1
|
Khan S, Simsek R, Fuentes JDB, Vohra I, Vohra S. Implication of Toll-Like Receptors in growth and management of health and diseases: Special focus as a promising druggable target to Prostate Cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189229. [PMID: 39608622 DOI: 10.1016/j.bbcan.2024.189229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Toll-like receptors (TLRs) are protein structures belonging to the pattern recognition receptors family. TLRs have the great potential that can directly recognize the specific molecular structures on the surface of pathogens, damaged senescent cells and apoptotic host cells. Available evidence suggests that TLRs have crucial roles in maintaining tissue homeostasis through control of the inflammatory and tissue repair responses during injury. TLRs are the player of first line of defense against different microbes and activate the signaling cascades which help to induce the immune system and inflammatory responses by affecting various signaling pathways, including nuclear factor-κB (NF-κB), interferon regulatory factors, and mitogen-activated protein kinases (MAPKs). TLRs have been identified to be over-expressed in different types of cancers and play an important role in control of health and management of diseases. The current review provides updated knowledge on the implication of TLRs in growth and management of cancers including prostate cancer.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Paramedical and Nursing College, Deoband, 247554 Saharanpur, India; Department of Health Sciences, Novel Global Community Educational Foundation, Australia.
| | - Rahime Simsek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe Unversity, 06100 Ankara, Turkey
| | - Javier David Benitez Fuentes
- Medical Oncology Department, Hospital General Universitario de Elche, Carrer Almazara, 11, 03203 Elche, Alicante, Spain
| | - Isra Vohra
- University of Houston Clear Lake Graduated with bachelors Physiology, Houston, TX, USA
| | - Saeed Vohra
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Cifuentes M, Verdejo HE, Castro PF, Corvalan AH, Ferreccio C, Quest AFG, Kogan MJ, Lavandero S. Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Physiology (Bethesda) 2025; 40:0. [PMID: 39078396 DOI: 10.1152/physiol.00021.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammation is an important physiological response of the organism to restore homeostasis upon pathogenic or damaging stimuli. However, the persistence of the harmful trigger or a deficient resolution of the process can evolve into a state of low-grade, chronic inflammation. This condition is strongly associated with the development of several increasingly prevalent and serious chronic conditions, such as obesity, cancer, and cardiovascular diseases, elevating overall morbidity and mortality worldwide. The current pandemic of chronic diseases underscores the need to address chronic inflammation, its pathogenic mechanisms, and potential preventive measures to limit its current widespread impact. The present review discusses the current knowledge and research gaps regarding the association between low-grade chronic inflammation and chronic diseases, focusing on obesity, cardiovascular diseases, digestive diseases, and cancer. We examine the state of the art in selected aspects of the topic and propose future directions and approaches for the field.
Collapse
Affiliation(s)
- Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- OMEGA Laboratory, Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Hematology and Oncology, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Public Health, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Department of Pharmacological & Toxicological Chemistry, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
- Department of Biochemistry & Molecular Biology, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
3
|
Matsumoto T, Nagano T, Taguchi K, Kobayashi T, Tanaka-Totoribe N. Toll-like receptor 3 involvement in vascular function. Eur J Pharmacol 2024; 979:176842. [PMID: 39033837 DOI: 10.1016/j.ejphar.2024.176842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Maintaining endothelial cell (EC) and vascular smooth muscle cell (VSMC) integrity is an important component of human health and disease because both EC and VSMC regulate various functions, including vascular tone control, cellular adhesion, homeostasis and thrombosis regulation, proliferation, and vascular inflammation. Diverse stressors affect functions in both ECs and VSMCs and abnormalities of functions in these cells play a crucial role in cardiovascular disease initiation and progression. Toll-like receptors (TLRs) are important detectors of pathogen-associated molecular patterns derived from various microbes and viruses as well as damage-associated molecular patterns derived from damaged cells and perform innate immune responses. Among TLRs, several studies reveal that TLR3 plays a key role in initiation, development and/or protection of diseases, and an emerging body of evidence indicates that TLR3 presents components of the vasculature, including ECs and VSMCs, and plays a functional role. An agonist of TLR3, polyinosinic-polycytidylic acid [poly (I:C)], affects ECs, including cell death, inflammation, chemoattractant, adhesion, permeability, and hemostasis. Poly (I:C) also affects VSMCs including inflammation, proliferation, and modulation of vascular tone. Moreover, alterations of vascular function induced by certain molecules and/or interventions are exerted through TLR3 signaling. Hence, we present the association between TLR3 and vascular function according to the latest studies.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan.
| | - Takayuki Nagano
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Naoko Tanaka-Totoribe
- First Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan
| |
Collapse
|
4
|
Majumder S, Pushpakumar SB, Almarshood H, Ouseph R, Gondim DD, Jala VR, Sen U. Toll-like receptor 4 mutation mitigates gut microbiota-mediated hypertensive kidney injury. Pharmacol Res 2024; 206:107303. [PMID: 39002869 PMCID: PMC11287947 DOI: 10.1016/j.phrs.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Hypertension-associated dysbiosis is linked to several clinical complications, including inflammation and possible kidney dysfunction. Inflammation and TLR4 activation during hypertension result from gut dysbiosis-related impairment of intestinal integrity. However, the contribution of TLR4 in kidney dysfunction during hypertension-induced gut dysbiosis is unclear. We designed this study to address this knowledge gap by utilizing TLR4 normal (TLR4N) and TLR4 mutant (TLR4M) mice. These mice were infused with high doses of Angiotensin-II for four weeks to induce hypertension. Results suggest that Ang-II significantly increased renal arterial resistive index (RI), decreased renal vascularity, and renal function (GFR) in TLR4N mice compared to TLR4M. 16 S rRNA sequencing analysis of gut microbiome revealed that Ang-II-induced hypertension resulted in alteration of Firmicutes: Bacteroidetes ratio in the gut of both TLR4N and TLR4M mice; however, it was not comparably rather differentially. Additionally, Ang-II-hypertension decreased the expression of tight junction proteins and increased gut permeability, which were more prominent in TLR4N mice than in TLR4M mice. Concomitant with gut hyperpermeability, an increased bacterial component translocation to the kidney was observed in TLR4N mice treated with Ang-II compared to TLR4N plus saline. Interestingly, microbiota translocation was mitigated in Ang-II-hypertensive TLR4M mice. Furthermore, Ang-II altered the expression of inflammatory (IL-1β, IL-6) and anti-inflammatory IL-10) markers, and extracellular matrix proteins, including MMP-2, -9, -14, and TIMP-2 in the kidney of TLR4N mice, which were blunted in TLR4M mice. Our data demonstrate that ablation of TLR4 attenuates hypertension-induced gut dysbiosis resulting in preventing gut hyperpermeability, bacterial translocation, mitigation of renal inflammation and alleviation of kidney dysfunction.
Collapse
Affiliation(s)
- Suravi Majumder
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States; Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Hebah Almarshood
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Rosemary Ouseph
- Division of Nephrology and Hypertension, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Dibson D Gondim
- Department of Pathology and Laboratory Medicine, and University of Louisville, School of Medicine, Louisville, KY, United States
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Utpal Sen
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, United States.
| |
Collapse
|
5
|
Chen J, Luo C, Tan D, Li Y. J-shaped associations of pan-immune-inflammation value and systemic inflammation response index with stroke among American adults with hypertension: evidence from NHANES 1999-2020. Front Neurol 2024; 15:1417863. [PMID: 39144717 PMCID: PMC11322096 DOI: 10.3389/fneur.2024.1417863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
INTRODUCTION Stroke, a leading cause of death and disability worldwide, is primarily ischemic and linked to hypertension. Hypertension, characterized by systemic chronic inflammation, significantly increases stroke risk. This study explores the association of novel systemic inflammatory markers (SII, PIV, SIRI) with stroke prevalence in hypertensive U.S. adults using NHANES data. METHODS We analyzed data from hypertensive participants in the NHANES 1999-2020 survey, excluding those under 20, pregnant, or with missing data, resulting in 18,360 subjects. Systemic inflammatory markers (SII, PIV, SIRI) were calculated from blood counts. Hypertension and stroke status were determined by self-report and clinical measurements. Covariates included sociodemographic, lifestyle, and medical history factors. Weighted statistical analyses and multivariate logistic regression models were used to explore associations, with adjustments for various covariates. Ethical approval was obtained from the NCHS Ethics Review Board. RESULTS In a cohort of 18,360 hypertensive individuals (mean age 56.652 years), 7.25% had a stroke. Stroke patients were older, had lower PIR, and were more likely to be female, single, less educated, smokers, non-drinkers, physically inactive, and have diabetes and CHD. Multivariate logistic regression showed that SII was not significantly associated with stroke. However, PIV and SIRI were positively associated with stroke prevalence. Each unit increase in lnPIV increased stroke odds by 14% (OR = 1.140, p = 0.0022), and lnSIRI by 20.6% (OR = 1.206, p = 0.0144). RCS analyses confirmed J-shaped associations for lnPIV and lnSIRI with stroke. Stratified analyses identified gender and smoking as significant effect modifiers. Smoking was significantly associated with elevated PIV, SIRI, and SII levels, especially in current smokers. CONCLUSION Elevated PIV and SIRI levels significantly increase stroke prevalence in hypertensive individuals, notably among males and smokers. A predictive model with PIV, SIRI, and sociodemographic factors offers strong clinical utility.
Collapse
Affiliation(s)
| | | | - Dianhui Tan
- Department of Neurosurgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | |
Collapse
|
6
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
7
|
de Oliveira AA, Elder E, Spaans F, Graton ME, Quon A, Kirschenman R, Wooldridge AL, Cooke CLM, Davidge ST. Excessive hypercholesterolemia in pregnancy impairs rat uterine artery function via activation of Toll-like receptor 4. Clin Sci (Lond) 2024; 138:137-151. [PMID: 38299431 DOI: 10.1042/cs20231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Hypercholesterolemia in pregnancy is a physiological process required for normal fetal development. In contrast, excessive pregnancy-specific hypercholesterolemia increases the risk of complications, such as preeclampsia. However, the underlying mechanisms are unclear. Toll-like receptor 4 (TLR4) is a membrane receptor modulated by high cholesterol levels, leading to endothelial dysfunction; but whether excessive hypercholesterolemia in pregnancy activates TLR4 is not known. We hypothesized that a high cholesterol diet (HCD) during pregnancy increases TLR4 activity in uterine arteries, leading to uterine artery dysfunction. Sprague Dawley rats were fed a control diet (n=12) or HCD (n=12) during pregnancy (gestational day 6-20). Vascular function was assessed in main uterine arteries using wire myography (vasodilation to methacholine and vasoconstriction to phenylephrine; with and without inhibitors for mechanistic pathways) and pressure myography (biomechanical properties). Exposure to a HCD during pregnancy increased maternal blood pressure, induced proteinuria, and reduced the fetal-to-placental weight ratio for both sexes. Excessive hypercholesterolemia in pregnancy also impaired vasodilation to methacholine in uterine arteries, whereby at higher doses, methacholine caused vasoconstriction instead of vasodilation in only the HCD group, which was prevented by inhibition of TLR4 or prostaglandin H synthase 1. Endothelial nitric oxide synthase expression and nitric oxide levels were reduced in HCD compared with control dams. Vasoconstriction to phenylephrine and biomechanical properties were similar between groups. In summary, excessive hypercholesterolemia in pregnancy impairs uterine artery function, with TLR4 activation as a key mechanism. Thus, TLR4 may be a target for therapy development to prevent adverse perinatal outcomes in complicated pregnancies.
Collapse
Affiliation(s)
- Amanda A de Oliveira
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Emma Elder
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Murilo E Graton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Anita Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Amy L Wooldridge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Christy-Lynn M Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Department of Physiology, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Byappanahalli AM, Omoniyi V, Noren Hooten N, Smith JT, Mode NA, Ezike N, Zonderman AB, Evans MK. Extracellular vesicle mitochondrial DNA levels are associated with race and mitochondrial DNA haplogroup. iScience 2024; 27:108724. [PMID: 38226163 PMCID: PMC10788249 DOI: 10.1016/j.isci.2023.108724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
Circulating cell-free mitochondrial DNA (ccf-mtDNA) acts as a damage-associated molecular pattern molecule and may be cargo within extracellular vesicles (EVs). ccf-mtDNA and select mitochondrial DNA (mtDNA) haplogroups are associated with cardiovascular disease. We hypothesized that ccf-mtDNA and plasma EV mtDNA would be associated with hypertension, sex, self-identified race, and mtDNA haplogroup ancestry. Participants were normotensive (n = 107) and hypertensive (n = 108) African American and White adults from the Healthy Aging in Neighborhoods of Diversity across the Life Span study. ccf-mtDNA levels were higher in African American participants compared with White participants in both plasma and EVs, but ccf-mtDNA levels were not related to hypertension. EV mtDNA levels were highest in African American participants with African mtDNA haplogroup. Circulating inflammatory protein levels were altered with mtDNA haplogroup, race, and EV mtDNA. Our findings highlight that race is a social construct and that ancestry is crucial when examining health and biomarker differences between groups.
Collapse
Affiliation(s)
- Anjali M. Byappanahalli
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Victor Omoniyi
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jessica T. Smith
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Nicolle A. Mode
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Ngozi Ezike
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Dwivedi J, Wal P, Dash B, Ovais M, Sachan P, Verma V. Diabetic Pneumopathy- A Novel Diabetes-associated Complication: Pathophysiology, the Underlying Mechanism and Combination Medication. Endocr Metab Immune Disord Drug Targets 2024; 24:1027-1052. [PMID: 37817659 DOI: 10.2174/0118715303265960230926113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND The "diabetic lung" has been identified as a possible target organ in diabetes, with abnormalities in ventilation control, bronchomotor tone, lung volume, pulmonary diffusing capacity, and neuroadrenergic bronchial innervation. OBJECTIVE This review summarizes studies related to diabetic pneumopathy, pathophysiology and a number of pulmonary disorders including type 1 and type 2 diabetes. METHODS Electronic searches were conducted on databases such as Pub Med, Wiley Online Library (WOL), Scopus, Elsevier, ScienceDirect, and Google Scholar using standard keywords "diabetes," "diabetes Pneumopathy," "Pathophysiology," "Lung diseases," "lung infection" for review articles published between 1978 to 2023 very few previous review articles based their focus on diabetic pneumopathy and its pathophysiology. RESULTS Globally, the incidence of diabetes mellitus has been rising. It is a chronic, progressive metabolic disease. The "diabetic lung" may serve as a model of accelerated ageing since diabetics' rate of respiratory function deterioration is two to three-times higher than that of normal, non-smoking people. CONCLUSION Diabetes-induced pulmonary dysfunction has not gained the attention it deserves due to a lack of proven causality and changes in cellular properties. The mechanism underlying a particular lung illness can still only be partially activated by diabetes but there is evidence that hyperglycemia is linked to pulmonary fibrosis in diabetic people.
Collapse
Affiliation(s)
- Jyotsana Dwivedi
- PSIT- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Biswajit Dash
- Department of Pharmaceutical Technology, ADAMAS University, West Bengal, India
| | | | - Pranjal Sachan
- PSIT- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | | |
Collapse
|
10
|
Zhu H, Liao D, Mehmood MA, Huang Y, Yuan W, Zheng J, Ma Y, Peng Y, Tian G, Xiao X, Lan C, Li L, Xu K, Lu H, Wang N. Systolic heart failure induced by butylparaben in zebrafish is caused through oxidative stress and immunosuppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115692. [PMID: 37981439 DOI: 10.1016/j.ecoenv.2023.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Due to Butylparaben (BuP) widespread application in cosmetics, food, pharmaceuticals, and its presence as an environmental residue, human and animal exposure to BuP is common, potentially posing hazards to both human and animal health. Congenital heart disease is already a serious problem. However, the effects of BuP on the developing heart and its underlying mechanisms remain unclear. Here, zebrafish embryos were exposed to environmentally and human-relevant concentrations of BuP (0.6 mg/L, 1.2 mg/L, and 1.8 mg/L, calculated but not measured) at 6 h post-fertilization (hpf) and were treated until 72 hpf. Exposure to BuP led to cardiac morphological defects and cardiac dysfunction in zebrafish embryos, manifesting symptoms similar to systolic heart failure. The etiology of BuP-induced systolic heart failure in zebrafish embryos is multifactorial, including cardiomyocyte apoptosis, endocardial and atrioventricular valve damage, insufficient myocardial energy, impaired Ca2+ homeostasis, depletion of cardiac-resident macrophages, cardiac immune non-responsiveness, and cardiac oxidative stress. However, excessive accumulation of reactive oxygen species (ROS) in the cardiac region and cardiac immunosuppression (depletion of cardiac-resident macrophages and cardiac immune non-responsiveness) may be the predominant factors. In conclusion, this study indicates that BuP is a potential hazardous substance that can cause adverse effects on the developing heart and provides evidence and insights into the pathological mechanisms by which BuP leads to cardiac dysfunction. It may help to prevent the BuP-based congenital heart disease heart failure in human through ameliorating strategies and BuP discharge policies, while raising awareness to prevent the misuse of preservatives.
Collapse
Affiliation(s)
- Hui Zhu
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Wuliangye Group Co., Ltd., Yibin 644007, China; Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Dalong Liao
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330029, Jiangxi, China
| | - Wei Yuan
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jia Zheng
- Wuliangye Group Co., Ltd., Yibin 644007, China
| | - Yi Ma
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Yuyang Peng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Guiyou Tian
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoping Xiao
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Chaohua Lan
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Linman Li
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Kewei Xu
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China; Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, China.
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Chengdu Chongqing Shuangcheng economic circle (Luzhou) advanced technology research institute, Luzhou 646000, China; Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China.
| |
Collapse
|
11
|
Alkudmani ZS, Alzailai AA, Aburisheh KH, Alshammary AF, Ali Khan I. Toll-like Receptor 9 Gene in the Development of Type 2 Diabetes Mellitus in the Saudi Arabian Population. BIOLOGY 2023; 12:1439. [PMID: 37998038 PMCID: PMC10669332 DOI: 10.3390/biology12111439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Diabetes mellitus is a complex disease with a wide range of manifestations. Diabetes, notably type 2 diabetes mellitus (T2DM), is becoming more common in Saudi Arabia as a result of obesity and an aging population. T2DM is classified as a noncommunicable disease, and its incidence in the Saudi population continues to grow as a consequence of socioeconomic changes. Toll-like receptors (TLRs) are innate immune receptors that mediate the inflammatory response in diabetes mellitus. Previous studies have documented the relationship between different SNPs in the TLR9 gene in different forms of diabetes. As a result, the purpose of this study was to investigate the relationship between rs187084, rs352140, and rs5743836 SNPs in the TLR9 gene among T2DM patients in the Saudi population. This was a case-control study that included 100 T2DM cases and 100 control subjects. The three SNPs were identified in the study population (n = 200) using polymerase chain reaction (PCR), restriction enzymes for rs352140, and Sanger sequencing for rs187084 and rs5783836. Next, statistical analyses were performed using various software to determine the association between the SNPs and T2DM. rs187084 and rs5743836 were associated with an increased risk of T2DM development. rs187084 and rs5743836 allelic frequencies were associated with a 3.2 times increased risk of T2DM development (p < 0.05). DBP was associated with T2DM (p = 0.02). rs187084 was associated with TC and HDLc; rs352140 was associated with DBP, HbA1c, and HDLc; rs5743836 was associated with waist (p < 0.05). The CGT haplotype was strongly associated with T2DM (p < 0.003). Gene-gene interaction, graphical presentation, and dendrogram showed the strong association with T2DM patients (p < 0.05). This study concluded that rs187084 and rs5743836 were strongly associated with T2DM in Saudi Arabian patients. This study provides further evidence that SNPs in the TLR9 gene play a significant role in T2DM development in a Saudi community.
Collapse
Affiliation(s)
- Zeina S. Alkudmani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (Z.S.A.); (A.A.A.); (A.F.A.)
| | - Aminah Ahmad Alzailai
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (Z.S.A.); (A.A.A.); (A.F.A.)
| | - Khaled H. Aburisheh
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11472, Saudi Arabia;
| | - Amal F. Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (Z.S.A.); (A.A.A.); (A.F.A.)
| | - Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (Z.S.A.); (A.A.A.); (A.F.A.)
| |
Collapse
|
12
|
Kim ES, Kim SY, Moon A. C-Reactive Protein Signaling Pathways in Tumor Progression. Biomol Ther (Seoul) 2023; 31:473-483. [PMID: 37562952 PMCID: PMC10468419 DOI: 10.4062/biomolther.2023.132] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Many cancers arise from sites of chronic inflammation, which creates an inflammatory microenvironment surrounding the tumor. Inflammatory substances secreted by cells in the inflammatory environment can induce the proliferation and survival of cancer cells, thereby promoting cancer metastasis and angiogenesis. Therefore, it is important to identify the role of inflammatory factors in cancer progression. This review summarizes the signaling pathways and roles of C-reactive protein (CRP) in various cancer types, including breast, liver, renal, and pancreatic cancer, and the tumor microenvironment. Mounting evidence suggests the role of CRP in breast cancer, particularly in triple-negative breast cancer (TNBC), which is typically associated with a worse prognosis. Increased CRP in the inflammatory environment contributes to enhanced invasiveness and tumor formation in TNBC cells. CRP promotes endothelial cell formation and angiogenesis and contributes to the initiation and progression of atherosclerosis. In pancreatic and kidney cancers, CRP contributes to tumor progression. In liver cancer, CRP regulates inflammatory responses and lipid metabolism. CRP modulates the activity of various signaling molecules in macrophages and monocytes present in the tumor microenvironment, contributing to tumor development, the immune response, and inflammation. In the present review, we overviewed the role of CRP signaling pathways and the association between inflammation and cancer in various types of cancer. Identifying the interactions between CRP signaling pathways and other inflammatory mediators in cancer progression is crucial for understanding the complex relationship between inflammation and cancer.
Collapse
Affiliation(s)
- Eun-Sook Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea
| |
Collapse
|
13
|
Abstract
Pregnancy is commonly referred to as a window into future CVH (cardiovascular health). During pregnancy, physiological adaptations occur to promote the optimal growth and development of the fetus. However, in approximately 20% of pregnant individuals, these perturbations result in cardiovascular and metabolic complications, which include hypertensive disorders of pregnancy, gestational diabetes, preterm birth, and small-for-gestational age infant. The biological processes that lead to adverse pregnancy outcomes begin before pregnancy with higher risk of adverse pregnancy outcomes observed among those with poor prepregnancy CVH. Individuals who experience adverse pregnancy outcomes are also at higher risk of subsequent development of cardiovascular disease, which is largely explained by the interim development of traditional risk factors, such as hypertension and diabetes. Therefore, the peripartum period, which includes the period before (prepregnancy), during, and after pregnancy (postpartum), represents an early cardiovascular moment or window of opportunity when CVH should be measured, monitored, and modified (if needed). However, it remains unclear whether adverse pregnancy outcomes reflect latent risk for cardiovascular disease that is unmasked in pregnancy or if adverse pregnancy outcomes are themselves an independent and causal risk factor for future cardiovascular disease. Understanding the pathophysiologic mechanisms and pathways linking prepregnancy CVH, adverse pregnancy outcomes, and cardiovascular disease are necessary to develop strategies tailored for each stage in the peripartum period. Emerging evidence suggests the utility of subclinical cardiovascular disease screening with biomarkers (eg, natriuretic peptides) or imaging (eg, computed tomography for coronary artery calcium or echocardiography for adverse cardiac remodeling) to identify risk-enriched postpartum populations and target for more intensive strategies with health behavior interventions or pharmacological treatments. However, evidence-based guidelines focused on adults with a history of adverse pregnancy outcomes are needed to prioritize the prevention of cardiovascular disease during the reproductive years and beyond.
Collapse
Affiliation(s)
- Sadiya S. Khan
- Department of Medicine, Northwestern University Feinberg School of Medicine
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine
| | - Natalie A. Cameron
- Department of Medicine, Northwestern University Feinberg School of Medicine
| | - Kathryn J. Lindley
- Department of Medicine, Vanderbilt University Medical Center
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center
| |
Collapse
|
14
|
Aboukhater D, Morad B, Nasrallah N, Nasser SA, Sahebkar A, Kobeissy F, Boudaka A, Eid AH. Inflammation and hypertension: Underlying mechanisms and emerging understandings. J Cell Physiol 2023; 238:1148-1159. [PMID: 37039489 DOI: 10.1002/jcp.31019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Hypertension remains a major contributor to cardiovascular disease (CVD), a leading cause of global death. One of the major insults that drive increased blood pressure is inflammation. While it is the body's defensive response against some homeostatic imbalances, inflammation, when dysregulated, can be very deleterious. In this review, we highlight and discuss the causative relationship between inflammation and hypertension. We critically discuss how the interplay between inflammation and reactive oxygen species evokes endothelial damage and dysfunction, ultimately leading to narrowing and stiffness of blood vessels. This, along with phenotypic switching of the vascular smooth muscle cells and the abnormal increase in extracellular matrix deposition further exacerbates arterial stiffness and noncompliance. We also discuss how hyperhomocysteinemia and microRNA act as links between inflammation and hypertension. The premises we discuss suggest that the blue-sky scenarios for targeting the underlying mechanisms of hypertension necessitate further research.
Collapse
Affiliation(s)
- Diana Aboukhater
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Bassel Morad
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadim Nasrallah
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
15
|
Wang J, Zhang J, Wang J, Hu X, Ouyang L, Wang Y. Small-Molecule Modulators Targeting Toll-like Receptors for Potential Anticancer Therapeutics. J Med Chem 2023; 66:6437-6462. [PMID: 37163340 DOI: 10.1021/acs.jmedchem.2c01655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Toll-like receptors (TLRs) are key components of the innate immune system and serve as a crucial link between innate and acquired immunity. In addition to immune function, TLRs are involved in other important pathological processes, including tumorigenesis. TLRs have dual regulatory effects on tumor immunity by activating nuclear factor κ-B signaling pathways, which induce tumor immune evasion or enhance the antitumor immune response. Therefore, TLRs have become a popular target for cancer prevention and treatment, and TLR agonists and antagonists offer considerable potential for drug development. The TLR7 agonist imiquimod (1) has been approved by the U.S. Food and Drug Administration as a treatment for malignant skin cancer. Herein, the structure, signaling pathways, and function of the TLR family are summarized, and the structure-activity relationships associated with TLR selective and multitarget modulators and their potential application in tumor therapy are systematically discussed.
Collapse
Affiliation(s)
- Jiayu Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Xinyue Hu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
16
|
Identifying susceptibility genes for essential hypertension by transcriptome-wide association study. Biochem Biophys Rep 2022; 32:101387. [DOI: 10.1016/j.bbrep.2022.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
|
17
|
Bikomeye JC, Terwoord JD, Santos JH, Beyer AM. Emerging mitochondrial signaling mechanisms in cardio-oncology: beyond oxidative stress. Am J Physiol Heart Circ Physiol 2022; 323:H702-H720. [PMID: 35930448 PMCID: PMC9529263 DOI: 10.1152/ajpheart.00231.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/27/2022]
Abstract
Many anticancer therapies (CTx) have cardiotoxic side effects that limit their therapeutic potential and cause long-term cardiovascular complications in cancer survivors. This has given rise to the field of cardio-oncology, which recognizes the need for basic, translational, and clinical research focused on understanding the complex signaling events that drive CTx-induced cardiovascular toxicity. Several CTx agents cause mitochondrial damage in the form of mitochondrial DNA deletions, mutations, and suppression of respiratory function and ATP production. In this review, we provide a brief overview of the cardiovascular complications of clinically used CTx agents and discuss current knowledge of local and systemic secondary signaling events that arise in response to mitochondrial stress/damage. Mitochondrial oxidative stress has long been recognized as a contributor to CTx-induced cardiotoxicity; thus, we focus on emerging roles for mitochondria in epigenetic regulation, innate immunity, and signaling via noncoding RNAs and mitochondrial hormones. Because data exploring mitochondrial secondary signaling in the context of cardio-oncology are limited, we also draw upon clinical and preclinical studies, which have examined these pathways in other relevant pathologies.
Collapse
Affiliation(s)
- Jean C Bikomeye
- Doctorate Program in Public and Community Health, Division of Epidemiology and Social Sciences, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Janée D Terwoord
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Sciences Department, Rocky Vista University, Ivins, Utah
| | - Janine H Santos
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Andreas M Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
18
|
Ming B, Zhu Y, Zhong J, Dong L. Immunopathogenesis of Sjogren's syndrome: Current state of DAMPs. Semin Arthritis Rheum 2022; 56:152062. [PMID: 35803061 DOI: 10.1016/j.semarthrit.2022.152062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disorder with an estimated global prevalence of 0.3 to 1/1000 persons. This disease has a female predilection and mainly affects salivary and lacrimal glands. The distinctive pathological hallmark of SS is focal lymphocyte infiltration in affected glands, accompanied by the production of autoantibodies and inflammatory cytokines leading to epithelial damage and disease progression. Danger-associated molecular patterns (DAMPs) as alarmins have been demonstrated to promote lymphocyte recruitment in several inflammatory and autoimmune diseases. Here we summarize that the levels of DAMPs were increased in the periphery and affected tissues in SS as the stimulators, DAMPs sensed by pattern recognition receptors (PRRs, the same sensors for PAMPs) initiated the inflammatory and autoimmune response constituting a vicious autoimmunity loop leading to disease exacerbation. Thus, DAMPs are involved in the immunopathogenesis of SS and inhibition of these DAMPs may serve as a novel therapeutic strategy for SS.
Collapse
Affiliation(s)
- Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yaowu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Daniels TE, Zitkovsky EK, Kunicki ZJ, Price DJ, Peterson AL, Dennery PA, Kao HT, Price LH, Tyrka AR, Abrantes AM. Associations of circulating cell-free DNA, C-reactive protein, and cardiometabolic risk among low-active smokers with elevated depressive symptoms. Brain Behav Immun Health 2022; 25:100519. [PMID: 36164463 PMCID: PMC9508337 DOI: 10.1016/j.bbih.2022.100519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 01/31/2023] Open
Abstract
Background and aims Cell-free DNA (cfDNA) is elevated in several disease states. Metabolic syndrome is a constellation of factors associated with poor cardiometabolic outcomes. This study examined associations of cfDNA from the nucleus (cf-nDNA) and mitochondria (cf-mtDNA), C-reactive protein (CRP), and metabolic syndrome risk, in low-active smokers with depressive symptoms. Methods Participants (N = 109; mean age 47) self-reported medical history. Physical activity was determined by accelerometry and anthropometrics were measured. Blood was collected and analyzed for cf-nDNA, cf-mtDNA, CRP, triglycerides, high-density lipoprotein, hemoglobin A1c. A continuous metabolic syndrome composite risk score was calculated. Relationships of cf-nDNA, cf-mtDNA, CRP, and cardiometabolic risk were examined with correlations and linear regression. Results CRP and cf-nDNA were significantly associated with metabolic syndrome risk (r = .39 and r = .31, respectively), cf-mtDNA was not (r = .01). In a linear regression, CRP and cf-nDNA significantly predicted the metabolic syndrome risk score, findings that remained significant controlling for age, gender, nicotine dependence, and physical activity. Conclusions Associations of cf-nDNA with both CRP and metabolic risk suggest a role for cf-nDNA in inflammatory processes associated with metabolic syndrome. The negative findings for cf-mtDNA suggest distinct roles for cf-nDNA and cf-mtDNA in these processes.
Collapse
Affiliation(s)
- Teresa E. Daniels
- Mood Disorders Research Program and Laboratory for Clinical and Translational, Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA,Corresponding author. 1011 Veterans Memorial Parkway, Riverside, RI, 02915, USA.
| | - Emily K. Zitkovsky
- Mood Disorders Research Program and Laboratory for Clinical and Translational, Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Zachary J. Kunicki
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - Destiny J. Price
- Department of Psychiatry, New York State Psychiatric Institute and Columbia University Irving Medical Center, 1051 Riverside Dr, New York, NY, 10032, USA
| | - Abigail L. Peterson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA,Department of Pediatrics, Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI, 02903, USA
| | - Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - Lawrence H. Price
- Mood Disorders Research Program and Laboratory for Clinical and Translational, Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - Audrey R. Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational, Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ana M. Abrantes
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA,Behavioral Medicine and Addictions Research Department, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| |
Collapse
|
20
|
Wara AK, Rawal S, Yang X, Pérez-Cremades D, Sachan M, Chen J, Feinberg MW. KLF10 deficiency in CD4 + T cells promotes atherosclerosis progression by altering macrophage dynamics. Atherosclerosis 2022; 359:27-41. [PMID: 36174463 DOI: 10.1016/j.atherosclerosis.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND AIMS Accumulating evidence supports a critical role for CD4+ T cells as drivers and modifiers of the chronic inflammatory response in atherosclerosis. Effector T cells have pro-atherogenic properties, whereas CD4+ regulatory T cells (Tregs) exert suppressive activity in atherosclerosis through increased secretion of inhibitory cytokines such as transforming growth factor-β or interleukin-10. In addition, Tregs have been shown to suppress inflammatory macrophages and promote the resolution of atherosclerosis plaques. Impaired Treg numbers and function have been associated with atherosclerosis plaque development. However, the underlying mechanisms remain unclear. METHODS AND RESULTS Here, we investigated a cell-autonomous role of a transcription factor, Krüppel-like factor 10 (KLF10), in CD4+ T cells in regulating atherosclerosis progression. Using CD4+ T-cell-specific KLF10 knockout (TKO) mice, we identified exaggerated plaque progression due to defects in immunosuppressive functions of Tregs on macrophages. TKO mice exhibited increased lesion size as well as higher CD4+ T cells and macrophage content compared to WT mice. TKO plaques also showed increased necrotic cores along with defective macrophage efferocytosis. In contrast, adoptive cellular therapy using WT Tregs abrogated the accelerated lesion progression and deleterious effects in TKO mice. Intriguingly, RNA-seq analyses of TKO lesions revealed increased chemotaxis and cell proliferation, and reduced phagocytosis compared to WT lesions. Mechanistically, TKO-Tregs impaired the efferocytosis capacity of macrophages in vitro and promoted a pro-inflammatory macrophage phenotype via increased IFN-γ and decreased TGF-β secretion. CONCLUSIONS Taken together, these findings establish a critical role for KLF10 in regulating CD4+ Treg-macrophage interactions and atherosclerosis.
Collapse
Affiliation(s)
- Akm Khyrul Wara
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shruti Rawal
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xilan Yang
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of General Practice, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China
| | - Daniel Pérez-Cremades
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Physiology, University of Valencia, and INCLIVA Biomedical Research Institute, Valencia, 46010, Spain
| | - Madhur Sachan
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jingshu Chen
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Terwoord JD, Beyer AM, Gutterman DD. Endothelial dysfunction as a complication of anti-cancer therapy. Pharmacol Ther 2022; 237:108116. [PMID: 35063569 PMCID: PMC9294076 DOI: 10.1016/j.pharmthera.2022.108116] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
Recent strides in anti-cancer therapeutics have improved longevity and led to a growing population of cancer survivors, who are increasingly likely to die of other causes. Treatment-induced cardiotoxicity is a complication of several therapeutic agents with acute and long-term consequences for cancer patients. Vascular endothelial dysfunction is a precursor and hallmark of ischemic coronary disease and may play a role in anti-cancer therapy-induced cardiotoxicity. This review summarizes clinical evidence for endothelial dysfunction following anti-cancer therapy and extends the discussion to include the impact of therapeutic agents on conduit arteries and the microcirculation. We highlight the role of innate immune system activation and cross-talk between inflammation and oxidative stress as pathogenic mechanisms underlying anti-cancer therapy-induced vascular toxicity. Understanding the impact of anti-cancer agents on the vascular endothelium will inform therapeutic approaches to prevent or reverse treatment-induced cardiotoxicity and may serve as an important tool to predict, monitor, and prevent adverse cardiovascular outcomes in patients undergoing treatment.
Collapse
Affiliation(s)
- Janée D Terwoord
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America.
| | - Andreas M Beyer
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
22
|
Butts B, Brown JA, Denney TS, Ballinger S, Lloyd SG, Oparil S, Sanders P, Merriman TR, Gaffo A, Singh J, Kelley EE, Calhoun DA, Dell'Italia LJ. Racial Differences in XO (Xanthine Oxidase) and Mitochondrial DNA Damage-Associated Molecular Patterns in Resistant Hypertension. Hypertension 2022; 79:775-784. [PMID: 35164526 PMCID: PMC10652275 DOI: 10.1161/hypertensionaha.121.18298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously reported increased plasma XO (xanthine oxidase) activity in patients with resistant hypertension. Increased XO can cause mitochondrial DNA damage and promote release of fragments called mitochondrial DNA damage-associated molecular patterns (mtDNA DAMPs). Here, we report racial differences in XO activity and mtDNA DAMPs in Black and White adults with resistant hypertension. METHODS This retrospective study includes 91 resistant hypertension patients (44% Black, 47% female) with blood pressure >140/90 mm Hg on ≥4 medications and 37 normotensive controls (30% Black, 54% female) with plasma XO activity, mtDNA DAMPs, and magnetic resonance imaging of left ventricular morphology and function. RESULTS Black-resistant hypertension patients were younger (mean age 52±10 versus 59±10 years; P=0.001), with higher XO activity and left ventricular wall thickness, and worse diastolic dysfunction than White resistant hypertension patients. Urinary sodium excretion (mg/24 hour per kg) was positively related to left ventricular end-diastolic volume (r=0.527, P=0.001) and left ventricular mass (r=0.394, P=0.02) among Black but not White resistant hypertension patients. Patients with resistant hypertension had increased mtDNA DAMPs versus controls (P<0.001), with Black mtDNA DAMPS greater than Whites (P<0.001). Transmission electron microscopy of skeletal muscle biopsies in resistant hypertension patients demonstrates mitochondria cristae lysis, myofibrillar loss, large lipid droplets, and glycogen accumulation. CONCLUSIONS These data warrant a large study to examine the role of XO and mitochondrial mtDNA DAMPs in cardiac remodeling and heart failure in Black adults with resistant hypertension.
Collapse
Affiliation(s)
- Brittany Butts
- Division of Cardiovascular Disease, University of Alabama at Birmingham (UAB) School of Medicine (SOM) (B.B., S.G.L., S.O., P.S., D.A.C., L.J.D.)
| | - Jamelle A Brown
- Center for Free Radical Biology and Department of Pathology, UAB SOM (J.A.B., S.B.)
| | - Thomas S Denney
- Department of Electrical and Computer Engineering, Auburn University (T.S.D.)
| | - Scott Ballinger
- Center for Free Radical Biology and Department of Pathology, UAB SOM (J.A.B., S.B.)
| | - Steven G Lloyd
- Division of Cardiovascular Disease, University of Alabama at Birmingham (UAB) School of Medicine (SOM) (B.B., S.G.L., S.O., P.S., D.A.C., L.J.D.)
- Birmingham Department of Veterans Affairs Health Care System (S.G.L., P.S., A.G., J.S., L.J.D.)
| | - Suzanne Oparil
- Division of Cardiovascular Disease, University of Alabama at Birmingham (UAB) School of Medicine (SOM) (B.B., S.G.L., S.O., P.S., D.A.C., L.J.D.)
| | - Paul Sanders
- Division of Cardiovascular Disease, University of Alabama at Birmingham (UAB) School of Medicine (SOM) (B.B., S.G.L., S.O., P.S., D.A.C., L.J.D.)
- Nephrology Research and Training Center and Division of Nephrology UAB SOM (P.S.)
- Birmingham Department of Veterans Affairs Health Care System (S.G.L., P.S., A.G., J.S., L.J.D.)
| | - Tony R Merriman
- Division of Clinical Immunology and Rheumatology, UAB SOM (T.R.M., A.G., J.S.)
| | - Angelo Gaffo
- Division of Clinical Immunology and Rheumatology, UAB SOM (T.R.M., A.G., J.S.)
- Birmingham Department of Veterans Affairs Health Care System (S.G.L., P.S., A.G., J.S., L.J.D.)
| | - Jasvinder Singh
- Division of Clinical Immunology and Rheumatology, UAB SOM (T.R.M., A.G., J.S.)
- Birmingham Department of Veterans Affairs Health Care System (S.G.L., P.S., A.G., J.S., L.J.D.)
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University (E.E.K.)
| | - David A Calhoun
- Division of Cardiovascular Disease, University of Alabama at Birmingham (UAB) School of Medicine (SOM) (B.B., S.G.L., S.O., P.S., D.A.C., L.J.D.)
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, University of Alabama at Birmingham (UAB) School of Medicine (SOM) (B.B., S.G.L., S.O., P.S., D.A.C., L.J.D.)
- Birmingham Department of Veterans Affairs Health Care System (S.G.L., P.S., A.G., J.S., L.J.D.)
| |
Collapse
|
23
|
Akesolo O, Buey B, Beltrán-Visiedo M, Giraldos D, Marzo I, Latorre E. Toll-like receptors: new targets for multiple myeloma treatment? Biochem Pharmacol 2022; 199:114992. [DOI: 10.1016/j.bcp.2022.114992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023]
|
24
|
Belanger KM, Mohamed R, Webb RC, Sullivan JC. Sex Differences in TLR4 Expression in SHR Do Not Contribute to Sex Differences in Blood Pressure or the Renal T cell Profile. Am J Physiol Regul Integr Comp Physiol 2022; 322:R319-R325. [PMID: 35107023 PMCID: PMC8917934 DOI: 10.1152/ajpregu.00237.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertension is a primary risk factor for the development of cardiovascular disease. Mechanisms controlling blood pressure (BP) in men and women are still being investigated, however, there is increasing evidence supporting a role for the innate immune system. Specifically, Toll-like receptors (TLR), and TLR4 in particular, have been implicated in the development of hypertension in male spontaneously hypertensive rats (SHR). Despite established sex differences in BP control and inflammatory markers in hypertensive males and females, little is known regarding the role of TLR4 in hypertension in females. Our hypotheses were that male SHR have greater TLR4 expression compared to females, and that sex differences in TLR4 contribute to sex differences in BP and the T cell profile. To test these hypotheses, initial studies measured renal TLR4 protein expression in 13-week old male and female SHR. Additional SHR were implanted with telemetry devices and randomized to treatment with either IgG or TLR4 neutralizing antibodies. Untreated control male SHR have greater TLR4 protein expression in the kidney compared to females. However, treatment with TLR4 neutralizing antibody for 2 weeks did not significantly alter BP in either male or female SHR. Interestingly, neutralization of TLR4 increased renal CD3+ T cells in female SHR, with no alteration in CD4+ T cells or CD8+ T cells in either sex. Taken together, our data indicates that although male SHR have greater renal TLR4 expression than females, TLR4 does not contribute to the higher BP and more pro-inflammatory renal T cell prolife in males vs. females.
Collapse
Affiliation(s)
- Kasey M Belanger
- Department of Physiology Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Riyaz Mohamed
- Department of Physiology Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - R Clinton Webb
- Department of Pharmacology, Physiology, and Neuroscience University of South Carolina, Columbia, South Carolina, United States
| | - Jennifer C Sullivan
- Department of Physiology Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
25
|
Extracellular HMGB1 Induced Glomerular Endothelial Cell Injury via TLR4/MyD88 Signaling Pathway in Lupus Nephritis. Mediators Inflamm 2022; 2021:9993971. [PMID: 34970076 PMCID: PMC8714399 DOI: 10.1155/2021/9993971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Previously, our study showed that HMGB1 was significantly elevated in the blood and located in the glomerular endothelium in LN patients. But whether extracellular HMGB1 is involved in the injury of glomerular endothelial cells (GECs) in LN still needs further investigation. Firstly, we detected the levels of SDC-1, VCAM-1, and proteinuria in LN patients and MRL/lpr mice and analyzed their correlations. Then, HMGB1 and TLR4/MyD88 were inhibited to observe the shedding of glycocalyx and injury of GECs in vivo and in vitro. Our results showed that HRGEC injury and SDC-1 shedding played an important role in the increase of permeability and proteinuria formation in LN. Additionally, inhibition of extracellular HMGB1 and/or downstream TLR4/MyD88/NF-κB/p65 signaling pathway also alleviated GEC monolayer permeability, reduced the shedding of the glomerular endothelial glycocalyx, improved the intercellular tight junction and cytoskeletal arrangement, and downregulated the NO level and VCAM-1 expression. These results suggested that extracellular HMGB1 might involve in GEC injury by activating the TLR4/MyD88 signaling pathway in LN, which provided novel insights and potential therapeutic target for the treatment of lupus nephritis.
Collapse
|
26
|
Shin S, Park J, Lee YE, Ko H, Youn HS. Isobavachalcone suppresses the TRIF-dependent signaling pathway of Toll-like receptors. Arch Pharm (Weinheim) 2021; 355:e2100404. [PMID: 34964142 DOI: 10.1002/ardp.202100404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022]
Abstract
Toll-like receptors (TLRs) are integral membrane-bound receptors that are central to innate and adaptive immune responses. They are known to activate a cascade of downstream signals to induce the secretion of inflammatory cytokines, chemokines, and type I interferons. Dysregulated activation of TLR signaling pathways can induce the activation of various transcription factors, such as nuclear factor kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). TLRs act via MyD88- and TRIF-mediated pathways to induce inflammatory responses. To evaluate the therapeutic potential of isobavachalcone (IBC), a natural chalcone component of Angelica keiskei, we examined its effects on signal transduction via TLR signaling pathways. IBC inhibited the activation of NF-κB and IRF3 induced by TLR agonists and their target genes. IBC also inhibited the activation of NF-κB and IRF3 induced by overexpression of downstream signaling components of TLR signaling pathways. These results suggest that IBC can regulate both MyD88- and TRIF-dependent signaling pathways of TLRs, resulting in a dramatic increase of new therapeutic options for various inflammatory diseases involving TLRs.
Collapse
Affiliation(s)
- Seokwon Shin
- Department of ICT Environmental Health System, Graduate School, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Jayeon Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Ye Eun Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Hanbin Ko
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Hyung-Sun Youn
- Department of ICT Environmental Health System, Graduate School, SoonChunHyang University, Asan-si, Chungnam, South Korea.,Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| |
Collapse
|
27
|
Przykaza Ł. Understanding the Connection Between Common Stroke Comorbidities, Their Associated Inflammation, and the Course of the Cerebral Ischemia/Reperfusion Cascade. Front Immunol 2021; 12:782569. [PMID: 34868060 PMCID: PMC8634336 DOI: 10.3389/fimmu.2021.782569] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Despite the enormous progress in the understanding of the course of the ischemic stroke over the last few decades, a therapy that effectively protects neurovascular units (NVUs) and significantly improves neurological functions in stroke patients has still not been achieved. The reasons for this state are unclear, but it is obvious that the cerebral ischemia and reperfusion cascade is a highly complex phenomenon, which includes the intense neuroinflammatory processes, and comorbid stroke risk factors strongly worsen stroke outcomes and likely make a substantial contribution to the pathophysiology of the ischemia/reperfusion, enhancing difficulties in searching of successful treatment. Common concomitant stroke risk factors (arterial hypertension, diabetes mellitus and hyperlipidemia) strongly drive inflammatory processes during cerebral ischemia/reperfusion; because these factors are often present for a long time before a stroke, causing low-grade background inflammation in the brain, and already initially disrupting the proper functions of NVUs. Broad consideration of this situation in basic research may prove to be crucial for the success of future clinical trials of neuroprotection, vasculoprotection and immunomodulation in stroke. This review focuses on the mechanism by which coexisting common risk factors for stroke intertwine in cerebral ischemic/reperfusion cascade and the dysfunction and disintegration of NVUs through inflammatory processes, principally activation of pattern recognition receptors, alterations in the expression of adhesion molecules and the subsequent pathophysiological consequences.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
28
|
Chukwurah E, Farabaugh KT, Guan BJ, Ramakrishnan P, Hatzoglou M. A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS J 2021; 288:6365-6391. [PMID: 33387379 PMCID: PMC9248962 DOI: 10.1111/febs.15691] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kenneth T. Farabaugh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | | | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
29
|
Wenzel UO, Kemper C, Bode M. The role of complement in arterial hypertension and hypertensive end organ damage. Br J Pharmacol 2021; 178:2849-2862. [PMID: 32585035 PMCID: PMC10725187 DOI: 10.1111/bph.15171] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that hypertension and hypertensive end organ damage are not only mediated by haemodynamic injury but that inflammation also plays an important role. The complement system protects the host from a hostile microbial environment and maintains tissue and cell integrity through the elimination of altered or dead cells. As an important effector arm of innate immunity, it plays also central roles in the regulation of adaptive immunity. Thus, complement activation may drive the pathology of hypertension through its effects on innate and adaptive immune responses, aside from direct effects on the vasculature. Recent experimental data strongly support a role for complement in all stages of arterial hypertension. The remarkably similar clinical and histopathological features of malignant nephrosclerosis and atypical haemolytic uraemic syndrome suggest also a role for complement in the development of malignant nephrosclerosis. Here, we review the role of complement in hypertension and hypertensive end organ damage. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Khaleel KE, Al-Zghoul MB, Saleh KMM. Molecular and morphometric changes in the small intestine during hot and cold exposure in thermally manipulated broiler chickens. Vet World 2021; 14:1511-1528. [PMID: 34316199 PMCID: PMC8304413 DOI: 10.14202/vetworld.2021.1511-1528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/28/2021] [Indexed: 01/10/2023] Open
Abstract
Background and Aim: Thermal stress (hot or cold) is one of many environmental stressors that severely affects the health of broiler chickens. One negative effect of thermal stress is the disruption of the intestinal barrier function in broiler chickens. This study aimed to evaluate the effect of thermal manipulation (TM) on the small intestine in terms of histomorphometry as well as junctional, heat-shock, and immune response gene expression during post-hatch exposure to thermal stress. Materials and Methods: The experiment was conducted by dividing 928 fertile Ross eggs into three incubation groups: The control (C) group (incubated at 37.8°C and 56% relative humidity [RH] for the whole incubation period), the TM using low temperature TML group (incubated at 36°C and 56% RH for 18 h/day from embryonic days 7 to 16), and the TM using high temperature (TMH) group (incubated at 39°C and 65% RH for 18 h/day from embryonic days 7 to 16). On post-hatch day 21, 90 chicks were randomly selected from each incubation group and were equally subdivided into three subgroups for the post-hatch thermal stress experiment: The TN subgroup (room temperature maintained at 24°C), the heat stress (HS) subgroup (room temperature maintained at 35°C), and the cold stress (CS) subgroup (room temperature maintained at 16°C). After 1 day of thermal stress exposure (age 22 days), five birds from each subgroup were euthanized and ileum samples were collected to evaluate the transcription of the Claudin (CLDN1), CLDN-5, Occludin, Cadherin-1, heat shock factors (HSF1), HSF3, 70 kilodalton heat shock protein, 90 kilodalton heat shock protein, Interleukin6 (IL6), IL8, toll-like receptors-2 (TLR2), and TLR4 genes by Real-Time Quantitative Reverse Transcription polymerase chain reaction analysis. Finally, after 4 and 7 days of thermal stress (age 25 and 28 days, respectively), nine chicks were euthanized, and their jejunum and ileum were collected for histomorphometric analysis. Results: After exposure to 1 day of thermal stress, the C subgroups exposed to thermal stress (HS and CS) possessed significantly increased expression of junctional, heat-shock, and immune response genes compared to the C-TN subgroup, and similar results were observed for the TMH. In contrast, thermally stressed TMH subgroups had significantly lower expression of the studied genes compared to C subgroups exposed to thermal stress. Furthermore, no significant changes were detected between the TML subgroups exposed to thermal stress and TML-TN. Moreover, significant alterations in villus height (VH), villus surface area, crypt depth (CD), and VH to CD ratio were observed between the TML, TMH, and C subgroups exposed to CS. Conclusion: It might be suggested that TM may have a protective impact on the small intestine histomorphometry and epithelial integrity of broilers during post-hatch exposure to thermal stress.
Collapse
Affiliation(s)
- Khaleel Emad Khaleel
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Jordan
| | - Mohammad Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Jordan
| | - Khaled Musa Mohammad Saleh
- Department of Applied Biological Sciences, Faculty of Science and Art, Jordan University of Science and Technology, Jordan
| |
Collapse
|
31
|
Sánchez-Luquez K, Schadock IC, Gonçalves CV, Tornatore M, Finger-Jardim F, Avila EC, Soares MA, de Martínez AMB, Ellwanger JH, Chies JAB, da Hora VP. Impact of TLR7 and TLR9 polymorphisms on susceptibility to placental infections and pregnancy complications. J Reprod Immunol 2021; 146:103342. [PMID: 34102513 DOI: 10.1016/j.jri.2021.103342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022]
Abstract
This study evaluated the impact of the TLR7 Gln11Leu (rs179008) and TLR9 -1237 T/C (rs5743836) single nucleotide polymorphisms (SNPs) on susceptibility to placental infections and pregnancy complications in 455 Brazilian women. Demographic, socioeconomic, gynecological, and clinical characteristics of the women were collected. Placental tissues were sampled from pregnant women and human and viral DNA was extracted. Human alphaherpesvirus 1 (Herpes simplex virus type 1, HSV-1), Human alphaherpesvirus 2 (Herpes simplex virus type 2, HSV-2) and Human betaherpesvirus 5 (Human cytomegalovirus, HCMV) were detected by nested PCR. TLR9 and TLR7 SNPs were genotyped by PCR amplification of bi-directional specific alleles (Bi-PASA) and restriction fragment length polymorphism (RFLP), respectively. Infections at the time of birth were detected in 45.71 % of women. The presence of the TT genotype (recessive model) of the TLR7 SNP was associated with increased susceptibility to HSV-1 infection (O.R. = 2.23, p = 0.05). The presence of the C allele of the TLR9 SNP, in heterozygosis or homozygosis (dominant model), decreased the infection risk by HCMV (O.R. = 0.31, p-mod<0.05). The TT genotype (recessive model) of the TLR7 SNP was significantly associated (p < 0.05) with increased occurrence of pre-treated hypertension. The codominant model of the TLR9 SNP was significantly associated (p < 0.05) with reduced risk of hospitalization during pregnancy. In combination, the AA/CT (TLR7-TLR9) genotypes significantly decreased the risk of placental infection by HSV-1 and/or HSV-2 (O.R. = 0.47, p = 0.02), the susceptibility to all infectious agents considered in combination (O.R. = 0.4, p = 0.00), and the need of hospitalization (O.R. = 0.48, p = 0.02). In conclusion, TLR7 and TLR9 SNPs are potential modulating factors for the risk of placental infections and pregnancy complications.
Collapse
Affiliation(s)
- Karen Sánchez-Luquez
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil.
| | - Ines Claudia Schadock
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Carla Vitola Gonçalves
- Center for Obstetrics and Gynecology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Michele Tornatore
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Fabiana Finger-Jardim
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Emiliana Claro Avila
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Marcelo Alves Soares
- Oncovirology Program, National Cancer Institute (INCA), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Barral de Martínez
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vanusa Pousada da Hora
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
32
|
The gut microbiota metabolite urolithin A inhibits NF-κB activation in LPS stimulated BMDMs. Sci Rep 2021; 11:7117. [PMID: 33782464 PMCID: PMC8007722 DOI: 10.1038/s41598-021-86514-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a natural defense process of the innate immune system, associated with the release of proinflammatory cytokines such as interleukin-1β, interleukin-6, interleukin-12 and TNFα; and enzymes including iNOS through the activation and nuclear translocation of NF-κB p65 due to the phosphorylation of IκBα. Regulation of intracellular Ca2+ is considered a promising strategy for the prevention of reactive oxygen species (ROS) production and accumulation of DNA double strand breaks (DSBs) that occurs in inflammatory-associated-diseases. Among the metabolites of ellagitannins that are produced in the gut microbiome, urolithin A (UA) has received an increasing attention as a novel candidate with anti-inflammatory and anti-oxidant effects. Here, we investigated the effect of UA on the suppression of pro-inflammatory molecules and NF-κB activation by targeting TLR4 signalling pathway. We also identified the influence of UA on Ca2+ entry, ROS production and DSBs availability in murine bone-marrow-derived macrophages challenged with lipopolysaccharides (LPS). We found that UA inhibits IκBα phosphorylation and supresses MAPK and PI3K activation. In addition, UA was able to reduce calcium entry, ROS production and DSBs availability. In conclusion, we suggest that urolithin A is a promising therapeutic agent for treating inflammatory diseases through suppression of NF-κB and preserving DNA through maintaining intracellular calcium and ROS homeostasis.
Collapse
|
33
|
Lazaridis A, Gavriilaki E, Douma S, Gkaliagkousi E. Toll-Like Receptors in the Pathogenesis of Essential Hypertension. A Forthcoming Immune-Driven Theory in Full Effect. Int J Mol Sci 2021; 22:3451. [PMID: 33810594 PMCID: PMC8037648 DOI: 10.3390/ijms22073451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Essential hypertension (EH) is a highly heterogenous disease with a complex etiology. Recent evidence highlights the significant contribution of subclinical inflammation, triggered and sustained by excessive innate immune system activation in the pathogenesis of the disease. Toll-like receptors (TLRs) have been implied as novel effectors in this inflammatory environment since they can significantly stimulate the production of pro-inflammatory cytokines, the migration and proliferation of smooth muscle cells and the generation of reactive oxygen species (ROS), facilitating a low-intensity inflammatory background that is evident from the very early stages of hypertension. Furthermore, the net result of their activation is oxidative stress, endothelial dysfunction, vascular remodeling, and finally, vascular target organ damage, which forms the pathogenetic basis of EH. Importantly, evidence of augmented TLR expression and activation in hypertension has been documented not only in immune but also in several non-immune cells located in the central nervous system, the kidneys, and the vasculature which form the pathogenetic core systems operating in hypertensive disease. In this review, we will try to highlight the contribution of innate immunity in the pathogenesis of hypertension by clarifying the deleterious role of TLR signaling in promoting inflammation and facilitating hypertensive vascular damage.
Collapse
Affiliation(s)
- Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece; (A.L.); (S.D.); (E.G.)
| | - Eleni Gavriilaki
- Hematology Department, Bone Marrow Transplantation Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece
| | - Stella Douma
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece; (A.L.); (S.D.); (E.G.)
| | - Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece; (A.L.); (S.D.); (E.G.)
| |
Collapse
|
34
|
McCarthy CG, Saha P, Golonka RM, Wenceslau CF, Joe B, Vijay-Kumar M. Innate Immune Cells and Hypertension: Neutrophils and Neutrophil Extracellular Traps (NETs). Compr Physiol 2021; 11:1575-1589. [PMID: 33577121 DOI: 10.1002/cphy.c200020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Uncontrolled immune system activation amplifies end-organ injury in hypertension. Nonetheless, the exact mechanisms initiating this exacerbated inflammatory response, thereby contributing to further increases in blood pressure (BP), are still being revealed. While participation of lymphoid-derived immune cells has been well described in the hypertension literature, the mechanisms by which myeloid-derived innate immune cells contribute to T cell activation, and subsequent BP elevation, remains an active area of investigation. In this article, we critically analyze the literature to understand how monocytes, macrophages, dendritic cells, and polymorphonuclear leukocytes, including mast cells, eosinophils, basophils, and neutrophils, contribute to hypertension and hypertension-associated end-organ injury. The most abundant leukocytes, neutrophils, are indisputably increased in hypertension. However, it is unknown how (and why) they switch from critical first responders of the innate immune system, and homeostatic regulators of BP, to tissue-damaging, pro-hypertensive mediators. We propose that myeloperoxidase-derived pro-oxidants, neutrophil elastase, neutrophil extracellular traps (NETs), and interactions with other innate and adaptive immune cells are novel mechanisms that could contribute to the inflammatory cascade in hypertension. We further posit that the gut microbiota serves as a set point for neutropoiesis and their function. Finally, given that hypertension appears to be a key risk factor for morbidity and mortality in COVID-19 patients, we put forth evidence that neutrophils and NETs cause cardiovascular injury post-coronavirus infection, and thus may be proposed as an intriguing therapeutic target for high-risk individuals. © 2021 American Physiological Society. Compr Physiol 11:1575-1589, 2021.
Collapse
Affiliation(s)
- Cameron G McCarthy
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Piu Saha
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Rachel M Golonka
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Camilla F Wenceslau
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Matam Vijay-Kumar
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
35
|
Wild J, Wenzel P. Myeloid cells, tissue homeostasis, and anatomical barriers as innate immune effectors in arterial hypertension. J Mol Med (Berl) 2021; 99:315-326. [PMID: 33443617 PMCID: PMC7899956 DOI: 10.1007/s00109-020-02019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
Although essential hypertension affects a large proportion of the human population and is one of the key drivers of cardiovascular mortality worldwide, we still do not have a complete understanding of its pathophysiology. More than 50 years ago, the immune system has been identified as an important part of the pathogenesis of arterial hypertension. An exceeding variety of recent publications deals with the interplay between the numerous different components of the immune system and mechanisms of arterial hypertension and has substantially contributed to our understanding of the role of immunity and inflammation in the pathogenesis of the disease. In this review, we focus on myeloid cells and anatomical barriers as particular aspects of innate immunity in arterial hypertension. Since it represents a first line of defense protecting against pathogens and maintaining tissue homeostasis, innate immunity provides many mechanistic hinge points in the area of hypertension.
Collapse
Affiliation(s)
- Johannes Wild
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Cardiology - Cardiology I and CTH Professorship "Vascular Inflammation", University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.,German Center for Cardiovascular Research (DZHK) - Partner site RheinMain, Berlin, Germany
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany. .,Center for Cardiology - Cardiology I and CTH Professorship "Vascular Inflammation", University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany. .,German Center for Cardiovascular Research (DZHK) - Partner site RheinMain, Berlin, Germany.
| |
Collapse
|
36
|
Lin YM, Badrealam KF, Kuo WW, Lai PF, Shao-Tsu Chen W, Hsuan Day C, Ho TJ, Viswanadha VP, Shibu MA, Huang CY. Nerolidol improves cardiac function in spontaneously hypertensive rats by inhibiting cardiac inflammation and remodelling associated TLR4/ NF-κB signalling cascade. Food Chem Toxicol 2021; 147:111837. [PMID: 33212213 DOI: 10.1016/j.fct.2020.111837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
Toll-like receptor 4 (TLR4) is an important mediator of hypertension and AngII induced cardiac inflammation and remodelling. In this study, the potential of nerolidol to ameliorate hypertension induced cardiac injuries and the underlying mechanism of action was explored by using in vitro and in vivo models. The in vitro analysis was performed on AngII challenged H9c2 cells and their ability to overcome cardiac inflammation and cardiac remodelling effects was determined by evaluating TLR4/NF-κB signalling cascade using Western blot analysis and immunofluorescence. The results were further ascertained using in vivo experiments. Eighteen week old male rats were randomly allocated into different groups i.e. Wistar Kyoto (WKY) rats, hypertensive SHRs, SHRs treated with a low-dose (75 mg/kg b.w) and high-dose of nerolidol (150 mg/kg b.w) and SHRs treated with captopril (50 mg/kg b.w) through oral gauge and finally analysed through echocardiography, histopathological techniques and molecular analysis. The results show that nerilodol target TLR4/NF-κB signalling and thereby attenuate hypertension associated inflammation and oxidative stress thereby provides effective cardioprotection. Echocardiography analysis showed that nerolidol improved cardiac functional characteristics including Ejection Fraction and Fractional Shortening in the SHRs. Collectively, the data of the study demonstrates nerolidol as a cardio-protective agent against hypertension induced cardiac remodelling.
Collapse
Affiliation(s)
- Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, 500, Taiwan; Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Taipei, 11260, Taiwan
| | - Khan Farheen Badrealam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Pei Fang Lai
- Emergency Department, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - William Shao-Tsu Chen
- Department of Psychiatry, Tzu Chi General Hospital, 707, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan; School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan
| | - Cecilia Hsuan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Post‑Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan
| | | | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan; Department of Biological Science and Technology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
37
|
Zhang RM, McNerney KP, Riek AE, Bernal‐Mizrachi C. Immunity and Hypertension. Acta Physiol (Oxf) 2021; 231:e13487. [PMID: 32359222 DOI: 10.1111/apha.13487] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
Hypertension is the primary cause of cardiovascular mortality. Despite multiple existing treatments, only half of those with the disease achieve adequate control. Therefore, understanding the mechanisms causing hypertension is essential for the development of novel therapies. Many studies demonstrate that immune cell infiltration of the vessel wall, kidney and central nervous system, as well as their counterparts of oxidative stress, the renal renin-angiotensin system (RAS) and sympathetic tone play a critical role in the development of hypertension. Genetically modified mice lacking components of innate and/or adaptive immunity confirm the importance of chronic inflammation in hypertension and its complications. Depletion of immune cells improves endothelial function, decreases oxidative stress, reduces vascular tone and prevents renal interstitial infiltrates, sodium retention and kidney damage. Moreover, the ablation of microglia or central nervous system perivascular macrophages reduces RAS-induced inflammation and prevents sympathetic nervous system activation and hypertension. Therefore, understanding immune cell functioning and their interactions with tissues that regulate hypertensive responses may be the future of novel antihypertensive therapies.
Collapse
Affiliation(s)
- Rong M. Zhang
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Kyle P. McNerney
- Department of Pediatrics Washington University School of Medicine St. Louis MO USA
| | - Amy E. Riek
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Carlos Bernal‐Mizrachi
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis MO USA
- Department of Medicine VA Medical Center St. Louis MO USA
| |
Collapse
|
38
|
Del Pinto R, Ferri C. The role of Immunity in Fabry Disease and Hypertension: A Review of a Novel Common Pathway. High Blood Press Cardiovasc Prev 2020; 27:539-546. [PMID: 33047250 PMCID: PMC7661400 DOI: 10.1007/s40292-020-00414-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023] Open
Abstract
Fabry disease is a progressive, X-linked inherited lysosomal storage disorder where accumulation of glycosphingolipids increases the risk for early cardiovascular complications, including heart failure, stroke, and end stage renal disease. Besides disease-specific therapy, blood pressure (BP) control is of central importance in Fabry disease to reduce disease progression and improve prognosis. Both Fabry disease and hypertension are characterized by the activation of the innate component of the immune system, with Toll-like receptor 4 (TLR4) as a common trigger to the inflammatory cascade. The renin-angiotensin system (RAS) participates in the establishment of low-grade chronic inflammation and redox unbalance that contribute to organ damage in the long term. Besides exploiting the anti-inflammatory effects of RAS blockade and enzyme replacement therapy, targeted therapies acting on the immune system represent an appealing field of research in these conditions. The aim of this narrative review is to examine the issue of hypertension in the setting of Fabry disease, focusing on the possible determinants of their reciprocal relationship, as well as on the related clinical and therapeutic implications.
Collapse
Affiliation(s)
- Rita Del Pinto
- Division of Internal Medicine and Nephrology, Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, San Salvatore Hospital, Building Delta 6, L'Aquila, Italy.
| | - Claudio Ferri
- Division of Internal Medicine and Nephrology, Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, San Salvatore Hospital, Building Delta 6, L'Aquila, Italy
| |
Collapse
|
39
|
Yang H, Song X, Wei Z, Xia C, Wang J, Shen L, Wang J. TLR4/MyD88/NF-κB Signaling in the Rostral Ventrolateral Medulla Is Involved in the Depressor Effect of Candesartan in Stress-Induced Hypertensive Rats. ACS Chem Neurosci 2020; 11:2978-2988. [PMID: 32898417 DOI: 10.1021/acschemneuro.0c00029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study aimed to investigate whether the proinflammatory and pressor effects of endogenous angiotensin II (AngII) are mediated by binding to the AngII type 1 receptor (AT1R) and subsequently activating central Toll-like receptor 4 (TLR4) in the rostral ventrolateral medulla (RVLM) of stress-induced hypertensive rats (SIHR). The stress-induced hypertension (SIH) model was established by random electric foot shocks combined with noise stimulation. Mean arterial pressure, heart rate, plasma norepinephrine, and RVLM AngII and TLR4 increased in a time-dependent manner in SIHR. Pro-inflammatory cytokines (tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β)), myeloid differentiation factor 88 (MyD88), and nuclear factor (NF)-κB also increased, while anti-inflammatory cytokine IL-10 decreased in the RVLM of SIHR. These changes were attenuated by 14-day intracerebroventricular (ICV) infusion of VIPER (a TLR4 inhibitor) or candesartan (an AT1R antagonist). Both TLR4 and AT1R were expressed in the neurons and microglia in the RVLM of SIHR. Candesartan attenuated the expression of TLR4 in the RVLM of SIHR. This study demonstrated that endogenous AngII may activate AT1R to upregulate TLR4/MyD88/NF-κB signaling and subsequently trigger an inflammatory response in the RVLM of SIHR, which in turn enhanced sympathetic activity and increased blood pressure.
Collapse
Affiliation(s)
- Hongyu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoshan Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhimiao Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
40
|
Yang J, Zhang H, Wang X, Guo J, Wei L, Song Y, Luo Y, Zhao Y, Subramaniam M, Spelsberg TC, Wang L, Xu W, Li M. Kruppel-like factor 10 protects against acute viral myocarditis by negatively regulating cardiac MCP-1 expression. Cell Mol Immunol 2020; 18:2236-2248. [PMID: 32895486 DOI: 10.1038/s41423-020-00539-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Viral myocarditis (VMC) is a cardiac disease associated with myocardial inflammation and injury induced by virus infection. Cardiomyocytes have recently been regarded as key players in eliciting and modulating inflammation within the myocardium. Kruppel-like factor 10 (KLF10) is a crucial regulator of various pathological processes and plays different roles in a variety of diseases. However, its role in VMC induced by coxsackievirus B3 (CVB3) infection remains unknown. In this study, we report that cardiac KLF10 confers enhanced protection against viral myocarditis. We found that KLF10 expression was downregulated upon CVB3 infection. KLF10 deficiency enhanced cardiac viral replication and aggravated VMC progress. Bone marrow chimera experiments indicated that KLF10 expression in nonhematopoietic cells was involved in the pathogenesis of VMC. We further identified MCP-1 as a novel target of KLF10 in cardiomyocytes, and KLF10 cooperated with histone deacetylase 1 (HDAC1) to negatively regulate MCP-1 expression by binding its promoter, leading to activation of MCP-1 transcription and recruitment of Ly6Chigh monocytes/macrophages into the myocardium. This novel mechanism of MCP-1 regulation by KLF10 might provide new insights into the pathogenesis of VMC and a potential therapeutic target for VMC.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, 215123, Suzhou, China
| | - Hongkai Zhang
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, 215123, Suzhou, China
| | - Xuelian Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Guo
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Wei
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, 215123, Suzhou, China
| | - Yahui Song
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, 215123, Suzhou, China
| | - Yuan Luo
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, 215123, Suzhou, China
| | - YinXia Zhao
- Central Laboratory, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, 200031, Shanghai, China
| | | | - Thomas C Spelsberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Lie Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Xu
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, 215123, Suzhou, China.
| | - Min Li
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, 215123, Suzhou, China.
| |
Collapse
|
41
|
Aneman I, Pienaar D, Suvakov S, Simic TP, Garovic VD, McClements L. Mechanisms of Key Innate Immune Cells in Early- and Late-Onset Preeclampsia. Front Immunol 2020; 11:1864. [PMID: 33013837 PMCID: PMC7462000 DOI: 10.3389/fimmu.2020.01864] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Preeclampsia is a complex cardiovascular disorder of pregnancy with underlying multifactorial pathogeneses; however, its etiology is not fully understood. It is characterized by the new onset of maternal hypertension after 20 weeks of gestation, accompanied by proteinuria, maternal organ damage, and/or uteroplacental dysfunction. Preeclampsia can be subdivided into early- and late-onset phenotypes (EOPE and LOPE), diagnosed before 34 weeks or from 34 weeks of gestation, respectively. Impaired placental development in early pregnancy and subsequent growth restriction is often associated with EOPE, while LOPE is associated with maternal endothelial dysfunction. The innate immune system plays an essential role in normal progression of physiological pregnancy and fetal development. However, inappropriate or excessive activation of this system can lead to placental dysfunction or poor maternal vascular adaptation and contribute to the development of preeclampsia. This review aims to comprehensively outline the mechanisms of key innate immune cells including macrophages, neutrophils, natural killer (NK) cells, and innate B1 cells, in normal physiological pregnancy, EOPE and LOPE. The roles of the complement system, syncytiotrophoblast extracellular vesicles and mesenchymal stem cells (MSCs) are also discussed in the context of innate immune system regulation and preeclampsia. The outlined molecular mechanisms, which represent potential therapeutic targets, and associated emerging treatments, are evaluated as treatments for preeclampsia. Therefore, by addressing the current understanding of innate immunity in the pathogenesis of EOPE and LOPE, this review will contribute to the body of research that could lead to the development of better diagnosis, prevention, and treatment strategies. Importantly, it will delineate the differences in the mechanisms of the innate immune system in two different types of preeclampsia, which is necessary for a more personalized approach to the monitoring and treatment of affected women.
Collapse
Affiliation(s)
- Ingrid Aneman
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Dillan Pienaar
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Sonja Suvakov
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Tatjana P. Simic
- Faculty of Medicine, Institute of Medical and Clinical Biochemistry, University of Belgrade, Belgrade, Serbia
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Vesna D. Garovic
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lana McClements
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
42
|
Penrose HM, Katsurada A, Miyata K, Urushihara M, Satou R. STAT1 regulates interferon-γ-induced angiotensinogen and MCP-1 expression in a bidirectional manner in primary cultured mesangial cells. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320946527. [PMID: 32741247 PMCID: PMC7412908 DOI: 10.1177/1470320320946527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective: Intrarenal interferon-γ significantly contributes to the development of glomerular injury in which angiotensinogen and monocyte chemoattractant protein 1 levels are elevated. However, the exact nature of the role that interferon-γ plays in regulating angiotensinogen and monocyte chemoattractant protein 1 expression has not been fully delineated. Therefore, the aim of this study was to investigate the role that interferon-γ plays in angiotensinogen and monocyte chemoattractant protein 1 expression. Methods: Primary cultured rat mesangial cells were treated with 0–20 ng/mL interferon-γ for 2, 8 or 24 hours. Expression levels of angiotensinogen, monocyte chemoattractant protein 1, suppressors of cytokine signaling 1, an intracellular suppressor of Janus kinase-signal transducers and activators of transcription signaling and activity of the Janus kinase-signal transducers and activators of transcription pathway were evaluated by reverse transcriptase polymerase chain reaction and western blot analysis. Results: Interferon-γ increased angiotensinogen expression in mesangial cells with maximal augmentation observed following 5 ng/mL interferon-γ at 8 hours of treatment (1.87 ± 0.05, mRNA, relative ratio). Further increases were reduced or absent using higher concentrations of interferon-γ. Following treatments, monocyte chemoattractant protein 1 expression was induced in a linear dose-dependent manner (6.85 ± 0.62-fold by 20 ng/mL interferon-γ at 24 hours). In addition, interferon-γ induced STAT1 phosphorylation and suppressors of cytokine signaling 1 expression in a linear dose-dependent manner. The suppression of STAT1 and suppressors of cytokine signaling 1 expression by small interference RNAs facilitated an increase in interferon-γ-induced angiotensinogen expression, indicating that these two factors negatively regulate angiotensinogen expression. In contrast, the increase in interferon-γ-induced monocyte chemoattractant protein 1 expression was attenuated in STAT1-deficient mesangial cells, suggesting that STAT1 positively regulates monocyte chemoattractant protein 1 expression in mesangial cells. Conclusion: These results demonstrate that while interferon-γ increases both angiotensinogen and monocyte chemoattractant protein 1 expression, STAT1 plays an opposing role in the regulation of each factor in mesangial cells.
Collapse
Affiliation(s)
- Harrison M Penrose
- Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, USA
| | - Akemi Katsurada
- Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, USA
| | - Kayoko Miyata
- Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, USA
| | - Maki Urushihara
- Department of Pediatrics, The University of Tokushima Graduate School, Japan
| | - Ryousuke Satou
- Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, USA
| |
Collapse
|
43
|
Afroz R, Zhou Y, Little PJ, Xu S, Mohamed R, Stow J, Kamato D. Toll-like Receptor 4 Stimulates Gene Expression via Smad2 Linker Region Phosphorylation in Vascular Smooth Muscle Cells. ACS Pharmacol Transl Sci 2020; 3:524-534. [PMID: 32566917 DOI: 10.1021/acsptsci.9b00113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Atherosclerosis begins in the vessel wall with the retention of low density lipoproteins to modified proteoglycans with hyperelongated glycosaminoglycan (GAG) chains. Bacterial infections produce endotoxins such as lipopolysaccharide that exacerbate the outcome of atherosclerosis by generating a heightened state of inflammation. Lipopolysaccharide (LPS) via its toll-like receptor (TLR) is well-known for its role in mediating an inflammatory response in the body. Emerging evidence demonstrates that TLRs are involved in regulating vascular functions. In this study we sought to investigate the role of LPS in proteoglycan modification and GAG chain elongation, and we hypothesize that LPS will signal via Smad2 dependent pathways to regulate GAG chain elongation. The in vitro model used human aortic vascular smooth muscle cells. GAG gene expression was assessed by quantitative real-time polymerase chain reaction. Western blotting was performed using whole-cell protein lysates to assess the signaling pathway. LPS via TLR4 stimulates the expression of GAG synthesizing enzymes to an equal extent to traditional cardiovascular agonists. LPS phosphorylates the Smad2 linker region via TAK-1/MAPK dependent pathways which correlated with genes associated with GAG chain initiation and elongation. The well-characterized role of LPS in inflammation and our data on GAG gene expression demonstrates that GAG chain elongation is the earliest marker of the inflammatory cascade in atherosclerosis development.
Collapse
Affiliation(s)
- Rizwana Afroz
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Ying Zhou
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| | - Suowen Xu
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Raafat Mohamed
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Jennifer Stow
- Institute of Molecular Bioscience, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| |
Collapse
|
44
|
Al-Zghoul MB, Mohammad Saleh KM. Effects of thermal manipulation of eggs on the response of jejunal mucosae to posthatch chronic heat stress in broiler chickens. Poult Sci 2020; 99:2727-2735. [PMID: 32359610 PMCID: PMC7597404 DOI: 10.1016/j.psj.2019.12.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/26/2019] [Accepted: 12/08/2019] [Indexed: 12/16/2022] Open
Abstract
In this study, the aim was to investigate effects of chronic heat stress (CHS) on the mRNA levels of proinflammatory cytokines (interleukin [IL]-6, IL-8, IL-1β, and tumor necrosis factor alpha [TNF-α]), toll-like receptors (TLR2 and TLR4), heat shock proteins (Hsp70, heat shock transcription factor [HSF]-1, and HSF3) and antioxidant enzymes (catalase, glutathione peroxidase, NADPH oxidase, and superoxide-dismutase) in the jejunal mucosae of broiler chickens subjected to thermal manipulation (TM) during embryogenesis. TM was carried out at 39°C and 65% relative humidity (RH) for 18 h daily from embryonic days 10 to 18. Control group was incubated at 37.8°C and 56% RH. CHS was induced by raising the temperature to 35°C for 7 D throughout posthatch days 28 to 35. On post-hatch-day 28 (day zero of CHS) and after 1, 3, 5, and 7 D of CHS, the jejunal mucosae were collected from both groups to evaluate the mRNA levels by real-time reverse transcription-PCR analysis. On day zero of CHS, the mRNA levels of antioxidant enzymes, TLRs, HSF3, IL-1β, and TNF-α were not significantly different between TM and control groups, while the levels of IL-6, IL-8, and HSF1 were lower and the level of Hsp70 was higher in TM. However, during CHS, the mRNA levels of antioxidant enzymes, IL-1β, TNF-α, TLR4, and HSF1 were significantly lower in TM than in controls, while the levels of TLR2 and IL-8 were significantly higher in TM than in controls. In addition, TM led to significant increase of mRNA levels of IL-6 and HSF3 after 1 D and Hsp70 after 3 D of CHS and to significant decrease of mRNA levels of IL-6 after 3 and 5 D, HSF3 after 7 D, and Hsp70 after 5 D of CHS. Results of this study suggest that TM led to altered posthatch antioxidant, immunological, and Hsp response to CHS in the jejunal mucosae of broiler chickens, probably indicating that TM may mitigate the adverse effects of CHS.
Collapse
Affiliation(s)
- Mohammad Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Khaled Musa Mohammad Saleh
- Department of Applied Biological Sciences, Faculty of Science and Art, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
45
|
Aimo A, Castiglione V, Borrelli C, Saccaro LF, Franzini M, Masi S, Emdin M, Giannoni A. Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur J Prev Cardiol 2020; 27:494-510. [DOI: 10.1177/2047487319870344] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Both oxidative stress and inflammation are enhanced in chronic heart failure. Dysfunction of cardiac mitochondria is a hallmark of heart failure and a leading cause of oxidative stress, which in turn exerts detrimental effects on cellular components, including mitochondria themselves, thus generating a vicious circle. Oxidative stress also causes myocardial tissue damage and inflammation, contributing to heart failure progression. Furthermore, a subclinical inflammatory state may be caused by heart failure comorbidities such as obesity, diabetes mellitus or sleep apnoeas. Some markers of both oxidative stress and inflammation are enhanced in chronic heart failure and hold prognostic significance. For all these reasons, antioxidants or anti-inflammatory drugs may represent interesting additional therapies for subjects either at high risk or with established heart failure. Nonetheless, only a few clinical trials on antioxidants have been carried out so far, with several disappointing results except for vitamin C, elamipretide and coenzyme Q10. With regard to anti-inflammatory drugs, only preliminary data on the interleukin-1 antagonist anakinra are currently available. Therefore, a comprehensive, deep understanding of our current knowledge on oxidative stress and inflammation in chronic heart failure is key to providing some suggestions for future research on this topic.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Chiara Borrelli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Luigi F Saccaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
46
|
Cell free DNA as a diagnostic and prognostic marker for cardiovascular diseases. Clin Chim Acta 2020; 503:145-150. [PMID: 31978408 DOI: 10.1016/j.cca.2020.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
Release of cell free DNA (cfDNA) from damaged or dead cells routinely occurs in normal physiology. Recently, cfDNA has emerged as an essential biomarker in cardiovascular disease (CVD) of potential prognostic and diagnostic significance. Within the last decade, significant research efforts have been devoted to uncovering the mechanisms mediating cfDNA release and its outcome-predicting ability. The current review focuses on the pathways for cfDNA release in myocardial infarction, heart failure and hypertension, and discusses implementation of cfDNA monitoring to assess the overall development of these disease states and predict future complications.
Collapse
|
47
|
Cho KHT, Fraser M, Wassink G, Dhillon SJ, Davidson JO, Dean JM, Gunn AJ, Bennet L. TLR7 agonist modulation of postasphyxial neurophysiological and cardiovascular adaptations in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2020; 318:R369-R378. [PMID: 31913689 DOI: 10.1152/ajpregu.00295.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of Toll-like receptors (TLRs) after hypoxic-ischemic brain injury can exacerbate injury but also alleviate cell loss, as recently demonstrated with the TLR7 agonist Gardiquimod (GDQ). However, TLR agonists also modulate vascular function and neuronal excitability. Thus, we examined the effects of TLR7 activation with GDQ on cardiovascular function and seizures after asphyxia in preterm fetal sheep at 0.7 gestation (104 days, term ∼147 days). Fetuses received sham asphyxia or asphyxia induced by umbilical cord occlusion for 25 min or asphyxia followed by a continuous intracerebroventricular infusion of 3.34 mg of GDQ from 1 to 4 h after asphyxia. Fetuses were monitored continuously for 72 h postasphyxia. GDQ treatment was associated with sustained, moderate hypertension for 72 h (P < 0.05), with a transient increase in heart rate. Electroencephalographic (EEG) power was suppressed for the entire postasphyxial period in both groups, whereas EEG spectral edge transiently increased during the GDQ infusion compared with asphyxia alone (P < 0.05), with higher β- and lower δ-EEG frequencies (P < 0.05). This increase in EEG frequency was not related to epileptiform activity. After the GDQ infusion, there was earlier onset of high-amplitude stereotypic evolving seizures, with increased numbers of seizures and seizure burden (P < 0.05). Hemodynamic function and seizure activity are important indices of preterm wellbeing. These data highlight the importance of physiological monitoring during preclinical testing of potential neuroprotective strategies.
Collapse
Affiliation(s)
- Kenta H T Cho
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
48
|
Calmasini FB, McCarthy CG, Wenceslau CF, Priviero FBM, Antunes E, Webb RC. Toll-like receptor 9 regulates metabolic profile and contributes to obesity-induced benign prostatic hyperplasia in mice. Pharmacol Rep 2020; 72:179-187. [PMID: 32016843 DOI: 10.1007/s43440-019-00010-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is associated with obesity and prostatic inflammation. The present study investigated the participation of toll-like receptor 9 (TLR9) in obesity-induced BPH, focusing on metabolic impairments, damage-associated molecular patterns (DAMP) levels and prostatic oxidative stress generation. METHODS C57BL/6 (WT) and TLR9 mutant male mice were fed with regular or high-fat diet for 12 weeks. Metabolic profile, functional protocols, reactive-oxygen species (ROS) generation, prostatic histological analysis and DAMP levels were analyzed. Western blotting for prostatic TLR9 signaling pathway was also performed. RESULTS BPH in WT obese animals was characterized by increased prostate weight, smooth muscle hypercontractility and prostatic epithelial hyperplasia. Higher epididymal fat weight and prostatic ROS generation along with increased fasting glucose, triglyceride and circulating DAMP levels were also observed in WT obese group. Conversely, TLR9 mutant obese animals exhibited lower epididymal fat weight, fasting glucose and triglyceride levels associated with reduced prostate hypercontractility, prostatic ROS and circulating DAMP levels. However, TLR9 mutant obese mice were not protected from obesity-associated prostatic overgrowth and epithelial hyperplasia. Interestingly, TLR9 mutant lean mice exhibited augmented fasting glucose and prostatic ROS levels compared with WT lean mice. Despite increased prostatic expression of TLR9 in WT obese mice, no differences were seen in MyD88 expression between groups. CONCLUSION Improved obesity-induced BPH-related prostatic smooth muscle hypercontractility in TLR9 obese mice may be associated with amelioration in the metabolic profile, ROS and DAMP generation. Therefore, TLR9 could be a valuable target to improve obesity-associated metabolic disorders and prostate smooth muscle hypercontractility in BPH.
Collapse
Affiliation(s)
- Fabiano B Calmasini
- Department of Physiology, Augusta University, 1120 15th Street, Augusta, GA, USA. .,Department of Pharmacology, Faculty of Medical Science, University of Campinas (UNICAMP), Campinas, Brazil.
| | - Cameron G McCarthy
- Department of Physiology, Augusta University, 1120 15th Street, Augusta, GA, USA.,Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, USA
| | - Camilla F Wenceslau
- Department of Physiology, Augusta University, 1120 15th Street, Augusta, GA, USA.,Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, USA
| | | | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Science, University of Campinas (UNICAMP), Campinas, Brazil
| | - R Clinton Webb
- Department of Physiology, Augusta University, 1120 15th Street, Augusta, GA, USA
| |
Collapse
|
49
|
Affiliation(s)
- Cameron G McCarthy
- From the Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (C.G.M.)
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth (S.G.)
| | - R Clinton Webb
- Department of Physiology, Augusta University, GA (R.C.W.)
| |
Collapse
|
50
|
Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in Sepsis. Front Immunol 2019; 10:2536. [PMID: 31736963 PMCID: PMC6831555 DOI: 10.3389/fimmu.2019.02536] [Citation(s) in RCA: 402] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a deadly inflammatory syndrome caused by an exaggerated immune response to infection. Much has been focused on host response to pathogens mediated through the interaction of pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs). PRRs are also activated by host nuclear, mitochondrial, and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that are released from cells during sepsis. Some well described members of the DAMP family are extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), histones, and adenosine triphosphate (ATP). DAMPs are released from the cell through inflammasome activation or passively following cell death. Similarly, neutrophil extracellular traps (NETs) are released from neutrophils during inflammation. NETs are webs of extracellular DNA decorated with histones, myeloperoxidase, and elastase. Although NETs contribute to pathogen clearance, excessive NET formation promotes inflammation and tissue damage in sepsis. Here, we review DAMPs and NETs and their crosstalk in sepsis with respect to their sources, activation, release, and function. A clear grasp of DAMPs, NETs and their interaction is crucial for the understanding of the pathophysiology of sepsis and for the development of novel sepsis therapeutics.
Collapse
Affiliation(s)
- Naomi-Liza Denning
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| | - Steven D Gurien
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|