1
|
Lv J, Chen F, Zhang C, Kang Y, Yang Y, Zhang C. Role of Peroxynitrite in the Pathogenesis of Parkinson's Disease and Its Fluorescence Imaging-Based Detection. BIOSENSORS 2024; 14:506. [PMID: 39451719 PMCID: PMC11506598 DOI: 10.3390/bios14100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting the lives of millions of people worldwide. Although the mechanism underlying PD pathogenesis is largely undefined, increasing evidence indicates that oxidative and nitrosative stresses play a crucial role in PD occurrence and development. Among them, the role of oxidative stress has been widely acknowledged, but there is relatively less attention given to nitrosative stress, which is mainly derived from peroxynitrite. In the present review, after briefly introducing the background of PD, we discuss the physiopathological function of peroxynitrite and especially highlight how overloaded peroxynitrite is involved in PD pathogenesis. Then, we summarize the currently reported fluorescence imaging-based peroxynitrite detection probes. Moreover, we specifically emphasize the probes that have been applied in PD research. Finally, we propose perspectives on how to develop a more applicable peroxynitrite probe and leverage it for PD theranostics. Conclusively, the present review broadens the knowledge on the pathological role of peroxynitrite in the context of PD and sheds light on how to develop and utilize fluorescence imaging-based strategies for peroxynitrite detection.
Collapse
Affiliation(s)
- Jiye Lv
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Feiyu Chen
- School of Chinese Medicine, Tianjin University of Traditional Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Changchan Zhang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Yubing Kang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Yan Yang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| |
Collapse
|
2
|
Kong J, Fan R, Zhang Y, Jia Z, Zhang J, Pan H, Wang Q. Oxidative stress in the brain-lung crosstalk: cellular and molecular perspectives. Front Aging Neurosci 2024; 16:1389454. [PMID: 38633980 PMCID: PMC11021774 DOI: 10.3389/fnagi.2024.1389454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the body's ability to counteract their harmful effects, playing a key role in the pathogenesis of brain and lung-related diseases. This review comprehensively examines the intricate mechanisms by which oxidative stress influences cellular and molecular pathways, contributing to neurodegenerative, cardiovascular, and respiratory disorders. Emphasizing the detrimental effects on both brain and lung health, we discuss innovative diagnostic biomarkers, such as 8-hydroxy-2'-deoxyguanosine (8-OHdG), and the potential of antioxidant therapies. For these topics, we provide insights into future research directions in the field of oxidative stress treatment, including the development of personalized treatment approaches, the discovery and validation of novel biomarkers, and the development of new drug delivery systems. This review not only provides a new perspective on understanding the role of oxidative stress in brain and lung-related diseases but also offers new insights for future clinical treatments.
Collapse
Affiliation(s)
- Jianda Kong
- College of Sports Science, Qufu Normal University, Jining, China
| | - Rao Fan
- College of Sports Science, Qufu Normal University, Jining, China
| | - Yuanqi Zhang
- College of Sports Science, Qufu Normal University, Jining, China
| | - Zixuan Jia
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Jing Zhang
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Huixin Pan
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
3
|
Masuda D, Nakanishi I, Ohkubo K, Ito H, Matsumoto KI, Ichikawa H, Chatatikun M, Klangbud WK, Kotepui M, Imai M, Kawakami F, Kubo M, Matsui H, Tangpong J, Ichikawa T, Ozawa T, Yen HC, St Clair DK, Indo HP, Majima HJ. Mitochondria Play Essential Roles in Intracellular Protection against Oxidative Stress-Which Molecules among the ROS Generated in the Mitochondria Can Escape the Mitochondria and Contribute to Signal Activation in Cytosol? Biomolecules 2024; 14:128. [PMID: 38275757 PMCID: PMC10813015 DOI: 10.3390/biom14010128] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Questions about which reactive oxygen species (ROS) or reactive nitrogen species (RNS) can escape from the mitochondria and activate signals must be addressed. In this study, two parameters, the calculated dipole moment (debye, D) and permeability coefficient (Pm) (cm s-1), are listed for hydrogen peroxide (H2O2), hydroxyl radical (•OH), superoxide (O2•-), hydroperoxyl radical (HO2•), nitric oxide (•NO), nitrogen dioxide (•NO2), peroxynitrite (ONOO-), and peroxynitrous acid (ONOOH) in comparison to those for water (H2O). O2•- is generated from the mitochondrial electron transport chain (ETC), and several other ROS and RNS can be generated subsequently. The candidates which pass through the mitochondrial membrane include ROS with a small number of dipoles, i.e., H2O2, HO2•, ONOOH, •OH, and •NO. The results show that the dipole moment of •NO2 is 0.35 D, indicating permeability; however, •NO2 can be eliminated quickly. The dipole moments of •OH (1.67 D) and ONOOH (1.77 D) indicate that they might be permeable. This study also suggests that the mitochondria play a central role in protecting against further oxidative stress in cells. The amounts, the long half-life, the diffusion distance, the Pm, the one-electron reduction potential, the pKa, and the rate constants for the reaction with ascorbate and glutathione are listed for various ROS/RNS, •OH, singlet oxygen (1O2), H2O2, O2•-, HO2•, •NO, •NO2, ONOO-, and ONOOH, and compared with those for H2O and oxygen (O2). Molecules with negative electrical charges cannot directly diffuse through the phospholipid bilayer of the mitochondrial membranes. Short-lived molecules, such as •OH, would be difficult to contribute to intracellular signaling. Finally, HO2• and ONOOH were selected as candidates for the ROS/RNS that pass through the mitochondrial membrane.
Collapse
Affiliation(s)
- Daisuke Masuda
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Kagoshima, Japan;
- Utilization & Engineering Department, Japan Manned Space Systems Corporation, 2-1-6 Tsukuba, Tsukuba 305-0047, Ibaraki, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Kei Ohkubo
- Institute for Advanced Co-Creation Studies, Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan;
| | - Hiromu Ito
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
- Department of Maxillofacial Radiology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Kagoshima, Japan
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute for Radiological Science (NIRS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Hiroshi Ichikawa
- Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Kyoto, Japan;
| | - Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Wiyada Kwanhian Klangbud
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Manas Kotepui
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
| | - Motoki Imai
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
| | - Fumitaka Kawakami
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
| | - Makoto Kubo
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Division of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Takafumi Ichikawa
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
| | - Toshihiko Ozawa
- Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Saitama, Japan;
| | - Hsiu-Chuan Yen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Daret K. St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Hiroko P. Indo
- Department of Maxillofacial Radiology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Kagoshima, Japan
| | - Hideyuki J. Majima
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Kagoshima, Japan;
- Department of Maxillofacial Radiology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Kagoshima, Japan
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
4
|
Rabbani N, Thornalley PJ. Hexokinase-linked glycolytic overload and unscheduled glycolysis in hyperglycemia-induced pathogenesis of insulin resistance, beta-cell glucotoxicity, and diabetic vascular complications. Front Endocrinol (Lausanne) 2024; 14:1268308. [PMID: 38292764 PMCID: PMC10824962 DOI: 10.3389/fendo.2023.1268308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Hyperglycemia is a risk factor for the development of insulin resistance, beta-cell glucotoxicity, and vascular complications of diabetes. We propose the hypothesis, hexokinase-linked glycolytic overload and unscheduled glycolysis, in explanation. Hexokinases (HKs) catalyze the first step of glucose metabolism. Increased flux of glucose metabolism through glycolysis gated by HKs, when occurring without concomitant increased activity of glycolytic enzymes-unscheduled glycolysis-produces increased levels of glycolytic intermediates with overspill into effector pathways of cell dysfunction and pathogenesis. HK1 is saturated with glucose in euglycemia and, where it is the major HK, provides for basal glycolytic flux without glycolytic overload. HK2 has similar saturation characteristics, except that, in persistent hyperglycemia, it is stabilized to proteolysis by high intracellular glucose concentration, increasing HK activity and initiating glycolytic overload and unscheduled glycolysis. This drives the development of vascular complications of diabetes. Similar HK2-linked unscheduled glycolysis in skeletal muscle and adipose tissue in impaired fasting glucose drives the development of peripheral insulin resistance. Glucokinase (GCK or HK4)-linked glycolytic overload and unscheduled glycolysis occurs in persistent hyperglycemia in hepatocytes and beta-cells, contributing to hepatic insulin resistance and beta-cell glucotoxicity, leading to the development of type 2 diabetes. Downstream effector pathways of HK-linked unscheduled glycolysis are mitochondrial dysfunction and increased reactive oxygen species (ROS) formation; activation of hexosamine, protein kinase c, and dicarbonyl stress pathways; and increased Mlx/Mondo A signaling. Mitochondrial dysfunction and increased ROS was proposed as the initiator of metabolic dysfunction in hyperglycemia, but it is rather one of the multiple downstream effector pathways. Correction of HK2 dysregulation is proposed as a novel therapeutic target. Pharmacotherapy addressing it corrected insulin resistance in overweight and obese subjects in clinical trial. Overall, the damaging effects of hyperglycemia are a consequence of HK-gated increased flux of glucose metabolism without increased glycolytic enzyme activities to accommodate it.
Collapse
Affiliation(s)
| | - Paul J. Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
5
|
Feenstra L, Kutikhin AG, Shishkova DK, Buikema H, Zeper LW, Bourgonje AR, Krenning G, Hillebrands JL. Calciprotein Particles Induce Endothelial Dysfunction by Impairing Endothelial Nitric Oxide Metabolism. Arterioscler Thromb Vasc Biol 2023; 43:443-455. [PMID: 36727521 PMCID: PMC9944758 DOI: 10.1161/atvbaha.122.318420] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Calciprotein particles (CPPs) are associated with the development of vascular calcifications in chronic kidney disease. The role of endothelial cells (ECs) in this process is unknown. Here, we investigated the interaction of CPPs and ECs, thereby focusing on endothelial nitric oxide metabolism and oxidative stress. METHODS CPPs were generated in calcium- and phosphate-enriched medium. Human umbilical vein endothelial cells were exposed to different concentrations of CPPs (0-100 µg/mL) for 24 or 72 hours. Ex vivo porcine coronary artery rings were used to measure endothelial cell-dependent vascular smooth muscle cell relaxation after CPP exposure. Serum samples from an early chronic kidney disease cohort (n=245) were analyzed for calcification propensity (measure for CPP formation) and nitrate and nitrite levels (NOx). RESULTS CPP exposure for 24 hours reduced eNOS (endothelial nitric oxide synthase) mRNA expression and decreased nitrite production, indicating reduced nitric oxide bioavailability. Also, 24-hour CPP exposure caused increased mitochondria-derived superoxide generation, together with nitrotyrosine protein residue formation. Long-term (72 hours) exposure of human umbilical vein endothelial cells to CPPs induced eNOS uncoupling and decreased eNOS protein expression, indicating further impairment of the nitric oxide pathway. The ex vivo porcine coronary artery model showed a significant reduction in endothelial-dependent vascular smooth muscle cell relaxation after CPP exposure. A negative association was observed between NOx levels and calcification propensity (r=-0.136; P=0.049) in sera of (early) chronic kidney disease patients. CONCLUSIONS CPPs cause endothelial cell dysfunction by impairing nitric oxide metabolism and generating oxidative stress. Our findings provide new evidence for direct effects of CPPs on ECs and pathways involved.
Collapse
Affiliation(s)
- Lian Feenstra
- Department of Pathology and Medical Biology (L.F., G.K., J.-L.H.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Anton G. Kutikhin
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., D.K.S.)
| | - Daria K. Shishkova
- Laboratory for Molecular, Translational and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., D.K.S.)
| | - Hendrik Buikema
- Department of Clinical Pharmacy and Pharmacology (H.B., G.K.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Lara W. Zeper
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (L.W.Z.)
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology (A.R.B.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Guido Krenning
- Department of Pathology and Medical Biology (L.F., G.K., J.-L.H.), University of Groningen, University Medical Center Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology (H.B., G.K.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology (L.F., G.K., J.-L.H.), University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
6
|
Cardozo G, Mastrogiovanni M, Zeida A, Viera N, Radi R, Reyes AM, Trujillo M. Mitochondrial Peroxiredoxin 3 Is Rapidly Oxidized and Hyperoxidized by Fatty Acid Hydroperoxides. Antioxidants (Basel) 2023; 12:antiox12020408. [PMID: 36829967 PMCID: PMC9952270 DOI: 10.3390/antiox12020408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Human peroxiredoxin 3 (HsPrx3) is a thiol-based peroxidase responsible for the reduction of most hydrogen peroxide and peroxynitrite formed in mitochondria. Mitochondrial disfunction can lead to membrane lipoperoxidation, resulting in the formation of lipid-bound fatty acid hydroperoxides (LFA-OOHs) which can be released to become free fatty acid hydroperoxides (fFA-OOHs). Herein, we report that HsPrx3 is oxidized and hyperoxidized by fFA-OOHs including those derived from arachidonic acid and eicosapentaenoic acid peroxidation at position 15 with remarkably high rate constants of oxidation (>3.5 × 107 M-1s-1) and hyperoxidation (~2 × 107 M-1s-1). The endoperoxide-hydroperoxide PGG2, an intermediate in prostanoid synthesis, oxidized HsPrx3 with a similar rate constant, but was less effective in causing hyperoxidation. Biophysical methodologies suggest that HsPrx3 can bind hydrophobic structures. Indeed, molecular dynamic simulations allowed the identification of a hydrophobic patch near the enzyme active site that can allocate the hydroperoxide group of fFA-OOHs in close proximity to the thiolate in the peroxidatic cysteine. Simulations performed using available and herein reported kinetic data indicate that HsPrx3 should be considered a main target for mitochondrial fFA-OOHs. Finally, kinetic simulation analysis support that mitochondrial fFA-OOHs formation fluxes in the range of nM/s are expected to contribute to HsPrx3 hyperoxidation, a modification that has been detected in vivo under physiological and pathological conditions.
Collapse
Affiliation(s)
- Giuliana Cardozo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
| | - Nicolás Viera
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
| | - Aníbal M. Reyes
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (A.M.R.); (M.T.)
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (A.M.R.); (M.T.)
| |
Collapse
|
7
|
Williamson G. Effects of Polyphenols on Glucose-Induced Metabolic Changes in Healthy Human Subjects and on Glucose Transporters. Mol Nutr Food Res 2022; 66:e2101113. [PMID: 35315210 PMCID: PMC9788283 DOI: 10.1002/mnfr.202101113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Indexed: 12/30/2022]
Abstract
Dietary polyphenols interact with glucose transporters in the small intestine and modulate glucose uptake after food or beverage consumption. This review assesses the transporter interaction in vitro and how this translates to an effect in healthy volunteers consuming glucose. As examples, the apple polyphenol phlorizin inhibits sodium-glucose linked transporter-1; in the intestinal lumen, it is converted to phloretin, a strong inhibitor of glucose transporter-2 (GLUT2), by the brush border digestive enzyme lactase. Consequently, an apple extract rich in phlorizin attenuates blood glucose and insulin in healthy volunteers after a glucose challenge. On the other hand, the olive phenolic, oleuropein, inhibits GLUT2, but the strength of the inhibition is not enough to modulate blood glucose after a glucose challenge in healthy volunteers. Multiple metabolic effects and oxidative stresses after glucose consumption include insulin, incretin hormones, fatty acids, amino acids, and protein markers. However, apart from acute postprandial effects on glucose, insulin, and some incretin hormones, very little is known about the acute effects of polyphenols on these glucose-induced secondary effects. In summary, attenuation of the effect of a glucose challenge in vivo is only observed when polyphenols are strong inhibitors of glucose transporters.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health SciencesMonash UniversityBASE Facility, 264 Ferntree Gully RoadNotting HillVIC 3168Australia
| |
Collapse
|
8
|
Irigoyen P, Pintos-Polasky P, Rosa-Villagran L, Skowronek MF, Cassina A, Sapiro R. Mitochondrial metabolism determines the functional status of human sperm and correlates with semen parameters. Front Cell Dev Biol 2022; 10:926684. [PMID: 36111336 PMCID: PMC9468643 DOI: 10.3389/fcell.2022.926684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
The diagnosis of male infertility is based essentially on the patient’s medical history and a standard semen analysis. However, the latter rarely provides information on the causes of a possible infertility, emphasizing the need to extend the analysis of the sperm function. Mitochondrial function has been associated with sperm function and dysfunction, the latter primarily through the production of excessive amounts of reactive oxygen species (ROS). We hypothesized that analysis of sperm mitochondrial metabolism together with sperm ROS production could be an additional tool to improve routine semen analysis, after appropriate validations. To test our hypothesis, we performed several experiments using a non-routine method (high-resolution respirometry, HRR) to access mitochondrial function. First, we investigated whether mitochondrial function is related to human sperm motility and morphology. When mitochondrial metabolism was challenged, sperm motility decreased significantly. Additionally, morphological abnormalities in the sperm mid-piece and mitochondria were associated with global sperm defects evaluated by routine methods. Subsequently, sperm mitochondrial function was assessed by HRR. Respiratory control ratio (RCR) was determined and evaluated in the context of classical sperm analysis. In parallel, sperm hydrogen peroxide (H2O2) production and seminal plasma (SP) antioxidant capacity were measured. The percentage of sperm with progressive motility correlated positively with RCR, SP antioxidant capacity, and negatively with the concentration of extracellular H2O2 production ([H2O2]). The percentage of normal sperm morphology correlated positively with RCR and negatively with [H2O2]. Sperm morphology did not correlate with seminal plasma antioxidant capacity. Furthermore, Receiver Operating Characteristic curves were used for the first time to test the diagnostic ability of RCR, [H2O2], and SP antioxidant capacity as binary classifiers. An RCR cut off value of 3.2 was established with a sensitivity of 73% and a specificity of 61%, using reference values considered normal or abnormal in routine semen analysis. The cut off value for [H2O2] was 0.2 μM/106 sperm (sensitivity = 65%, specificity = 60%). There were no reference values for SP antioxidant capacity that distinguished between abnormal and normal sperm samples. We conclude that sperm mitochondrial function indices in combination with [H2O2] may be useful tools to complement the routine semen analysis.
Collapse
Affiliation(s)
- Pilar Irigoyen
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Paula Pintos-Polasky
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucia Rosa-Villagran
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Maria Fernanda Skowronek
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rossana Sapiro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Rossana Sapiro,
| |
Collapse
|
9
|
Piacenza L, Zeida A, Trujillo M, Radi R. The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol Rev 2022; 102:1881-1906. [PMID: 35605280 DOI: 10.1152/physrev.00005.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lucìa Piacenza
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
10
|
Rabbani N, Xue M, Thornalley PJ. Hexokinase-2-Linked Glycolytic Overload and Unscheduled Glycolysis-Driver of Insulin Resistance and Development of Vascular Complications of Diabetes. Int J Mol Sci 2022; 23:ijms23042165. [PMID: 35216280 PMCID: PMC8877341 DOI: 10.3390/ijms23042165] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
The recent discovery of the glucose-induced stabilization of hexokinase-2 (HK2) to proteolysis in cell dysfunction in model hyperglycemia has revealed a likely key initiating factor contributing to the development of insulin resistance and vascular complications in diabetes. Consequently, the increased flux of glucose metabolism without a change in the expression and activity of glycolytic enzymes produces a wave of increased glycolytic intermediates driving mitochondrial dysfunction and increased reactive oxygen species (ROS) formation, the activation of hexosamine and protein kinase C pathways, the increased formation of methylglyoxal-producing dicarbonyl stress, and the activation of the unfolded protein response. This is called HK2-linked glycolytic overload and unscheduled glycolysis. The conditions required to sustain this are GLUT1 and/or GLUT3 glucose uptake and the expression of HK2. A metabolic biomarker of its occurrence is the abnormally increased deposition of glycogen, which is produced by metabolic channeling when HK2 becomes detached from mitochondria. These conditions and metabolic consequences are found in the vasculature, kidneys, retina, peripheral nerves, and early-stage embryo development in diabetes and likely sustain the development of diabetic vascular complications and embryopathy. In insulin resistance, HK2-linked unscheduled glycolysis may also be established in skeletal muscle and adipose tissue. This may explain the increased glucose disposal by skeletal uptake in the fasting phase in patients with type 2 diabetes mellitus, compared to healthy controls, and the presence of insulin resistance in patients with type 1 diabetes mellitus. Importantly, glyoxalase 1 inducer—trans-resveratrol and hesperetin in combination (tRES-HESP)—corrected HK2-linked glycolytic overload and unscheduled glycolysis and reversed insulin resistance and improved vascular inflammation in overweight and obese subjects in clinical trial. Further studies are now required to evaluate tRES-HESP for the prevention and reversal of early-stage type 2 diabetes and for the treatment of the vascular complications of diabetes.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, Qatar University Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| | - Mingzhan Xue
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| |
Collapse
|
11
|
Zhang BH, Liu H, Yuan Y, Weng XD, Du Y, Chen H, Chen ZY, Wang L, Liu XH. Knockdown of TRIM8 Protects HK-2 Cells Against Hypoxia/Reoxygenation-Induced Injury by Inhibiting Oxidative Stress-Mediated Apoptosis and Pyroptosis via PI3K/Akt Signal Pathway. Drug Des Devel Ther 2021; 15:4973-4983. [PMID: 34916780 PMCID: PMC8670861 DOI: 10.2147/dddt.s333372] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Acute kidney injury (AKI) emerges as an acute and critical disease. Tripartite motif 8 (TRIM8), one number of the TRIM protein family, is proved to participate in ischemia/reperfusion (I/R) injury. However, whether TRIM8 is involved in renal I/R injury and the associated mechanisms are currently unclear. Purpose This study aimed to investigate the precise role of TRIM8 and relevant mechanisms in renal I/R injury. Materials and Methods In this study, human renal proximal tubular epithelial cells (HK-2 cells) underwent 12 hours of hypoxia and 2 h, 3 h or 4 h of reoxygenation to establish an in vitro hypoxia/reoxygenation (H/R) model. The siRNAs specific to TRIM8 (si-TRIM8) were transfected into HK-2 cells to knockdown TRIM8. The cell H/R model included various groups including Control, H/R, H/R+DMSO, H/R+NAC, si-NC+H/R, si-TRIM8+H/R and si-TRIM8+LY294002+H/R. The cell viability and levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), mRNA, apoptotic proteins, pyroptosis-related proteins and PI3K/AKT pathway-associated proteins were assessed. Results In vitro, realtime-quantitative PCR and western-blot analysis showed that the mRNA and protein expression of TRIM8 were obviously upregulated after H/R treatment in HK-2 cells. Compared with the H/R model group, knockdown of TRIM8 significantly increased cell viability and reduced the levels of ROS, H2O2, apoptotic proteins (Cleaved caspasebase-3 and BAX) and pyroptosis-related proteins (NLRP3, ASC, Caspase-1, Caspase-11, IL-1β and GSDMD-N). Western-blot analysis also authenticated that PI3K/AKT pathway was activated after TRIM8 inhibition. The application of 5 mM N-acetyl-cysteine, one highly efficient ROS inhibitor, significantly suppressed the expression of apoptotic proteins and pyroptosis-related proteins. Moreover, the combined treatment of TRIM8 knockdown and LY294002 reversed the effects of inhibiting oxidative stress. Conclusion Knockdown of TRIM8 can alleviate H/R-induced oxidative stress by triggering the PI3K/AKT pathway, thus attenuating pyropyosis and apoptosis in vitro.
Collapse
Affiliation(s)
- Bang-Hua Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Yan Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Xiao-Dong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Yuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
12
|
Sultan S, Ahmed F, Bajouh O, Schulten HJ, Bagatian N, Al-Dayini R, Subhi O, Karim S, Almalki S. Alterations of transcriptome expression, cell cycle, and mitochondrial superoxide reveal foetal endothelial dysfunction in Saudi women with gestational diabetes mellitus. Endocr J 2021; 68:1067-1079. [PMID: 33867398 DOI: 10.1507/endocrj.ej21-0189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gestational diabetes mellitus (GDM) affects one in four Saudi women and is associated with high risks of cardiovascular diseases in both the mother and foetus. It is believed that endothelial cells (ECs) dysfunction initiates these diabetic complications. In this study, differences in the transcriptome profiles, cell cycle distribution, and mitochondrial superoxide (MTS) between human umbilical vein endothelial cells (HUVECs) from GDM patients and those from healthy (control) subjects were analysed. Transcriptome profiles were generated using high-density expression microarray. The selected four altered genes were validated using qRT-PCR. MTS and cell cycle were analysed by flow cytometry. A total of 84 altered genes were identified, comprising 52 upregulated and 32 downregulated genes in GDM.HUVECs. Our selection of the four interested altered genes (TGFB2, KITLG, NEK7, and IGFBP5) was based on the functional network analysis, which revealed that these altered genes are belonging to the highest enrichment score associated with cellular function and proliferation; all of which may contribute to ECs dysfunction. The cell cycle revealed an increased percentage of cells in the G2/M phase in GDM.HUVECs, indicating cell cycle arrest. In addition, we found that GDM.HUVECs had increased MTS generation. In conclusion, GDM induces persistent impairment of the biological functions of foetal ECs, as evidenced by analyses of transcriptome profiles, cell cycle, and MTS even after ECs culture in vitro for several passages under normal glucose conditions.
Collapse
Affiliation(s)
- Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Bajouh
- Department of Obstetrics and Gynaecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Innovation in Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hans-Juergen Schulten
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadia Bagatian
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Roaa Al-Dayini
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ohoud Subhi
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultanah Almalki
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
The mitochondrial thioredoxin reductase system (TrxR2) in vascular endothelium controls peroxynitrite levels and tissue integrity. Proc Natl Acad Sci U S A 2021; 118:1921828118. [PMID: 33579817 DOI: 10.1073/pnas.1921828118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial thioredoxin/peroxiredoxin system encompasses NADPH, thioredoxin reductase 2 (TrxR2), thioredoxin 2, and peroxiredoxins 3 and 5 (Prx3 and Prx5) and is crucial to regulate cell redox homeostasis via the efficient catabolism of peroxides (TrxR2 and Trxrd2 refer to the mitochondrial thioredoxin reductase protein and gene, respectively). Here, we report that endothelial TrxR2 controls both the steady-state concentration of peroxynitrite, the product of the reaction of superoxide radical and nitric oxide, and the integrity of the vascular system. Mice with endothelial deletion of the Trxrd2 gene develop increased vascular stiffness and hypertrophy of the vascular wall. Furthermore, they suffer from renal abnormalities, including thickening of the Bowman's capsule, glomerulosclerosis, and functional alterations. Mechanistically, we show that loss of Trxrd2 results in enhanced peroxynitrite steady-state levels in both vascular endothelial cells and vessels by using a highly sensitive redox probe, fluorescein-boronate. High steady-state peroxynitrite levels were further found to coincide with elevated protein tyrosine nitration in renal tissue and a substantial change of the redox state of Prx3 toward the oxidized protein, even though glutaredoxin 2 (Grx2) expression increased in parallel. Additional studies using a mitochondria-specific fluorescence probe (MitoPY1) in vessels revealed that enhanced peroxynitrite levels are indeed generated in mitochondria. Treatment with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin [Mn(III)TMPyP], a peroxynitrite-decomposition catalyst, blunted intravascular formation of peroxynitrite. Our data provide compelling evidence for a yet-unrecognized role of TrxR2 in balancing the nitric oxide/peroxynitrite ratio in endothelial cells in vivo and thus establish a link between enhanced mitochondrial peroxynitrite and disruption of vascular integrity.
Collapse
|
14
|
Barteková M, Adameová A, Görbe A, Ferenczyová K, Pecháňová O, Lazou A, Dhalla NS, Ferdinandy P, Giricz Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic Biol Med 2021; 169:446-477. [PMID: 33905865 DOI: 10.1016/j.freeradbiomed.2021.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiometabolic diseases (CMDs) are metabolic diseases (e.g., obesity, diabetes, atherosclerosis, rare genetic metabolic diseases, etc.) associated with cardiac pathologies. Pathophysiology of most CMDs involves increased production of reactive oxygen species and impaired antioxidant defense systems, resulting in cardiac oxidative stress (OxS). To alleviate OxS, various antioxidants have been investigated in several diseases with conflicting results. Here we review the effect of CMDs on cardiac redox homeostasis, the role of OxS in cardiac pathologies, as well as experimental and clinical data on the therapeutic potential of natural antioxidants (including resveratrol, quercetin, curcumin, vitamins A, C, and E, coenzyme Q10, etc.), synthetic antioxidants (including N-acetylcysteine, SOD mimetics, mitoTEMPO, SkQ1, etc.), and promoters of antioxidant enzymes in CMDs. As no antioxidant indicated for the prevention and/or treatment of CMDs has reached the market despite the large number of preclinical and clinical studies, a sizeable translational gap is evident in this field. Thus, we also highlight potential underlying factors that may contribute to the failure of translation of antioxidant therapies in CMDs.
Collapse
Affiliation(s)
- Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia.
| | - Adriana Adameová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovakia
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Oľga Pecháňová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, And Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| |
Collapse
|
15
|
Panday S, Kar S, Kavdia M. How does ascorbate improve endothelial dysfunction? - A computational analysis. Free Radic Biol Med 2021; 165:111-126. [PMID: 33497797 DOI: 10.1016/j.freeradbiomed.2021.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 01/02/2023]
Abstract
Low levels of ascorbate (Asc) are observed in cardiovascular and neurovascular diseases. Asc has therapeutic potential for the treatment of endothelial dysfunction, which is characterized by a reduction in nitric oxide (NO) bioavailability and increased oxidative stress in the vasculature. However, the potential mechanisms remain poorly understood for the Asc mitigation of endothelial dysfunction. In this study, we developed an endothelial cell based computational model integrating endothelial cell nitric oxide synthase (eNOS) biochemical pathway with downstream reactions and interactions of oxidative stress, tetrahydrobiopterin (BH4) synthesis and biopterin ratio ([BH4]/[TBP]), Asc and glutathione (GSH). We quantitatively analyzed three Asc mediated mechanisms that are reported to improve/maintain endothelial cell function. The mechanisms include the reduction of •BH3 to BH4, direct scavenging of superoxide (O2•-) and peroxynitrite (ONOO-) and increasing eNOS activity. The model predicted that Asc at 0.1-100 μM concentrations improved endothelial cell NO production, total biopterin and biopterin ratio in a dose dependent manner and the extent of cellular oxidative stress. Asc increased BH4 availability and restored eNOS coupling under oxidative stress conditions. Asc at concentrations of 1-10 mM reduced O2•- and ONOO- levels and could act as an antioxidant. We predicted that glutathione peroxidase and peroxiredoxin in combination with GSH and Asc can restore eNOS coupling and NO production under oxidative stress conditions. Asc supplementation may be used as an effective therapeutic strategy when BH4 levels are depleted. This study provides detailed understanding of the mechanism responsible and the optimal cellular Asc levels for improvement in endothelial dysfunction.
Collapse
Affiliation(s)
- Sheetal Panday
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA.
| |
Collapse
|
16
|
Fiorello ML, Treweeke AT, Macfarlane DP, Megson IL. The impact of glucose exposure on bioenergetics and function in a cultured endothelial cell model and the implications for cardiovascular health in diabetes. Sci Rep 2020; 10:19547. [PMID: 33177612 PMCID: PMC7659000 DOI: 10.1038/s41598-020-76505-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular disease is the primary driver of morbidity and mortality associated with diabetes. Hyperglycaemia is implicated in driving endothelial dysfunction that might underpin the link between diabetes and cardiovascular disease. This study was designed to determine the impact of chronic preconditioning of cells to hyperglycaemia and transient switching of cultured endothelial cells between hyper- and normo-glycaemic conditions on bioenergetic and functional parameters. Immortalised EA.hy926 endothelial cells were cultured through multiple passages under normoglycaemic (5.5 mM) or hyperglycaemic (25 mM) conditions. Cells were subsequently subjected (48 h) to continued normo- or hyperglycaemic exposure, or were switched to the alternative glycaemic condition, or to an intermediate glucose concentration (12.5 mM) and metabolic activity, together with key markers of function were measured. Cells habituated to hyperglycaemia were energetically quiescent. Functional activity, characterised by the measurement of nitric oxide, endothelin-1, tissue plasminogen activator and plasminogen activator inhibitor-1, was depressed by exposure to high glucose, with the reduction in nitric oxide production being the most notable. Function was more responsive to acute changes in extracellular glucose than were bioenergetic changes. We conclude that glucose is a key determinant of endothelial function. The study highlights the importance of chronic glucose exposure on cell phenotype and emphasises the need to pay close attention to glucose preconditioning in interpreting results under culture conditions.
Collapse
Affiliation(s)
- Maria Luisa Fiorello
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness, IV2 4JH, UK
| | - Andrew T Treweeke
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness, IV2 4JH, UK
| | | | - Ian L Megson
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness, IV2 4JH, UK.
| |
Collapse
|
17
|
Srivastava P, Badhwar S, Chandran DS, Jaryal AK, Jyotsna VP, Deepak KK. Improvement in Angiotensin 1-7 precedes and correlates with improvement in Arterial stiffness and endothelial function following Renin-Angiotensin system inhibition in type 2 diabetes with newly diagnosed hypertension. Diabetes Metab Syndr 2020; 14:1253-1263. [PMID: 32688242 DOI: 10.1016/j.dsx.2020.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM Studies in cell cultures and animal models have revealed the possible pathophysiological factors associated with vascular endothelial dysfunction. However, the same in human subjects has not been clearly established. The current study uses a novel approach to identify the factors associated with endothelial function and arterial function by altering these vascular parameters using Angiotensin-Converting-Enzyme (ACE) inhibition. METHODS Diabetic patients with newly diagnosed hypertension (n = 60) were recruited for the study. Flow-mediated-dilation (FMD), carotid-femoral (cf), carotid-radial (cr) Pulse-wave-velocity (PWV), Augmentation-Index, Carotid-Intima-Media-Thickness (CIMT), serum levels of Renin, Angiotensin II (AngII), Angiotensin-Converting-Enzyme2 (ACE2), Angiotensin1-7 (Ang1-7), E-selectin, Vascular-Cell-Adhesion-Molecule-1 (VCAM-1), Highly-sensitive-C-Reactive-Protein (hsCRP) and Interleukin-10 were measured at baseline (V1), after 1 week (V2) and 3 months (V3) of ACE inhibition in patients of diabetes with newly diagnosed hypertension. The amplitude of change after 1 week (V2-V1) and 3 months (V3-V1) for the clinical and various parameters were correlated with the change in endothelial function and arterial stiffness. RESULTS Carotid radial-PWVV2-V1 (p = 0.001) and Ang1-7V2-V1 (p = 0.01) emerged as independent predictors of FMDV2-V1. ReninV2-V1 and VCAM-1V2-V1 independently predicted E-selectinV2-V1 [(p = 0.01) and (p = 0.001), respectively]. ACE 2V2-V1 was the only independent predictor of cf-PWVV2-V1. The same parameters remained as independent predictors of the respective vascular factors after 3 months of ACE inhibition. CONCLUSION The study highlights the role of AngII/Ang1-7 balance in alteration of endothelial function and central arterial stiffness in humans in addition to identifying the interrelationship between the renin-angiotensin-aldosterone-system components and clinically ascertainable parameters.
Collapse
Affiliation(s)
- Prachi Srivastava
- Autonomic & Vascular Function Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Smriti Badhwar
- Autonomic & Vascular Function Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Dinu S Chandran
- Autonomic & Vascular Function Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashok Kumar Jaryal
- Autonomic & Vascular Function Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Viveka P Jyotsna
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Kishore Kumar Deepak
- Autonomic & Vascular Function Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
18
|
Nezu M, Suzuki N. Roles of Nrf2 in Protecting the Kidney from Oxidative Damage. Int J Mol Sci 2020; 21:ijms21082951. [PMID: 32331329 PMCID: PMC7215459 DOI: 10.3390/ijms21082951] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Over 10% of the global population suffers from kidney disease. However, only kidney replacement therapies, which burden medical expenses, are currently effective in treating kidney disease. Therefore, elucidating the complicated molecular pathology of kidney disease is an urgent priority for developing innovative therapeutics for kidney disease. Recent studies demonstrated that intertwined renal vasculature often causes ischemia-reperfusion injury (IRI), which generates oxidative stress, and that the accumulation of oxidative stress is a common pathway underlying various types of kidney disease. We reported that activating the antioxidative transcription factor Nrf2 in renal tubules in mice with renal IRI effectively mitigates tubular damage and interstitial fibrosis by inducing the expression of genes related to cytoprotection against oxidative stress. Additionally, since the kidney performs multiple functions beyond blood purification, renoprotection by Nrf2 activation is anticipated to lead to various benefits. Indeed, our experiments indicated the possibility that Nrf2 activation mitigates anemia, which is caused by impaired production of the erythroid growth factor erythropoietin from injured kidneys, and moderates organ damage worsened by anemic hypoxia. Clinical trials investigating Nrf2-activating compounds in kidney disease patients are ongoing, and beneficial effects are being obtained. Thus, Nrf2 activators are expected to emerge as first-in-class innovative medicine for kidney disease treatment.
Collapse
Affiliation(s)
- Masahiro Nezu
- Department of Endocrinology and Diabetes, Yamanashi Prefectural Central Hospital, Fujimi 1-1-1, Kofu, Japan;
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Japan
- Correspondence: ; Tel.: +81-22-717-8206
| |
Collapse
|
19
|
Mastrogiovanni M, Trostchansky A, Rubbo H. Fatty acid nitration in human low-density lipoprotein. Arch Biochem Biophys 2020; 679:108190. [PMID: 31738891 DOI: 10.1016/j.abb.2019.108190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Lipid nitration occurs during physiological and pathophysiological conditions, generating a variety of biomolecules capable to modulate inflammatory cell responses. Low-density lipoprotein (LDL) oxidation has been extensively related to atherosclerotic lesion development while oxidative modifications confer the particle pro-atherogenic features. Herein, we reviewed the oxidation versus nitration of human LDL protein and lipid fractions. We propose that unsaturated fatty acids present in LDL can be nitrated under mild nitration conditions, suggesting an anti-atherogenic role for LDL carrying nitro-fatty acids (NFA).
Collapse
Affiliation(s)
- Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Homero Rubbo
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
20
|
Piccirillo F, Carpenito M, Verolino G, Chello C, Nusca A, Lusini M, Spadaccio C, Nappi F, Di Sciascio G, Nenna A. Changes of the coronary arteries and cardiac microvasculature with aging: Implications for translational research and clinical practice. Mech Ageing Dev 2019; 184:111161. [PMID: 31647940 DOI: 10.1016/j.mad.2019.111161] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
Abstract
Aging results in functional and structural changes in the cardiovascular system, translating into a progressive increase of mechanical vessel stiffness, due to a combination of changes in micro-RNA expression patterns, autophagy, arterial calcification, smooth muscle cell migration and proliferation. The two pivotal mechanisms of aging-related endothelial dysfunction are oxidative stress and inflammation, even in the absence of clinical disease. A comprehensive understanding of the aging process is emerging as a primary concern in literature, as vascular aging has recently become a target for prevention and treatment of cardiovascular disease. Change of life-style, diet, antioxidant regimens, anti-inflammatory treatments, senolytic drugs counteract the pro-aging pathways or target senescent cells modulating their detrimental effects. Such therapies aim to reduce the ineluctable burden of age and contrast aging-associated cardiovascular dysfunction. This narrative review intends to summarize the macrovascular and microvascular changes related with aging, as a better understanding of the pathways leading to arterial aging may contribute to design new mechanism-based therapeutic approaches to attenuate the features of vascular senescence and its clinical impact on the cardiovascular system.
Collapse
Affiliation(s)
| | | | | | - Camilla Chello
- Dermatology, Università "La Sapienza" di Roma, Rome, Italy
| | | | - Mario Lusini
- Cardiovascular surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Francesco Nappi
- Cardiac surgery, Centre Cardiologique du Nord de Saint Denis, Paris, France
| | | | - Antonio Nenna
- Cardiovascular surgery, Università Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
21
|
Castro L, Tórtora V, Mansilla S, Radi R. Aconitases: Non-redox Iron-Sulfur Proteins Sensitive to Reactive Species. Acc Chem Res 2019; 52:2609-2619. [PMID: 31287291 DOI: 10.1021/acs.accounts.9b00150] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mammalian aconitases (mitochondrial and cytosolic isoenzymes) are unique iron-sulfur cluster-containing proteins in which the metallic center participates in the catalysis of a non-redox reaction. Within the cubane iron-sulfur cluster of aconitases only three of the four iron ions have cysteine thiolate ligands; the fourth iron ion (Feα) is solvent exposed within the active-site pocket and bound to oxygen atoms from either water or substrates to be dehydrated. The catalyzed reaction is the reversible isomerization of citrate to isocitrate with an intermediate metabolite, cis-aconitate. The cytosolic isoform of aconitase is a moonlighting enzyme; when intracellular iron is scarce, the complete disassembly of the iron-sulfur cluster occurs and apo-aconitase acquires the function of an iron responsive protein and regulates the translation of proteins involved in iron metabolism. In the late 1980s and during the 1990s, cumulative experimental evidence pointed out that aconitases are main targets of reactive oxygen and nitrogen species such as superoxide radical (O2•-), hydrogen peroxide (H2O2), nitric oxide (•NO), and peroxynitrite (ONOO-). These intermediates are capable of oxidizing the cluster, which leads to iron release and consequent loss of the catalytic activity of aconitase. As the reaction of the Fe-S cluster with O2•- is fast (∼107 M-1 s-1), quite specific, and reversible in vivo, quantification of active aconitase has been used to evaluate O2•- formation in cells. While •NO is modestly reactive with aconitase, its reaction with O2•- yields ONOO-, a strong oxidant that readily leads to the disruption of the Fe-S cluster. In the case of cytosolic aconitase, it has been seen that H2O2 and •NO promote activation of iron responsive protein activity in cells. Proteomic advances in the 2000s confirmed that aconitases are main targets of reactive species in cellular models and in vivo, and other post-translational oxidative modifications such as protein nitration and carbonylation have been detected. Herein, we (1) outline the particular structural features of aconitase that make these proteins specific targets of reactive species, (2) characterize the reactions of O2•-, H2O2, •NO, and ONOO- and related species with aconitases, (3) discuss how different oxidative post-translational modifications of aconitase impact the different functions of aconitases, and (4) argue how these proteins might function as redox sensors within different cellular compartments, regulating citrate concentration and efflux from mitochondria, iron availability in the cytosol, and cellular oxidant production.
Collapse
Affiliation(s)
- Laura Castro
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
- Departamento de Educación Médica, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800, Montevideo, Uruguay
| | - Santiago Mansilla
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. General Flores 2125, 11800 Montevideo, Uruguay
| |
Collapse
|
22
|
Rabbani N, Thornalley PJ. Hexokinase-2 Glycolytic Overload in Diabetes and Ischemia-Reperfusion Injury. Trends Endocrinol Metab 2019; 30:419-431. [PMID: 31221272 DOI: 10.1016/j.tem.2019.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/21/2019] [Accepted: 04/25/2019] [Indexed: 01/12/2023]
Abstract
Hexokinase-2 (HK2) was recently found to produce increased metabolic flux through glycolysis in hyperglycemia without concurrent transcriptional or other functional regulation. Rather, stabilization to proteolysis by increased glucose substrate binding produced unscheduled increased glucose metabolism in response to high cytosolic glucose concentration. This produces abnormal increases in glycolytic intermediates or glycolytic overload, driving cell dysfunction and vulnerability to the damaging effects of hyperglycemia in diabetes, explaining tissue-specific pathogenesis. Glycolytic overload is also activated in ischemia-reperfusion injury and cell senescence. A further key feature is HK2 displacement from mitochondria by increased glucose-6-phosphate concentration, inducing mitochondrial dysfunction and oxidative stress. This pathogenic mechanism suggested new targets for therapeutics development that gave promising outcomes in initial clinical evaluation.
Collapse
Affiliation(s)
- Naila Rabbani
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - Paul J Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
23
|
Radi R. The origins of nitric oxide and peroxynitrite research in Uruguay: 25 years of contributions to the biochemical and biomedical sciences. Nitric Oxide 2019; 87:83-89. [DOI: 10.1016/j.niox.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
|
24
|
Cytosolic Fe-superoxide dismutase safeguards Trypanosoma cruzi from macrophage-derived superoxide radical. Proc Natl Acad Sci U S A 2019; 116:8879-8888. [PMID: 30979807 DOI: 10.1073/pnas.1821487116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (CD), contains exclusively Fe-dependent superoxide dismutases (Fe-SODs). During T. cruzi invasion to macrophages, superoxide radical (O2 •-) is produced at the phagosomal compartment toward the internalized parasite via NOX-2 (gp91-phox) activation. In this work, T. cruzi cytosolic Fe-SODB overexpressers (pRIBOTEX-Fe-SODB) exhibited higher resistance to macrophage-dependent killing and enhanced intracellular proliferation compared with wild-type (WT) parasites. The higher infectivity of Fe-SODB overexpressers compared with WT parasites was lost in gp91-phox -/- macrophages, underscoring the role of O2 •- in parasite killing. Herein, we studied the entrance of O2 •- and its protonated form, perhydroxyl radical [(HO2 •); pKa = 4.8], to T. cruzi at the phagosome compartment. At the acidic pH values of the phagosome lumen (pH 5.3 ± 0.1), high steady-state concentrations of O2 •- and HO2 • were estimated (∼28 and 8 µM, respectively). Phagosomal acidification was crucial for O2 •- permeation, because inhibition of the macrophage H+-ATPase proton pump significantly decreased O2 •- detection in the internalized parasite. Importantly, O2 •- detection, aconitase inactivation, and peroxynitrite generation were lower in Fe-SODB than in WT parasites exposed to external fluxes of O2 •- or during macrophage infections. Other mechanisms of O2 •- entrance participate at neutral pH values, because the anion channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid decreased O2 •- detection. Finally, parasitemia and tissue parasite burden in mice were higher in Fe-SODB-overexpressing parasites, supporting the role of the cytosolic O2 •--catabolizing enzyme as a virulence factor for CD.
Collapse
|
25
|
Manojlović D, Stupin A, Matić A, Mihaljević Z, Novak S, Drenjančević I. The Role of Epoxyeicosatrienoic Acids in Diabetes Mellitus-Induced Impaired Vascular Relaxation of Aortic Rings in Ovariectomized Sprague-Dawley Rats. Int J Endocrinol 2019; 2019:5410108. [PMID: 31049062 PMCID: PMC6458872 DOI: 10.1155/2019/5410108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 11/17/2022] Open
Abstract
AIM The present study was aimed at determining if type 1 diabetes mellitus (DM) affects vascular function and at elucidating the mechanisms mediating vasorelaxation in both nonovariectomized and ovariectomized Sprague-Dawley (SD) rats. MATERIALS AND METHODS Eighty female SD rats were divided into four groups: nonovariectomized healthy (non-OVX-CTR) and diabetic (non-OVX-DM) rats and ovariectomized healthy (OVX-CTR) and diabetic (OVX-DM) rats. Bilateral ovariectomy was performed at the age of 5 weeks, and type 1 DM was induced by streptozotocin at the age of 6 weeks. At the age of 12 weeks, acetylcholine-induced relaxation (AChIR) was assessed in aortic rings in the absence/presence of L-NAME, Indomethacin, and MS-PPOH. Aortic tissue mRNA expression of eNOS, iNOS, COX-1, COX-2, thromboxane synthase 1 (TBXAS1), CYP4A1, CYP4A3, and CYP2J3, as well as plasma oxidative stress, was measured. RESULTS AChIR did not differ in non-OVX-DM rats compared to non-OVX-CTR ones. AChIR was significantly reduced in the OVX-DM group compared to the OVX-CTR group. MS-PPOH did not reduce AChIR in OVX-DM rats as it did in OVX-CTR ones. CYP4a3 mRNA expression in OVX-DM rats was significantly lower compared to that in the OVX-CTR group. CONCLUSIONS Female sex hormones may protect vasorelaxation in type 1 diabetic rats. Type 1 diabetes impairs vasorelaxation in response to ACh in ovariectomized rats (but not in nonovariectomized rats) by affecting vasorelaxation pathways mediated by EETs.
Collapse
Affiliation(s)
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Pathophysiology, Physiology, and Immunology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Sanja Novak
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
26
|
De Armas MI, Esteves R, Viera N, Reyes AM, Mastrogiovanni M, Alegria TGP, Netto LES, Tórtora V, Radi R, Trujillo M. Rapid peroxynitrite reduction by human peroxiredoxin 3: Implications for the fate of oxidants in mitochondria. Free Radic Biol Med 2019; 130:369-378. [PMID: 30391677 DOI: 10.1016/j.freeradbiomed.2018.10.451] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Mitochondria are main sites of peroxynitrite formation. While at low concentrations mitochondrial peroxynitrite has been associated with redox signaling actions, increased levels can disrupt mitochondrial homeostasis and lead to pathology. Peroxiredoxin 3 is exclusively located in mitochondria, where it has been previously shown to play a major role in hydrogen peroxide reduction. In turn, reduction of peroxynitrite by peroxiredoxin 3 has been inferred from its protective actions against tyrosine nitration and neurotoxicity in animal models, but was not experimentally addressed so far. Herein, we demonstrate the human peroxiredoxin 3 reduces peroxynitrite with a rate constant of 1 × 107 M-1 s-1 at pH 7.8 and 25 °C. Reaction with hydroperoxides caused biphasic changes in the intrinsic fluorescence of peroxiredoxin 3: the first phase corresponded to the peroxidatic cysteine oxidation to sulfenic acid. Peroxynitrite in excess led to peroxiredoxin 3 hyperoxidation and tyrosine nitration, oxidative post-translational modifications that had been previously identified in vivo. A significant fraction of the oxidant is expected to react with CO2 and generate secondary radicals, which participate in further oxidation and nitration reactions, particularly under metabolic conditions of active oxidative decarboxylations or increased hydroperoxide formation. Our results indicate that both peroxiredoxin 3 and 5 should be regarded as main targets for peroxynitrite in mitochondria.
Collapse
Affiliation(s)
- María Inés De Armas
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Romina Esteves
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Nicolás Viera
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Aníbal M Reyes
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Thiago G P Alegria
- Departamento de Genética e Biología Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biología Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Verónica Tórtora
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay.
| |
Collapse
|
27
|
Prolo C, Rios N, Piacenza L, Álvarez MN, Radi R. Fluorescence and chemiluminescence approaches for peroxynitrite detection. Free Radic Biol Med 2018; 128:59-68. [PMID: 29454880 DOI: 10.1016/j.freeradbiomed.2018.02.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 12/23/2022]
Abstract
In the last two decades, there has been a significant advance in understanding the biochemistry of peroxynitrite, an endogenously-produced oxidant and nucleophile. Its relevance as a mediator in several pathologic states and the aging process together with its transient character and low steady-state concentration, motivated the development of a variety of techniques for its unambiguous detection and estimation. Among these, fluorescence and chemiluminescence approaches have represented important tools with enhanced sensitivity but usual limited specificity. In this review, we analyze selected examples of molecular probes that permit the detection of peroxynitrite by fluorescence and chemiluminescence, disclosing their mechanism of reaction with either peroxynitrite or peroxynitrite-derived radicals. Indeed, probes have been divided into 1) redox probes that yield products by a free radical mechanism, and 2) electrophilic probes that evolve to products secondary to the nucleophilic attack by peroxynitrite. Overall, boronate-based compounds are emerging as preferred probes for the sensitive and specific detection and quantitation. Moreover, novel strategies involving genetically-modified fluorescent proteins with the incorporation of unnatural amino acids have been recently described as peroxynitrite sensors. This review analyzes the most commonly used fluorescence and chemiluminescence approaches for peroxynitrite detection and provides some guidelines for appropriate experimental design and data interpretation, including how to estimate peroxynitrite formation rates in cells.
Collapse
Affiliation(s)
- Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucia Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
28
|
Carballal S, Valez V, Alvarez-Paggi D, Tovmasyan A, Batinic-Haberle I, Ferrer-Sueta G, Murgida DH, Radi R. Manganese porphyrin redox state in endothelial cells: Resonance Raman studies and implications for antioxidant protection towards peroxynitrite. Free Radic Biol Med 2018; 126:379-392. [PMID: 30144631 DOI: 10.1016/j.freeradbiomed.2018.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Cationic manganese(III) ortho N-substituted pyridylporphyrins (MnP) act as efficient antioxidants catalyzing superoxide dismutation and accelerating peroxynitrite reduction. Importantly, MnP can reach mitochondria offering protection against reactive species in different animal models of disease. Although an LC-MS/MS-based method for MnP quantitation and subcellular distribution has been reported, a direct method capable of evaluating both the uptake and the redox state of MnP in living cells has not yet been developed. In the present work we applied resonance Raman (RR) spectroscopy to analyze the intracellular accumulation of two potent MnP-based lipophilic SOD mimics, MnTnBuOE-2-PyP5+ and MnTnHex-2-PyP5+ within endothelial cells. RR experiments with isolated mitochondria revealed that the reduction of Mn(III)P was affected by inhibitors of the electron transport chain, supporting the action of MnP as efficient redox active compounds in mitochondria. Indeed, RR spectra confirmed that MnP added in the Mn(III) state can be incorporated into the cells, readily reduced by intracellular components to the Mn(II) state and oxidized by peroxynitrite. To assess the combined impact of reactivity and bioavailability, we studied the kinetics of Mn(III)TnBuOE-2-PyP5+ with peroxynitrite and evaluated the cytoprotective capacity of MnP by exposing the endothelial cells to nitro-oxidative stress induced by peroxynitrite. We observed a preservation of normal mitochondrial function, attenuation of cell damage and prevention of apoptotic cell death. These data introduce a novel application of RR spectroscopy for the direct detection of MnP and their redox states inside living cells, and helps to rationalize their antioxidant capacity in biological systems.
Collapse
Affiliation(s)
- Sebastián Carballal
- Departmento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Valeria Valez
- Departmento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Damián Alvarez-Paggi
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gerardo Ferrer-Sueta
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Rafael Radi
- Departmento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
29
|
Abstract
Advancing age promotes cardiovascular disease (CVD), the leading cause of death in the United States and many developed nations. Two major age-related arterial phenotypes, large elastic artery stiffening and endothelial dysfunction, are independent predictors of future CVD diagnosis and likely are responsible for the development of CVD in older adults. Not limited to traditional CVD, these age-related changes in the vasculature also contribute to other age-related diseases that influence mammalian health span and potential life span. This review explores mechanisms that influence age-related large elastic artery stiffening and endothelial dysfunction at the tissue level via inflammation and oxidative stress and at the cellular level via Klotho and energy-sensing pathways (AMPK [AMP-activated protein kinase], SIRT [sirtuins], and mTOR [mammalian target of rapamycin]). We also discuss how long-term calorie restriction-a health span- and life span-extending intervention-can prevent many of these age-related vascular phenotypes through the prevention of deleterious alterations in these mechanisms. Lastly, we discuss emerging novel mechanisms of vascular aging, including senescence and genomic instability within cells of the vasculature. As the population of older adults steadily expands, elucidating the cellular and molecular mechanisms of vascular dysfunction with age is critical to better direct appropriate and measured strategies that use pharmacological and lifestyle interventions to reduce risk of CVD within this population.
Collapse
Affiliation(s)
- Anthony J. Donato
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Daniel R. Machin
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Lisa A. Lesniewski
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| |
Collapse
|
30
|
Yang BR, Yuen SC, Fan GY, Cong WH, Leung SW, Lee SMY. Identification of certain Panax species to be potential substitutes for Panax notoginseng in hemostatic treatments. Pharmacol Res 2018; 134:1-15. [DOI: 10.1016/j.phrs.2018.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
|
31
|
Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci U S A 2018; 115:5839-5848. [PMID: 29802228 DOI: 10.1073/pnas.1804932115] [Citation(s) in RCA: 697] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oxygen-derived free radicals and related oxidants are ubiquitous and short-lived intermediates formed in aerobic organisms throughout life. These reactive species participate in redox reactions leading to oxidative modifications in biomolecules, among which proteins and lipids are preferential targets. Despite a broad array of enzymatic and nonenzymatic antioxidant systems in mammalian cells and microbes, excess oxidant formation causes accumulation of new products that may compromise cell function and structure leading to cell degeneration and death. Oxidative events are associated with pathological conditions and the process of normal aging. Notably, physiological levels of oxidants also modulate cellular functions via homeostatic redox-sensitive cell signaling cascades. On the other hand, nitric oxide (•NO), a free radical and weak oxidant, represents a master physiological regulator via reversible interactions with heme proteins. The bioavailability and actions of •NO are modulated by its fast reaction with superoxide radical ([Formula: see text]), which yields an unusual and reactive peroxide, peroxynitrite, representing the merging of the oxygen radicals and •NO pathways. In this Inaugural Article, I summarize early and remarkable developments in free radical biochemistry and the later evolution of the field toward molecular medicine; this transition includes our contributions disclosing the relationship of •NO with redox intermediates and metabolism. The biochemical characterization, identification, and quantitation of peroxynitrite and its role in disease processes have concentrated much of our attention. Being a mediator of protein oxidation and nitration, lipid peroxidation, mitochondrial dysfunction, and cell death, peroxynitrite represents both a pathophysiologically relevant endogenous cytotoxin and a cytotoxic effector against invading pathogens.
Collapse
|
32
|
Demicheli V, Moreno DM, Radi R. Human Mn-superoxide dismutase inactivation by peroxynitrite: a paradigm of metal-catalyzed tyrosine nitration in vitro and in vivo. Metallomics 2018; 10:679-695. [DOI: 10.1039/c7mt00348j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nitration of human MnSOD at active site Tyr34 represents a biologically-relevant oxidative post-translational modification that causes enzyme inactivation.
Collapse
Affiliation(s)
- Verónica Demicheli
- Departmento de Bioquimica
- Facultad de Medicina
- Center for Free Radical and Biomedical Research
- Universidad de la República
- Montevideo
| | - Diego M. Moreno
- Instituto de Química Rosario (IQUIR, CONICET-UNR)
- Área Química General e Inorgánica
- Facultad de Ciencias Bioquímicas y Farmacéuticas
- Universidad Nacional de Rosario
- Argentina
| | - Rafael Radi
- Departmento de Bioquimica
- Facultad de Medicina
- Center for Free Radical and Biomedical Research
- Universidad de la República
- Montevideo
| |
Collapse
|
33
|
Measurement of Reactive Oxygen Species (ROS) and Mitochondrial ROS in AMPK Knockout Mice Blood Vessels. Methods Mol Biol 2018; 1732:507-517. [PMID: 29480496 DOI: 10.1007/978-1-4939-7598-3_32] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Reactive oxygen species (ROS) are a group of unstable and highly reactive molecules or free radicals typically generated as by-products of cellular processes involving molecular oxygen. In vascular cells, the excessive ROS generation results in the initiation and progression of cardiovascular diseases (CVD). Therefore, a dynamic, robust, and accurate ROS detection method in the blood vessels is essential for pathophysiological research studies of the cardiovascular system.In this chapter, we describe a fluorescence dye-based detection method for assaying superoxide and mitochondrial superoxide in mouse aorta using dihydroethidium (DHE) and MitoSOX. The protocol includes preparation of frozen aortic tissue sections, monitoring DHE oxidation-derived fluorescence by fluorescence microscopy, and high-performance liquid chromatograph-based analysis of MitoSOX and its oxidation products. For studying the role of AMP-activated protein kinase (AMPK) in the redox regulation, we employed AMPKα2 knockout mice and observed increased superoxide and mitochondrial superoxide levels in the aorta of AMPK knockout mice relative to the wild-type group. This novel ROS detection method will be valuable for investigating the roles of cellular and/or mitochondrial ROS in the pathogenesis of CVDs.
Collapse
|
34
|
Saad MJ. Obesity, Diabetes, and Endothelium: Molecular Interactions. ENDOTHELIUM AND CARDIOVASCULAR DISEASES 2018:639-652. [DOI: 10.1016/b978-0-12-812348-5.00044-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
35
|
Joshi S, Kar S, Kavdia M. Computational analysis of interactions of oxidative stress and tetrahydrobiopterin reveals instability in eNOS coupling. Microvasc Res 2017; 114:114-128. [PMID: 28729163 DOI: 10.1016/j.mvr.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 01/30/2023]
Abstract
In cardiovascular and neurovascular diseases, an increase in oxidative stress and endothelial dysfunction has been reported. There is a reduction in tetrahydrobiopterin (BH4), which is a cofactor for the endothelial nitric oxide synthase (eNOS), resulting in eNOS uncoupling. Studies of the enhancement of BH4 availability have reported mixed results for improvement in endothelial dysfunction. Our understanding of the complex interactions of eNOS uncoupling, oxidative stress and BH4 availability is not complete and a quantitative understanding of these interactions is required. In the present study, we developed a computational model for eNOS uncoupling that considers the temporal changes in biopterin ratio in the oxidative stress conditions. Using the model, we studied the effects of cellular oxidative stress (Qsupcell) representing the non-eNOS based oxidative stress sources and BH4 synthesis (QBH4) on eNOS NO production and biopterin ratio (BH4/total biopterins (TBP)). Model results showed that oxidative stress levels from 0.01 to 1nM·s-1 did not affect eNOS NO production and eNOS remained in coupled state. When the Qsupcell increased above 1nM·s-1, the eNOS coupling and NO production transitioned to an oscillatory state. Oxidative stress levels dynamically changed the biopterin ratio. When Qsupcell increased from 1 to 100nM·s-1, the endothelial cell NO production, TBP levels and biopterin ratio reduced significantly from 26.5 to 2nM·s-1, 3.75 to 0.002μM and 0.99 to 0.25, respectively. For an increase in BH4 synthesis, the improvement in NO production rate and BH4 levels were dependent on the extent of cellular oxidative stress. However, a 10-fold increase in QBH4 at higher oxidative stresses did not restore the NO-production rate and the biopterin ratio. Our mechanistic analysis reveals that a combination of enhancing tetrahydrobiopterin level with a reduction in cellular oxidative stress may result in significant improvement in endothelial dysfunction.
Collapse
Affiliation(s)
- Sheetal Joshi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Saptarshi Kar
- Engineering Computational Biology Group, University of Western Australia, Crawley, WA 6009, Australia
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
36
|
Ramdial K, Franco MC, Estevez AG. Cellular mechanisms of peroxynitrite-induced neuronal death. Brain Res Bull 2017; 133:4-11. [PMID: 28655600 DOI: 10.1016/j.brainresbull.2017.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/21/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
|
37
|
Tesauro M, Mauriello A, Rovella V, Annicchiarico-Petruzzelli M, Cardillo C, Melino G, Di Daniele N. Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med 2017; 281:471-482. [PMID: 28345303 DOI: 10.1111/joim.12605] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Complex structural and functional changes occur in the arterial system with advancing age. The aged artery is characterized by changes in microRNA expression patterns, autophagy, smooth muscle cell migration and proliferation, and arterial calcification with progressively increased mechanical vessel rigidity and stiffness. With age the vascular smooth muscle cells modify their phenotype from contractile to 'synthetic' determining the development of intimal thickening as early as the second decade of life as an adaptive response to forces acting on the arterial wall. The increased permeability observed in intimal thickening could represent the substrate on which low-level atherosclerotic stimuli can promote the development of advanced atherosclerotic lesions. In elderly patients the atherosclerotic plaques tend to be larger with increased vascular stenosis. In these plaques there is a progressive accumulation of both lipids and collagen and a decrease of inflammation. Similarly the plaques from elderly patients show more calcification as compared with those from younger patients. The coronary artery calcium score is a well-established marker of adverse cardiovascular outcomes. The presence of diffuse calcification in a severely stenotic segment probably induces changes in mechanical properties and shear stress of the arterial wall favouring the rupture of a vulnerable lesion in a less stenotic adjacent segment. Oxidative stress and inflammation appear to be the two primary pathological mechanisms of ageing-related endothelial dysfunction even in the absence of clinical disease. Arterial ageing is no longer considered an inexorable process. Only a better understanding of the link between ageing and vascular dysfunction can lead to significant advances in both preventative and therapeutic treatments with the aim that in the future vascular ageing may be halted or even reversed.
Collapse
Affiliation(s)
- M Tesauro
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - A Mauriello
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - V Rovella
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | | | - C Cardillo
- Department of Internal Medicine, Catholic University, Rome, Italy
| | - G Melino
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | - N Di Daniele
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
38
|
Schiffer TA, Friederich-Persson M. Mitochondrial Reactive Oxygen Species and Kidney Hypoxia in the Development of Diabetic Nephropathy. Front Physiol 2017; 8:211. [PMID: 28443030 PMCID: PMC5386984 DOI: 10.3389/fphys.2017.00211] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
The underlying mechanisms in the development of diabetic nephropathy are currently unclear and likely consist of a series of dynamic events from the early to late stages of the disease. Diabetic nephropathy is currently without curative treatments and it is acknowledged that even the earliest clinical manifestation of nephropathy is preceded by an established morphological renal injury that is in turn preceded by functional and metabolic alterations. An early manifestation of the diabetic kidney is the development of kidney hypoxia that has been acknowledged as a common pathway to nephropathy. There have been reports of altered mitochondrial function in the diabetic kidney such as altered mitophagy, mitochondrial dynamics, uncoupling, and cellular signaling through hypoxia inducible factors and AMP-kinase. These factors are also likely to be intertwined in a complex manner. In this review, we discuss how these pathways are connected to mitochondrial production of reactive oxygen species (ROS) and how they may relate to the development of kidney hypoxia in diabetic nephropathy. From available literature, it is evident that early correction and/or prevention of mitochondrial dysfunction may be pivotal in the prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Tomas A Schiffer
- Department of Medical Cell Biology, Uppsala UniversityUppsala, Sweden.,Department of Medical and Health Sciences, Linköping UniversityLinköping, Sweden
| | | |
Collapse
|
39
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 620] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
40
|
Ríos N, Prolo C, Álvarez MN, Piacenza L, Radi R. Peroxynitrite Formation and Detection in Living Cells. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00021-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Rios N, Piacenza L, Trujillo M, Martínez A, Demicheli V, Prolo C, Álvarez MN, López GV, Radi R. Sensitive detection and estimation of cell-derived peroxynitrite fluxes using fluorescein-boronate. Free Radic Biol Med 2016; 101:284-295. [PMID: 27641237 DOI: 10.1016/j.freeradbiomed.2016.08.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
The specific and sensitive detection of peroxynitrite (ONOO-/ONOOH) in biological systems is a great challenge due to its high reactivity towards several biomolecules. Herein, we validated the advantages of using fluorescein-boronate (Fl-B) as a highly sensitive fluorescent probe for the direct detection of peroxynitrite under biologically-relevant conditions in two different cell models. The synthesis of Fl-B was achieved by a very simply two-step conversion synthetic route with high purity (>99%) and overall yield (∼42%). Reactivity analysis of Fl-B with relevant biological oxidants including hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite were performed. The rate constant for the reaction of peroxynitrite with Fl-B was 1.7×106M-1s-1, a million times faster than the rate constant measured for H2O2 (k=1.7M-1s-1) and 2,700 faster than HOCl (6.2×102M-1s-1) at 37°C and pH 7.4. The reaction of Fl-B with peroxynitrite was significant even in the presence of physiological concentrations of CO2, a well-known peroxynitrite reactant. Experimental and simulated kinetic analyses confirm that the main oxidation process of Fl-B takes place with peroxynitrite itself via a direct bimolecular reaction and not with peroxynitrite-derived radicals. Fl-B was successfully applied for the detection of endogenously-generated peroxynitrite by endothelial cells and in macrophage-phagocyted parasites. Moreover, the generated data allowed estimating the actual intracellular flux of peroxynitrite. For instance, ionomycin-stimulated endothelial cells generated peroxynitrite at a rate of ∼ 0.1μMs-1, while immunostimulated macrophages do so in the order of ∼1μMs-1 inside T. cruzi-infected phagosomes. Fl-B revealed not to be toxic in concentrations up to 1mM for 24h. Cellular peroxynitrite detection was achieved by conventional laboratory fluorescence-based methods including flow cytometry and epi-fluorescence microscopy. Fl-B was shown to be more sensitive than the coumarin boronate due to a higher molar absorption coefficient and quantum yield. Overall, our results show that Fl-B is a kinetically selective and highly sensitive probe for the direct detection of cell-derived peroxynitrite.
Collapse
Affiliation(s)
- Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Departamento de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Alejandra Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Verónica Demicheli
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Gloria V López
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Departamento de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| |
Collapse
|
42
|
Gerö D, Szabo C. Glucocorticoids Suppress Mitochondrial Oxidant Production via Upregulation of Uncoupling Protein 2 in Hyperglycemic Endothelial Cells. PLoS One 2016; 11:e0154813. [PMID: 27128320 PMCID: PMC4851329 DOI: 10.1371/journal.pone.0154813] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022] Open
Abstract
Diabetic complications are the leading cause of morbidity and mortality in diabetic patients. Elevated blood glucose contributes to the development of endothelial and vascular dysfunction, and, consequently, to diabetic micro- and macrovascular complications, because it increases the mitochondrial proton gradient and mitochondrial oxidant production. Therapeutic approaches designed to counteract glucose-induced mitochondrial reactive oxygen species (ROS) production in the vasculature are expected to show efficacy against all diabetic complications, but direct pharmacological targeting (scavenging) of mitochondrial oxidants remains challenging due to the high reactivity of some of these oxidant species. In a recent study, we have conducted a medium-throughput cell-based screening of a focused library of well-annotated pharmacologically active compounds and identified glucocorticoids as inhibitors of mitochondrial superoxide production in microvascular endothelial cells exposed to elevated extracellular glucose. The goal of the current study was to investigate the mechanism of glucocorticoids' action. Our findings show that glucocorticoids induce the expression of the mitochondrial UCP2 protein and decrease the mitochondrial potential. UCP2 silencing prevents the protective effect of the glucocorticoids on ROS production. UCP2 induction also increases the oxygen consumption and the "proton leak" in microvascular endothelial cells. Furthermore, glutamine supplementation augments the effect of glucocorticoids via further enhancing the expression of UCP2 at the translational level. We conclude that UCP2 induction represents a novel experimental therapeutic intervention in diabetic vascular complications. While direct repurposing of glucocorticoids may not be possible for the therapy of diabetic complications due to their significant side effects that develop during chronic administration, the UCP2 pathway may be therapeutically targetable by other, glucocorticoid-independent pharmacological means.
Collapse
Affiliation(s)
- Domokos Gerö
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- University of Exeter Medical School, Exeter, United Kingdom
- * E-mail:
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
43
|
Dubó S, Gallegos D, Cabrera L, Sobrevia L, Zúñiga L, González M. Cardiovascular Action of Insulin in Health and Disease: Endothelial L-Arginine Transport and Cardiac Voltage-Dependent Potassium Channels. Front Physiol 2016; 7:74. [PMID: 27014078 PMCID: PMC4791397 DOI: 10.3389/fphys.2016.00074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Impairment of insulin signaling on diabetes mellitus has been related to cardiovascular dysfunction, heart failure, and sudden death. In human endothelium, cationic amino acid transporter 1 (hCAT-1) is related to the synthesis of nitric oxide (NO) and insulin has a vascular effect in endothelial cells through a signaling pathway that involves increases in hCAT-1 expression and L-arginine transport. This mechanism is disrupted in diabetes, a phenomenon potentiated by excessive accumulation of reactive oxygen species (ROS), which contribute to lower availability of NO and endothelial dysfunction. On the other hand, electrical remodeling in cardiomyocytes is considered a key factor in heart failure progression associated to diabetes mellitus. This generates a challenge to understand the specific role of insulin and the pathways involved in cardiac function. Studies on isolated mammalian cardiomyocytes have shown prolongated action potential in ventricular repolarization phase that produces a long QT interval, which is well explained by attenuation in the repolarizing potassium currents in cardiac ventricles. Impaired insulin signaling causes specific changes in these currents, such a decrease amplitude of the transient outward K(+) (Ito) and the ultra-rapid delayed rectifier (IKur) currents where, together, a reduction of mRNA and protein expression levels of α-subunits (Ito, fast; Kv 4.2 and IKs; Kv 1.5) or β-subunits (KChIP2 and MiRP) of K(+) channels involved in these currents in a MAPK mediated pathway process have been described. These results support the hypothesis that lack of insulin signaling can produce an abnormal repolarization in cardiomyocytes. Furthermore, the arrhythmogenic potential due to reduced Ito current can contribute to an increase in the incidence of sudden death in heart failure. This review aims to show, based on pathophysiological models, the regulatory function that would have insulin in vascular system and in cardiac electrophysiology.
Collapse
Affiliation(s)
- Sebastián Dubó
- Department of Kinesiology, Faculty of Medicine, Universidad de Concepción Concepción, Chile
| | - David Gallegos
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Lissette Cabrera
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Department of Morphophysiology, Faculty of Medicine, Universidad Diego PortalesSantiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de SevillaSeville, Spain; Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of QueenslandHerston, QLD, Queensland, Australia
| | - Leandro Zúñiga
- Centro de Investigaciones Médicas, Escuela de Medicina, Universidad de Talca Talca, Chile
| | - Marcelo González
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS-Health)Chillán, Chile
| |
Collapse
|
44
|
Lo SM, Dal Lin FT, Soares MF, Hauser AB, Pecoits-Filho R, Nakao LS. Lipoic acid does not improve renal function markers in 5/6 nephrectomy model: possible role of Nrf2 inactivation. Ren Fail 2016; 38:558-63. [PMID: 26904958 DOI: 10.3109/0886022x.2016.1148725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) progression and complications are associated with increased oxidative stress, as well as with Nrf2 inactivation. Lipoic acid (LA) has been considered an inducer of Nrf2 antioxidant response. We tested whether oral administration of LA provides beneficial effects in experimental CKD in rats. Wistar rats underwent 5/6 nephrectomy (CKD group) or sham laparotomy. Seven days later, CKD group was divided into three subgroups that received: (i) LA continuously in the drinking water (100 mg/kg/day), (ii) LA by gavage every other day (100 mg/kg), or (iii) no LA treatment. LA treatment lasted until day 60. Plasma urea and creatinine, 24 h-proteinuria, glomerulosclerosis, interstitial fibrosis/tubular atrophy, and Nrf2 activation were analyzed. All parameters measured were significantly altered in the untreated CKD group, compared with the sham group, as expected. Oral LA administration, either in the drinking water or by gavage, did not improve significantly any parameter, comparing the treated-groups with the untreated CKD group. These results indicate that oral LA administration for 53 days was ineffective to reactivate Nrf2 in the remnant kidney of uremic rats, likely preventing improvements in biochemical and histopathological markers of renal function.
Collapse
Affiliation(s)
- Sze M Lo
- a Departamento de Patologia Básica , Universidade Federal do Paraná, Centro Politécnico , Curitiba , Brazil
| | - Fernando T Dal Lin
- a Departamento de Patologia Básica , Universidade Federal do Paraná, Centro Politécnico , Curitiba , Brazil
| | - Maria F Soares
- b Departamento de Patologia Médica , Setor de Ciências da Saúde, Universidade Federal do Paraná , Curitiba , Brazil
| | - Aline B Hauser
- c Departamento de Análises Clínicas , Setor Ciências da Saúde, Universidade Federal do Paraná , Curitiba , Brazil
| | - Roberto Pecoits-Filho
- d School of Medicine , Pontifícia Universidade Católica do Paraná , Curitiba , Brazil
| | - Lia S Nakao
- a Departamento de Patologia Básica , Universidade Federal do Paraná, Centro Politécnico , Curitiba , Brazil
| |
Collapse
|
45
|
Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol 2015; 89:122-35. [PMID: 25655936 PMCID: PMC4522407 DOI: 10.1016/j.yjmcc.2015.01.021] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/05/2015] [Accepted: 01/27/2015] [Indexed: 12/29/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States and aging is a major risk factor for CVD development. One of the major age-related arterial phenotypes thought to be responsible for the development of CVD in older adults is endothelial dysfunction. Endothelial function is modulated by traditional CVD risk factors in young adults, but advancing age is independently associated with the development of vascular endothelial dysfunction. This endothelial dysfunction results from a reduction in nitric oxide bioavailability downstream of endothelial oxidative stress and inflammation that can be further modulated by traditional CVD risk factors in older adults. Greater endothelial oxidative stress with aging is a result of augmented production from the intracellular enzymes NADPH oxidase and uncoupled eNOS, as well as from mitochondrial respiration in the absence of appropriate increases in antioxidant defenses as regulated by relevant transcription factors, such as FOXO. Interestingly, it appears that NFkB, a critical inflammatory transcription factor, is sensitive to this age-related endothelial redox change and its activation induces transcription of pro-inflammatory cytokines that can further suppress endothelial function, thus creating a vicious feed-forward cycle. This review will discuss the two macro-mechanistic processes, oxidative stress and inflammation, that contribute to endothelial dysfunction with advancing age as well as the cellular and molecular events that lead to the vicious cycle of inflammation and oxidative stress in the aged endothelium. Other potential mediators of this pro-inflammatory endothelial phenotype are increases in immune or senescent cells in the vasculature. Of note, genomic instability, telomere dysfunction or DNA damage has been shown to trigger cell senescence via the p53/p21 pathway and result in increased inflammatory signaling in arteries from older adults. This review will discuss the current state of knowledge regarding the emerging concepts of senescence and genomic instability as mechanisms underlying oxidative stress and inflammation in the aged endothelium. Lastly, energy sensitive/stress resistance pathways (SIRT-1, AMPK, mTOR) are altered in endothelial cells and/or arteries with aging and these pathways may modulate endothelial function via key oxidative stress and inflammation-related transcription factors. This review will also discuss what is known about the role of "energy sensing" longevity pathways in modulating endothelial function with advancing age. With the growing population of older adults, elucidating the cellular and molecular mechanisms of endothelial dysfunction with age is critical to establishing appropriate and measured strategies to utilize pharmacological and lifestyle interventions aimed at alleviating CVD risk. This article is part of a Special Issue entitled "SI: CV Aging".
Collapse
Affiliation(s)
- Anthony J Donato
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, UT, USA; Veteran's Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, UT, USA.
| | - R Garrett Morgan
- University of Washington, Department of Pathology, Seattle, WA, USA
| | - Ashley E Walker
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, UT, USA; Veteran's Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, UT, USA
| |
Collapse
|
46
|
Cassina A, Silveira P, Cantu L, Montes JM, Radi R, Sapiro R. Defective Human Sperm Cells Are Associated with Mitochondrial Dysfunction and Oxidant Production1. Biol Reprod 2015; 93:119. [DOI: 10.1095/biolreprod.115.130989] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/06/2015] [Indexed: 01/02/2023] Open
|
47
|
Endothelial cell oxidative stress in diabetes: a key driver of cardiovascular complications? Biochem Soc Trans 2015; 42:928-33. [PMID: 25109981 DOI: 10.1042/bst20140113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Atherothrombotic disease is a well-recognized complication of diabetes and is a major contributor to the high morbidity and mortality associated with diabetes. Although there is substantial evidence linking diabetes with cardiovascular disease, the specific effect of hyper- (or hypo-) glycaemia is less well understood. The present review focuses on the impact that glycaemic dysregulation has on respiratory function and ROS (reactive oxygen species) generation in the endothelial cells that are critical in preventing several key steps in the atherothrombotic process. Endothelial cells are particularly susceptible to ROS-mediated dysfunction not only because of reduced cell viability and increased senescence, but also because one of the major endothelium-derived factors that help to protect against atherosclerosis, nitric oxide, is rapidly deactivated by superoxide radicals.
Collapse
|
48
|
Peristiowati Y, Indasah I, Ratnawati R. The effects of catechin isolated from green tea GMB-4 on NADPH and nitric oxide levels in endothelial cells exposed to high glucose. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2015; 4:114-7. [PMID: 26401396 PMCID: PMC4566780 DOI: 10.5455/jice.20141224104135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022]
Abstract
Aim: This study aimed to investigate whether a catechin isolated from GMB-4 green tea is able to increase the reducing equivalent system and nitric oxide (NO) level in endothelial cells exposed to high glucose (HG) level. Materials and Methods: Endothelial cells were obtained from human umbilical vascular tissues. At confluent, human endothelial cells were divided into five groups, which included control (untreated), endothelial cells exposed to HG (30 mM), endothelial cells exposed to HG in the presence of green tea catechin (HG + C) at the following three doses: 0.03; 0.3; and 3 mg/ml. Analysis of NADP+, NADPH, and NO levels were performed colorimetrically. Results: This decrease in NADPH was significantly (P < 0.05) attenuated by both the 0.3 and 3 mg/ml treatments of catechin. HG level significantly decreased NO compared with untreated cells. This increase in NO was significantly attenuated by the 0.3 mg/ml dose of the catechin. Conclusion: In conclusion, catechin isolated from GMB-4 green tea prohibits the decrease in NADPH and NO in endothelial cells induced by HG. Therefore this may provide a natural therapy for attenuating the endothelial dysfunction found in diabetes mellitus.
Collapse
Affiliation(s)
- Yuly Peristiowati
- Department of Nurse, Surya Mitra Husada Health School, Kediri, East Java, Indonesia
| | - Indasah Indasah
- Department of Public Health, Surya Mitra Husada Health School, Kediri, East Java, Indonesia
| | - Retty Ratnawati
- Department of Physiology Molecular, Faculty of Medicine, University of Brawijaya, Malang, East Java, Indonesia
| |
Collapse
|
49
|
Rodrigues SD, França KC, Dallin FT, Fujihara CK, Nascimento AJ, Pecoits-Filho R, Nakao LS. N-acetylcysteine as a potential strategy to attenuate the oxidative stress induced by uremic serum in the vascular system. Life Sci 2014; 121:110-6. [PMID: 25500303 DOI: 10.1016/j.lfs.2014.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022]
Abstract
AIMS Chronic kidney disease (CKD) progression is accompanied by systemic oxidative stress, which contributes to an increase in the risk of cardiovascular diseases (CVDs). N-acetylcysteine (NAC) is among the most studied antioxidants, but its therapeutic benefits in CKD-associated CVDs remain controversial. Here, we investigated whether NAC could inhibit the oxidative stress induced by uremia in vitro and in vivo. MAIN METHODS Endothelial and smooth muscle cells were challenged with human uremic or non-uremic sera, and the effects of a pre-treatment with 2mM NAC were evaluated. Reactive oxygen species (ROS) production, protein oxidation and total glutathione/glutathione disulfide (tGSH/GSSG) ratios were measured. Five-sixths nephrectomized or sham-operated rats were orally treated (in the drinking water) with 60 mg/kg/day NAC or not treated for 53 days. Plasma cysteine/cystine reduction potential Eh(Cyss/2Cys) was determined as a novel marker of the systemic oxidative stress. KEY FINDINGS NAC inhibited all the determined oxidative stress parameters, likely by increasing the tGSH/GSSG ratio, in both cell lines exposed to uremic serum. Orally administered NAC attenuated the systemic oxidative stress in uremic rats. SIGNIFICANCE The present results indicate that NAC, by preventing GSH depletion in vascular cells exposed to uremic serum and by attenuating the systemic oxidative stress during CKD progression, emerges as a potential strategy to prevent the oxidative stress induced by uremic toxicity in the vascular system.
Collapse
Affiliation(s)
- Silvia D Rodrigues
- Departamento de Patologia Básica, Universidade Federal do Paraná, Centro Politécnico, Curitiba 81531-980, Brazil
| | - Karime C França
- Departamento de Patologia Básica, Universidade Federal do Paraná, Centro Politécnico, Curitiba 81531-980, Brazil
| | - Fernando T Dallin
- Departamento de Patologia Básica, Universidade Federal do Paraná, Centro Politécnico, Curitiba 81531-980, Brazil
| | - Clarice K Fujihara
- Laboratório de Fisiopatologia Renal, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Aguinaldo J Nascimento
- Programa de Pós-Graduação em Ciências Farmacêuticas,Universidade Federal do Paraná, Curitiba 80210-170, Brazil
| | - Roberto Pecoits-Filho
- School of Medicine, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Lia S Nakao
- Departamento de Patologia Básica, Universidade Federal do Paraná, Centro Politécnico, Curitiba 81531-980, Brazil.
| |
Collapse
|
50
|
Franco MC, Estévez AG. Tyrosine nitration as mediator of cell death. Cell Mol Life Sci 2014; 71:3939-50. [PMID: 24947321 PMCID: PMC11113622 DOI: 10.1007/s00018-014-1662-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/21/2014] [Accepted: 06/02/2014] [Indexed: 01/04/2023]
Abstract
Nitrotyrosine is used as a marker for the production of peroxynitrite and other reactive nitrogen species. For over 20 years the presence of nitrotyrosine was associated with cell death in multiple pathologies. Filling the gap between correlation and causality has proven to be a difficult task. Here, we discuss the evidence supporting tyrosine nitration as a specific posttranslational modification participating in the induction of cell death signaling pathways.
Collapse
Affiliation(s)
- María C. Franco
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Alvaro G. Estévez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
- 6900 Lake Nona Blvd, Orlando, FL 32827 USA
| |
Collapse
|