1
|
Xia W, Khalil RA. Hormone Replacement Therapy and Cardiovascular Health in Postmenopausal Women. Int J Mol Sci 2025; 26:5078. [PMID: 40507889 PMCID: PMC12154064 DOI: 10.3390/ijms26115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/16/2025] [Accepted: 05/10/2025] [Indexed: 06/16/2025] Open
Abstract
Sex-related differences are found not only in the reproductive system but also across various biological systems, such as the cardiovascular system. Compared with premenopausal women, cardiovascular disease (CVD) tends to occur more frequently in adult men and postmenopausal women (Post-MW). Also, during the reproductive years, sex hormones synthesized and released into the blood stream affect vascular function in a sex-dependent fashion. Estrogen (E2) interacts with estrogen receptors (ERs) in endothelial cells, vascular smooth muscle, and the extracellular matrix, causing both genomic and non-genomic effects, including vasodilation, decreased blood pressure, and cardiovascular protection. These observations have suggested beneficial effects of female sex hormones on cardiovascular function. In addition, the clear advantages of E2 supplementation in alleviating vasomotor symptoms during menopause have led to clinical investigations of the effects of menopausal hormone therapy (MHT) in CVD. However, the findings from these clinical trials have been variable and often contradictory. The lack of benefits of MHT in CVD has been related to the MHT preparation (type, dose, and route), vascular ERs (number, variants, distribution, and sensitivity), menopausal stage (MHT timing, initiation, and duration), hormonal environment (progesterone, testosterone (T), gonadotropins, and sex hormone binding globulin), and preexisting cardiovascular health and other disorders. The vascular effects of sex hormones have also prompted further examination of the use of anabolic drugs among athletes and the long-term effects of E2 and T supplements on cardiovascular health in cis- and transgender individuals seeking gender-affirming therapy. Further analysis of the effects of sex hormones and their receptors on vascular function should enhance our understanding of the sex differences and menopause-related changes in vascular signaling and provide better guidance for the management of CVD in a gender-specific fashion and in Post-MW.
Collapse
Affiliation(s)
| | - Raouf A. Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
2
|
Li T, Thoen ZE, Applebaum JM, Khalil RA. Menopause-related changes in vascular signaling by sex hormones. J Pharmacol Exp Ther 2025; 392:103526. [PMID: 40184819 DOI: 10.1016/j.jpet.2025.103526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/24/2025] [Indexed: 04/07/2025] Open
Abstract
Cardiovascular disease (CVD), such as hypertension and coronary artery disease, involves pathological changes in vascular signaling, function, and structure. Vascular signaling is regulated by multiple intrinsic and extrinsic factors that influence endothelial cells, vascular smooth muscle, and extracellular matrix. Vascular function is also influenced by environmental factors including diet, exercise, and stress, as well as genetic background, sex differences, and age. CVD is more common in adult men and postmenopausal women than in premenopausal women. Specifically, women during menopausal transition, with declining ovarian function and production of estrogen (E2) and progesterone, show marked increase in the incidence of CVD and associated vascular dysfunction. Mechanistic research suggests that E2 and E2 receptor signaling have beneficial effects on vascular function including vasodilation, decreased blood pressure, and cardiovascular protection. Also, the tangible benefits of E2 supplementation in improving menopausal symptoms have prompted clinical trials of menopausal hormone therapy (MHT) in CVD, but the results have been inconsistent. The inadequate benefits of MHT in CVD could be attributed to the E2 type, dose, formulation, route, timing, and duration as well as menopausal changes in E2/E2 receptor vascular signaling. Other factors that could affect the responsiveness to MHT are the integrated hormonal milieu including gonadotropins, progesterone, and testosterone, vascular health status, preexisting cardiovascular conditions, and menopause-related dysfunction in the renal, gastrointestinal, endocrine, immune, and nervous systems. Further analysis of these factors should enhance our understanding of menopause-related changes in vascular signaling by sex hormones and provide better guidance for management of CVD in postmenopausal women. SIGNIFICANCE STATEMENT: Cardiovascular disease is more common in adult men and postmenopausal women than premenopausal women. Earlier observations of vascular benefits of menopausal hormone therapy did not materialize in randomized clinical trials. Further examination of the cardiovascular effects of sex hormones in different formulations and regimens, and the menopausal changes in vascular signaling would help to adjust the menopausal hormone therapy protocols in order to enhance their effectiveness in reducing the risk and the management of cardiovascular disease in postmenopausal women.
Collapse
Affiliation(s)
- Tao Li
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Zachary E Thoen
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jessica M Applebaum
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
3
|
Arenas GA, Lorca RA. Effects of hypoxia on uteroplacental and fetoplacental vascular function during pregnancy. Front Physiol 2024; 15:1490154. [PMID: 39744703 PMCID: PMC11688409 DOI: 10.3389/fphys.2024.1490154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/03/2024] [Indexed: 02/13/2025] Open
Abstract
During pregnancy, marked changes in vasculature occur. The placenta is developed, and uteroplacental and fetoplacental circulations are established. These processes may be negatively affected by genetic anomalies, maternal environment (i.e., obesity or diabetes), and environmental conditions such as pollutants and hypoxia. Chronic hypoxia has detrimental effects on the vascular adaptations to pregnancy and fetal growth. The typical pregnancy-dependent rise in uterine blood flow by vascular remodeling and vasodilation of maternal uterine arteries is reduced, leading to increases in vascular tone. These maladaptations may lead to complications such as fetal growth restriction (FGR) and preeclampsia. In this review, the effect of hypoxia on uteroplacental and fetoplacental circulation and its impact on pregnancy outcomes in humans and animal models are discussed. Evidence is provided for several mechanisms that affect pregnancy through hypoxia-induced alterations. Future directions to fill gaps in knowledge and develop therapeutic strategies to prevent or alleviate hypoxia-related pregnancy complications, such as FGR and preeclampsia, are suggested.
Collapse
Affiliation(s)
| | - Ramón A. Lorca
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Hu XQ, Song R, Dasgupta C, Liu T, Zhang M, Twum-Barimah S, Blood AB, Zhang L. Rad-mediated inhibition of Ca V1.2 channel activity contributes to uterine artery haemodynamic adaptation to pregnancy. J Physiol 2024; 602:6729-6744. [PMID: 39612361 DOI: 10.1113/jp287334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
The striking increase of uterine blood flow during pregnancy is essential for normal fetal development as well as for cardiovascular well-being of the mother. Yet, the underlying mechanisms of pregnancy-mediated vasodilatation of the uterine artery are not fully understood. In this study, we test the hypothesis that Rad, a monomeric G protein, is a novel regulatory mechanism in inhibiting CaV1.2 channel currents in uterine artery haemodynamic adaptation to pregnancy in a sheep model. We found that pregnancy significantly upregulates Rad expression and decreases CaV1.2 channel currents in uterine arterial smooth muscle cells. Rad knockdown ex vivo and in vivo increases CaV1.2 activity and channel window currents by reducing steady-state inactivation in uterine arteries of pregnant sheep, recapitulating the phenotype of uterine arteries in non-pregnant animals. Moreover, Rad knockdown in vivo in pregnant sheep enhances myogenic tone and phenylephrine-induced vasoconstriction of uterine arteries. Whereas knockdown of Rad has no effect on mesenteric arterial CaV1.2 channel activity and mean arterial blood pressure, it significantly increases uterine vascular resistance and decreases uterine artery blood flow. Our study reveals a novel cause-and-effect mechanism of Rad in pregnancy-induced suppression of CaV1.2 channel activity in uterine arteries to facilitate increased uterine blood flow, providing new insights into fundamental mechanisms of uterine haemodynamic adaptation to pregnancy. KEY POINTS: Pregnancy suppresses CaV1.2 channel currents in uterine arterial smooth muscle cells. Rad, a monomeric G protein, is upregulated in uterine arteries of pregnant sheep. Rad knockdown ex vivo or in vivo increases CaV1.2 channel currents in uterine arteries from pregnant ewes. In vivo knockdown of Rad elevates uterine vascular resistance and decreases uterine blood flow in pregnant sheep. The study reveals a novel mechanism of Rad in pregnancy-induced suppression of CaV1.2 channel activity in uterine arterial haemodynamic adaptation to pregnancy.
Collapse
MESH Headings
- Animals
- Female
- Pregnancy
- Uterine Artery/physiology
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/physiology
- Calcium Channels, L-Type/genetics
- Sheep
- Adaptation, Physiological/physiology
- Hemodynamics
- Vasoconstriction/physiology
- Vasodilation/physiology
- Myocytes, Smooth Muscle/physiology
- Myocytes, Smooth Muscle/metabolism
- Vascular Resistance/physiology
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/metabolism
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Taiming Liu
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Meijuan Zhang
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Stephen Twum-Barimah
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arlin B Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
5
|
Dangudubiyyam SV, Hofmann A, Yadav P, Kumar S. Per- and polyfluoroalkyl substances (PFAS) and hypertensive disorders of Pregnancy- integration of epidemiological and mechanistic evidence. Reprod Toxicol 2024; 130:108702. [PMID: 39222887 PMCID: PMC11625001 DOI: 10.1016/j.reprotox.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) remain a significant global health burden despite medical advancements. HDP prevalence appears to be rising, leading to increased maternal and fetal complications, mortality, and substantial healthcare costs. The etiology of HDP are complex and multifaceted, influenced by factors like nutrition, obesity, stress, metabolic disorders, and genetics. Emerging evidence suggests environmental pollutants, particularly Per- and polyfluoroalkyl substances (PFAS), may contribute to HDP development. OBJECTIVE This review integrates epidemiological and mechanistic data to explore the intricate relationship between PFAS exposure and HDP. EPIDEMIOLOGICAL EVIDENCE Studies show varying degrees of association between PFAS exposure and HDP, with some demonstrating positive correlations, particularly with preeclampsia. Meta-analyses suggest potential fetal sex-specific differences in these associations. MECHANISTIC INSIGHTS Mechanistically, PFAS exposure appears to disrupt vascular hemodynamics, placental development, and critical processes like angiogenesis and sex steroid regulation. Experimental studies reveal alterations in the renin-angiotensin system, trophoblast invasion, oxidative stress, inflammation, and hormonal dysregulation - all of which contribute to HDP pathogenesis. Elucidating these mechanisms is crucial for developing preventive strategies. THERAPEUTIC POTENTIAL Targeted interventions such as AT2R agonists, caspase inhibitors, and modulation of specific microRNAs show promise in mitigating adverse outcomes associated with PFAS exposure during pregnancy. KNOWLEDGE GAPS AND FUTURE DIRECTIONS Further research is needed to comprehensively understand the full spectrum of PFAS-induced placental alterations and their long-term implications for maternal and fetal health. This knowledge will be instrumental in developing effective preventive and therapeutic strategies for HDP in a changing environmental landscape.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Alissa Hofmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.
| |
Collapse
|
6
|
Allerkamp HH, Leighton S, Pole T, Clark AR, James JL. Synergistic regulation of uterine radial artery adaptation to pregnancy by paracrine and hemodynamic factors. Am J Physiol Heart Circ Physiol 2023; 325:H790-H805. [PMID: 37539447 PMCID: PMC10643003 DOI: 10.1152/ajpheart.00205.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Fetal growth throughout pregnancy relies on delivery of an increasing volume of maternal blood to the placenta. To facilitate this, the uterine vascular network adapts structurally and functionally, resulting in wider blood vessels with decreased flow-mediated reactivity. Impaired remodeling of the rate-limiting uterine radial arteries has been associated with fetal growth restriction. However, the mechanisms underlying normal or pathological radial artery remodeling are poorly understood. Here, we used pressure myography to determine the roles of hemodynamic (resistance, flow rate, shear stress) and paracrine [β-estradiol, progesterone, placental growth factor (PlGF), vascular endothelial growth factor] factors on rat radial artery reactivity. We show that β-estradiol, progesterone, and PlGF attenuate flow-mediated constriction of radial arteries from nonpregnant rats, allowing them to withstand higher flow rates in a similar manner to pregnant vessels. This effect was partly mediated by nitric oxide (NO) production. To better understand how the combination of paracrine factors and shear stress may impact human radial artery remodeling in the first half of gestation, computational models of uterine hemodynamics, incorporating physiological parameters for trophoblast plugging and spiral artery remodeling, were used to predict shear stress in the upstream radial arteries across the first half of pregnancy. Human microvascular endothelial cells subjected to these predicted shear stresses demonstrated higher NO production when paracrine factors were added. This suggests that synergistic effects of paracrine and hemodynamic factors induce uterine vascular remodeling and that alterations in this balance could impair radial artery adaptation, limiting blood flow to the placenta and negatively impacting fetal growth.NEW & NOTEWORTHY Placenta-specific paracrine factors β-estradiol, progesterone, and placental growth factor attenuate flow-mediated constriction of the rate-limiting uterine radial arteries, enabling higher flow rates in pregnancy. These paracrine factors induce their actions in part via nitric oxide mediated mechanisms. A synergistic combination of paracrine factors and shear stress is likely necessary to produce sufficient levels of nitric oxide during early human pregnancy to trigger adequate uterine vascular adaptation.
Collapse
Affiliation(s)
- H. H. Allerkamp
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - S. Leighton
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - T. Pole
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - A. R. Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - J. L. James
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Bai J, Li Y, Yan G, Zhou J, Salmeron AG, Fategbe OT, Kumar S, Chen X, Chen DB. ICI 182,780 Attenuates Selective Upregulation of Uterine Artery Cystathionine β-Synthase Expression in Rat Pregnancy. Int J Mol Sci 2023; 24:14384. [PMID: 37762687 PMCID: PMC10532247 DOI: 10.3390/ijms241814384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Endogenous hydrogen sulfide (H2S) produced by cystathionine β-synthase (CBS) and cystathionine-γ lyase (CSE) has emerged as a novel uterine vasodilator contributing to pregnancy-associated increases in uterine blood flow, which safeguard pregnancy health. Uterine artery (UA) H2S production is stimulated via exogenous estrogen replacement and is associated with elevated endogenous estrogens during pregnancy through the selective upregulation of CBS without altering CSE. However, how endogenous estrogens regulate uterine artery CBS expression in pregnancy is unknown. This study was conducted to test a hypothesis that endogenous estrogens selectively stimulate UA CBS expression via specific estrogen receptors (ER). Treatment with E2β (0.01 to 100 nM) stimulated CBS but not CSE mRNA in organ cultures of fresh UA rings from both NP and P (gestational day 20, GD20) rats, with greater responses to all doses of E2β tested in P vs. NP UA. ER antagonist ICI 182,780 (ICI, 1 µM) completely attenuated E2β-stimulated CBS mRNA in both NP and P rat UA. Subcutaneous injection with ICI 182,780 (0.3 mg/rat) of GD19 P rats for 24 h significantly inhibited UA CBS but not mRNA expression, consistent with reduced endothelial and smooth muscle cell CBS (but not CSE) protein. ICI did not alter mesenteric and renal artery CBS and CSE mRNA. In addition, ICI decreased endothelial nitric oxide synthase mRNA in UA but not in mesenteric or renal arteries. Thus, pregnancy-augmented UA CBS/H2S production is mediated by the actions of endogenous estrogens via specific ER in pregnant rats.
Collapse
Affiliation(s)
- Jin Bai
- Department of Obstetrics and Gynecology, University of California Irvine, Irvine, CA 92697, USA; (J.B.); (A.G.S.); (O.T.F.)
| | - Yao Li
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China; (Y.L.); (G.Y.); (J.Z.); (X.C.)
| | - Guofeng Yan
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China; (Y.L.); (G.Y.); (J.Z.); (X.C.)
| | - Jing Zhou
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China; (Y.L.); (G.Y.); (J.Z.); (X.C.)
| | - Alejandra Garcia Salmeron
- Department of Obstetrics and Gynecology, University of California Irvine, Irvine, CA 92697, USA; (J.B.); (A.G.S.); (O.T.F.)
| | - Olamide Tolulope Fategbe
- Department of Obstetrics and Gynecology, University of California Irvine, Irvine, CA 92697, USA; (J.B.); (A.G.S.); (O.T.F.)
| | - Sathish Kumar
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China; (Y.L.); (G.Y.); (J.Z.); (X.C.)
| | - Dong-Bao Chen
- Department of Obstetrics and Gynecology, University of California Irvine, Irvine, CA 92697, USA; (J.B.); (A.G.S.); (O.T.F.)
| |
Collapse
|
8
|
Bernstein SR, Kelleher C, Khalil RA. Gender-based research underscores sex differences in biological processes, clinical disorders and pharmacological interventions. Biochem Pharmacol 2023; 215:115737. [PMID: 37549793 PMCID: PMC10587961 DOI: 10.1016/j.bcp.2023.115737] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Earlier research has presumed that the male and female biology is similar in most organs except the reproductive system, leading to major misconceptions in research interpretations and clinical implications, with serious disorders being overlooked or misdiagnosed. Careful research has now identified sex differences in the cardiovascular, renal, endocrine, gastrointestinal, immune, nervous, and musculoskeletal systems. Also, several cardiovascular, immunological, and neurological disorders have shown differences in prevalence and severity between males and females. Genetic variations in the sex chromosomes have been implicated in several disorders at young age and before puberty. The levels of the gonadal hormones estrogen, progesterone and testosterone and their receptors play a role in the sex differences between adult males and premenopausal women. Hormonal deficiencies and cell senescence have been implicated in differences between postmenopausal and premenopausal women. Specifically, cardiovascular disorders are more common in adult men vs premenopausal women, but the trend is reversed with age with the incidence being greater in postmenopausal women than age-matched men. Gender-specific disorders in females such as polycystic ovary syndrome, hypertension-in-pregnancy and gestational diabetes have attained further research recognition. Other gender-related research areas include menopausal hormone therapy, the "Estrogen Paradox" in pulmonary arterial hypertension being more predominant but less severe in young females, and how testosterone may cause deleterious effects in the kidney while having vasodilator effects in the coronary circulation. This has prompted the National Institutes of Health (NIH) initiative to consider sex as a biological variable in research. The NIH and other funding agencies have provided resources to establish state-of-the-art centers for women health and sex differences in biology and disease in several academic institutions. Scientific societies and journals have taken similar steps to organize specialized conferences and publish special issues on gender-based research. These combined efforts should promote research to enhance our understanding of the sex differences in biological systems beyond just the reproductive system, and provide better guidance and pharmacological tools for the management of various clinical disorders in a gender-specific manner.
Collapse
Affiliation(s)
- Sofia R Bernstein
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Kelleher
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Biswas S, Pal P, Mondal R, Mukhopadhyay PK. Casein and pea enriched high-protein diet attenuates arsenic provoked apoptosis in testicles of adult rats. Toxicol Res (Camb) 2023; 12:551-563. [PMID: 37663799 PMCID: PMC10470344 DOI: 10.1093/toxres/tfad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 09/05/2023] Open
Abstract
Arsenic toxicity is a major health issue that also threats male reproductive system leading to impairment of fertility. The antioxidant capacity of casein and pea enriched formulated high-protein diet (FHPD) is found to be effective in different toxicity management. The present study was endeavored to investigate the mitigatory aspect of FHPD on arsenic stimulated testicular apoptosis. Adult male rats were maintained on either normal diet as control (Gr I, n = 8) and arsenic (As2O3) treated at a dose of 3 mg/kg/rat/day (Gr II, n = 8) or on isocaloric FHPD as supplemented (Gr III, n = 8) with same dose of arsenic for 30 consecutive days. Testicular histomorphometry, spermatokinetics, testicular functional marker enzymes, serum gonadotrophins, oxidative stress markers, testicular deoxyribonucleic acid (DNA) damage, and apoptosis markers were evaluated to assess the reprotoxicity of arsenic and subsequent protection by FHPD. FHPD protected the histopathological alterations and also restored normal spermatogenesis. Altered enzymatic activities of testicular functional markers like lactate dehydrogenase, γ-glutamyl transferase, acid phosphatase, and alkaline phosphatase were also regularized. FHPD also reinstated the normal level of follicle stimulating hormone (FSH), luteinising hormone (LH), and also normalized the enzymatic activities of testicular glutathione peroxidase and glutathione reductase. Testicular DNA damage was also prevented by FHPD supplementation. Testicular apoptosis marked by the altered messenger ribonucleic acid and protein expression of apoptotic markers like Bax, Bcl-2, caspase 9, and caspase 3 were also attenuated upon FHPD supplementation along with diminution of arsenic accumulation in testicular tissues. FHPD not only mitigated the adverse effects of arsenic induced gonadotoxicity but also helped in sustaining the normal reproductive functions.
Collapse
Affiliation(s)
- Sagnik Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Rubia Mondal
- Department of Life Sciences, Presidency University, Kolkata, India
| | | |
Collapse
|
10
|
Chuaiphichai S, Yu GZ, Tan CM, Whiteman C, Douglas G, Dickinson Y, Drydale EN, Appari M, Zhang W, Crabtree MJ, McNeill E, Hale AB, Lewandowski AJ, Alp NJ, Vatish M, Leeson P, Channon KM. Endothelial GTPCH (GTP Cyclohydrolase 1) and Tetrahydrobiopterin Regulate Gestational Blood Pressure, Uteroplacental Remodeling, and Fetal Growth. Hypertension 2021; 78:1871-1884. [PMID: 34689592 PMCID: PMC8577301 DOI: 10.1161/hypertensionaha.120.17646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Surawee Chuaiphichai
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.C., C.W., G.D., Y.D., E.N.D., M.A., M.J.C., E.M., A.B.H., N.J.A., K.M.C.)
| | - Grace Z. Yu
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (G.Z.Y., C.M.J.T., A.J.L., P.L.), University of Oxford, United Kingdom
| | - Cheryl M.J. Tan
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (G.Z.Y., C.M.J.T., A.J.L., P.L.), University of Oxford, United Kingdom
| | - Christopher Whiteman
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.C., C.W., G.D., Y.D., E.N.D., M.A., M.J.C., E.M., A.B.H., N.J.A., K.M.C.)
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (G.Z.Y., C.M.J.T., A.J.L., P.L.), University of Oxford, United Kingdom
- Nuffield Department of Women’s and Reproductive Health (W.Z., M.V.), University of Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, United Kingdom (M.V., K.M.C.)
| | - Gillian Douglas
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.C., C.W., G.D., Y.D., E.N.D., M.A., M.J.C., E.M., A.B.H., N.J.A., K.M.C.)
| | - Yasmin Dickinson
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.C., C.W., G.D., Y.D., E.N.D., M.A., M.J.C., E.M., A.B.H., N.J.A., K.M.C.)
| | - Edward N. Drydale
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.C., C.W., G.D., Y.D., E.N.D., M.A., M.J.C., E.M., A.B.H., N.J.A., K.M.C.)
| | - Mahesh Appari
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.C., C.W., G.D., Y.D., E.N.D., M.A., M.J.C., E.M., A.B.H., N.J.A., K.M.C.)
| | - Wei Zhang
- Nuffield Department of Women’s and Reproductive Health (W.Z., M.V.), University of Oxford, United Kingdom
| | - Mark J. Crabtree
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.C., C.W., G.D., Y.D., E.N.D., M.A., M.J.C., E.M., A.B.H., N.J.A., K.M.C.)
| | - Eileen McNeill
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.C., C.W., G.D., Y.D., E.N.D., M.A., M.J.C., E.M., A.B.H., N.J.A., K.M.C.)
| | - Ashley B. Hale
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.C., C.W., G.D., Y.D., E.N.D., M.A., M.J.C., E.M., A.B.H., N.J.A., K.M.C.)
| | - Adam J. Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (G.Z.Y., C.M.J.T., A.J.L., P.L.), University of Oxford, United Kingdom
| | - Nicholas J. Alp
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.C., C.W., G.D., Y.D., E.N.D., M.A., M.J.C., E.M., A.B.H., N.J.A., K.M.C.)
| | - Manu Vatish
- Nuffield Department of Women’s and Reproductive Health (W.Z., M.V.), University of Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, United Kingdom (M.V., K.M.C.)
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (G.Z.Y., C.M.J.T., A.J.L., P.L.), University of Oxford, United Kingdom
| | - Keith M. Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.C., C.W., G.D., Y.D., E.N.D., M.A., M.J.C., E.M., A.B.H., N.J.A., K.M.C.)
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, United Kingdom (M.V., K.M.C.)
| |
Collapse
|
11
|
Xia Z, Xiao J, Chen Q. Solving the Puzzle: What Is the Role of Progestogens in Neovascularization? Biomolecules 2021; 11:1686. [PMID: 34827682 PMCID: PMC8615949 DOI: 10.3390/biom11111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Ovarian sex steroids can modulate new vessel formation and development, and the clarification of the underlying mechanism will provide insight into neovascularization-related physiological changes and pathological conditions. Unlike estrogen, which mainly promotes neovascularization through activating classic post-receptor signaling pathways, progesterone (P4) regulates a variety of downstream factors with angiogenic or antiangiogenic effects, exerting various influences on neovascularization. Furthermore, diverse progestins, the synthetic progesterone receptor (PR) agonists structurally related to P4, have been used in numerous studies, which could contribute to unequal actions. As a result, there have been many conflicting observations in the past, making it difficult for researchers to define the exact role of progestogens (PR agonists including naturally occurring P4 and synthetic progestins). This review summarizes available evidence for progestogen-mediated neovascularization under physiological and pathological circumstances, and attempts to elaborate their functional characteristics and regulatory patterns from a comprehensive perspective.
Collapse
Affiliation(s)
| | | | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha 410008, China; (Z.X.); (J.X.)
| |
Collapse
|
12
|
Hu X, Zhang L. Uteroplacental Circulation in Normal Pregnancy and Preeclampsia: Functional Adaptation and Maladaptation. Int J Mol Sci 2021; 22:8622. [PMID: 34445328 PMCID: PMC8395300 DOI: 10.3390/ijms22168622] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Uteroplacental blood flow increases as pregnancy advances. Adequate supply of nutrients and oxygen carried by uteroplacental blood flow is essential for the well-being of the mother and growth/development of the fetus. The uteroplacental hemodynamic change is accomplished primarily through uterine vascular adaptation, involving hormonal regulation of myogenic tone, vasoreactivity, release of vasoactive factors and others, in addition to the remodeling of spiral arteries. In preeclampsia, hormonal and angiogenic imbalance, proinflammatory cytokines and autoantibodies cause dysfunction of both endothelium and vascular smooth muscle cells of the uteroplacental vasculature. Consequently, the vascular dysfunction leads to increased vascular resistance and reduced blood flow in the uteroplacental circulation. In this article, the (mal)adaptation of uteroplacental vascular function in normal pregnancy and preeclampsia and underlying mechanisms are reviewed.
Collapse
Affiliation(s)
- Xiangqun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
13
|
Fournier SB, D'Errico JN, Stapleton PA. Uterine Vascular Control Preconception and During Pregnancy. Compr Physiol 2021; 11:1871-1893. [PMID: 34061977 DOI: 10.1002/cphy.c190015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Successful pregnancy and reproduction are dependent on adequate uterine blood flow, placental perfusion, and vascular responsivity to fetal demands. The ability to support pregnancy centers on systemic adaptation and endometrial preparation through decidualization, embryonic implantation, trophoblast invasion, arterial/arteriolar reactivity, and vascular remodeling. These adaptations occur through responsiveness to endocrine signaling and local uteroplacental mediators. The purpose of this article is to highlight the current knowledge associated with vascular remodeling and responsivity during uterine preparation for and during pregnancy. We focus on maternal cardiovascular systemic and uterine modifications, endometrial decidualization, implantation and invasion, uterine and spiral artery remodeling, local uterine regulatory mechanisms, placentation, and pathological consequences of vascular dysfunction during pregnancy. © 2021 American Physiological Society. Compr Physiol 11:1-23, 2021.
Collapse
Affiliation(s)
- Sara B Fournier
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
| | - Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Phoebe A Stapleton
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA.,Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
14
|
Hu XQ, Dasgupta C, Song R, Romero M, Wilson SM, Zhang L. MicroRNA-210 Mediates Hypoxia-Induced Repression of Spontaneous Transient Outward Currents in Sheep Uterine Arteries During Gestation. Hypertension 2021; 77:1412-1427. [PMID: 33641365 DOI: 10.1161/hypertensionaha.120.16831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xiang-Qun Hu
- From the Lawrence D. Longo, MD, Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Chiranjib Dasgupta
- From the Lawrence D. Longo, MD, Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Rui Song
- From the Lawrence D. Longo, MD, Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Monica Romero
- From the Lawrence D. Longo, MD, Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Sean M Wilson
- From the Lawrence D. Longo, MD, Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Lubo Zhang
- From the Lawrence D. Longo, MD, Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| |
Collapse
|
15
|
Pastore MB, Landeros RV, Chen DB, Magness RR. Structural analysis of estrogen receptors: interaction between estrogen receptors and cav-1 within the caveolae†. Biol Reprod 2020; 100:495-504. [PMID: 30137221 DOI: 10.1093/biolre/ioy188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 01/12/2023] Open
Abstract
Pregnancy is a physiologic state of substantially elevated estrogen biosynthesis that maintains vasodilator production by uterine artery endothelial cells (P-UAECs) and thus uterine perfusion. Estrogen receptors (ER-α and ER-β; ESR1 and ESR2) stimulate nongenomic rapid vasodilatory responses partly through activation of endothelial nitric oxide synthase (eNOS). Rapid estrogenic responses are initiated by the ∼4% ESRs localized to the plasmalemma of endothelial cells. Caveolin-1 (Cav-1) interactions within the caveolae are theorized to influence estrogenic effects mediated by both ESRs. Hypothesis: Both ESR1 and ESR2 display similar spatial partitioning between the plasmalemma and nucleus of UAECs and have similar interactions with Cav-1 at the plasmalemma. Using transmission electron microscopy, we observed numerous caveolae structures in UAECs, while immunogold labeling and subcellular fractionations identified ESR1 and ESR2 in three subcellular locations: membrane, cytosol, and nucleus. Bioinformatics approaches to analyze ESR1 and ESR2 transmembrane domains identified no regions that facilitate ESR interaction with plasmalemma. However, sucrose density centrifugation and Cav-1 immunoisolation columns uniquely demonstrated very high protein-protein association only between ESR1, but not ESR2, with Cav-1. These data demonstrate (1) both ESRs localize to the plasmalemma, cytosol and nucleus; (2) neither ESR1 nor ESR2 contain a classic region that crosses the plasmalemma to facilitate attachment; and (3) ESR1, but not ESR2, can be detected in the caveolar subcellular domain demonstrating ESR1 is the only ESR bound in close proximity to Cav-1 and eNOS within this microdomain. Lack of protein-protein interaction between Cav-1 and ESR2 demonstrates a novel independent association of these proteins at the plasmalemma.
Collapse
Affiliation(s)
- Mayra B Pastore
- Department of Obstetrics and Gynecology Perinatal Research Labs, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, California, USA
| | - Rosalina Villalon Landeros
- Department of Obstetrics and Gynecology Perinatal Research Labs, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dong-Bao Chen
- Department of Obstetrics and Gynecology University of California Irvine, Irvine, California, USA
| | - Ronald R Magness
- Department of Obstetrics and Gynecology Perinatal Research Labs, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Obstetrics and Gynecology University of South Florida, Tampa, Florida, USA
| |
Collapse
|
16
|
Biswas P, Mukhopadhyay A, Kabir SN, Mukhopadhyay PK. High-Protein Diet Ameliorates Arsenic-Induced Oxidative Stress and Antagonizes Uterine Apoptosis in Rats. Biol Trace Elem Res 2019; 192:222-233. [PMID: 30723882 DOI: 10.1007/s12011-019-1657-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/29/2019] [Indexed: 01/30/2023]
Abstract
Arsenic toxicity purportedly threats a broad spectrum of female reproductive functions. We investigated the remedial role of a casein- and pea protein-enriched high-protein diet (HPD) in combating the arsenic insult. Cyclic female rats maintained on standard diet (n = 6) or an isocaloric HPD (n = 6) were gavaged with As2O3 at 3 mg/kg BW/rat/day (n = 12) for 28 days. Vehicle-fed rats (n = 6) maintained on the standard diet served as the control. We monitored the estrus cycles and performed the histomorphometric analyses of the uterus and ovary. Uterine luminal epithelial (ULE) ultrastructure was appraised by scanning electron microscopy. Uterine oxidative stress was evaluated in the forms of ROS generation and activities of the ROS scavengers. The uterine apoptotic manifestation was blueprinted by Western blot analysis of caspase-3 and Bax expression. Arsenic treatment arrested the follicular maturation and disrupted the estrus cycles with a typical increase in the diestrus index. Shrunken endometrial glands and thinned microvilli density of the ULE reflected loss of cell polarity and mislaid uterine homeostasis. Increased ROS generation and attenuated activities of the ROS scavengers marked a state of uterine oxidative imbalance and loss of redox regulation. Superfluous expression of procaspase-3, cleaved caspase-3, and Bax mirrored an inflated state of uterine apoptosis. HPD supplementation, by and large, counteracted these arsenic impacts and maintained the frameworks close to the control levels. In conclusion, arsenic mediates its reproductive toxicity, at least in part, by upsetting the uterine ROS homeostasis and redox regulation. Pea proteins and casein-supplemented HPD can counteract the arsenic effects and maintain the reproductive functions.
Collapse
Affiliation(s)
- Prerona Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Aparna Mukhopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Syed Nazrul Kabir
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India
| | | |
Collapse
|
17
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
18
|
Effect of Oxidative Stress on the Estrogen-NOS-NO-K Ca Channel Pathway in Uteroplacental Dysfunction: Its Implication in Pregnancy Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9194269. [PMID: 30881600 PMCID: PMC6387699 DOI: 10.1155/2019/9194269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/19/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022]
Abstract
During pregnancy, the adaptive changes in uterine circulation and the formation of the placenta are essential for the growth of the fetus and the well-being of the mother. The steroid hormone estrogen plays a pivotal role in this adaptive process. An insufficient blood supply to the placenta due to uteroplacental dysfunction has been associated with pregnancy complications including preeclampsia and intrauterine fetal growth restriction (IUGR). Oxidative stress is caused by an imbalance between free radical formation and antioxidant defense. Pregnancy itself presents a mild oxidative stress, which is exaggerated in pregnancy complications. Increasing evidence indicates that oxidative stress plays an important role in the maladaptation of uteroplacental circulation partly by impairing estrogen signaling pathways. This review is aimed at providing both an overview of our current understanding of regulation of the estrogen-NOS-NO-KCa pathway by reactive oxygen species (ROS) in uteroplacental tissues and a link between oxidative stress and uteroplacental dysfunction in pregnancy complications. A better understanding of the mechanisms will facilitate the development of novel and effective therapeutic interventions.
Collapse
|
19
|
Dang S, Ding D, Lu Y, Su Q, Lin T, Zhang X, Zhang H, Wang X, Tan H, Zhu Z, Li H. PM 2.5 exposure during pregnancy induces hypermethylation of estrogen receptor promoter region in rat uterus and declines offspring birth weights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:851-861. [PMID: 30245447 DOI: 10.1016/j.envpol.2018.09.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Particulate matter 2.5 (PM2.5) exposures during pregnancy could lead to declined birth weight, intrauterine developmental restriction, and premature delivery, however, the underlying mechanisms are still not elucidated. There are few studies concerning the effects of PM2.5 exposure on maternal and child health in Xi'an (one of the cities with severe air pollution of PM2.5 in North China). Then, this study aimed to investigate the effect of PM2.5 exposure in Xi'an on the offspring birth weights and the possibly associated epigenetic mechanisms. We found the Low and High groups: the offspring with declined birth weights; the decreased mRNA and protein expression of the estrogen receptor (ERs) and eNOs in the uterus; the decreased endometria vascular diameter maximum (EVDM); the increased mRNA and protein expressions of the DNMT1 and 3b in the uterus; the elevated methylation levels of the CpG sites in the CpG island of ERα promoter region in the uterus. However, no differences were observed in the mRNA or protein expressions of ERβ and DNMT3a between the Clean and PM2.5 exposure groups, as well as endometriavascular density (EVD). Additionally, PM2.5 level was negatively correlated with the ERα protein expression, EVDM and offspring birth weight, as well as the methylation level of the CpG sites in the CpG island of ERα promoter region and the ERα protein expression in the uterus; whereas the ERα protein expression was positively correlated with the offspring birth weight, as well as PM2.5 level and the methylation level of the CpG sites in the CpG island of ERα promoter region in the uterus. Taken together, elevated methylation level of the CpG sites in the CpG island of ERα promoter region reduces ERα expression in the uterus, which could be one of the epigenetic mechanisms that pregnant PM2.5 exposure reduces the offspring birth weights.
Collapse
Affiliation(s)
- Shaokang Dang
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ding Ding
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yong Lu
- Department of Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Qian Su
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianwei Lin
- Key Laboratory of Shaanxi Province Biomedicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710061, China
| | - Xiaoxiao Zhang
- Key Laboratory of Shaanxi Province Biomedicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710061, China
| | - Huiping Zhang
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xuebin Wang
- Department of Thermal Engineering, Energy and Power Engineering College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Houzhang Tan
- Department of Thermal Engineering, Energy and Power Engineering College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhongliang Zhu
- Key Laboratory of Shaanxi Province Biomedicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710061, China
| | - Hui Li
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
20
|
Gyselaers W, Spaanderman M. Assessment of venous hemodynamics and volume homeostasis during pregnancy: recommendations of the International Working Group on Maternal Hemodynamics. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:174-185. [PMID: 29120514 DOI: 10.1002/uog.18952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/21/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Venous hemodynamics and volume homeostasis are important aspects of cardiovascular physiology. However, today their relevance is still very much underappreciated. Their most important role is maintenance and control of venous return and, as such, cardiac output. A high-flow/low-resistance circulation, remaining constant under physiological circumstances, is mandatory for an uncomplicated course of pregnancy. In this article, characteristics of normal and abnormal venous and volume regulating functions are discussed with respect to normal and pathologic outcomes of pregnancy, and current (non-invasive) methods to assess these functions are summarized. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- W Gyselaers
- Department of Obstetrics and Gynecology, Ziekenhuis Oost Limburg, Genk, Belgium
- Department of Physiology, Hasselt University, Diepenbeek, Belgium
| | - M Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
21
|
Priest SE, Shenouda N, MacDonald MJ. Effect of sex, menstrual cycle phase, and monophasic oral contraceptive pill use on local and central arterial stiffness in young adults. Am J Physiol Heart Circ Physiol 2018; 315:H357-H365. [PMID: 29677465 DOI: 10.1152/ajpheart.00039.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arterial stiffness is associated with increased cardiovascular disease risk. Previous sex-based investigations of local and central stiffness report inconsistent findings and have not controlled for menstrual cycle phase in women. There is also evidence that sex hormones influence the vasculature, but their impact on arterial stiffness across a natural menstrual (NAT) or oral contraceptive pill (OCP) cycle has been understudied. This study sought to 1) examine potential sex differences in local and central stiffness, 2) compare stiffness profiles between NAT and OCP cycles, and 3) investigate the relationship between duration of OCP use and arterial stiffness. Sex hormone concentrations, β-stiffness index (local stiffness), and carotid-femoral pulse wave velocity [cfPWV (central stiffness)] were assessed in 53 healthy adults (22 ± 3 yr old, 20 men, 15 NAT women, and 18 OCP women). All participants were tested three times: men on the same day and time 1 wk apart, NAT women in menstrual, midfollicular and luteal phases of the menstrual cycle, and OCP women in placebo, early active and late active pill phases. β-Stiffness was higher in men than NAT and OCP women ( P < 0.001), whereas cfPWV was similar between groups ( P = 0.09). β-Stiffness and cfPWV did not differ across or between NAT and OCP cycles ( P > 0.05 for both) and were not associated with duration of OCP use (β-stiffness: r = 0.003, P = 0.99; cfPWV: r = -0.26, P = 0.30). The apparent sex differences in local, but not central, stiffness highlight the importance of assessing both indexes in comparisons between men and women. Furthermore, fluctuating sex hormone levels do not appear to influence β-stiffness or cfPWV. Therefore, these stiffness indexes may need to be assessed during only one cycle phase in women in future investigations. NEW & NOTEWORTHY We observed higher local, but not central, arterial stiffness in men than women. We also demonstrated that there are no differences in arterial stiffness between naturally cycling women and women who use monophasic oral contraceptive pills, and that the duration of oral contraceptive pill use does not influence arterial stiffness.
Collapse
Affiliation(s)
- Stacey E Priest
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Ninette Shenouda
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | | |
Collapse
|
22
|
Placental development during early pregnancy in sheep: Progesterone and estrogen receptor protein expression. Theriogenology 2018; 114:273-284. [PMID: 29665573 DOI: 10.1016/j.theriogenology.2018.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
Abstract
The aim of this study was to evaluate the pattern of protein expression of the steroid receptor isoforms of nuclear progesterone receptors (PGR) A and B, and estrogen receptors (ESR1 and 2) in utero-placental compartments during early pregnancy. Utero-placental tissues were collected from days 14-30 (n = 4 ewes/day), and uterine tissues were collected from non-pregnant ewes on day 10 after estrus (n = 4). Cross sections of formalin-fixed and paraffin embedded tissues were immunofluorescently stained to detect PGRAB, PGRB, ESR1 and ESR2, followed by image generation of entire cross-sections of uterine and utero-placental tissues, confocal imaging of individual uterine and utero-placental compartments, and image and statistical analyses. PGRAB, PGRB, ESR1 and ESR2 were detected in several compartments of uterine and utero-placental tissues. Quantitative image analysis of staining intensity demonstrated that compared to non-pregnant controls 1) expression of PGRAB and PGRB was less in luminal epithelium and endometrial glands from day 14-16 till 30; 2) PGRAB expression tended to be greater in endometrial and myometrial blood vessels on days 28 and/or 30; 3) PGRB expression in myometrum was lower on days 16 and 28; 4) ESR1 in endometrial stroma was lower in all days of pregnancy; 5) ESR2 expression was similar in all compartments and not affected by pregnancy stage; and 6) in FM, expression of steroid receptors was similar. Thus, we have demonstrated spatial and temporal expression of nuclear PGR and ESR isoforms in utero-placental compartments during early pregnancy.
Collapse
|
23
|
Pinaffi F, Araujo E, Silva L, Ginther O. Color-Doppler signals of blood flow in the corpus luteum and vascular perfusion index for ovarian and uterine arteries during expansion of the allantochorion in Bos taurus heifers. Theriogenology 2017; 102:35-43. [DOI: 10.1016/j.theriogenology.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/15/2017] [Accepted: 07/09/2017] [Indexed: 12/26/2022]
|
24
|
Kennedy VC, Mordhorst BR, Gaspers JJ, Bauer ML, Swanson KC, Lemley CO, Vonnahme KA. Supplementation of corn dried distillers' grains plus solubles to gestating beef cows fed low-quality forage: II. Impacts on uterine blood flow, circulating estradiol-17β and progesterone, and hepatic steroid metabolizing enzyme activity. J Anim Sci 2017; 94:4619-4628. [PMID: 27898957 DOI: 10.2527/jas.2016-0400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to investigate the effects of supplementing dried distillers' grains plus solubles (DDGS) during late gestation on uterine blood flow (BF), circulating steroid hormones and hepatic steroid metabolizing enzymes, and calf and placental weights. Multiparous beef cows were randomly divided into a control group (CON; = 15) consuming a diet containing 90% corn stover and 10% corn silage (DM basis) for ad libitum intake and a treatment group (SUP; = 12) consuming the same diet and DDGS (0.3% of BW). Corn silage inclusion was increased to 30% as gestation progressed to meet increasing caloric requirements. Ipsilateral and contralateral uterine BF and cross-sectional area (CSA) of each uterine artery were measured by Doppler ultrasonography on d 180, 216, and 246 of pregnancy. Contralateral BF and CSA increased ( < 0.01) as gestation advanced. Ipsilateral BF and CSA was affected by a treatment × day of gestation interaction ( < 0.05). A main effect of treatment ( = 0.02) and day ( < 0.01) was observed for total BF; BF increased over time and SUP cows had greater BF than CON cows. Circulating concentrations of both progesterone (P4) and estradiol-17β (E2) were affected by an interaction of treatment and day ( < 0.01). Concentrations of circulating E2 steadily increased throughout the study and were greater in CON cows than in SUP cows by d 242. Concentrations of P4 also increased over time; P4 of CON cows was greater than that of SUP cows by d 242. Uridine 5'-diphospho-glucuronosyltransferase (UGT) and cytochrome P450 1A (CYP1A) activity increased with advancing gestation ( < 0.01). There was greater UGT activity ( < 0.05) and a trend for greater CYP1A activity ( = 0.06) in SUP cows than in CON cows. Activity of cytochrome P450 3A was greater ( < 0.01) in SUP cows and decreased ( < 0.05) with advancing gestation. Supplementing DDGS to cows fed low-quality forage during late gestation increased uterine BF but decreased circulating E2 and P4 concentrations and altered hepatic steroid metabolizing enzyme activity. It was anticipated that enzyme activity would reflect circulating hormone levels; however, our data suggests the observed increases in BF are not driven by alterations in hormone concentration. Therefore, further research is warranted to elucidate the underlying mechanisms.
Collapse
|
25
|
Berkane N, Liere P, Oudinet JP, Hertig A, Lefèvre G, Pluchino N, Schumacher M, Chabbert-Buffet N. From Pregnancy to Preeclampsia: A Key Role for Estrogens. Endocr Rev 2017; 38:123-144. [PMID: 28323944 DOI: 10.1210/er.2016-1065] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 02/28/2017] [Indexed: 02/08/2023]
Abstract
Preeclampsia (PE) results in placental dysfunction and is one of the primary causes of maternal and fetal mortality and morbidity. During pregnancy, estrogen is produced primarily in the placenta by conversion of androgen precursors originating from maternal and fetal adrenal glands. These processes lead to increased plasma estrogen concentrations compared with levels in nonpregnant women. Aberrant production of estrogens could play a key role in PE symptoms because they are exclusively produced by the placenta and they promote angiogenesis and vasodilation. Previous assessments of estrogen synthesis during PE yielded conflicting results, possibly because of the lack of specificity of the assays. However, with the introduction of reliable analytical protocols using liquid chromatography/mass spectrometry or gas chromatography/mass spectrometry, more recent studies suggest a marked decrease in estradiol levels in PE. The aim of this review is to summarize current knowledge of estrogen synthesis, regulation in the placenta, and biological effects during pregnancy and PE. Moreover, this review highlights the links among the occurrence of PE, estrogen biosynthesis, angiogenic factors, and cardiovascular risk factors. A close link between estrogen dysregulation and PE occurrence might validate estrogen levels as a biomarker but could also reveal a potential approach for prevention or cure of PE.
Collapse
Affiliation(s)
- Nadia Berkane
- Department of Gynecology and Obstetrics of University Hospital of Geneva, 1205, Genève, Switzerland.,U1195, INSERM and University Paris Sud, 94276 Kremlin Bicêtre, France
| | - Philippe Liere
- U1195, INSERM and University Paris Sud, 94276 Kremlin Bicêtre, France
| | - Jean-Paul Oudinet
- U1195, INSERM and University Paris Sud, 94276 Kremlin Bicêtre, France
| | - Alexandre Hertig
- Department of Nephrology, Tenon Hospital, APHP, 75020 Paris, France.,University of Pierre and Marie Curie, Sorbonne University, Paris 06, 75005 Paris, France.,Unité Mixte de Recherche Scientifique 1155, F-75020 Paris, France
| | - Guillaume Lefèvre
- University of Pierre and Marie Curie, Sorbonne University, Paris 06, 75005 Paris, France.,Department of Biochemistry and Hormonology, Tenon Hospital, APHP, F-75020 Paris, France
| | - Nicola Pluchino
- Department of Gynecology and Obstetrics of University Hospital of Geneva, 1205, Genève, Switzerland
| | | | - Nathalie Chabbert-Buffet
- University of Pierre and Marie Curie, Sorbonne University, Paris 06, 75005 Paris, France.,Department of Obstetrics, Gynecology and Reproductive Medicine, Tenon Hospital, APHP, F-75020 Paris, France.,INSERM, UMR-S938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| |
Collapse
|
26
|
Rosenfeld CR, Chen C, Roy T, Liu XT. Estrogen Selectively Up-Regulates eNOS and nNOS in Reproductive Arteries By Transcriptional Mechanisms. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760300049-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Charles R. Rosenfeld
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | | | | | - Xiao-Tie Liu
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
27
|
Ghasemi M, Nematbakhsh M, Pezeshki Z, Soltani N, Moeini M, Talebi A. Nephroprotective effect of estrogen and progesterone combination on cisplatin-induced nephrotoxicity in ovariectomized female rats. Indian J Nephrol 2016; 26:167-75. [PMID: 27194830 PMCID: PMC4862261 DOI: 10.4103/0971-4065.160337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recently, we reported that estrogen (Es) has no beneficial effect on cisplatin (CP)-induced nephrotoxicity, but the role of progesterone (Pr) and the combination of Es and Pr are not yet well-defined. In this study, we investigated the protective role of Pr, and co-administration of Es/Pr on CP-induced nephrotoxicity. Eighty-six ovariectomized female Wistar rats were divided into 13 groups, and the experiments were performed in two phases. In Phase I, Groups 1-4 received 2, 5, 10, and 25 mg/kg, IM Pr dissolved in sesame oil every 5 days for four doses. Groups 5-8 had the same treatment regimen as Groups 1-4, but after the third injection the animals also received continuous dose of CP (2.5 mg/kg/day, i.p.) for 8 days. Group 9, as the positive control group, received sesame oil instead of Pr plus CP. Group 10, as the negative control group, received sesame oil instead of Pr. After the most effective dose of Pr was determined in Phase I, Groups 11-13 in Phase II received 10 mg/kg Pr plus either 0.25, 0.5, or 1 mg/kg, IM estradiol valerate every 5 days for four doses. After the third injection, they also received a continuous dose of CP for 8 days. The levels of blood urea nitrogen (BUN) and creatinine (Cr), kidney tissue damage score (KTDS), and kidney weight (KW) increased and body weight (BW) decreased in the positive control group (P < 0.05). Administration of Pr (10 mg/kg) plus CP decreased KTDS and BW loss and KW. Co-administration of ES/Pr at specific doses improved Cr, BUN, and KTDS; and resulted in reduced CP-induced nephrotoxicity. The results obtained suggest that the beneficial effect of Pr on CP-induced nephrotoxicity is dose-dependent. In addition, combination of Es/Pr with a specific dose decreased CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- M Ghasemi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Institute of Basic and Applied Sciences Research, Isfahan, Iran
| | - Z Pezeshki
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - N Soltani
- Department of Physiology, Hormozgan University of Medical Sciences, Isfahan, Iran
| | - M Moeini
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Talebi
- Department of Clinical Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Doppler sonographic examination of uterine and placental perfusion in cows in the last month of gestation and effects of epidural anesthesia and isoxsuprine. Theriogenology 2015; 85:986-998. [PMID: 26739532 DOI: 10.1016/j.theriogenology.2015.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 11/22/2022]
Abstract
The massive increase in size of the fetus and uterus in the last trimester is accompanied by an increasing demand for nutrients and oxygen, and it is assumed that this demand is met by increasing uterine and fetal perfusion. The goals of this study were to measure the perfusion of the uterine arteries and the placentomes in the last month of gestation and to investigate the effect of epidural anesthesia and isoxsuprine on perfusion. During the last month of gestation, eight Braunvieh cows underwent nine color Doppler sonographic examinations of the uterine arteries to determine diameter (DM), pulse rate (PR), resistance index, time-averaged maximum blood flow velocity (TAMV), and blood flow volume (BFV), and power-mode Doppler sonography was used to determine perfusion of placentomes. The PR increased (P < 0.001), and the BFV and TAMV of the ipsilateral uterine artery decreased between 4.5 and 0.5 weeks prepartum (BFV, 236.8 ± 65.80 and 208 ± 41.52 cm(3)/s, P < 0.01; TAMV, 140.0 ± 26.53 cm/s and 125.2 ± 18.46 cm/s, P < 0.05). After sonographic examination, the cows received epidural administration of local anesthetic (100-mg lidocaine) in the sacrococcygeal space or isoxsuprine (200 mg/cow, iv), and the sonographic measurements were repeated 30 minutes later. After epidural anesthesia, the TAMV and BFV of the contralateral uterine artery increased by 5.4% (P < 0.05) and 7.9% (P < 0.01). In the placentomes of the gravid uterine horn, the relative placentome perfusion and the color pixel grading (Cp) increased by 10.1% (P < 0.05) and 11.5% (P < 0.01) after epidural anesthesia. After isoxsuprine, the DM, PR, and BFV increased by 4.7%, 49.3%, and 16.9% in the ipsilateral uterine artery and by 10.8%, 48.7%, and 22.8%, respectively in the contralateral uterine artery. The TAMV of the ipsilateral uterine artery increased by 7.1% (P < 0.01), and the resistance index decreased in both uterine arteries (ipsilateral 24.2%, contralateral 14.9%, both P < 0.00001). Isoxsuprine increased the relative placentome perfusion and the Cp of the placentomes by 18.1% and 18.3% in the gravid horn and by 10.2% and 24.2% in the nongravid horn. Blood flow variables changed little in the last month of gestation. However, epidural anesthesia and isoxsuprine caused changes in uterine and placentome perfusion that suggest improvement of placental nutrient and oxygen supply to the fetus.
Collapse
|
29
|
Relationships among nitric oxide metabolites and pulses of a PGF2α metabolite during and after luteolysis in mares. Theriogenology 2015; 84:193-9. [PMID: 25910877 DOI: 10.1016/j.theriogenology.2015.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022]
Abstract
Hourly circulating concentrations of a PGF2α metabolite (PGFM), progesterone (P4), and LH were obtained from a reported project, and concentrations of nitric oxide (NO) metabolites (NOMs; nitrates and nitrites) were determined in eight mares. Unlike the reported project, hormone concentrations were normalized to the peak of the first PGFM pulse of luteolysis (early luteolysis), second PGFM pulse (late luteolysis), and a pulse after luteolysis. The duration of luteolysis was 23.1 ± 1.0 hours, and the peak of the first and second PGFM pulses occurred 6.5 ± 0.9 and 14.8 ± 0.8 hours after the beginning of luteolysis. Concentration of P4 decreased progressively within and between the PGFM pulses Changes were not detected in LH concentration in association with the PGFM pulses. Concentration of NOMs was greater (P < 0.05) at the peak of the PGFM pulse during early luteolysis (88.8 ± 15.0 μg/mL) than during late luteolysis (58.8 ± 9.0 μg/mL). Concentration of NOMs began to decrease (P < 0.05) 4 hours before the peak of the PGFM pulse of early luteolysis. Concentration began to increase (P < 0.05) an hour after the peak of the PGFM pulse of late luteolysis. An NOM decrease and increase was not detected during the PGFM pulse after luteolysis. On a temporal basis, results indicated that NO either is not required for luteolysis in mares or has a role in or responds only during late luteolysis. A caveat is that the relative contribution of the CL versus other body tissues to circulating concentrations of NOMs in mares has not been determined.
Collapse
|
30
|
Lechuga TJ, Zhang HH, Sheibani L, Karim M, Jia J, Magness RR, Rosenfeld CR, Chen DB. Estrogen Replacement Therapy in Ovariectomized Nonpregnant Ewes Stimulates Uterine Artery Hydrogen Sulfide Biosynthesis by Selectively Up-Regulating Cystathionine β-Synthase Expression. Endocrinology 2015; 156:2288-98. [PMID: 25825818 PMCID: PMC4430606 DOI: 10.1210/en.2015-1086] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Estrogens dramatically dilate numerous vascular beds with the greatest response in the uterus. Endogenous hydrogen sulfide (H2S) is a potent vasodilator and proangiogenic second messenger, which is synthesized from L-cysteine by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). We hypothesized that estrogen replacement therapy (ERT) selectively stimulates H2S biosynthesis in uterine artery (UA) and other systemic arteries. Intact and endothelium-denuded UA, mesenteric artery (MA), and carotid artery (CA) were obtained from ovariectomized nonpregnant ewes (n = 5/group) receiving vehicle or estradiol-17β replacement therapy (ERT). Total RNA and protein were extracted for measuring CBS and CSE, and H2S production was determined by the methylene blue assay. Paraffin-embedded UA rings were used to localize CBS and CSE proteins by immunofluorescence microscopy. ERT significantly stimulated CBS mRNA and protein without altering CSE mRNA or protein in intact and denuded UA. Quantitative immunofluorescence microscopic analyses showed CBS and CSE protein localization in endothelium and smooth muscle and confirmed that ERT stimulated CBS but not CSE protein expression in UA endothelium and smooth muscle. ERT also stimulated CBS, but not CSE, mRNA and protein expression in intact and denuded MA but not CA in ovariectomized ewes. Concomitantly, ERT stimulated UA and MA but not CA H2S production. ERT-stimulated UA H2S production was completely blocked by a specific CBS but not CSE inhibitor. Thus, ERT selectively stimulates UA and MA but not CA H2S biosynthesis by specifically up-regulating CBS expression, implicating a role of H2S in estrogen-induced vasodilation and postmenopausal women's health.
Collapse
Affiliation(s)
- Thomas J Lechuga
- Departments of Obstetrics and Gynecology (T.J.L., H.H.Z., L.S., M.K., J.J., D.-b.C.) and Pathology (T.J.L., D.-b.C.), University of California Irvine, Irvine, California 92697; Department of Obstetrics and Gynecology, Pediatrics, and Animal Sciences (R.R.M.), University of Wisconsin-Madison, Madison, Wisconsin 53715; and Division of Neonatal-Perinatal Medicine (C.R.R.), Department of Pediatrics and Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ampey BC, Morschauser TJ, Lampe PD, Magness RR. Gap junction regulation of vascular tone: implications of modulatory intercellular communication during gestation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:117-32. [PMID: 25015806 DOI: 10.1007/978-1-4939-1031-1_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the vasculature, gap junctions (GJ) play a multifaceted role by serving as direct conduits for cell-cell intercellular communication via the facilitated diffusion of signaling molecules. GJs are essential for the control of gene expression and coordinated vascular development in addition to vascular function. The coupling of endothelial cells to each other, as well as with vascular smooth muscle cells via GJs, plays a relevant role in the control of vasomotor tone, tissue perfusion and arterial blood pressure. The regulation of cell-signaling is paramount to cardiovascular adaptations of pregnancy. Pregnancy requires highly developed cell-to-cell coupling, which is affected partly through the formation of intercellular GJs by Cx43, a gap junction protein, within adjacent cell membranes to help facilitate the increase of uterine blood flow (UBF) in order to ensure adequate perfusion for nutrient and oxygen delivery to the placenta and thus the fetus. One mode of communication that plays a critical role in regulating Cx43 is the release of endothelial-derived vasodilators such as prostacyclin (PGI2) and nitric oxide (NO) and their respective signaling mechanisms involving second messengers (cAMP and cGMP, respectively) that are likely to be important in maintaining UBF. Therefore, the assertion we present in this review is that GJs play an integral if not a central role in maintaining UBF by controlling rises in vasodilators (PGI2 and NO) via cyclic nucleotides. In this review, we discuss: (1) GJ structure and regulation; (2) second messenger regulation of GJ phosphorylation and formation; (3) pregnancy-induced changes in cell-signaling; and (4) the role of uterine arterial endothelial GJs during gestation. These topics integrate the current knowledge of this scientific field with interpretations and hypotheses regarding the vascular effects that are mediated by GJs and their relationship with vasodilatory vascular adaptations required for modulating the dramatic physiological rises in uteroplacental perfusion and blood flow observed during normal pregnancy.
Collapse
Affiliation(s)
- Bryan C Ampey
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, School Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53715, USA
| | | | | | | |
Collapse
|
32
|
Amaral LM, Cornelius DC, Harmon A, Moseley J, Martin JN, LaMarca B. 17-hydroxyprogesterone caproate significantly improves clinical characteristics of preeclampsia in the reduced uterine perfusion pressure rat model. Hypertension 2014; 65:225-31. [PMID: 25368030 DOI: 10.1161/hypertensionaha.114.04484] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Preeclampsia is characterized by increased uterine artery resistance index, chronic immune activation, and decreased circulating nitric oxide levels. 17-α-Hydroxyprogesterone caproate (17-OHPC) is a synthetic metabolite of progesterone used for the prevention of recurrent preterm birth. We hypothesized that 17-OHPC could reduce mean arterial pressure by decreasing inflammation, whereas improving vasodilation by increasing nitric oxide bioavailability and uterine artery resistance index during late gestation in the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. 17-OHPC (3.32 mg/kg) was intraperitoneally administered on gestation day 18 into RUPP rats, carotid catheters inserted, and mean arterial pressure, blood, and tissues were collected on day 19. Mean arterial pressure in normal pregnant (NP; n=13) was 92±2.0 and increased to123±2.0 in RUPP (n=18; P<0.0001), which was improved to 116±1.5 mm Hg in RUPP+17-OHPC (n=10; P<0.05). Circulating CD4+ T cells were 1.19%±1.0% of gated cells in NP (n=7), which increased to 8.52%±2.4% in RUPP rats (n=10; P<0.05) but was reduced to 2.72%±0.87% (n=14; P<0.05) in RUPP+17-OHPC. Circulating nitrate/nitrite was 26.34±3.5 µmol/L in NP (n=12) but was reduced to14.58±3.1 in RUPP rats (n=8; P=0.03) and increased to 22.69±1.62 in RUPP+17-OHPC (n=7; P=0.05). Endothelial nitric oxide synthase expression was 0.65±0.11 AU in NP (n=4), which decreased to 0.33±0.01 in RUPP rats (n=4; P=0.05) but increased to 0.57±0.01 in RUPP+17-OHPC (n=5; P=0.03). Uterine artery resistance index was 0.54±0.02 in NP (n=3), 0.78±0.03 in RUPP (n=4), and 0.63±0.038 in RUPP+17-OHPC (n=8; both P<0.05). Our findings demonstrate that even though modest, lowering blood pressure with 17-OHPC could be a viable treatment option for suppressing inflammation, uterine artery vasoconstriction while improving litter size.
Collapse
Affiliation(s)
- Lorena M Amaral
- From the Departments of Pharmacology (L.M.A., D.C.C., A.H., J.N.M., B.L.) and Obstetrics and Gynecology (J.N.M.), University of Mississippi Medical Center, Jackson
| | - Denise C Cornelius
- From the Departments of Pharmacology (L.M.A., D.C.C., A.H., J.N.M., B.L.) and Obstetrics and Gynecology (J.N.M.), University of Mississippi Medical Center, Jackson
| | - Ashlyn Harmon
- From the Departments of Pharmacology (L.M.A., D.C.C., A.H., J.N.M., B.L.) and Obstetrics and Gynecology (J.N.M.), University of Mississippi Medical Center, Jackson
| | - Janae Moseley
- From the Departments of Pharmacology (L.M.A., D.C.C., A.H., J.N.M., B.L.) and Obstetrics and Gynecology (J.N.M.), University of Mississippi Medical Center, Jackson
| | - James N Martin
- From the Departments of Pharmacology (L.M.A., D.C.C., A.H., J.N.M., B.L.) and Obstetrics and Gynecology (J.N.M.), University of Mississippi Medical Center, Jackson
| | - Babbette LaMarca
- From the Departments of Pharmacology (L.M.A., D.C.C., A.H., J.N.M., B.L.) and Obstetrics and Gynecology (J.N.M.), University of Mississippi Medical Center, Jackson.
| |
Collapse
|
33
|
Mazzuca MQ, Dang Y, Khalil RA. Enhanced endothelin receptor type B-mediated vasodilation and underlying [Ca²⁺]i in mesenteric microvessels of pregnant rats. Br J Pharmacol 2014; 169:1335-51. [PMID: 23646960 DOI: 10.1111/bph.12225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/18/2013] [Accepted: 04/05/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Normal pregnancy is associated with decreased vascular resistance and increased release of vasodilators. Endothelin-1 (ET-1) causes vasoconstriction via endothelin receptor type A (ET(A)R), but could activate ET(B)R in the endothelium and release vasodilator substances. However, the roles of ET(B)R in the regulation of vascular function during pregnancy and the vascular mediators involved are unclear. EXPERIMENTAL APPROACH Pressurized mesenteric microvessels from pregnant and virgin Sprague-Dawley rats were loaded with fura-2/AM for simultaneous measurement of diameter and [Ca²⁺]i. KEY RESULTS High KCl (51 mM) and phenylephrine (PHE) caused increases in vasoconstriction and [Ca²⁺]i that were similar in pregnant and virgin rats. ET-1 caused vasoconstriction that was less in pregnant than virgin rats, with small increases in [Ca²⁺]i. Pretreatment with the ET(B)R antagonist BQ-788 caused greater enhancement of ET-1-induced vasoconstriction in pregnant rats. ACh caused endothelium-dependent relaxation and decreased [Ca²⁺]i, and was more potent in pregnant than in virgin rats. ET-1 + ET(A)R antagonist BQ-123, and the ET(B)R agonists sarafotoxin 6c (S6c) and IRL-1620 caused greater vasodilation in pregnant than in virgin rats with no changes in [Ca²⁺]i, suggesting up-regulated ET(B)R-mediated relaxation pathways. ACh-, S6c- and IRL-1620-induced relaxation was reduced by the NO synthase inhibitor Nω-nitro-L-arginine methyl ester, and abolished by tetraethylammonium or endothelium removal. Western blots revealed greater amount of ET(B)R in intact microvessels of pregnant than virgin rats, but reduced levels in endothelium-denuded microvessels, supporting a role of endothelial ET(B)R. CONCLUSIONS AND IMPLICATIONS The enhanced ET(B)R-mediated microvascular relaxation may contribute to the decreased vasoconstriction and vascular resistance during pregnancy.
Collapse
Affiliation(s)
- Marc Q Mazzuca
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
34
|
Stanley SC, Brooks SD, Butcher JT, d'Audiffret AC, Frisbee SJ, Frisbee JC. Protective effect of sex on chronic stress- and depressive behavior-induced vascular dysfunction in BALB/cJ mice. J Appl Physiol (1985) 2014; 117:959-70. [PMID: 25123201 DOI: 10.1152/japplphysiol.00537.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The presence of chronic, unresolvable stresses leads to negative health outcomes, including development of clinical depression/depressive disorders, with outcome severity being correlated with depressive symptom severity. One of the major outcomes associated with chronic stress and depression is the development of cardiovascular disease (CVD) and an elevated CVD risk profile. However, in epidemiological research, sex disparities are evident, with premenopausal women suffering from depressive symptoms more acutely than men, but also demonstrating a relative protection from the onset of CVD. Given this, we investigated the differential effect of sex on conduit artery and resistance arteriolar function in male and female mice following 8 wk of an unpredictable chronic mild stress (UCMS) protocol. In males, plasma cortisol and depressive symptom severity (e.g., coat status, anhedonia, delayed grooming) were elevated by UCMS. Endothelium-dependent dilation to methacholine/acetylcholine was impaired in conduit arteries and skeletal muscle arterioles, suggesting a severe loss of nitric oxide bioavailability and increased production of thromboxane A2 vs. prostaglandin I2 associated with elevated reactive oxygen species (ROS) and an increased level of systemic inflammation. Endothelium-independent dilation was intact. In females, depressive symptoms and plasma cortisol increases were more severe than in males, although alterations to vascular reactivity were blunted, including the effects of elevated ROS and inflammation on dilator responses. These results suggest that compared with males, female rats are more susceptible to chronic stress in terms of the severity of depressive behaviors, but that the subsequent development of vasculopathy is blunted owing to an improved ability to tolerate elevated ROS and systemic inflammatory stress.
Collapse
Affiliation(s)
- Shyla C Stanley
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Steven D Brooks
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Joshua T Butcher
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Alexandre C d'Audiffret
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Vascular and Endovascular Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Stephanie J Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Health Policy, Leadership and Management, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Jefferson C Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia Departments of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| |
Collapse
|
35
|
Thornburg KL, Louey S. Uteroplacental circulation and fetal vascular function and development. Curr Vasc Pharmacol 2014; 11:748-57. [PMID: 24063386 DOI: 10.2174/1570161111311050012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/14/2012] [Accepted: 07/12/2012] [Indexed: 12/20/2022]
Abstract
Although blood flow in the placental vasculature is governed by the same physiological forces of shear, pressure and resistance as in other organs, it is also uniquely specialized on the maternal and fetal sides. At the materno-fetal interface, the independent uteroplacental and umbilicoplacental circulations must coordinate sufficiently to supply the fetus with the nutrients and substrates it needs to grow and develop. Uterine arterial flow must increase dramatically to accommodate the growing fetus. Recent evidence delineates the hormonal and endothelial mechanisms by which maternal vessels dilate and remodel during pregnancy. The umbilical circulation is established de novo during embryonic development but blood does not flow through the placenta until late in the first trimester. The umbilical circulation operates in the interest of maintaining fetal oxygenation over the course of pregnancy, and is affected differently by mechanical and chemical regulators of vascular tone compared to other organs. The processes that match placental vascular growth and fetal tissue growth are not understood, but studies of compromised pregnancies provide clues. The subtle changes that cause the failure of the normally regulated vascular processes during pregnancy have not been thoroughly identified. Likewise, practical and effective therapeutic strategies to reverse detrimental placental perfusion patterns have yet to be investigated.
Collapse
Affiliation(s)
- Kent L Thornburg
- Heart Research Center, Oregon Health & Science University, 3303 SW Bond Ave, CH15H, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
36
|
Pastore MB, Jobe SO, Ramadoss J, Magness RR. Estrogen receptor-α and estrogen receptor-β in the uterine vascular endothelium during pregnancy: functional implications for regulating uterine blood flow. Semin Reprod Med 2012; 30:46-61. [PMID: 22271294 DOI: 10.1055/s-0031-1299597] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The steroid hormone estrogen and its classical estrogen receptors (ERs), ER-α and ER-β, have been shown to be partly responsible for the short- and long-term uterine endothelial adaptations during pregnancy. The ER-subtype molecular and structural differences coupled with the differential effects of estrogen in target cells and tissues suggest a substantial functional heterogeneity of the ERs in estrogen signaling. In this review we discuss (1) the role of estrogen and ERs in cardiovascular adaptations during pregnancy, (2) in vivo and in vitro expression of ERs in uterine artery endothelium during the ovarian cycle and pregnancy, contrasting reproductive and nonreproductive arterial endothelia, (3) the structural basis for functional diversity of the ERs and estrogen subtype selectivity, (4) the role of estrogen and ERs on genomic responses of uterine artery endothelial cells, and (5) the role of estrogen and ERs on nongenomic responses in uterine artery endothelia. These topics integrate current knowledge of this very rapidly expanding scientific field with diverse interpretations and hypotheses regarding the estrogenic effects that are mediated by either or both ERs and their relationship with vasodilatory and angiogenic vascular adaptations required for modulating the dramatic physiological rises in uteroplacental perfusion observed during normal pregnancy.
Collapse
Affiliation(s)
- Mayra B Pastore
- Department of Obstetrics/Gynecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
37
|
Matsubara Y, Matsubara K. Estrogen and progesterone play pivotal roles in endothelial progenitor cell proliferation. Reprod Biol Endocrinol 2012; 10:2. [PMID: 22252173 PMCID: PMC3395836 DOI: 10.1186/1477-7827-10-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been previously suggested that angiogenesis occurs during the menstrual cycle. Moreover, a rise in uterine blood flow is largely maintained by vasodilatation and substantial increases in angiogenesis. It is known that estradiol (E2) and progesterone (P4) are involved in angiogenesis. Recently, endothelial progenitor cells (EPCs) were found to be involved in neovascularization; however, their roles in uterine neovascularization have not been well characterized. We hypothesized that E2- or P4-mediated EPC proliferation plays important roles in uterine neovascularization during the menstrual cycle. METHODS The number of EPCs in peripheral blood from subjects in the menstrual phase (n=12), follicular phase (n=8), and luteal phase (n=16), was measured using flow cytometry. Peripheral blood mononuclear cells (PBMCs) were cultured for seven days with or without 17beta-estradiol (E2beta) or P4, followed by assessment of EPC proliferation based upon the uptake of acetylated low density lipoprotein (LDL) and lectin. The expression of estrogen receptor (ER) or progesterone receptor (PR) in EPCs was also evaluated using real-time PCR. RESULTS E2beta and P4 significantly increased the proliferation of EPCs derived from the peripheral blood of subjects in menstrual phase, but not subjects in the luteal phase. In addition, the expression level of ERalpha was markedly higher than ERbeta in EPCs derived from women in menstrual phase. CONCLUSIONS EPC proliferation is induced during the menstrual phase and proliferation can be affected by estrogen through ERalpha activation.
Collapse
Affiliation(s)
- Yuko Matsubara
- Department of Obstetrics and Gynecology, Ehime Prefectural Niihama Hospital, Hongo, Niihama, Ehime, 792-0042 Japan
| | - Keiichi Matsubara
- Department of Obstetrics and Gynecology, Ehime Prefectural Niihama Hospital, Hongo, Niihama, Ehime, 792-0042 Japan
| |
Collapse
|
38
|
Zhang HH, Feng L, Wang W, Magness RR, Chen DB. Estrogen-responsive nitroso-proteome in uterine artery endothelial cells: role of endothelial nitric oxide synthase and estrogen receptor-β. J Cell Physiol 2012; 227:146-59. [PMID: 21374595 PMCID: PMC3125455 DOI: 10.1002/jcp.22712] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covalent adduction of a NO moiety to cysteines (S-nitrosylation or SNO) is a major route for NO to directly regulate protein functions. In uterine artery endothelial cells (UAEC), estradiol-17β (E2) rapidly stimulated protein SNO that maximized within 10-30 min post-E2 exposure. E2-bovine serum albumin stimulated protein SNO similarly. Stimulation of SNO by both was blocked by ICI 182, 780, implicating mechanisms linked to specific estrogen receptors (ERs) localized on the plasma membrane. E2-induced protein SNO was attenuated by selective ERβ, but not ERα, antagonists. A specific ERβ but not ERα agonist was able to induce protein SNO. Overexpression of ERβ, but not ERα, significantly enhanced E2-induced SNO. Overexpression of both ERs increased basal SNO, but did not further enhance E2-stimulated SNO. E2-induced SNO was inhibited by N-nitro-L-arginine-methylester and specific endothelial NO synthase (eNOS) siRNA. Thus, estrogen-induced SNO is mediated by endogenous NO via eNOS and mainly ERβ in UAEC. We further analyzed the nitroso-proteomes by CyDye switch technique combined with two-dimensional (2D) fluorescence difference gel electrophoresis. Numerous nitrosoprotein (spots) were visible on the 2D gel. Sixty spots were chosen and subjected to matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Among the 54 identified, nine were novel SNO-proteins, 32 were increased, eight were decreased, and the rest were unchanged by E2. Tandom MS identified Cys139 as a specific site for SNO in GAPDH. Pathway analysis of basal and estrogen-responsive nitroso-proteomes suggested that SNO regulates diverse protein functions, directly implicating SNO as a novel mechanism for estrogen to regulate uterine endothelial function and thus uterine vasodilatation.
Collapse
Affiliation(s)
- Hong-hai Zhang
- Department of Obstetrics & Gynecology, University of California-Irvine, Irvine, CA 92697
| | - Lin Feng
- Department of Obstetrics & Gynecology, University of California-Irvine, Irvine, CA 92697
| | - Wen Wang
- Department of Obstetrics & Gynecology, University of California-Irvine, Irvine, CA 92697
| | - Ronald R. Magness
- Department of Obstetrics and Gynecology - Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI 53715
| | - Dong-bao Chen
- Department of Obstetrics & Gynecology, University of California-Irvine, Irvine, CA 92697
- Experimental Pathology, University of California-Irvine, Irvine, CA 92697
| |
Collapse
|
39
|
Collins S, Grant D, Black R, Vellayan M, Impey L. Abdominal pregnancy: A perfusion confusion? Placenta 2011; 32:793-5. [DOI: 10.1016/j.placenta.2011.07.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 11/27/2022]
|
40
|
Abstract
Elevated large artery stiffness and pulse pressure have emerged as important risk factors for cardiovascular disease. The genders differ in large artery biomechanical properties throughout the lifespan with females displaying higher stiffness than males during the prepubertal years and a dramatic increase after menopause. Males on the other hand experience an increase in arterial stiffness postpuberty and a linear increase thereafter, suggesting that females have intrinsically stiffer large arteries than males, but that such effects are mitigated by sex steroids during the reproductive years. This review discusses anthropometric and sex steroid influences on gender differences in large artery stiffness and pressure dynamics from childhood to senescence. In particular, the sex-specific effects of estrogen, progesterone and testosterone on vascular structure and function and how these influence arterial stiffness are explored. These factors may contribute in part to the observed gender differences in the pathophysiology and clinical manifestations of cardiovascular disease.
Collapse
|
41
|
Ablove TS, Austin JL, Phernetton TM, Magness RR. Effects of endogenous ovarian estrogen versus exogenous estrogen replacement on blood flow and ERβα and ERβ levels in the bladder. Reprod Sci 2011; 16:657-64. [PMID: 19535742 DOI: 10.1177/1933719109334255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Determine the effect of endogenous estrogen versus estrogen replacement therapy (ERT) on bladder blood flow (BBF) and estrogen receptors (ERs). METHODS BBF was determined with radiolabeled microspheres in luteal, follicular, pregnant, oophorectomized (Ovx) sheep, and Ovx sheep with ERT. Estrogen receptors (ERalpha, ERbeta) were quantified using Western blot analysis. RESULTS Compared to luteal and follicular ewes, BBF was reduced in pregnancy and following oophorectomy. Estrogen replacement therapy in Ovx sheep restored BBF to luteal levels. Estrogen receptor alpha predominated, whereas ERbeta was not detectable. Estrogen receptor-alpha levels were unaffected by the ovarian cycle and increased in pregnancy, as well as in Ovx sheep with and without chronic ERT. CONCLUSION The combination of diminished BBF and elevated ERalpha levels in both pregnant and Ovx sheep suggests an inverse relationship between BBF and ERalpha in the bladder. Although chronic ERT in Ovx sheep restored BBF, it did not restore ERalpha back to luteal levels.
Collapse
Affiliation(s)
- Tova S Ablove
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Perinatal Research Laboratories, Madison, Wisconsin 53715, USA
| | | | | | | |
Collapse
|
42
|
Brunt VE, Miner JA, Meendering JR, Kaplan PF, Minson CT. 17β-estradiol and progesterone independently augment cutaneous thermal hyperemia but not reactive hyperemia. Microcirculation 2011; 18:347-55. [PMID: 21426437 PMCID: PMC3128241 DOI: 10.1111/j.1549-8719.2011.00095.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We examined the impact of estradiol and progesterone on skin LH and RH in 25 healthy women. METHODS Subjects were studied three times over 10-12 days. Endogenous sex hormones were suppressed with a GnRHa. Subjects were studied on day 4 of suppression (study day 1), three to four days later following treatment with either 17β-estradiol or progesterone (study day 2), and another three to four days later, following treatment with both estradiol and progesterone (study day 3). Subjects underwent identical LH and RH protocols on all study days. LH is characterized by an initial peak in blood flow, followed by a prolonged plateau. A brief nadir is seen between the phases. RESULTS Blood flow values are expressed as percent maximum CVC. Estradiol alone increased initial peak CVC from 71 ± 2% to 79 ± 2% (p = 0.001). Progesterone alone increased initial peak CVC from 72 ± 2% to 78 ± 2% (p = 0.046). Neither estradiol nor progesterone increased plateau CVC. No significant changes were seen between study days 2 and 3 for either group. No differences were observed in RH. CONCLUSIONS Both estradiol and progesterone increased initial peak CVC during LH, without altering plateau CVC. There was no additive effect of estradiol and progesterone.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | | | | | | | | |
Collapse
|
43
|
Uematsu K, Katayama T, Katayama H, Hiratsuka M, Kiyomura M, Ito M. Nitric oxide production and blood corpuscle dynamics in response to the endocrine status of female rats. Thromb Res 2011; 126:504-10. [PMID: 20920822 DOI: 10.1016/j.thromres.2010.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/27/2010] [Accepted: 09/08/2010] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Menopause is associated with marked changes in the endocrine profile, and increases the risk of vascular disease. However, the effect of hormones on the vascular system is still unclear. Therefore, the aim of this study was to examine the effects of endocrine status in female rats on nitric oxide (NO) production, inflammatory reactions and thrombus organization potency in the mesenteric microcirculation. MATERIALS AND METHODS Female Wistar rats were divided into four groups: proestrus, metestrus, ovariectomized (OVX) and OVX plus estradiol treatment (OVX+E2). NO was imaged using an NO-sensitive dye. The leukocyte and platelet velocities relative to the erythrocyte velocity (VW/VRC and VP/VRE, respectively) and thrombi sizes created by laser radiation were measured as thrombogenesis indices. RESULTS Changes in endocrine status did not affect vascular function in the arterioles. However, in venules, NO production, VW/VRC and VP/VRE were decreased in the OVX group compared with the proestrus and metestrus states. Thrombus size was significantly greater in the OVX group than in the proestrus and metestrus states. Administration of E2 for 2 weeks restored NO production, VW/VRC and VP/VRE to control levels. CONCLUSIONS Changes in endocrine status did not affect arterioles. In contrast, in venules, reduced estrogen levels led to a decrease in NO production, thereby increasing thrombogenesis. Estrogen replacement restored NO production and leukocyte and platelet velocities, reducing thrombus formation relative to OVX. Although it is unclear how E2 reduces thrombus formation, our results indicate that leukocyte and platelet adhesion to the endothelium is a target for E2 via NO.
Collapse
Affiliation(s)
- Kazuhiko Uematsu
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | | | | | | | | |
Collapse
|
44
|
HONNENS A, WEISSER S, WELTER H, EINSPANIER R, BOLLWEIN H. Relationships Between Uterine Blood Flow, Peripheral Sex Steroids, Expression of Endometrial Estrogen Receptors and Nitric Oxide Synthases During the Estrous Cycle in Mares. J Reprod Dev 2011; 57:43-8. [DOI: 10.1262/jrd.10-023t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Aenne HONNENS
- Clinic for Cattle, School of Veterinary Medicine Hannover
| | - Simone WEISSER
- Clinic of Veterinary Gynaecology and Obstetrics, Faculty of Veterinary Medicine, University of Munich
| | - Harald WELTER
- Institute of Physiology, Technical University Munich
| | - Ralf EINSPANIER
- Institute of Veterinary Biochemistry, Freie Universitaet Berlin
| | | |
Collapse
|
45
|
Ferreira-Dias G, Costa AS, Mateus L, Korzekwa AJ, Galvão A, Redmer DA, Lukasik K, Szóstek AZ, Woclawek-Potocka I, Skarzynski DJ. Nitric oxide stimulates progesterone and prostaglandin E2 secretion as well as angiogenic activity in the equine corpus luteum. Domest Anim Endocrinol 2011; 40:1-9. [PMID: 20961721 DOI: 10.1016/j.domaniend.2010.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/15/2010] [Accepted: 08/05/2010] [Indexed: 01/09/2023]
Abstract
Cytokines and nitric oxide (NO) are potential mediators of luteal development and maintenance, angiogenesis, and blood flow. The aim of this study was to evaluate (i) the localization and protein expression of endothelial and inducible nitric oxide synthases (eNOS and iNOS) in equine corpora lutea (CL) throughout the luteal phase and (ii) the effect of a nitric oxide donor (spermine NONOate, NONOate) on the production of progesterone (P4) and prostaglandin (PG) E(2) and factor(s) that stimulate endothelial cell proliferation using equine luteal explants. Luteal tissue was classified as corpora hemorrhagica (CH; n = 5), midluteal phase CL (mid-CL; n = 5) or late luteal phase CL (late CL; n = 5). Both eNOS and iNOS were localized in large luteal cells and endothelial cells throughout the luteal phase. The expression of eNOS was the lowest in mid-CL (P < 0.05) and the highest in late CL (P < 0.05). However, no change was found for iNOS expression. Luteal explants were cultured with no hormone added or with NONOate (10(-5) M), tumor necrosis factor-α (TNFα; 10 ng/mL; positive control), or equine LH (100 ng/mL; positive control). Conditioned media by luteal tissues were assayed for P4 and PGE(2) and for their ability to stimulate proliferation of bovine aortic endothelial cells (BAEC). All treatments stimulated release of P4 in CH, but not in mid-CL. TNFα and NONOate treatments also increased PGE(2) levels and BAEC proliferation in CH (P < 0.05). However, in mid-CL, no changes were observed, regardless of the treatments used. These data suggest that NO and TNFα stimulate equine CH secretory functions and the production of angiogenic factor(s). Furthermore, in mares, NO may play a role in CL growth during early luteal development, when vascular development is more intense.
Collapse
Affiliation(s)
- G Ferreira-Dias
- CIISA, Faculdade de Medicina Veterinária, TULisbon, 1300-477 Lisbon, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Effect of dienogest on estrogen-induced nitric oxide production in human umbilical vein endothelial cells and endothelium-dependent vasodilatation in postmenopausal women. Menopause 2010; 17:615-21. [DOI: 10.1097/gme.0b013e3181d273c7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Sullivan JA, Rupnow HL, Cale JM, Magness RR, Bird IM. Pregnancy and Ovarian Steroid Regulation of Angiotensin II Type 1 and Type 2 Receptor Expression in Ovine Uterine Artery Endothelium and Vascular Smooth Muscle. ACTA ACUST UNITED AC 2009; 12:41-56. [PMID: 16036315 DOI: 10.1080/10623320590933752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although pregnancy is clearly associated with refractoriness to infused angiotensin II (AII) in the uteroplacental unit, there is still dispute over the mechanism by which angiotensin type 1 and type 2 receptors (AT1R and AT2R) may mediate this response in the uterine artery. This is in large part due to incomplete knowledge of levels of AT1R and AT2R expression and function in uterine artery endothelium (UA Endo) in the nonpregnant (NP) and pregnant (P) states, combined with the disagreement on whether AII may act through release of adrenomedullary catecholamines. The authors have previously described an increase in AT1R in UA Endo but not UA vascular smooth muscle (VSM) during pregnancy as compared to the nonpregnant intact ewe. Herein they report that the pregnancy-associated increase in AT(1)R expression in UA Endo is regulated by ovarian steroids. Using a recently developed antibody to AT2R, the authors now show there is no change in AT2R in UA Endo or VSM associated with ovarian function, and although AT2R is not changed in UA Endo by pregnancy, there is a significant decrease observed in UA VSM at that time. The authors also examined changes in receptors in UA Endo and VSM in estrogen (E2beta)-primed ewes in view of the common use of this model as a control for physiologic studies. In contrast to their findings in nonprimed nonpregnant or pregnant animals, the authors observed a significant increase in both AT1R and AT2R in UA Endo in response to the supraphysiologic priming with E2beta. In order to address the possible functionality of AT1R or AT2R in UA Endo, the authors used the uterine artery endothelial cell (UAEC) model of UA endothelial cells maintained in culture to passage 4. Differences in expression of AT1R or AT2R were normalized at passage 4 in P-UAECs and NP-UAECs. Treatment with AII activated phospholipase C (PLC) in both NP- and P-UAECs but signaling through the extracellular signal-regulated kinase (ERK) pathway was dramatically enhanced in P-UAECs compared to NP-UAECs. Surprisingly, both phosphoinositol turnover and ERK2 phosphorylation responses failed to display the expected dose-responses. Inhibition of AII-stimulated ERK2 phosphorylation with antagonists DUP 753 (AT1R, 10 microM) and PD 123319 (AT2R, 10 microM) failed to selectively inhibit ERK2 phosphorylation. The authors conclude that (a) the net effect of pregnancy may be an increase in the AT1R/AT2R ratio in both UA Endo and VSM but through apparently distinct mechanisms, (b) the ovariectomized animal model is similar to the luteal state for AT1R and AT2R expression, while the E2beta-primed model does not resemble the nonpregnant or pregnant state, and (c) there is a real possibility that AII may mediate its effects either through a complex AT1R-AT2R interaction or via an as-yet unidentified non-AT1, non-AT2 receptor.
Collapse
Affiliation(s)
- Jeremy A Sullivan
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | | | | | | |
Collapse
|
48
|
Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select Nutrients in the Ovine Uterine Lumen. V. Nitric Oxide Synthase, GTP Cyclohydrolase, and Ornithine Decarboxylase in Ovine Uteri and Peri-Implantation Conceptuses1. Biol Reprod 2009; 81:67-76. [DOI: 10.1095/biolreprod.108.075473] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
49
|
Hekimoglu A, Bilgin HM, Kurcer Z, Ocak AR. Effects of increasing ratio of progesterone in estrogen/progesterone combination on total oxidant/antioxidant status in rat uterus and plasma. Arch Gynecol Obstet 2009; 281:23-8. [DOI: 10.1007/s00404-009-1044-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 03/09/2009] [Indexed: 02/02/2023]
|
50
|
Smith J, Lindsay M, Rahimian R, Anderson L. The influence of estrogen and progesterone on parasympathetic vasodilatation in the rat submandibular gland. Auton Neurosci 2009; 146:87-94. [PMID: 19162561 PMCID: PMC2654775 DOI: 10.1016/j.autneu.2008.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Previous studies suggest that NO- and PGI(2)-independent pathways play a greater role in parasympathetic vasodilatation in the submandibular glands (SMG) of female than of male rats. Thus, the purpose of this study was to determine whether estrogen and progesterone influence the relative contributions of NO and PGI(2) to parasympathetic vasodilatation in the SMG. Vascular responses to chorda-lingual nerve stimulation were examined in sham-operated (SHAM) and ovariectomized (OVX) female rats and in OVX rats treated with either 17beta-estradiol alone or a combination of 17beta-estradiol and progesterone. Compared with SHAM animals, increases in vascular conductance in OVX rats were reduced at 1, 2 and 5 Hz (p<0.05). Blood flow responses in OVX+17beta-estradiol and OVX+17beta-estradiol+progesterone rats were indistinguishable from those observed in SHAM animals. Indomethacin had no effect on vasodilatation in SHAM and OVX+17beta-estradiol rats, but increased vascular responses in OVX animals (p<0.02). The addition of L-NAME resulted in a significant reduction in vasodilatation at all frequencies. In OVX rats treated with both estrogen and progesterone, indomethacin caused a reduction in vasodilatation and L-NAME further diminished the remaining responses. Under all conditions, vasodilatation was due largely, if not exclusively, to direct parasympathetic rather than antidromic sensory nerve activation. Finally, both neuronally-derived and endothelium-derived NO appeared to be responsible for the NO-dependent vasodilatation, but endothelium-derived NO became increasingly important as the frequency of stimulation increased. We conclude that estrogen and progesterone influence parasympathetic vasodilatation through combined effects on NO-, PGI(2)- and non-NO/PGI(2)-mediated pathways.
Collapse
Affiliation(s)
- Joshua Smith
- Dental Program, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA 94115, USA
| | | | | | | |
Collapse
|