animal Science, Iowa State University, Ames 50011
| | | |
Collapse
|
25
|
Liu ZC, Wng Q, Zheng Q, Zhao WL, Chen C, Ruan LY, Xu H, Meng HH, Zhao WL, Liu WY, Zhong JG, Luo BZX, Norbu K, Zhou F, Wang JS, Feng X. Acute hepatotoxicity and nephrotoxicity risk assessment of the Tibetan medicine 25 flavors of the turquoise pill based on 1H-NMR metabonomics. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:113916. [PMID: 33571615 DOI: 10.1016/j.jep.2021.113916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 25 flavors of the turquoise pill, a traditional Tibetan medicine for the treatment of various types of hepatitis, has not been investigated on its safety, especially the component mineral turquoise, which is believed to be essential but worried for its potential toxicity. AIM OF THE STUDY To explore the potential acute toxicity and function of 25 flavors of the turquoise pill and turquoise, the possible mechanism of the effects of turquoise and 25 flavors of the turquoise pill were systematically studied based on 1H NMR metabolomics. MATERIALS AND METHODS The rats were administered with turquoise and 25 flavors of the turquoise pill by gavage for 7 days, and samples of serum, liver, and kidney were collected. The potential toxicity and function of turquoise and 25 flavors of the turquoise pill on the liver and kidney of SD rats were evaluated by 1H NMR metabonomics, histopathology, and biochemical indexes. RESULTS The results demonstrated that 25 flavors of the turquoise pill could scavenge free oxygen radicals, strengthen aerobic respiration and inhibit glycolysis in the liver. It did not cause oxidative stress in the kidney with no obvious damage. By modulation of branched-chain amino acids (BCAAs), 25 flavors of the turquoise pill can improve the utilization of glucose and promote aerobic respiration of the kidney. CONCLUSION Considering the high dosage and short duration used in this study relative to their typical clinical usage, administration of 25 flavors of the turquoise pill and its component mineral turquoise are safe to livers and kidneys.
Collapse
Affiliation(s)
- Zhi-Chao Liu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qian Wng
- Beijing Hospital of Tibetan Medicine, China Tibetology Research Center, Beijing, 100029, China
| | - Qi Zheng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wen-Li Zhao
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Cheng Chen
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Ling-Yu Ruan
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Han Xu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Hui-Hui Meng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wen-Long Zhao
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wen-Ya Liu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jia-Ge Zhong
- Beijing Hospital of Tibetan Medicine, China Tibetology Research Center, Beijing, 100029, China
| | - Bu-Zha-Xi Luo
- Beijing Hospital of Tibetan Medicine, China Tibetology Research Center, Beijing, 100029, China
| | - Kelsang Norbu
- Tibet Ganlu Tibetan Medicine Co., Ltd, Lhasa, 851400, China
| | - Feng Zhou
- Tibet Ganlu Tibetan Medicine Co., Ltd, Lhasa, 851400, China
| | - Jun-Song Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| | - Xin Feng
- Beijing Hospital of Tibetan Medicine, China Tibetology Research Center, Beijing, 100029, China.
| |
Collapse
|
26
|
Mann G, Mora S, Madu G, Adegoke OAJ. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Front Physiol 2021; 12:702826. [PMID: 34354601 PMCID: PMC8329528 DOI: 10.3389/fphys.2021.702826] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are critical for skeletal muscle and whole-body anabolism and energy homeostasis. They also serve as signaling molecules, for example, being able to activate mammalian/mechanistic target of rapamycin complex 1 (mTORC1). This has implication for macronutrient metabolism. However, elevated circulating levels of BCAAs and of their ketoacids as well as impaired catabolism of these amino acids (AAs) are implicated in the development of insulin resistance and its sequelae, including type 2 diabetes, cardiovascular disease, and of some cancers, although other studies indicate supplements of these AAs may help in the management of some chronic diseases. Here, we first reviewed the catabolism of these AAs especially in skeletal muscle as this tissue contributes the most to whole body disposal of the BCAA. We then reviewed emerging mechanisms of control of enzymes involved in regulating BCAA catabolism. Such mechanisms include regulation of their abundance by microRNA and by post translational modifications such as phosphorylation, acetylation, and ubiquitination. We also reviewed implications of impaired metabolism of BCAA for muscle and whole-body metabolism. We comment on outstanding questions in the regulation of catabolism of these AAs, including regulation of the abundance and post-transcriptional/post-translational modification of enzymes that regulate BCAA catabolism, as well the impact of circadian rhythm, age and mTORC1 on these enzymes. Answers to such questions may facilitate emergence of treatment/management options that can help patients suffering from chronic diseases linked to impaired metabolism of the BCAAs.
Collapse
Affiliation(s)
| | | | | | - Olasunkanmi A. J. Adegoke
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
27
|
Murga-Garrido SM, Hong Q, Cross TWL, Hutchison ER, Han J, Thomas SP, Vivas EI, Denu J, Ceschin DG, Tang ZZ, Rey FE. Gut microbiome variation modulates the effects of dietary fiber on host metabolism. MICROBIOME 2021; 9:117. [PMID: 34016169 PMCID: PMC8138933 DOI: 10.1186/s40168-021-01061-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/24/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND There is general consensus that consumption of dietary fermentable fiber improves cardiometabolic health, in part by promoting mutualistic microbes and by increasing production of beneficial metabolites in the distal gut. However, human studies have reported variations in the observed benefits among individuals consuming the same fiber. Several factors likely contribute to this variation, including host genetic and gut microbial differences. We hypothesized that gut microbial metabolism of dietary fiber represents an important and differential factor that modulates how dietary fiber impacts the host. RESULTS We examined genetically identical gnotobiotic mice harboring two distinct complex gut microbial communities and exposed to four isocaloric diets, each containing different fibers: (i) cellulose, (ii) inulin, (iii) pectin, (iv) a mix of 5 fermentable fibers (assorted fiber). Gut microbiome analysis showed that each transplanted community preserved a core of common taxa across diets that differentiated it from the other community, but there were variations in richness and bacterial taxa abundance within each community among the different diet treatments. Host epigenetic, transcriptional, and metabolomic analyses revealed diet-directed differences between animals colonized with the two communities, including variation in amino acids and lipid pathways that were associated with divergent health outcomes. CONCLUSION This study demonstrates that interindividual variation in the gut microbiome is causally linked to differential effects of dietary fiber on host metabolic phenotypes and suggests that a one-fits-all fiber supplementation approach to promote health is unlikely to elicit consistent effects across individuals. Overall, the presented results underscore the importance of microbe-diet interactions on host metabolism and suggest that gut microbes modulate dietary fiber efficacy. Video abstract.
Collapse
Affiliation(s)
- Sofia M Murga-Garrido
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI, 53706, USA
- PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Qilin Hong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Tzu-Wen L Cross
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI, 53706, USA
- Present Address: Department of Nutrition Science, Purdue University, 700 W. State Street, Stone Hall 205, West Lafayette, IN, 47907, USA
| | - Evan R Hutchison
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI, 53706, USA
| | - Jessica Han
- Wisconsin Institute for Discovery, Madison, WI, USA
| | | | - Eugenio I Vivas
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI, 53706, USA
| | - John Denu
- Wisconsin Institute for Discovery, Madison, WI, USA
| | - Danilo G Ceschin
- Unidad de Bioinformática Traslacional, Centro de Investigación en Medicina Traslacional Severo Amuchástegui, Instituto Universitario de Ciencias Biomédicas de Córdoba, Av. Naciones Unidas 420, 5000, Córdoba, CP, Argentina
| | - Zheng-Zheng Tang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.
- Wisconsin Institute for Discovery, Madison, WI, USA.
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI, 53706, USA.
| |
Collapse
|
28
|
Improvement of Total Flavonoids from Dracocephalum moldavica L. in Rats with Chronic Mountain Sickness through 1H-NMR Metabonomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6695346. [PMID: 34007298 PMCID: PMC8110374 DOI: 10.1155/2021/6695346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/12/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Background We analyzed the effects of total flavonoids from Dracocephalum moldavica L. (D. moldavica L.) on improving chronic mountain sickness (CMS) in rats using the NMR hydrogen spectrum (1H-NMR) metabonomics technology. Method We extracted the total flavonoids of D. moldavica L with 60% ethanol reflux. A CMS model was established with 48 Sprague-Dawley (SD) rats, which were then randomly divided into six groups (n = 8): control group (normal saline, 0.4 mL/100 g/d, ig); model group (normal saline, 0.4 mL/100 g/d, ig); nifedipine group (nifedipine tablets, 2.7 mg/kg/d, ig); and high-, middle-, and low-dose groups of total flavonoids from D. moldavica L. (DML.H, DML.M, and DML.L, receiving total flavonoids from D. moldavica L. at 400, 200, and 100 mg/kg/d, ig, respectively). The sera of the rats in all the groups were determined, and NMR hydrogen spectrum metabolomics was analyzed. The serum contents of apolipoproteins A1 (Apo-A1) and E (Apo-E) were determined, and histopathological changes in the brain tissue of each group were observed. Results Serum tests showed that total flavonoids from D. moldavica L. significantly increased the Apo-A1 and Apo-E levels in rats with CMS (P < 0.05). The results of serum metabonomics showed that total flavonoids from D. moldavica L can alleviate amino acid, energy, and lipid metabolism disorders in rats with CMS. Pathohistological examination of brain tissue showed that these flavonoids improved pathological changes, such as meningeal vasodilation, hyperemia, edema of brain parenchyma, inflammatory cell infiltration, increase in perivascular space, and increase in pyramidal cells. Conclusion Total flavonoids from D. moldavica L. have potential therapeutic effects on CMS. The possible mechanism is the reduction of oxidative damage through the alleviation of metabolism disorder.
Collapse
|
29
|
Zhu X, Wang W, Cui C. Hypoglycemic Effect of Hydrophobic BCAA Peptides Is Associated with Altered PI3K/Akt Protein Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4446-4452. [PMID: 33822608 DOI: 10.1021/acs.jafc.1c00726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The hypoglycemic activities of the hydrophobic branched-chain amino acid (BCAA) peptides from seabuckthorn seed protein were preliminarily characterized in type 2 diabetic db/db mice. Four novel BCAA peptides (18.27 ± 0.26% (w/w): Leu/Ile-Pro-Glu-Asp-Pro, Asp-Leu/Ile-Val-Gly-Glu, Leu/Ile-Pro, and Leu/Ile-Pro-Leu/Ile) were identified in seabuckthorn seed protein. The protein content in seabuckthorn seed protein hydrolysate, obtained using 80% ethanol, was 78.8 ± 1.4% (w/w). Animal experiments revealed that oral administration of BCAA peptides (all four) significantly reversed the diabetic symptoms. Compared to the db/db group (control), body weight and insulin resistance were ameliorated after treatment with BCAA peptides (0.5, 1.0, 2.0 mg/(g d)). Also, the treatment remarkably reduced the fasting blood glucose (FBG) levels by upregulation of glucose transporter 4 (GULT4). Moreover, BCAA peptides significantly increased the muscle glycogen content (22.6 ± 0.9 nmol/mg) via the downregulation of protein kinase B (AKT) and glycogen synthase kinase-3β (GSK-3β) while increasing the activity of glycogen synthase (GS). BCAA peptides also significantly upregulated the protein levels of phosphatidylinositol 3-kinase (PI3K). We show that BCAA peptides alleviated insulin resistance associated with altered PI3K/Akt protein expression in the skeletal muscle of db/db mice.
Collapse
Affiliation(s)
- Xiping Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wei Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| |
Collapse
|
30
|
Heinemann-Yerushalmi L, Bentovim L, Felsenthal N, Vinestock RC, Michaeli N, Krief S, Silberman A, Cohen M, Ben-Dor S, Brenner O, Haffner-Krausz R, Itkin M, Malitsky S, Erez A, Zelzer E. BCKDK regulates the TCA cycle through PDC in the absence of PDK family during embryonic development. Dev Cell 2021; 56:1182-1194.e6. [PMID: 33773101 DOI: 10.1016/j.devcel.2021.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Pyruvate dehydrogenase kinases (PDK1-4) inhibit the TCA cycle by phosphorylating pyruvate dehydrogenase complex (PDC). Here, we show that PDK family is dispensable for murine embryonic development and that BCKDK serves as a compensatory mechanism by inactivating PDC. First, we knocked out all four Pdk genes one by one. Surprisingly, Pdk total KO embryos developed and were born in expected ratios but died by postnatal day 4 because of hypoglycemia or ketoacidosis. Moreover, PDC was phosphorylated in these embryos, suggesting that another kinase compensates for PDK family. Bioinformatic analysis implicated branched-chain ketoacid dehydrogenase kinase (Bckdk), a key regulator of branched-chain amino acids (BCAAs) catabolism. Indeed, knockout of Bckdk and Pdk family led to the loss of PDC phosphorylation, an increase in PDC activity and pyruvate entry into the TCA cycle, and embryonic lethality. These findings reveal a regulatory crosstalk hardwiring BCAA and glucose catabolic pathways, which feed the TCA cycle.
Collapse
Affiliation(s)
| | - Lital Bentovim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Carmel Vinestock
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nofar Michaeli
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alon Silberman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marina Cohen
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Biological Services, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ori Brenner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rebecca Haffner-Krausz
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
31
|
Chen JW, Lin YL, Samuel Wu YH, Wang SY, Chou CH, Chen YC. Ameliorative effects of functional crude-chalaza hydrolysates on the hepatosteatosis development induced by a high-fat diet. Poult Sci 2021; 100:101009. [PMID: 33647717 PMCID: PMC7921881 DOI: 10.1016/j.psj.2021.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Approximately 400 metric tons of egg chalazae, a byproduct in the liquid-egg processing plant, are produced yearly but always regarded as a waste in Taiwan. Our team successfully developed a crude egg chalaza hydrolysate by protease-A digestion (CCH-A). Free branched-chain amino acids, 3-aminoisobutyric acid, and β-alanine, and anserine were assayed in the CCH-A used in this study. Besides, the in vitro bile-acid binding ability and inhibitory lipase activity of CCH-As were demonstrated. Then, high-fat diet feeding for 10 wk caused hyperlipidemia, insulin resistance, and hepatosteatosis in hamsters (P < 0.05). However, CCH-A co-treatment decreased serum/liver triglyceride levels and lipid accumulation in livers by increasing daily fecal lipid/bile-acid outputs, upregulating fatty-acid β oxidation, and downregulating fatty-acid biosynthesis in livers (P < 0.05). CCH-A co-treatment also amended insulin resistance, augmented hepatic antioxidant capacity, and decreased liver damages and inflammatory responses (P < 0.05). Taken together, our results do not only demonstrate the hepatoprotective effects of CCH-As against a chronic high-fat dietary habit, achieving effects similar to Simvastatin, but also decrease the environmental burden of handling chalazae in the liquid-egg industry.
Collapse
Affiliation(s)
- Jr-Wei Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan; Poultry Industry Section, Department of Animal Industry, Council of Agriculture, Executive Yuan, Taipei City 100, Taiwan
| | - Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Sheng-Yao Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Chung-Hsi Chou
- School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center, National Taiwan University, Taipei City 106, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan.
| |
Collapse
|
32
|
Hey P, Gow P, Testro AG, Apostolov R, Chapman B, Sinclair M. Nutraceuticals for the treatment of sarcopenia in chronic liver disease. Clin Nutr ESPEN 2021; 41:13-22. [PMID: 33487256 DOI: 10.1016/j.clnesp.2020.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Sarcopenia, defined as loss of muscle mass, strength and function, is associated with adverse clinical outcomes in patients with cirrhosis. Despite improved understanding of the multifaceted pathogenesis, there are few established therapies to treat or prevent muscle loss in this population. This narrative review examines the available literature investigating the role of nutraceuticals for the prevention or treatment of muscle wasting in chronic liver disease. METHODS A comprehensive search or Medline and PubMED databases was conducted. Reference lists were screened to identify additional articles. RESULTS A number of nutritional supplements and vitamins target the specific metabolic derangements that contribute to sarcopenia in cirrhosis including altered amino acid metabolism, hyperammonaemia and inflammation. Branched chain amino acid (BCAA) supplementation has proposed anabolic effects through dual pathways of enhanced ammonia clearance and stimulation of muscle protein synthesis. l-carnitine also has multimodal effects on muscle and shows promise as a therapy for muscle loss through anti-inflammatory, antioxidant and ammonia lowering properties. Other nutraceuticals including l-ornithine l-aspartate, omega-3 polyunsaturated fatty acids and zinc and vitamin D supplementation, may similarly have positive effects on muscle homeostasis, however further evidence to support their use in cirrhotic populations is required. CONCLUSION Nutraceuticals offer a promising and likely safe adjunct to standard care for sarcopenia in cirrhosis. While there is most evidence to support the use of BCAA and l-carnitine supplementation, further well-designed clinical trials are needed to elucidate their efficacy as a therapy for muscle loss in this population.
Collapse
Affiliation(s)
- Penelope Hey
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Paul Gow
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Adam G Testro
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Ross Apostolov
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| | - Brooke Chapman
- The University of Melbourne, Parkville, Victoria, Australia; Department of Nutrition and Dietetics, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia.
| | - Marie Sinclair
- Liver Transplant Unit, Austin Health, 145 Studley Rd, Heidelberg, Victoria, Australia; The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
33
|
Ma Q, Hu L, Zhu J, Chen J, Wang Z, Yue Z, Qiu M, Shan A. Valine Supplementation Does Not Reduce Lipid Accumulation and Improve Insulin Sensitivity in Mice Fed High-Fat Diet. ACS OMEGA 2020; 5:30937-30945. [PMID: 33324801 PMCID: PMC7726788 DOI: 10.1021/acsomega.0c03707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/10/2020] [Indexed: 06/01/2023]
Abstract
Branched-chain amino acids (BCAAs), particularly leucine, were reported to decrease obesity and relevant metabolic syndrome. However, whether valine has a similar effect has rarely been investigated. In the present study, mice were assigned into four treatments (n = 10): chow diet supplemented with water (CW) or valine (CV) and high-fat diet supplemented with water (HW) or valine (HV). Valine (3%, w/v) was supplied in the drinking water. The results showed that valine treatment markedly increased serum triglyceride and insulin levels of chow diet-fed mice. The body weight, serum triglyceride level, white adipose tissue weight, and glucose and insulin intolerance were significantly elevated by valine supplementation in high-fat diet-fed mice. Metabolomics and transcriptomics showed that several genes related to fat oxidation were downregulated, and arachidonic acid and linoleic acid metabolism were altered in the HV group compared to the HW group. In conclusion, valine supplementation did not suppress lipid deposition and metabolic disorders in mice, which provides a new understanding for BCAAs in the modulation of lipid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anshan Shan
- . Tel.: +86 451 55190685. Fax: +86 451 55103336
| |
Collapse
|
34
|
The Effect of Isoleucine Supplementation on Body Weight Gain and Blood Glucose Response in Lean and Obese Mice. Nutrients 2020; 12:nu12082446. [PMID: 32823899 PMCID: PMC7468706 DOI: 10.3390/nu12082446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic isoleucine supplementation prevents diet-induced weight gain in rodents. Acute-isoleucine administration improves glucose tolerance in rodents and reduces postprandial glucose levels in humans. However, the effect of chronic-isoleucine supplementation on body weight and glucose tolerance in obesity is unknown. This study aimed to investigate the impact of chronic isoleucine on body weight gain and glucose tolerance in lean and high-fat-diet (HFD) induced-obese mice. Male C57BL/6-mice, fed a standard-laboratory-diet (SLD) or HFD for 12 weeks, were randomly allocated to: (1) Control: Drinking water; (2) Acute: Drinking water with a gavage of isoleucine (300 mg/kg) prior to the oral-glucose-tolerance-test (OGTT) or gastric-emptying-breath-test (GEBT); (3) Chronic: Drinking water with 1.5% isoleucine, for a further six weeks. At 16 weeks, an OGTT and GEBT was performed and at 17 weeks metabolic monitoring. In SLD- and HFD-mice, there was no difference in body weight, fat mass, and plasma lipid profiles between isoleucine treatment groups. Acute-isoleucine did not improve glucose tolerance in SLD- or HFD-mice. Chronic-isoleucine impaired glucose tolerance in SLD-mice. There was no difference in gastric emptying between any groups. Chronic-isoleucine did not alter energy intake, energy expenditure, or respiratory quotient in SLD- or HFD-mice. In conclusion, chronic isoleucine supplementation may not be an effective treatment for obesity or glucose intolerance.
Collapse
|
35
|
Kelly B, Pearce EL. Amino Assets: How Amino Acids Support Immunity. Cell Metab 2020; 32:154-175. [PMID: 32649859 DOI: 10.1016/j.cmet.2020.06.010] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Amino acids are fundamental building blocks supporting life. Their role in protein synthesis is well defined, but they contribute to a host of other intracellular metabolic pathways, including ATP generation, nucleotide synthesis, and redox balance, to support cellular and organismal function. Immune cells critically depend on such pathways to acquire energy and biomass and to reprogram their metabolism upon activation to support growth, proliferation, and effector functions. Amino acid metabolism plays a key role in this metabolic rewiring, and it supports various immune cell functions beyond increased protein synthesis. Here, we review the mechanisms by which amino acid metabolism promotes immune cell function, and how these processes could be targeted to improve immunity in pathological conditions.
Collapse
Affiliation(s)
- Beth Kelly
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
36
|
Shou J, Chen PJ, Xiao WH. The Effects of BCAAs on Insulin Resistance in Athletes. J Nutr Sci Vitaminol (Tokyo) 2020; 65:383-389. [PMID: 31666474 DOI: 10.3177/jnsv.65.383] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The toxic catabolic intermediates of branched chain amino acids can cause insulin resistance, and are involved in different mechanisms in different metabolic tissues. In skeletal muscle, 3-hydroxy-isobutyrate produced by valine promotes skeletal muscle fatty acid uptake, resulting in the accumulation of incompletely oxidized lipids in skeletal muscle, causing skeletal muscle insulin resistance. In the liver, branched-chain α-keto acids decompose in large amounts, promote hepatic gluconeogenesis, and lead to the accumulation of multiple acylcarnitines, which damages the mitochondrial tricarboxylic acid cycle, resulting in the accumulation of incomplete oxidation products, oxidative stress in mitochondria, and hepatic insulin resistance. In adipose tissue, the expression of branched-chain amino acid catabolic enzymes (branched-chain amino acid transaminase, branched-chain α-keto acid dehydrogenase) is reduced, resulting in an increased level of plasma branched-chain amino acids, thereby causing massive decomposition of branched-chain amino acids in tissues such as skeletal muscle and liver, and inducing insulin resistance. However, branched-chain amino acids, as a common nutritional supplement for athletes, do not induce insulin resistance. A possible explanation for this phenomenon is that exercise can enhance the mitochondrial oxidative potential of branched-chain amino acids, alleviate or even eliminate the accumulation of branched-chain amino acid catabolic intermediates, and promotes branched-chain amino acids catabolism into beta-aminoisobutyric acid, increasing plasma beta-aminoisobutyric acid concentration, improving insulin resistance. This article reveals the mechanism of BCAA-induced insulin resistance and the relationship between exercise and BCAAs metabolism, adds a guarantee for the use of BCAAs, and provides a new explanation for the occurrence of diabetes and how exercise improves diabetes.
Collapse
Affiliation(s)
- Jian Shou
- School of Kinesiology, Shanghai University of Sport
| | - Pei-Jie Chen
- School of Kinesiology, Shanghai University of Sport
| | - Wei-Hua Xiao
- School of Kinesiology, Shanghai University of Sport
| |
Collapse
|
37
|
Rivera ME, Lyon ES, Johnson MA, Sunderland KL, Vaughan RA. Effect of valine on myotube insulin sensitivity and metabolism with and without insulin resistance. Mol Cell Biochem 2020; 468:169-183. [DOI: 10.1007/s11010-020-03720-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
|
38
|
Yoshii K, Ogasawara M, Wada J, Yamamoto Y, Inouye K. Exploration of dipeptidyl-peptidase IV (DPP IV) inhibitors in a low-molecular mass extract of the earthworm Eisenia fetida and identification of the inhibitors as amino acids like methionine, leucine, histidine, and isoleucine. Enzyme Microb Technol 2020; 137:109534. [PMID: 32423671 DOI: 10.1016/j.enzmictec.2020.109534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
We have reported previously that the water extract of the earthworm Eisenia fetida has inhibitory effect on human dipeptidyl-peptidase IV (DPP IV) in vitro. Here we studied to identify DPP IV inhibitors in a low-molecular mass extract (designated U3EE) under 3 kDa prepared from the water extract. U3EE showed 50 % inhibition (IC50) at the concentration of 5.3 ± 0.3 mg/mL. An inhibitory active fraction obtained by solid-phase extraction of U3EE was separated into three parts by reversed-phase HPLC. These parts were shown by GC/MS to be composed of ten (Ala, Gly, Thr, Ser, Asn, Asp, Lys, His, Orn, and cystine), two (Leu and Ile), and one (Met) amino acids, respectively. Among them, Met, Leu, and His showed strong inhibition with IC50 values of 3.4 ± 0.3, 6.1 ± 0.3 and 14.7 ± 1.2 mM, respectively; Ala, Lys, Orn, and Ile showed rather weaker inhibition than those, while the others showed no inhibition. Met, Leu, and Ile were competitive inhibitors and His was a mixed-type one. DPP IV inhibition by U3EE might be due to additive and/or synergistic effects of the inhibitory amino acids, suggesting that it could be useful as pharmaceutical and supplement for diabetes prevention.
Collapse
Affiliation(s)
- Katsuhiro Yoshii
- Research and Development Division, Waki Pharmaceutical Co., Ltd., Room 307, Advanced Chemical Technology Center in Kyoto (ACT Kyoto), 105 Jibu-cho, Fushimi-ku, Kyoto, 612-8374, Japan
| | - Masako Ogasawara
- Research and Development Division, Waki Pharmaceutical Co., Ltd., Room 307, Advanced Chemical Technology Center in Kyoto (ACT Kyoto), 105 Jibu-cho, Fushimi-ku, Kyoto, 612-8374, Japan
| | - Jun Wada
- Kyoto Municipal Institute of Industrial Technology and Culture, 91 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Yoshihiro Yamamoto
- Kyoto Municipal Institute of Industrial Technology and Culture, 91 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Kuniyo Inouye
- Research and Development Division, Waki Pharmaceutical Co., Ltd., Room 307, Advanced Chemical Technology Center in Kyoto (ACT Kyoto), 105 Jibu-cho, Fushimi-ku, Kyoto, 612-8374, Japan.
| |
Collapse
|
39
|
Amino acid-based compound activates atypical PKC and leptin receptor pathways to improve glycemia and anxiety like behavior in diabetic mice. Biomaterials 2020; 239:119839. [PMID: 32065973 DOI: 10.1016/j.biomaterials.2020.119839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/28/2022]
Abstract
Differences in glucose uptake in peripheral and neural tissues account for the reduced efficacy of insulin in nervous tissues. Herein, we report the design of short peptides, referred as amino acid compounds (AAC) with and without a modified side chain moiety. At nanomolar concentrations, a candidate therapeutic molecule, AAC2, containing a 7-(diethylamino) coumarin-3-carboxamide side-chain improved glucose control in human peripheral adipocytes and the endothelial brain barrier cells by activation of insulin-insensitive glucose transporter 1 (GLUT1). AAC2 interacted specifically with the leptin receptor (LepR) and activated atypical protein kinase C zeta (PKCς) to increase glucose uptake. The effects induced by AAC2 were absent in leptin receptor-deficient predipocytes and in Leprdb mice. In contrast, AAC2 established glycemic control altering food intake in leptin-deficient Lepob mice. Therefore, AAC2 activated the LepR and acted in a cytokine-like manner distinct from leptin. In a monogenic Ins2Akita mouse model for the phenotypes associated with type 1 diabetes, AAC2 rescued systemic glucose uptake in these mice without an increase in insulin levels and adiposity, as seen in insulin-treated Ins2Akita mice. In contrast to insulin, AAC2 treatment increased brain mass and reduced anxiety-related behavior in Ins2Akita mice. Our data suggests that the unique mechanism of action for AAC2, activating LepR/PKCς/GLUT1 axis, offers an effective strategy to broaden glycemic control for the prevention of diabetic complications of the nervous system and, possibly, other insulin insensitive or resistant tissues.
Collapse
|
40
|
High Protein Diet and Metabolic Plasticity in Non-Alcoholic Fatty Liver Disease: Myths and Truths. Nutrients 2019; 11:nu11122985. [PMID: 31817648 PMCID: PMC6950466 DOI: 10.3390/nu11122985] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation within the liver affecting 1 in 4 people worldwide. As the new silent killer of the twenty-first century, NAFLD impacts on both the request and the availability of new liver donors. The liver is the first line of defense against endogenous and exogenous metabolites and toxins. It also retains the ability to switch between different metabolic pathways according to food type and availability. This ability becomes a disadvantage in obesogenic societies where most people choose a diet based on fats and carbohydrates while ignoring vitamins and fiber. The chronic exposure to fats and carbohydrates induces dramatic changes in the liver zonation and triggers the development of insulin resistance. Common believes on NAFLD and different diets are based either on epidemiological studies, or meta-analysis, which are not controlled evidences; in most of the cases, they are biased on test-subject type and their lifestyles. The highest success in reverting NAFLD can be attributed to diets based on high protein instead of carbohydrates. In this review, we discuss the impact of NAFLD on body metabolic plasticity. We also present a detailed analysis of the most recent studies that evaluate high-protein diets in NAFLD with a special focus on the liver and the skeletal muscle protein metabolisms.
Collapse
|
41
|
Liu X, Zheng H, Lu R, Huang H, Zhu H, Yin C, Mo Y, Wu J, Liu X, Deng M, Li D, Cheng B, Wu F, Liang Y, Guo H, Song H, Su Z. Intervening Effects of Total Alkaloids of Corydalis saxicola Bunting on Rats With Antibiotic-Induced Gut Microbiota Dysbiosis Based on 16S rRNA Gene Sequencing and Untargeted Metabolomics Analyses. Front Microbiol 2019; 10:1151. [PMID: 31214133 PMCID: PMC6555270 DOI: 10.3389/fmicb.2019.01151] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota dysbiosis induced by antibiotics is strongly connected with health concerns. Studying the mechanisms underlying antibiotic-induced gut microbiota dysbiosis could help to identify effective drugs and prevent many serious diseases. In this study, in rats with antibiotic-induced gut microbiota dysbiosis treated with total alkaloids of Corydalis saxicola Bunting (TACS), urinary and fecal biochemical changes and cecum microbial diversity were investigated using 16S rRNA gene sequencing analysis and untargeted metabolomics. The microbial diversity results showed that 10 genera were disturbed by the antibiotic treatment, and two of them were obviously restored by TACS. The untargeted metabolomics analysis identified 34 potential biomarkers in urine and feces that may be the metabolites that are most related to the mechanisms underlying antibiotic-induced gut microbiota dysbiosis and the therapeutic effects of TACS treatment. The biomarkers were involved in six metabolic pathways, comprising pathways related to branched-chain amino acid (BCAA), bile acid, arginine and proline, purine, aromatic amino acid, and amino sugar and nucleotide sugar metabolism. Notably, there was a strong correlation between these metabolic pathways and two gut microbiota genera (g__Blautia and g__Intestinibacter). The correlation analysis suggested that TACS might synergistically affect four of these metabolic pathways (BCAA, bile acid, arginine and proline, and purine metabolism), thereby modulating gut microbiota dysbiosis. Furthermore, we performed a molecular docking analysis involving simulating high-precision docking and using molecular pathway maps to illuminate the way that ligands (the five main alkaloid components of TACS) act on a complex molecular network, using CYP27A1 (a key enzyme in the bile acid synthesis pathway) as the target protein. This study provides a comprehensive overview of the intervening effects of TACS on the host metabolic phenotype and gut microbiome in rats with gut microbiota dysbiosis, and it presents new insights for the discovery of effective drugs and the best therapeutic approaches.
Collapse
Affiliation(s)
- Xi Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hua Zheng
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Rigang Lu
- Guangxi Institute for Food and Drug Control, Nanning, China
| | - Huimin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hongjia Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Chunli Yin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yiyi Mo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinxia Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xuwen Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Ming Deng
- Guangxi Institute for Food and Drug Control, Nanning, China
| | - Danfeng Li
- Guangxi Institute for Food and Drug Control, Nanning, China
| | - Bang Cheng
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Fang Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hui Song
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| |
Collapse
|
42
|
NMR-Based Metabolic Profiles of Intact Zebrafish Embryos Exposed to Aflatoxin B1 Recapitulates Hepatotoxicity and Supports Possible Neurotoxicity. Toxins (Basel) 2019; 11:toxins11050258. [PMID: 31071948 PMCID: PMC6563017 DOI: 10.3390/toxins11050258] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a widespread contaminant of grains and other agricultural crops and is globally associated with both acute toxicity and carcinogenicity. In the present study, we utilized nuclear magnetic resonance (NMR), and specifically high-resolution magic angle spin (HRMAS) NMR, coupled to the zebrafish (Danio rerio) embryo toxicological model, to characterize metabolic profiles associated with exposure to AFB1. Exposure to AFB1 was associated with dose-dependent acute toxicity (i.e., lethality) and developmental deformities at micromolar (≤ 2 µM) concentrations. Toxicity of AFB1 was stage-dependent and specifically consistent, in this regard, with a role of the liver and phase I enzyme (i.e., cytochrome P450) bioactivation. Metabolic profiles of intact zebrafish embryos exposed to AFB1 were, furthermore, largely consistent with hepatotoxicity previously reported in mammalian systems including metabolites associated with cytotoxicity (i.e., loss of cellular membrane integrity), glutathione-based detoxification, and multiple pathways associated with the liver including amino acid, lipid, and carbohydrate (i.e., energy) metabolism. Taken together, these metabolic alterations enabled the proposal of an integrated model of the hepatotoxicity of AFB1 in the zebrafish embryo system. Interestingly, changes in amino acid neurotransmitters (i.e., Gly, Glu, and GABA), as a key modulator of neural development, supports a role in recently-reported neurobehavioral and neurodevelopmental effects of AFB1 in the zebrafish embryo model. The present study reinforces not only toxicological pathways of AFB1 (i.e., hepatotoxicity, neurotoxicity), but also multiple metabolites as potential biomarkers of exposure and toxicity. More generally, this underscores the capacity of NMR-based approaches, when coupled to animal models, as a powerful toxicometabolomics tool.
Collapse
|
43
|
Ospina-Rojas IC, Murakami AE, do Amaral Duarte CR, Pozza PC, Rossi RM, Gasparino E. Performance, diameter of muscle fibers, and gene expression of mechanistic target of rapamycin in pectoralis major muscle of broilers supplemented with leucine and valine. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two experiments were performed to study the interaction between the standardized ileal digestible (SID) leucine (Leu) and valine (Val) levels on the mRNA expression of genes involved in the mechanistic target of rapamycin (mTOR) pathway (experiment I) and determine the requirement of these amino acids in low-protein diets, and their effects on performance, serum parameters and muscle fiber diameters of broilers (experiment II) from day 1 to day 21 post hatch. Broiler chickens were distributed in a completely randomized design in a 3 × 3 and 5 × 5 factorial arrangement for a total of 9 and 25 treatments in experiments I and II, respectively. There was no (P > 0.05) interaction between the SID Leu and Val levels on mRNA expression of mTOR, S6 kinase 1 (S6K1), 4E-binding protein-1 (4EBP1), eukaryotic elongation factor 2 (eEF2), and insulin-like growth factor-1 (IGF-1) genes in pectoralis major muscle. Leucine supplementation increased (P < 0.05) mRNA expression of mTOR and S6K1 genes in muscle tissue, whereas Val supplementation did not affect (P > 0.05) mRNA expression of the genes investigated. Interaction was observed (P < 0.05) between dietary Leu and Val levels on feed intake and gain:feed. Leucine supplementation may stimulate mRNA expression of mTOR and S6K1 genes in pectoralis major muscle of broilers from day 1 to day 21 post hatch. The SID Leu and Val levels required for the optimization of feed intake, weight gain, and gain:feed in low-crude protein diets for broiler chickens from day 1 to 21 post hatch were estimated at 1.29% and 0.96%, 1.28% and 0.92%, and 1.27% and 0.91%, respectively; however, these requirements may be greater to maximize muscle fiber growth.
Collapse
Affiliation(s)
- Iván Camilo Ospina-Rojas
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco J45, Maringá, PR 87020-900, Brazil
| | - Alice Eiko Murakami
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco J45, Maringá, PR 87020-900, Brazil
| | - Cristiane Regina do Amaral Duarte
- Department of Biological Sciences, Universidade do Estado de Mato Grosso, Av. Brasil, nº 50W, Tangará da Serra, MT 78300-000, Brazil
| | - Paulo Cesar Pozza
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco J45, Maringá, PR 87020-900, Brazil
| | - Robson Marcelo Rossi
- Department of Statistics, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco E90, Maringá, PR 87020-900, Brazil
| | - Eliane Gasparino
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco J45, Maringá, PR 87020-900, Brazil
| |
Collapse
|
44
|
McKay BP, Larder AL, Lam V. Pre-Operative vs. Peri-Operative Nutrition Supplementation in Hepatic Resection for Cancer: A Systematic Review. Nutr Cancer 2019; 71:179-198. [PMID: 30741015 DOI: 10.1080/01635581.2018.1560479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite improvements in safety of hepatic resection post-operative complications occur in up to a half of patients. A systematic review was undertaken to compare the effect of pre-operative and peri-operative nutritional supplementation on post-operative outcomes in patients undergoing hepatic resection for malignancy. Included studies were identified through a search of PubMed (1966 to November 2016), Embase (1947 to November 2016) and the Cochrane Library (1993 to November 2016). Eleven studies involving a total of 725 patients were included in this systematic review. BCAA supplementation in the pre-operative and peri-operative period was reported to reduce the overall complication rate by 26.9% (P = 0.01) in one cohort study while pre-operative immunonutrition was shown to reduce post-operative ascites by 25.4% (P =0.012) in another cohort study without affecting the overall complication rate. Four further studies on enteral supplementation failed to show a benefit with regards to post-operative complications. Post-operative mortality was unaffected by pre-operative and peri-operative BCAA. Both pre-operative and peri-operative nutritional supplementation have shown promising results regarding the post-operative course of patients undergoing hepatic resection for malignancy. No randomized controlled study exists directly comparing pre-operative and peri-operative nutrition and this needs to be focused on in future research.
Collapse
Affiliation(s)
- Bartholomew P McKay
- a Department of Surgery , Royal Brisbane and Women's Hospital , Herston , Queensland , Australia.,b School of Medicine , University of Queensland , Herston , Queensland , Australia.,c Discipline of Surgery, School of Medicine , University of Sydney , Camperdown , NSW , Australia
| | - Annabel L Larder
- d School of Medicine , Griffith University , Southport , Queensland , Australia
| | - Vincent Lam
- c Discipline of Surgery, School of Medicine , University of Sydney , Camperdown , NSW , Australia.,e Department of Surgery , Westmead Hospital , New South Wales , Australia
| |
Collapse
|
45
|
Mu WC, VanHoosier E, Elks CM, Grant RW. Long-Term Effects of Dietary Protein and Branched-Chain Amino Acids on Metabolism and Inflammation in Mice. Nutrients 2018; 10:nu10070918. [PMID: 30021962 PMCID: PMC6073443 DOI: 10.3390/nu10070918] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Aging is the main factor involved in the onset of degenerative diseases. Dietary protein restriction has been shown to increase the lifespan of rodents and improve metabolic phenotype. Branched-chain amino acids (BCAA) can act as nutrient signals that increase the lifespan of mice after prolonged supplementation. It remains unclear whether the combination of protein restriction and BCAA supplementation improves metabolic and immunological profiles during aging. Here, we investigated how dietary protein levels and BCAA supplementation impact metabolism and immune profile during a 12-month intervention in adult male C57BL/6J mice. We found that protein restriction improved insulin tolerance and increased hepatic fibroblast growth factor 21 mRNA, circulating interleukin (IL)-5 concentration, and thermogenic uncoupling protein 1 in subcutaneous white fat. Surprisingly, BCAA supplementation conditionally increased body weight, lean mass, and fat mass, and deteriorated insulin intolerance during protein restriction, but not during protein sufficiency. BCAA also induced pro-inflammatory gene expression in visceral adipose tissue under both normal and low protein conditions. These results suggest that dietary protein levels and BCAA supplementation coordinate a complex regulation of metabolism and tissue inflammation during prolonged feeding.
Collapse
MESH Headings
- Adiposity
- Aging
- Amino Acids, Branched-Chain/adverse effects
- Amino Acids, Branched-Chain/metabolism
- Amino Acids, Branched-Chain/therapeutic use
- Animals
- Cytokines/blood
- Diet, Protein-Restricted/adverse effects
- Dietary Proteins/adverse effects
- Dietary Proteins/metabolism
- Dietary Proteins/therapeutic use
- Dietary Supplements/adverse effects
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Insulin Resistance
- Liver/growth & development
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Male
- Mice, Inbred C57BL
- Organ Size
- Proteomics/methods
- Random Allocation
- Sarcopenia/immunology
- Sarcopenia/metabolism
- Sarcopenia/pathology
- Sarcopenia/prevention & control
- Spleen/growth & development
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
- Subcutaneous Fat, Abdominal/growth & development
- Subcutaneous Fat, Abdominal/immunology
- Subcutaneous Fat, Abdominal/metabolism
- Subcutaneous Fat, Abdominal/pathology
- Thymus Gland/growth & development
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
- Weight Gain
Collapse
Affiliation(s)
- Wei-Chieh Mu
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Erin VanHoosier
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Carrie M Elks
- Matrix Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Ryan W Grant
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
46
|
Elbaky NAA, El-Orabi NF, Fadda LM, Abd-Elkader OH, Ali HM. Role of N-Acetylcysteine and Coenzyme Q10 in the Amelioration of Myocardial Energy Expenditure and Oxidative Stress, Induced by Carbon Tetrachloride Intoxication in Rats. Dose Response 2018; 16:1559325818790158. [PMID: 30116167 PMCID: PMC6088489 DOI: 10.1177/1559325818790158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
This study is designed to evaluate the potential impact of N-acetyl cysteine (NAC) and coenzyme Q10 (CoQ10) each alone or in combination against carbon tetrachloride (CCl4)-induced cardiac damage in rats. Animals were treated with CCl4 in single intraperitoneal dose of 1 mL/Kg body weight; CCl4-intoxicated animals were pretreated with 20 mg/kg/d NAC or pretreated with 200 mg/kg/d CoQ10 or NAC and CoQ10 with the same previously mentioned doses. Carbon tetrachloride-intoxicated rats showed a significant elevation in nitric oxide and lipid peroxides and downregulation in reduced glutathione level and calcium adenosine triphosphatase. Cardiac glycolytic enzymes levels such as lactate dehydrogenase, phosphofructokinase, and hexokinase were declined coupled with a reduction in glucose content after CCl4 treatment. Moreover, myocardial hydroxyproline level was significantly increased after CCl4-treatment indicating accumulation of interstitial collagen. N-acetyl cysteine and/or CoQ10 effectively alleviated the disturbances in myocardial oxidative stress and antioxidant markers. These antioxidants effectively upregulated the reduction in cardiac energetic biomarkers due to CCl4 treatment. N-acetyl cysteine and/or CoQ10 significantly decreased hydroxyproline level compared to that of CCl4-treated rats. The current data showed that the aforementioned antioxidants have a remarkable cardioprotective effect, suggesting that they may be useful as prophylactic agents against the detrimental effects of cardiotoxins.
Collapse
Affiliation(s)
- Nayira A. Abd Elbaky
- Department of Pharmacology, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology, Al-Azhar University, Cairo, Egypt
| | - Naglaa F. El-Orabi
- Department of Pharmacology, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, Suez Canal University, Ismailia, Egypt
| | - Laila M. Fadda
- Department of Pharmacology, King Saud University, Riyadh, Saudi Arabia
| | - Omar H. Abd-Elkader
- Department of Zoology, King Saud University, Riyadh, Saudi Arabia
- Electron Microscope and Thin Films Department, National Research Center, Cairo, Egypt
| | - Hanaa M. Ali
- Department of Genetics and Cytology, National Research Center, Cairo, Egypt
- King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Liu J, Chen G, Liu Z, Liu S, Cai Z, You P, Ke Y, Lai L, Huang Y, Gao H, Zhao L, Pelicano H, Huang P, McKeehan WL, Wu CL, Wang C, Zhong W, Wang F. Aberrant FGFR Tyrosine Kinase Signaling Enhances the Warburg Effect by Reprogramming LDH Isoform Expression and Activity in Prostate Cancer. Cancer Res 2018; 78:4459-4470. [PMID: 29891507 DOI: 10.1158/0008-5472.can-17-3226] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/29/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
The acquisition of ectopic fibroblast growthfactor receptor 1 (FGFR1) expression is well documented in prostate cancer progression. How it contributes to prostate cancer progression is not fully understood, although it is known to confer a growth advantage and promote cell survival. Here, we report that FGFR1 tyrosine kinase reprograms the energy metabolism of prostate cancer cells by regulating the expression of lactate dehydrogenase (LDH) isozymes. FGFR1 increased LDHA stability through tyrosine phosphorylation and reduced LDHB expression by promoting its promoter methylation, thereby shifting cell metabolism from oxidative phosphorylation to aerobic glycolysis. LDHA depletion compromised, whereas LDHB depletion enhanced the tumorigenicity of prostate cancer cells. Furthermore, FGFR1 overexpression and aberrant LDH isozyme expression were associated with short overall survival and biochemical recurrence times in patients with prostate cancer. Our results indicate that ectopic FGFR1 expression reprograms the energy metabolism of prostate cancer cells, representing a hallmark change in prostate cancer progression.Significance: FGF signaling drives the Warburg effect through differential regulation of LDHA and LDHB, thereby promoting the progression of prostate cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/16/4459/F1.large.jpg Cancer Res; 78(16); 4459-70. ©2018 AACR.
Collapse
Affiliation(s)
- Junchen Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Guo Chen
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Zezhen Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Shaoyou Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Zhiduan Cai
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Pan You
- Xianyue Hospital, Xiamen, China
| | - Yuepeng Ke
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Li Lai
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Yun Huang
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | | | | | - Helene Pelicano
- Departments of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas
| | - Peng Huang
- Departments of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas
| | - Wallace L McKeehan
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Chin-Lee Wu
- Departments of Pathology and Urology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Cong Wang
- Wenzhou Medical University, Wenzhou, China.
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China. .,Department of Urology, Guangzhou Medical University, Guangzhou, China
| | - Fen Wang
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas.
| |
Collapse
|
48
|
Shimomura Y, Kitaura Y. Physiological and pathological roles of branched-chain amino acids in the regulation of protein and energy metabolism and neurological functions. Pharmacol Res 2018; 133:215-217. [PMID: 29803540 DOI: 10.1016/j.phrs.2018.05.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/15/2017] [Accepted: 05/23/2018] [Indexed: 01/03/2023]
Abstract
Branched-chain amino acids (BCAAs: leucine, isoleucine, and valine) are essential amino acids for humans and play an important role as the building blocks of proteins. Recent studies have disclosed that free BCAAs in the tissue amino acid pool function not only as substrates for protein synthesis, but also as regulators of protein and energy metabolism. Furthermore, BCAAs are actively used as an amino group donor to synthesize glutamate in the brain. These functions of BCAAs are closely related to human health. This review summarizes the recent findings concerning physiological and pathological roles of free BCAAs in the metabolism and neurological functions.
Collapse
Affiliation(s)
- Yoshiharu Shimomura
- Lab. of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Yasuyuki Kitaura
- Lab. of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
49
|
Holeček M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab (Lond) 2018; 15:33. [PMID: 29755574 PMCID: PMC5934885 DOI: 10.1186/s12986-018-0271-1] [Citation(s) in RCA: 460] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids with protein anabolic properties, which have been studied in a number of muscle wasting disorders for more than 50 years. However, until today, there is no consensus regarding their therapeutic effectiveness. In the article is demonstrated that the crucial roles in BCAA metabolism play: (i) skeletal muscle as the initial site of BCAA catabolism accompanied with the release of alanine and glutamine to the blood; (ii) activity of branched-chain keto acid dehydrogenase (BCKD); and (iii) amination of branched-chain keto acids (BCKAs) to BCAAs. Enhanced consumption of BCAA for ammonia detoxification to glutamine in muscles is the cause of decreased BCAA levels in liver cirrhosis and urea cycle disorders. Increased BCKD activity is responsible for enhanced oxidation of BCAA in chronic renal failure, trauma, burn, sepsis, cancer, phenylbutyrate-treated subjects, and during exercise. Decreased BCKD activity is the main cause of increased BCAA levels and BCKAs in maple syrup urine disease, and plays a role in increased BCAA levels in diabetes type 2 and obesity. Increased BCAA concentrations during brief starvation and type 1 diabetes are explained by amination of BCKAs in visceral tissues and decreased uptake of BCAA by muscles. The studies indicate beneficial effects of BCAAs and BCKAs in therapy of chronic renal failure. New therapeutic strategies should be developed to enhance effectiveness and avoid adverse effects of BCAA on ammonia production in subjects with liver cirrhosis and urea cycle disorders. Further studies are needed to elucidate the effects of BCAA supplementation in burn, trauma, sepsis, cancer and exercise. Whether increased BCAA levels only markers are or also contribute to insulin resistance should be known before the decision is taken regarding their suitability in obese subjects and patients with type 2 diabetes. It is concluded that alterations in BCAA metabolism have been found common in a number of disease states and careful studies are needed to elucidate their therapeutic effectiveness in most indications.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| |
Collapse
|
50
|
Kitajima Y, Takahashi H, Akiyama T, Murayama K, Iwane S, Kuwashiro T, Tanaka K, Kawazoe S, Ono N, Eguchi T, Anzai K, Eguchi Y. Supplementation with branched-chain amino acids ameliorates hypoalbuminemia, prevents sarcopenia, and reduces fat accumulation in the skeletal muscles of patients with liver cirrhosis. J Gastroenterol 2018; 53:427-437. [PMID: 28741271 DOI: 10.1007/s00535-017-1370-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 07/13/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Liver cirrhosis induces marked metabolic disorders, protein-energy malnutrition, and sarcopenia. The objective of the study reported here was to investigate the effects of dietary branched-chain amino acids (BCAAs) on systemic glucose metabolism, skeletal muscle, and prognosis of patients with liver cirrhosis. METHODS Japanese patients with liver cirrhosis (n = 21) were enrolled into a longitudinal study in which their diets were supplemented with BCAAs. We evaluated glucose metabolism and analyzed the skeletal muscle area index (SAI) and intramuscular adipose tissue content (IMAC) using computed tomography. RESULTS After 48 weeks of supplementation with BCAAs, there were no changes in glucose metabolism and skeletal muscle findings. In patients with ameliorated hypoalbuminemia, IMAC was significantly decreased and SAI was preserved concomitant with decreasing 90- and 120-min post-challenge plasma glucose levels (P < 0.01 each). In patients without increased albumin levels, IMAC was significantly increased and the SAI was significantly decreased (P < 0.01 each). Liver-related event-free survival rates for 72 months were 63.6% in patients with decreased IMAC and 20.0% in patients with increased IMAC. CONCLUSIONS Amelioration of hypoalbuminemia associated with BCAA supplementation correlated with decreased fat accumulation in skeletal muscle, maintenance of skeletal muscle mass, and improved glucose sensitivity, all factors which may contribute to improving the survival of patients with liver cirrhosis.
Collapse
Affiliation(s)
- Yoichiro Kitajima
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.,Department of Clinical Gastroenterology, Eguchi Hospital, Ogi, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Takumi Akiyama
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenichiro Murayama
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinji Iwane
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Takuya Kuwashiro
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenichi Tanaka
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Seiji Kawazoe
- Hepatobiliary and Pancreatology Division, Department of Internal Medicine, Saga Prefectural Hospital Kosei-kan, Saga, Japan
| | - Naofumi Ono
- Department of Clinical Gastroenterology, Eguchi Hospital, Ogi, Japan
| | - Takahisa Eguchi
- Department of Clinical Gastroenterology, Eguchi Hospital, Ogi, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | | |
Collapse
|