1
|
Fiocca Vernengo F, Röwekamp I, Boillot L, Caesar S, Dörner PJ, Tarnowski B, Gutbier B, Nouailles G, Fatykhova D, Hellwig K, Witzenrath M, Hocke AC, Klatt AB, Opitz B. Diabetes impairs IFNγ-dependent antibacterial defense in the lungs. Mucosal Immunol 2025; 18:431-440. [PMID: 39746547 DOI: 10.1016/j.mucimm.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/21/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Diabetes mellitus is associated with an increased risk of pneumonia, often caused by so-called typical and atypical pathogens including Streptoccocus pneumoniae and Legionella pneumophila, respectively. Here, we employed a variety of mouse models to investigate how diabetes influences pulmonary antibacterial immunity. Following intranasal infection with S. pneumoniae or L. pneumophila, type 2 diabetic and prediabetic mice exhibited higher bacterial loads in their lungs compared to control animals. Single cell RNA sequencing, flow cytometry, and functional analyses revealed a compromised IFNγ production by natural killer cells in diabetic and prediabetic mice, which was associated with reduced IL-12 production by CD103+ dendritic cells. Blocking IFNγ enhanced susceptibility of non-diabetic mice to L. pneumophila, while IFNγ treatment restored defense against this intracellular pathogen in diabetic animals. In contrast, IFNγ treatment did not increase resistance of diabetic mice to S. pneumoniae, suggesting that impaired IFNγ production is not the sole mechanism underlying the heightened susceptibility of these animals to pneumococcal infection. Thus, our findings uncover a mechanism that could help to explain how type 2 diabetes predisposes to pneumonia. We establish proof of concept for host-directed treatment strategies to reinforce compromised IFNγ-mediated antibacterial defense against atypical lung pathogens.
Collapse
Affiliation(s)
- Facundo Fiocca Vernengo
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ivo Röwekamp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Léa Boillot
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sandra Caesar
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Patrick Johann Dörner
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Benjamin Tarnowski
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Diana Fatykhova
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Katharina Hellwig
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German center for lung research (DZL), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andreas C Hocke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ann-Brit Klatt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German center for lung research (DZL), Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
2
|
Huang HC, Wu BJ, Yu CH, Liu CZ, Wu LSH. LEPR gene polymorphisms and pneumonia risk in Taiwanese schizophrenia patients under clozapine treatment. Schizophr Res 2025; 278:1-8. [PMID: 40081291 DOI: 10.1016/j.schres.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Clozapine, the preferred medication for treatment-resistant schizophrenia, elevates leptin and pro-inflammatory cytokine levels in patients' blood. Inhibition of the clozapine metabolic enzyme CYP1A2 can potentially lead to toxicity and pneumonia. Leptin has a pro-inflammatory effect on the immune system. This study explores whether polymorphisms in the leptin (LEP) and leptin receptor (LEPR) genes are associated with increased risk of clozapine-induced pneumonia. METHODS A retrospective cohort study was conducted with 302 consecutive schizophrenia patients who had been on clozapine for at least 6 months. Blood samples were collected to identify genetic polymorphisms in the LEP and LEPR genes, and the association between these polymorphisms and pneumonia incidence was analyzed using Cox proportional hazards models. RESULTS Among the SNPs in the LEPR gene, individuals with the A/A genotype of rs1137101 had a 14.96-fold higher pneumonia risk than those with the G/G genotype (p = 0.001). Carriers of the G/G genotype of rs1805096 had a 3.72-fold increased risk compared to those with A/A (p = 0.033). For rs6657868, the A/G and G/G genotypes were associated with 2.23-fold (p = 0.005) and 6.73-fold (p = 0.013) higher risks, respectively, compared to the A/A genotype. Similarly, for rs9436746, the A/C and C/C genotypes had 2.25-fold (p = 0.005) and 5.37-fold (p = 0.029) increased risks, respectively, compared to A/A. CONCLUSION LEPR polymorphisms associated with an increased risk of pneumonia in Taiwanese schizophrenia patients treated with clozapine.
Collapse
Affiliation(s)
- Hui-Ching Huang
- Department of Pharmacy, Yuli Hospital, Ministry of Health and Welfare, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bo-Jian Wu
- Department of General Psychiatry, Yuli Hospital, Ministry of Health and Welfare, Taiwan
| | - Chuan-Hsun Yu
- Department of General Psychiatry, Yuli Hospital, Ministry of Health and Welfare, Taiwan
| | - Chao-Zong Liu
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan..
| |
Collapse
|
3
|
Yu T, Wang G, Xu X, Yan J. Identification and validation of key biomarkers associated with immune and oxidative stress for preeclampsia by WGCNA and machine learning. Front Genet 2025; 16:1500061. [PMID: 40151199 PMCID: PMC11949101 DOI: 10.3389/fgene.2025.1500061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Background Preeclampsia (PE), a major obstetric disorder marked by dysfunction in both placental and maternal vascular systems, continues to pose critical challenges in global maternal healthcare. This multisystem pregnancy complication contributes significantly to adverse perinatal outcomes and remains a leading cause of pregnancy-related morbidity worldwide. However, the available treatment options at present remain restricted. Our investigation employs an integrative bioinformatics approach to elucidate critical molecular signatures linked to the interplay between immunological dysregulation and oxidative stress mechanisms in PE pathogenesis. Methods In this study, we sourced the dataset from the GEO database with the aim of pinpointing differentially expressed genes (DEGs) between PE samples and control samples. Genes associated with oxidative stress were procured from the Genecards database. Next, we employed a comprehensive approach. This involved integrating WGCNA, GO and KEGG pathway analyses, constructing PPI networks, applying machine learning algorithms, performing gene GSEA, and conducting immune infiltration analysis to identify the key hub genes related to oxidative stress. Diagnostic potential of candidate biomarkers was quantitatively assessed through ROC curve modeling. Additionally, we constructed a miRNA - gene regulatory network for the identified diagnostic genes and predicted potential candidate drugs. In the final step, we validated the significant hub gene using independent external datasets, the hypoxia model of the HTR-8/SVneo cell line, and human placental tissue samples. Results At last, leptin (LEP) was identified as a core gene through screening and was found to be upregulated. The results of quantitative real-time polymerase chain reaction (qRT -PCR) and immunohistochemistry validation were consistent with those obtained from the datasets. KEGG analysis revealed that LEP was significantly enriched in "allograft rejection," "antigen processing," "ECM receptor interaction" and "graft versus host disease." GO analysis revealed that LEP was involved in biological processes such as "antigen processing and presentation," "peptide antigen assembly with MHC protein complex," "complex of collagen trimers," "MHC class II protein complex" and "mitochondrial protein containing complex." Moreover, immune cell analysis indicated that T follicular helper cells, plasmacytoid dendritic cells, neutrophils, and activated dendritic cells were positively correlated with LEP expression, whereas γδT cells, eosinophils, and central memory CD4+ T cells showed a negative correlation. These findings suggest that LEP influences the immune microenvironment of PE through its interaction with arious immune cells. In addition, 28 miRNAs and 15 drugs were predicted to target LEP. Finally, the overexpression of LEP was verified using independent external datasets, the hypoxia model of the HTR-8/SVneo cell line, and human placental tissue. Conclusion Through an integrated analytical framework employing WGCNA coupled with three distinct machine learning-driven phenotypic classification models, we discovered a pivotal regulatory gene. This gene has the potential to act as a novel diagnostic biomarker for PE. Moreover, it can be considered as a promising target for drug development related to PE. Notably, it shows a strong correlation with the immune microenvironment, suggesting its crucial role in the complex pathophysiological processes underlying PE.
Collapse
Affiliation(s)
- Tiantian Yu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Maternal - Fetal Medicine, Fuzhou, Fujian, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, Fujian, China
| | - Guiying Wang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Maternal - Fetal Medicine, Fuzhou, Fujian, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, Fujian, China
| | - Xia Xu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Maternal - Fetal Medicine, Fuzhou, Fujian, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, Fujian, China
| | - Jianying Yan
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Maternal - Fetal Medicine, Fuzhou, Fujian, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Zhang YQ, Zhang HF, Liu XG, Li R. Predictive and prognostic values of serum C1q/tumor necrosis factor-related protein 9 for first-ever ischemic stroke. Front Neurol 2025; 16:1526853. [PMID: 40125398 PMCID: PMC11925783 DOI: 10.3389/fneur.2025.1526853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Background The C1q/Tumor Necrosis Factor-related Protein 9 (CTRP9) is a relatively novel adipokine having showed protection on cerebrovascular system. However, its clinical values have not been well established. This work is to evaluate CTRP9 as predictors of onset risk and outcome of ischemic stroke. Methods One thousand one hundred and twenty-three patients undergoing first-ever ischemic stroke and 835 controls were enrolled. Serum CTRP9 was determined within 24 h after the onset. One thousand and twenty-six patients were successfully followed up for all-cause and cardiovascular deaths. Stepwise regression was conducted to screen the independent factors of stroke onset in the whole sample and mortality in the patient subgroup. Survival curves were plotted to evaluate the effect of baseline serum CTRP9 on 3-year all-cause and cardiovascular mortalities of stroke patients. Results At baseline, prevalence of first-ever onset of ischemic stroke in high CTRP9 group was significantly lower than that in low CTRP9 group (p < 0.05) in non-hyperlipidemic subjects. Accumulative all-cause and cardiovascular mortality of patients with high baseline CTRP9 was significantly lower for the first year post stroke onset (p < 0.05). Baseline low CTRP9 was one of the independent risk factors of 3-year all-cause mortality (p < 0.05) of ischemic stroke patients. Conclusion High serum CTRP9 exerted protection against first-ever onset of ischemic stroke in non-hyperlipidemic subjects, and also protected general stroke patients against all-cause and cardiovascular mortality at least 1 year post stroke onset. Our findings in this study may pinpoint both the predictive and prognostic values of CTRP9 as a promising biomarker.
Collapse
Affiliation(s)
- Yan-Qing Zhang
- Department of Anesthesiology, University Town Hospital of Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Hai-Feng Zhang
- Department of Teaching and Experiment Center, Air Force Military Medical University, Xi’an, China
| | - Xiao-Gang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education of China, School of Life Science and Technology, Xi’an Jiaotong University, Xi'an, China
| | - Rong Li
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
5
|
Sweet MJ, Ramnath D, Singhal A, Kapetanovic R. Inducible antibacterial responses in macrophages. Nat Rev Immunol 2025; 25:92-107. [PMID: 39294278 DOI: 10.1038/s41577-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/20/2024]
Abstract
Macrophages destroy bacteria and other microorganisms through phagocytosis-coupled antimicrobial responses, such as the generation of reactive oxygen species and the delivery of hydrolytic enzymes from lysosomes to the phagosome. However, many intracellular bacteria subvert these responses, escaping to other cellular compartments to survive and/or replicate. Such bacterial subversion strategies are countered by a range of additional direct antibacterial responses that are switched on by pattern-recognition receptors and/or host-derived cytokines and other factors, often through inducible gene expression and/or metabolic reprogramming. Our understanding of these inducible antibacterial defence strategies in macrophages is rapidly evolving. In this Review, we provide an overview of the broad repertoire of antibacterial responses that can be engaged in macrophages, including LC3-associated phagocytosis, metabolic reprogramming and antimicrobial metabolites, lipid droplets, guanylate-binding proteins, antimicrobial peptides, metal ion toxicity, nutrient depletion, autophagy and nitric oxide production. We also highlight key inducers, signalling pathways and transcription factors involved in driving these different antibacterial responses. Finally, we discuss how a detailed understanding of the molecular mechanisms of antibacterial responses in macrophages might be exploited for developing host-directed therapies to combat antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Divya Ramnath
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ronan Kapetanovic
- INRAE, Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly, France
| |
Collapse
|
6
|
Ruvuna L, Hijazi K, Guzman DE, Guo C, Loureiro J, Khokhlovich E, Morris M, Obeidat M, Pratte KA, DiLillo KM, Sharma S, Kechris K, Anzueto A, Barjaktarevic I, Bleecker ER, Casaburi R, Comellas A, Cooper CB, DeMeo DL, Foreman M, Flenaugh EL, Han MK, Hanania NA, Hersh CP, Krishnan JA, Labaki WW, Martinez FJ, O’Neal WK, Paine R, Peters SP, Woodruff PG, Wells JM, Wendt CH, Arnold KB, Barr RG, Curtis JL, Ngo D, Bowler RP. Dynamic and prognostic proteomic associations with FEV 1 decline in chronic obstructive pulmonary disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24311507. [PMID: 39148837 PMCID: PMC11326337 DOI: 10.1101/2024.08.07.24311507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Rationale Identification and validation of circulating biomarkers for lung function decline in COPD remains an unmet need. Objective Identify prognostic and dynamic plasma protein biomarkers of COPD progression. Methods We measured plasma proteins using SomaScan from two COPD-enriched cohorts, the Subpopulations and Intermediate Outcomes Measures in COPD Study (SPIROMICS) and Genetic Epidemiology of COPD (COPDGene), and one population-based cohort, Multi-Ethnic Study of Atherosclerosis (MESA) Lung. Using SPIROMICS as a discovery cohort, linear mixed models identified baseline proteins that predicted future change in FEV1 (prognostic model) and proteins whose expression changed with change in lung function (dynamic model). Findings were replicated in COPDGene and MESA-Lung. Using the COPD-enriched cohorts, Gene Set Enrichment Analysis (GSEA) identified proteins shared between COPDGene and SPIROMICS. Metascape identified significant associated pathways. Measurements and Main Results The prognostic model found 7 significant proteins in common (p < 0.05) among all 3 cohorts. After applying false discovery rate (adjusted p < 0.2), leptin remained significant in all three cohorts and growth hormone receptor remained significant in the two COPD cohorts. Elevated baseline levels of leptin and growth hormone receptor were associated with slower rate of decline in FEV1. Twelve proteins were nominally but not FDR significant in the dynamic model and all were distinct from the prognostic model. Metascape identified several immune related pathways unique to prognostic and dynamic proteins. Conclusion We identified leptin as the most reproducible COPD progression biomarker. The difference between prognostic and dynamic proteins suggests disease activity signatures may be different from prognosis signatures.
Collapse
Affiliation(s)
- Lisa Ruvuna
- Pulmonary Sciences and Critical Care Medicine University of Colorado Denver, Colorado
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Kahkeshan Hijazi
- Novartis Institute of Biomedical Research, Cambridge, MA, United States
| | - Daniel E. Guzman
- Columbia University Irving Medical Center, New York Presbyterian, New York, NY, United States
| | - Claire Guo
- National Jewish Health, Denver, CO, United States
| | - Joseph Loureiro
- Novartis Institute of Biomedical Research, Cambridge, MA, United States
| | | | - Melody Morris
- Novartis Institute of Biomedical Research, Cambridge, MA, United States
| | - Ma’en Obeidat
- Novartis Institute of Biomedical Research, Cambridge, MA, United States
| | | | - Katarina M. DiLillo
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Sunita Sharma
- Pulmonary Sciences and Critical Care Medicine University of Colorado Denver, Colorado
| | - Katerina Kechris
- Department of Biostatics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Antonio Anzueto
- University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, Texas
| | - Igor Barjaktarevic
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | | | - Richard Casaburi
- Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, Torrance, California
| | | | - Christopher B. Cooper
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Marilyn Foreman
- Pulmonary and Critical Care Medicine Division, Morehouse School of Medicine, Atlanta, GA
| | - Eric L. Flenaugh
- Pulmonary and Critical Care Medicine Division, Morehouse School of Medicine, Atlanta, GA
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Nicola A. Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jerry A. Krishnan
- Breathe Chicago Center, Division of Pulmonary and Critical Care Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Wassim W. Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Fernando J. Martinez
- Department of Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
| | - Wanda K. O’Neal
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Paine
- Division of Respiratory, Critical Care and Occupational Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Stephen P. Peters
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Prescott G. Woodruff
- Division of Pulmonary Critical Care, Allergy, and Sleep Medicine, University of California San Francisco, San Francisco, California, United States
| | - J Michael Wells
- Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christine H. Wendt
- Minneapolis VA Health Care System, Minneapolis, Minnesota
- University of Minnesota, Minneapolis, Minnesota Medical Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - R. Graham Barr
- Columbia University Irving Medical Center, New York Presbyterian, New York, NY, United States
| | - Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
- Medical Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Debby Ngo
- Novartis Institute of Biomedical Research, Cambridge, MA, United States
| | - Russell P. Bowler
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | | |
Collapse
|
7
|
Nakagawa K, Watanabe K, Mizutani K, Takeda K, Takemura S, Sakaniwa E, Mikami R, Kido D, Saito N, Kominato H, Hattori A, Iwata T. Genetic analysis of impaired healing responses after periodontal therapy in type 2 diabetes: Clinical and in vivo studies. J Periodontal Res 2024; 59:712-727. [PMID: 38501307 DOI: 10.1111/jre.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/28/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE This study aims to investigate the mechanisms underlying the impaired healing response by diabetes after periodontal therapy. BACKGROUND Outcomes of periodontal therapy in patients with diabetes are impaired compared with those in patients without diabetes. However, the mechanisms underlying impaired healing response to periodontal therapy have not been sufficiently investigated. MATERIALS AND METHODS Zucker diabetic fatty (ZDF) and lean (ZL) rats underwent experimental periodontitis by ligating the mandibular molars for one week. The gingiva at the ligated sites was harvested one day after ligature removal, and gene expression was comprehensively analyzed using RNA-Seq. In patients with and without type 2 diabetes (T2D), the corresponding gene expression was quantified in the gingiva of the shallow sulcus and residual periodontal pocket after non-surgical periodontal therapy. RESULTS Ligation-induced bone resorption and its recovery after ligature removal were significantly impaired in the ZDF group than in the ZL group. The RNA-Seq analysis revealed 252 differentially expressed genes. Pathway analysis demonstrated the enrichment of downregulated genes involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. PPARα and PPARγ were decreased in mRNA level and immunohistochemistry in the ZDF group than in the ZL group. In clinical, probing depth reduction was significantly less in the T2D group than control. Significantly downregulated expression of PPARα and PPARγ were detected in the residual periodontal pocket of the T2D group compared with those of the control group, but not in the shallow sulcus between the groups. CONCLUSIONS Downregulated PPAR subtypes expression may involve the impaired healing of periodontal tissues by diabetes.
Collapse
Affiliation(s)
- Keita Nakagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuki Watanabe
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Takeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Takemura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eri Sakaniwa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kido
- Department of General Dentistry, Tokyo Medical and Dental University Dental Hospital, Tokyo, Japan
| | - Natsumi Saito
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromi Kominato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhiko Hattori
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Saitama, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Wang X, Chen H, Chang Z, Zhang J, Xie D. Genetic causal role of body mass index in multiple neurological diseases. Sci Rep 2024; 14:7256. [PMID: 38538647 PMCID: PMC10973473 DOI: 10.1038/s41598-024-57260-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/15/2024] [Indexed: 01/03/2025] Open
Abstract
Body mass index (BMI) is a crucial health indicator for obesity. With the progression of socio-economic status and alterations in lifestyle, an increasing number of global populations are at risk of obesity. Given the complexity and severity of neurological diseases, early identification of risk factors is vital for the diagnosis and prognosis of such diseases. In this study, we employed Mendelian randomization (MR) analysis utilizing the most comprehensive genome-wide association study (GWAS) data to date. We selected single nucleotide polymorphisms (SNPs) that are unaffected by confounding factors and reverse causality as instrumental variables. These variables were used to evaluate the genetic and causal relationships between Body Mass Index (BMI) and various neurological diseases, including Parkinson's Disease (PD), Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Ischemic Stroke (IS), and Epilepsy (EP). The Inverse Variance Weighted (IVW) analysis indicated that there was no significant causal relationship between Body Mass Index (BMI) indicators and PD (P-value = 0.511), AD (P-value = 0.076), ALS (P-value = 0.641), EP (P-value = 0.380). However, a causal relationship was found between BMI indicators and MS (P-value = 0.035), and IS (P-value = 0.000), with the BMI index positively correlated with the risk of both diseases. The Cochran's Q test for MR-IVW showed no heterogeneity in the MR analysis results between the BMI index and the neurological diseases (P > 0.05). The Egger intercept test for pleiotropy revealed no horizontal pleiotropy detected in any of the neurological diseases studied (P > 0.05). It was found that there was no causal relationship between BMI and PD, AD, ALS, EP, and a genetic causal association with MS, and IS. Meanwhile, the increase in BMI can lead to a higher risk of MS and IS, which reveals the critical role of obesity as a risk factor for specific neurological diseases in the pathogenesis of the diseases.
Collapse
Affiliation(s)
- Xie Wang
- Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Hong Chen
- Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Ze Chang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100089, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, 117 Meishan Road, Hefei, Anhui, 230031, China
| | - Daojun Xie
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, 117 Meishan Road, Hefei, Anhui, 230031, China.
| |
Collapse
|
9
|
Yu X, Zhang N, Wu J, Zhao Y, Liu C, Liu G. Predictive value of adipokines for the severity of acute pancreatitis: a meta-analysis. BMC Gastroenterol 2024; 24:32. [PMID: 38218787 PMCID: PMC10787974 DOI: 10.1186/s12876-024-03126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a dangerous condition with a high mortality rate. Many studies have found an association between adipokines and the development of SAP, but the results are controversial. Therefore, we performed a meta-analysis of the association of inflammatory adipokines with SAP. METHODS We screened PubMed, EMBASE, Web of Science and Cochrane Library for articles on adipokines and SAP published before July 20, 2023. The quality of the literature was assessed using QUADAS criteria. Standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated to assess the combined effect. Subgroup analysis, sensitivity analysis and publication bias tests were also performed on the information obtained. RESULT Fifteen eligible studies included 1332 patients with acute pancreatitis (AP). Pooled analysis showed that patients with SAP had significantly higher serum levels of resistin (SMD = 0.78, 95% CI:0.37 to 1.19, z = 3.75, P = 0.000). The difference in leptin and adiponectin levels between SAP and mild acute pancreatitis (MAP) patients were not significant (SMD = 0.30, 95% CI: -0.08 to 0.68, z = 1.53, P = 0.127 and SMD = 0.11, 95% CI: -0.17 to 0.40, z = 0.80, P = 0.425, respectively). In patients with SAP, visfatin levels were not significantly different from that in patients with MAP (SMD = 1.20, 95% CI: -0.48 to 2.88, z = 1.40, P = 0.162). CONCLUSION Elevated levels of resistin are associated with the development of SAP. Resistin may serve as biomarker for SAP and has promise as therapeutic target.
Collapse
Affiliation(s)
- Xuehua Yu
- Hebei North University, Zhangjiakou, 075132, China
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China
| | - Ning Zhang
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China
- Hebei Medical University, Shijiazhuang, 050011, China
| | - Jing Wu
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China
| | - Yunhong Zhao
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China
| | - Chengjiang Liu
- Department of Gastroenterology, Anhui Medical University, He Fei, 230601, China
| | - Gaifang Liu
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China.
| |
Collapse
|
10
|
Gutmann D, Dressler M, Eickmeier O, Herrmann E, Kirwil M, Schubert R, Zielen S, Zissler UM. Proinflammatory pattern in the lower airways of non-asthmatic obese adolescents. Cytokine 2024; 173:156452. [PMID: 38039695 DOI: 10.1016/j.cyto.2023.156452] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Obesity is known to be a pro-inflammatory condition affecting multiple organs. Obesity as a systemic pro-inflammatory state, might be associated with bronchial inflammation in non-smoking adolescents with a BMI ≥ 30 kg/m2 without evidence of concomitant chronic diseases. MATERIALS AND METHODS We studied non-asthmatic obese patients (n = 20; median age 15.8 years; BMI 35.0 kg/m2) compared to age matched healthy control subjects (n = 20; median age 17.5 years; BMI 21.5 kg/m2). Induced sputum differential cell counts and sputum mRNA levels were assessed for all study subjects. Serum levels of CRP, IL-6, and IL-8 were measured. Further, IL-5, IL-6, IL-8, IL-13, IL-17, TNF-α, IFN-γ, and IP-10 protein levels were analyzed in induced sputum was. RESULTS Serum CRP levels, sputum inflammatory cell load and sputum eosinophils differed significantly between obese and non-obese subjects, for sputum neutrophils, a correlation was shown with BMI ≥ 30 kg/m2. Differences were also observed for sputum mRNA expression of IL6, IL8, IL13, IL17, IL23, and IFN-γ, as well as the transcription factors T-bet, GATA3, and FoxP3. CONCLUSIONS Increased bronchial inflammation, triggered by systemic or local inflammatory effects of obesity itself, may account for the higher rates of airway disease in obese adolescents.
Collapse
Affiliation(s)
- Desiree Gutmann
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Melanie Dressler
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Olaf Eickmeier
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modeling, Goethe-University, Frankfurt, Germany
| | - Marta Kirwil
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Ralf Schubert
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Center for Environmental Health (HMGU), Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.
| |
Collapse
|
11
|
Kuliczkowska-Płaksej J, Jawiarczyk-Przybyłowska A, Zembska A, Kolačkov K, Syrycka J, Kałużny M, Polowczyk-Kawałko B, Kubicka E, Bolanowski M. Ghrelin and Leptin Concentrations in Patients after SARS-CoV2 Infection. J Clin Med 2023; 12:jcm12103551. [PMID: 37240656 DOI: 10.3390/jcm12103551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
SARS-CoV2 infection can lead to severe cytokine storm especially in obese patients. Ghrelin acts not only as an appetite regulator but can also play a key role in the immune reaction. Leptin, secreted mainly by the white adipose tissue, can act as a pro-inflammatory cytokine. The crucial question is whether or not the cytokine storm in COVID-19 patients with obesity is linked to adipokine dysregulation. The aim of this study was to assess ghrelin and leptin concentrations in patients 6 months after SARS-CoV2 infection in comparison to a control group considering the influence of sex. The study group included 53 patients with a history of COVID-19 and 87 healthy subjects in the control group. Leptin and ghrelin concentrations as well as hormonal and biochemical parameters were measured. A significantly higher ghrelin concentration was observed in the COVID-19 group in comparison to the control group, with a statistically significant impact of sex on the relationship between COVID-19 and ghrelin concentration, which was lower in the males. No statistically significant differences in leptin concentration were observed between the groups. A significant negative correlation was observed between ghrelin and testosterone and morning cortisol levels in the COVID-19 group. The current study showed that ghrelin levels were significantly higher in patients 6 months after a mild course of SARS-CoV2 infection. To confirm the hypothetical protective role of ghrelin in the inflammatory process, it would be necessary to compare serum ghrelin levels between patients after mild and severe courses of COVID-19. Due to the small sample size and the lack of patients with a severe course of COVID-19, these observations need further investigation. There were no differences in leptin concentrations between the COVID-19 patients and the control group.
Collapse
Affiliation(s)
- Justyna Kuliczkowska-Płaksej
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Aleksandra Jawiarczyk-Przybyłowska
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Agnieszka Zembska
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Katarzyna Kolačkov
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Joanna Syrycka
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Marcin Kałużny
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Beata Polowczyk-Kawałko
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Eliza Kubicka
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Marek Bolanowski
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| |
Collapse
|
12
|
Correale J, Marrodan M. Multiple sclerosis and obesity: The role of adipokines. Front Immunol 2022; 13:1038393. [PMID: 36457996 PMCID: PMC9705772 DOI: 10.3389/fimmu.2022.1038393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2023] Open
Abstract
Multiple Sclerosis (MS), a chronic inflammatory disease of the central nervous system that leads to demyelination and neurodegeneration has been associated with various environmental and lifestyle factors. Population-based studies have provided evidence showing the prevalence of MS is increasing worldwide. Because a similar trend has been observed for obesity and metabolic syndrome, interest has grown in possible underlying biological mechanisms shared by both conditions. Adipokines, a family of soluble factors produced by adipose tissue that participate in a wide range of biological functions, contribute to a low state of chronic inflammation observed in obesity, and influence immune function, metabolism, and nutritional state. In this review, we aim to describe epidemiological and biological factors common to MS and obesity, as well as provide an update on current knowledge of how different pro- and anti-inflammatory adipokines participate as immune response mediators in MS, as well as in the animal model for MS, namely, experimental autoimmune encephalomyelitis (EAE). Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination, and neurodegeneration. Although its pathogenesis is not yet fully understood, there is considerable evidence to suggest MS arises from complex interactions between individual genetic susceptibility and external environmental factors. In recent decades, population-based studies have provided evidence indicating the prevalence of MS is increasing worldwide, in parallel with the rise in obesity and metabolic syndrome. This synchronous increment in the incidence of both MS and obesity has led to a search for potential biological mechanisms linking both conditions. Notably, a large number of studies have established significant correlation between obesity and higher prevalence, or worse prognosis, of several immune-mediated conditions. Fat tissue has been found to produce a variety of soluble factors named adipokines. These mediators, secreted by both adipocytes as well as diverse immune cells, participate in a wide range of biological functions, further strengthening the concept of a link between immune function, metabolism, and nutritional state. Because obesity causes overproduction of pro-inflammatory adipokines (namely leptin, resistin and visfatin) and reduction of anti-inflammatory adipokines (adiponectin and apelin), adipose tissue dysregulation would appear to contribute to a state of chronic, low-grade inflammation favoring the development of disease. In this review, we present a summary of current knowledge related to the pathological effects of different adipokines, prevalent in obese MS patients.
Collapse
Affiliation(s)
- Jorge Correale
- Departamento de Neurología, Fleni, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
13
|
Zhang YQ, Zhang YW, Dai JL, Li C, Wang WQ, Zhang HF, Lau WB, Wang XM, Liu XG, Li R. Serum CTRP9 and high-molecular weight adiponectin are associated with ischemic stroke. BMC Neurol 2022; 22:429. [PMCID: PMC9664773 DOI: 10.1186/s12883-022-02967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
C1q/TNF-related protein 9 (CTRP9) and adiponectin (APN) have beneficial metabolic regulatory and vasoprotective effects. This study explored alteration of CTRP9 and APN multimers during onset of ischemic stroke and development, to provide novel clinical and experimental basis for recognition and prevention of ischemic stroke.
Methods
There were 269 patients with ischemic stroke and 182 control subjects included in this study. Serum levels of CTRP9 and APN multimers in different disease stages were measured.
Results
Serum CTRP9, total APN (tAPN), and high-molecular weight (HMW) APN decreased gradually in stage I (acute stage, within 72 h of onset) of ischemic stroke and increased during stage III (11th day to one month) and stage IV (1 month after), compared to control. In the non-hyperlipidemia group, serum CTRP9, tAPN, and HMW were decreased in ischemic stroke patients compared to control (P < 0.05). Serum CTRP9 is closely related to serum tAPN and HMW (r = 0.992, 0.991). Serum CTRP9 are protective against ischemic stroke (OR = 0.400, 95% CI 0.197–0.810, P < 0.05).
Conclusions
Lower serum CTRP9, tAPN, LMW, and HMW are significantly associated with increased ischemic stroke risk in non-hyperlipidemia subjects. CTRP9, tAPN, and HMW isoforms may be valuable clinical indicators for patients with ischemic stroke.
Collapse
|
14
|
Hales C, Burnet L, Coombs M, Collins AM, Ferreira DM. Obesity, leptin and host defence of Streptococcus pneumoniae: the case for more human research. Eur Respir Rev 2022; 31:31/165/220055. [PMID: 36002169 DOI: 10.1183/16000617.0055-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 11/05/2022] Open
Abstract
Pneumococcal pneumonia is the leading cause of community-acquired pneumonia. Obesity is a risk factor for pneumonia. Host factors play a critical role in susceptibility to pulmonary pathogens and outcome from pulmonary infections. Obesity impairs innate and adaptive immune responses, important in the host defence against pneumococcal disease. One area of emerging interest in understanding the complex relationship between obesity and pulmonary infections is the role of the hormone leptin. There is a substantive evidence base supporting the associations between obesity, leptin, pulmonary infections and host defence mechanisms. Despite this, there is a paucity of research that specifically focuses on Streptococcus pneumoniae (pneumococcal) infections, which are the leading cause of community-acquired pneumonia hospitalisations and mortality worldwide. Much of the evidence examining the role of leptin in relation to S. pneumoniae infections has used genetically mutated mice. The purpose of this mini review is to explore the role leptin plays in the host defence of S. pneumoniae in subjects with obesity and posit an argument for the need for more human research.
Collapse
Affiliation(s)
- Caz Hales
- School of Nursing Midwifery and Health Practice, Faculty of Health, Victoria University of Wellington, Wellington, New Zealand .,Dept of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Laura Burnet
- School of Nursing Midwifery and Health Practice, Faculty of Health, Victoria University of Wellington, Wellington, New Zealand
| | - Maureen Coombs
- School of Nursing Midwifery and Health Practice, Faculty of Health, Victoria University of Wellington, Wellington, New Zealand
| | - Andrea M Collins
- Dept of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.,Liverpool University Foundation Hospital Trusts, Liverpool, UK
| | - Daniela M Ferreira
- Dept of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.,Oxford Vaccine Group, Dept of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Yuan C, Liao J, Zheng L, Ding L, Teng X, Lin X, Wang L. Current knowledge of leptin in wound healing: A collaborative review. Front Pharmacol 2022; 13:968142. [PMID: 36172174 PMCID: PMC9512445 DOI: 10.3389/fphar.2022.968142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Efficacious wound healing is still a major concern for global healthcare due to the unsatisfactory outcomes under the current treatments. Leptin, an adipocyte-derived hormone, mainly acts in the hypothalamus and plays crucial roles in various biological processes. Recently, an increasing number of researches have shown that leptin played an important role in the wound healing process. In this review, we presented a first attempt to capture the current knowledge on the association between leptin and wound healing. After a comprehensive review, the molecular mechanisms underlying leptin in wound healing were speculated to be correlated to the regulation of inflammation of the macrophage and lymphocytes, angiogenesis, re-epithelialization, proliferation, and differentiation of fibroblasts. The affected genes and the signal pathways were multiple. For example, leptin was reported to ameliorate wound healing by its anti-inflammatory action, which might be correlated to the activation STAT1 and STAT3 via p38 MAPK or JAK2. However, the understanding of the specific role in each process (e.g., inflammatory, proliferative, and maturation phase) of wound repair is not entirely clear, and further studies are still warranted in both macrostructural and microscale factors. Therefore, identifying and validating the biological mechanisms of leptin in wound healing is of great significance to develop potential therapeutic targets for the treatment of wound healing in clinical practice.
Collapse
Affiliation(s)
- Chi Yuan
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Liying Zheng
- Postgraduate Department, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Lingzhi Ding
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xiao Teng
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xuesong Lin
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Le Wang
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- *Correspondence: Le Wang,
| |
Collapse
|
16
|
Yao J, Wu D, Qiu Y. Adipose tissue macrophage in obesity-associated metabolic diseases. Front Immunol 2022; 13:977485. [PMID: 36119080 PMCID: PMC9478335 DOI: 10.3389/fimmu.2022.977485] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue macrophage (ATM) has been appreciated for its critical contribution to obesity-associated metabolic diseases in recent years. Here, we discuss the regulation of ATM on both metabolic homeostatsis and dysfunction. In particular, the macrophage polarization and recruitment as well as the crosstalk between ATM and adipocyte in thermogenesis, obesity, insulin resistance and adipose tissue fibrosis have been reviewed. A better understanding of how ATM regulates adipose tissue remodeling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- *Correspondence: Yifu Qiu,
| |
Collapse
|
17
|
Lombardo M, Feraco A, Bellia C, Prisco L, D’Ippolito I, Padua E, Storz MA, Lauro D, Caprio M, Bellia A. Influence of Nutritional Status and Physical Exercise on Immune Response in Metabolic Syndrome. Nutrients 2022; 14:2054. [PMID: 35631195 PMCID: PMC9145042 DOI: 10.3390/nu14102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Metabolic Syndrome (MetS) is a cluster of metabolic alterations mostly related to visceral adiposity, which in turn promotes glucose intolerance and a chronic systemic inflammatory state, characterized by immune cell infiltration. Such immune system activation increases the risk of severe disease subsequent to viral infections. Strong correlations between elevated body mass index (BMI), type-2-diabetes and increased risk of hospitalization after pandemic influenza H1N1 infection have been described. Similarly, a correlation between elevated blood glucose level and SARS-CoV-2 infection severity and mortality has been described, indicating MetS as an important predictor of clinical outcomes in patients with COVID-19. Adipose secretome, including two of the most abundant and well-studied adipokines, leptin and interleukin-6, is involved in the regulation of energy metabolism and obesity-related low-grade inflammation. Similarly, skeletal muscle hormones-called myokines-released in response to physical exercise affect both metabolic homeostasis and immune system function. Of note, several circulating hormones originate from both adipose tissue and skeletal muscle and display different functions, depending on the metabolic context. This review aims to summarize recent data in the field of exercise immunology, investigating the acute and chronic effects of exercise on myokines release and immune system function.
Collapse
Affiliation(s)
- Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
| | - Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Chiara Bellia
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Luigi Prisco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
| | - Ilenia D’Ippolito
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| | - Elvira Padua
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- School of Human Movement Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Maximilian Andreas Storz
- Department of Internal Medicine II, Center for Complementary Medicine, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Alfonso Bellia
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| |
Collapse
|
18
|
Bruno A, Ferrante G, Di Vincenzo S, Pace E, La Grutta S. Leptin in the Respiratory Tract: Is There a Role in SARS-CoV-2 Infection? Front Physiol 2022; 12:776963. [PMID: 35002761 PMCID: PMC8727443 DOI: 10.3389/fphys.2021.776963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Leptin is a pleiotropic adipocytokine involved in several physiologic functions, with a known role in innate and adaptive immunity as well as in tissue homeostasis. Long- and short-isoforms of leptin receptors are widely expressed in many peripheral tissues and organs, such as the respiratory tract. Similar to leptin, microbiota affects the immune system and may interfere with lung health through the bidirectional crosstalk called the “gut-lung axis.” Obesity leads to impaired protective immunity and altered susceptibility to pulmonary infections, as those by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although it is known that leptin and microbiota link metabolism and lung health, their role within the SARS-CoV2 coronavirus disease 2019 (COVID-19) deserves further investigations. This review aimed to summarize the available evidence about: (i) the role of leptin in immune modulation; (ii) the role of gut microbiota within the gut-lung axis in modulating leptin sensitivity; and (iii) the role of leptin in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Andreina Bruno
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Giuliana Ferrante
- Pediatric Division, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Serena Di Vincenzo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Elisabetta Pace
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Stefania La Grutta
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| |
Collapse
|
19
|
Wang W, Zhang BT, Jiang QL, Zhao HQ, Xu Q, Zeng Y, Xu JY, Jiang J. Leptin receptor antagonist attenuates experimental autoimmune thyroiditis in mice by regulating Treg/Th17 cell differentiation. Front Endocrinol (Lausanne) 2022; 13:1042511. [PMID: 36339447 PMCID: PMC9630560 DOI: 10.3389/fendo.2022.1042511] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Leptin has been found to be involved in the development and progression of many autoimmune diseases. As an organ-specific autoimmune disease, the pathogenesis of Hashimoto's thyroiditis has not been fully elucidated. It has been reported that serum leptin level is increased in Hashimoto's thyroiditis, but other studies have not shown any difference. We replicated a mouse model of experimental autoimmune thyroiditis (EAT) with a high-iodine diet and found that injection of the leptin receptor antagonist Allo-aca reduced thyroid follicle destruction and inflammatory cell infiltration in EAT mice, and thyroxine and thyroid autoimmune antibody levels. Further investigation revealed that Allo-aca promotes the differentiation of Treg cells and inhibits the differentiation of Th17 cells. We believe that Allo-aca can alter the differentiation of Treg/Th17 cells by inhibiting the leptin signaling pathway, thereby alleviating thyroid injury in EAT mice. Interfering with the leptin signaling pathway may be a novel new approach to treat treating and ameliorating Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Wei Wang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo-Tao Zhang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi-Lan Jiang
- Department of Clinical Nutrition, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Han-Qing Zhao
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qin Xu
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Zeng
- Department of Orthodontics, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jia-Ying Xu
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jun Jiang, ; Jia-Ying Xu,
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jun Jiang, ; Jia-Ying Xu,
| |
Collapse
|
20
|
The Impact of Morbid Obesity on the Health Outcomes of Hospital Inpatients: An Observational Study. J Clin Med 2021; 10:jcm10194382. [PMID: 34640400 PMCID: PMC8509550 DOI: 10.3390/jcm10194382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Morbid obesity poses a significant burden on the health-care system. This study determined whether morbid obesity leads to worse health-outcomes in hospitalised patients. This retrospective-study examined nutritional data of all inpatients aged 18-79 years, with a body-mass-index (BMI) ≥ 18.5 kg/m2 admitted over a period of 4 years at two major hospitals in Australia. Patients were divided into 3 groups for comparison: normal/overweight (BMI 18.5-29.9 kg/m2), obese (BMI 30-39.9 kg/m2) and morbidly-obese (BMI ≥ 40 kg/m2). Outcome measures included length-of-hospital-stay (LOS), in-hospital mortality, and 30-day readmissions. Multilevel-mixed-effects regression was used to compare clinical outcomes between the groups after adjustment for potential confounders. Of 16,579 patients, 1004 (6.1%) were classified as morbidly-obese. Morbidly-obese patients had a significantly longer median (IQR) LOS than normal/overweight patients (5 (2, 12) vs. 5 (2, 11) days, p value = 0.012) and obese-patients (5 (2, 12) vs. 5 (2, 10) days, p value = 0.036). After adjusted-analysis, morbidly-obese patients had a higher incidence of a longer LOS than normal/overweight patients (IRR 1.04; 95% CI 1.02-1.07; p value < 0.001) and obese-patients (IRR 1.13; 95% CI 1.11-1.16; p value < 0.001). Other clinical outcomes were similar between the different groups. Morbid obesity leads to a longer LOS in hospitalised patients but does not adversely affect other clinical outcomes.
Collapse
|
21
|
Pereira S, Cline DL, Chan M, Chai K, Yoon JS, O'Dwyer SM, Ellis CE, Glavas MM, Webber TD, Baker RK, Erener S, Covey SD, Kieffer TJ. Role of myeloid cell leptin signaling in the regulation of glucose metabolism. Sci Rep 2021; 11:18394. [PMID: 34526546 PMCID: PMC8443652 DOI: 10.1038/s41598-021-97549-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Although innate immunity is linked to metabolic health, the effect of leptin signaling in cells from the innate immune system on glucose homeostasis has not been thoroughly investigated. We generated two mouse models using Cre-lox methodology to determine the effect of myeloid cell-specific leptin receptor (Lepr) reconstitution and Lepr knockdown on in vivo glucose metabolism. Male mice with myeloid cell-specific Lepr reconstitution (Lyz2Cre+LeprloxTB/loxTB) had better glycemic control as they aged compared to male mice with whole-body transcriptional blockade of Lepr (Lyz2Cre−LeprloxTB/loxTB). In contrast, Lyz2Cre+LeprloxTB/loxTB females only had a trend for diminished hyperglycemia after a prolonged fast. During glucose tolerance tests, Lyz2Cre+LeprloxTB/loxTB males had a mildly improved plasma glucose profile compared to Cre− controls while Lyz2Cre+LeprloxTB/loxTB females had a similar glucose excursion to their Cre− controls. Myeloid cell-specific Lepr knockdown (Lyz2Cre+Leprflox/flox) did not significantly alter body weight, blood glucose, insulin sensitivity, or glucose tolerance in males or females. Expression of the cytokine interleukin 10 (anti-inflammatory) tended to be higher in adipose tissue of male Lyz2Cre+LeprloxTB/loxTB mice (p = 0.0774) while interleukin 6 (pro-inflammatory) was lower in male Lyz2Cre+Leprflox/flox mice (p < 0.05) vs. their respective controls. In conclusion, reconstitution of Lepr in cells of myeloid lineage has beneficial effects on glucose metabolism in male mice.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Melissa Chan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kalin Chai
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ji Soo Yoon
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shannon M O'Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Cara E Ellis
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Travis D Webber
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Suheda Erener
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada. .,Department of Surgery, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada. .,School of Biomedical Engineering, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
22
|
Wei C, Qian F, Liu Y, Maione L, Hsu HC, Hsu WT, Lee CC. Impact of obesity on influenza compared to pneumonia hospitalization outcomes. Obes Res Clin Pract 2021; 15:235-242. [PMID: 33832874 DOI: 10.1016/j.orcp.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Previous literature has suggested that obesity impacts mortality risk differently in bacterial versus viral infections. This study sought to further elucidate this association in pneumonia versus influenza. DESIGN Retrospective cohort study. SETTING AND PARTICIPANTS Data were collected from the US Nationwide Readmission Database from 2013 to 2014. METHODS Patients were categorized into three weight groups: normal weight (BMI 18.5-25.0 kg/m2), obese (BMI 30-40.0 kg/m2), and morbidly obese (BMI ≥ 40 kg/m2). To minimize confounding, we excluded patients with a history of smoking, alcoholism, or chronic wasting conditions, as suggested by the Global BMI Mortality Collaboration. To further isolate obesity from baseline differences across cohorts, we performed a three-way propensity matching analysis. The association between body weight and in-hospital all-cause 30-day mortality was assessed using Cox proportional hazard regression analysis. RESULTS 132,965 influenza and 34,177 pneumonia hospitalizations were identified. For patients with influenza, obesity (hazard ratio [HR]: 1.51; 95% CI: 1.01-2.26) and morbid obesity (HR: 1.64; 95% CI: 1.10-2.44) were associated with higher in-hospital 30-day mortality compared to normal weight. For pneumonia, obesity (HR, 0.41; 95% CI, 0.20-0.84) and morbid obesity (HR, 0.49; 95% CI, 0.25-0.96) were associated with reduced 30-day mortality compared to normal weight. CONCLUSIONS AND IMPLICATIONS Obesity may increase 30-day mortality risk during influenza hospitalization but provide mortality benefit in pneumonia, a divergent effect not adequately explained by lower admission threshold.
Collapse
Affiliation(s)
- Chen Wei
- Harvard Medical School, Boston, MA, USA
| | - Frank Qian
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ye Liu
- Department of Health Care Organization and Policy, University of Alabama at Birmingham, School of Public Health, Birmingham, AL, USA
| | - Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA, USA; Paris-Sud/Paris-Saclay University: Endocrinology and Reproductive Diseases, Orsay, Île-de-France, France
| | - Huei-Ching Hsu
- Traditional Chinese Medicine Department, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan; Harvard Medical School Executive Education Program, Boston, MA, USA
| | - Wan-Ting Hsu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chien-Chang Lee
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
23
|
Kiernan K, MacIver NJ. The Role of the Adipokine Leptin in Immune Cell Function in Health and Disease. Front Immunol 2021; 11:622468. [PMID: 33584724 PMCID: PMC7878386 DOI: 10.3389/fimmu.2020.622468] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Leptin is a critical mediator of the immune response to changes in overall nutrition. Leptin is produced by adipocytes in proportion to adipose tissue mass and is therefore increased in obesity. Despite having a well-described role in regulating systemic metabolism and appetite, leptin displays pleiotropic actions, and it is now clear that leptin has a key role in influencing immune cell function. Indeed, many immune cells have been shown to respond to leptin directly via the leptin receptor, resulting in a largely pro-inflammatory phenotype. Understanding the role of adipose-tissue derived mediators in inflammation is critical to determining the pathophysiology of multiple obesity-associated diseases, such as type 2 diabetes, autoimmune disease, and infection. This review, therefore, focuses on the latest data regarding the role of leptin in modulating inflammation.
Collapse
Affiliation(s)
- Kaitlin Kiernan
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Nancie J. MacIver
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
24
|
Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr Rev 2021; 42:1-28. [PMID: 33150398 PMCID: PMC7846142 DOI: 10.1210/endrev/bnaa027] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/18/2022]
Abstract
The discovery of leptin was intrinsically associated with its ability to regulate body weight. However, the effects of leptin are more far-reaching and include profound glucose-lowering and anti-lipogenic effects, independent of leptin's regulation of body weight. Regulation of glucose metabolism by leptin is mediated both centrally and via peripheral tissues and is influenced by the activation status of insulin signaling pathways. Ectopic fat accumulation is diminished by both central and peripheral leptin, an effect that is beneficial in obesity-associated disorders. The magnitude of leptin action depends upon the tissue, sex, and context being examined. Peripheral tissues that are of particular relevance include the endocrine pancreas, liver, skeletal muscle, adipose tissues, immune cells, and the cardiovascular system. As a result of its potent metabolic activity, leptin is used to control hyperglycemia in patients with lipodystrophy and is being explored as an adjunct to insulin in patients with type 1 diabetes. To fully understand the role of leptin in physiology and to maximize its therapeutic potential, the mechanisms of leptin action in these tissues needs to be further explored.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
25
|
Chen KHE, Lainez NM, Coss D. Sex Differences in Macrophage Responses to Obesity-Mediated Changes Determine Migratory and Inflammatory Traits. THE JOURNAL OF IMMUNOLOGY 2020; 206:141-153. [PMID: 33268480 DOI: 10.4049/jimmunol.2000490] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
The mechanisms whereby obesity differentially affects males and females are unclear. Because macrophages are functionally the most important cells in obesity-induced inflammation, we sought to determine reasons for male-specific propensity in macrophage migration. We previously determined that male mice fed a high-fat diet exhibit macrophage infiltration into the hypothalamus, whereas females were protected irrespective of ovarian estrogen, in this study, we show that males accumulate more macrophages in adipose tissues that are also more inflammatory. Using bone marrow cells or macrophages differentiated in vitro from male and female mice fed control or high-fat diet, we demonstrated that macrophages derived from male mice are intrinsically more migratory. We determined that males have higher levels of leptin in serum and adipose tissue. Serum CCL2 levels, however, are the same in males and females, although they are increased in obese mice compared with lean mice of both sexes. Leptin receptor and free fatty acid (FFA) receptor, GPR120, are upregulated only in macrophages derived from male mice when cultured in the presence of FFA to mimic hyperlipidemia of obesity. Unless previously stimulated with LPS, CCL2 did not cause migration of macrophages. Leptin, however, elicited migration of macrophages from both sexes. Macrophages from male mice maintained migratory capacity when cultured with FFA, whereas female macrophages failed to migrate. Therefore, both hyperlipidemia and hyperleptinemia contribute to male macrophage-specific migration because increased FFA induce leptin receptors, whereas higher leptin causes migration. Our results may explain sex differences in obesity-mediated disorders caused by macrophage infiltration.
Collapse
Affiliation(s)
- Kuan-Hui Ethan Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| | - Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| |
Collapse
|
26
|
Teper Y, Eibl G. Pancreatic Macrophages: Critical Players in Obesity-Promoted Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12071946. [PMID: 32709161 PMCID: PMC7409049 DOI: 10.3390/cancers12071946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a known risk factor for the development of pancreatic cancer, one of the deadliest types of malignancies. In recent years it has become clear that the pancreatic microenvironment is critically involved and a contributing factor in accelerating pancreatic neoplasia. In this context obesity-associated chronic inflammation plays an important role. Among several immune cells, macrophages have been shown to contribute to obesity-induced tissue inflammation. This review article summarizes the current knowledge about the role of pancreatic macrophages in early pancreatic cancer development. It describes the heterogenous origin and mixture of pancreatic macrophages, their role in pancreatic endocrine and exocrine pathology, and the impact of obesity on islet and stromal macrophages. A model is postulated, by which during obesity monocytes are recruited into the pancreas, where they are polarized into pro-inflammatory macrophages that drive early pancreatic neoplasia. This occurs in the presence of local inflammatory, metabolic, and endocrine signals. A stronger appreciation and more detailed knowledge about the role of macrophages in early pancreatic cancer development will lead to innovative preventive or interceptive strategies.
Collapse
|
27
|
Amorim NRT, Souza-Almeida G, Luna-Gomes T, Bozza PT, Canetti C, Diaz BL, Maya-Monteiro CM, Bandeira-Melo C. Leptin Elicits In Vivo Eosinophil Migration and Activation: Key Role of Mast Cell-Derived PGD 2. Front Endocrinol (Lausanne) 2020; 11:572113. [PMID: 33117286 PMCID: PMC7551309 DOI: 10.3389/fendo.2020.572113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Eosinophils are key regulators of adipose tissue homeostasis, thus characterization of adipose tissue-related molecular factors capable of regulating eosinophil activity is of great interest. Leptin is known to directly activate eosinophils in vitro, but leptin ability of inducing in vivo eosinophilic inflammatory response remains elusive. Here, we show that leptin elicits eosinophil influx as well as its activation, characterized by increased lipid body biogenesis and LTC4 synthesis. Such leptin-triggered eosinophilic inflammatory response was shown to be dependent on activation of the mTOR signaling pathway, since it was (i) inhibited by rapamycin pre-treatment and (ii) reduced in PI3K-deficient mice. Local infiltration of activated eosinophils within leptin-driven inflammatory site was preceded by increased levels of classical mast cell-derived molecules, including TNFα, CCL5 (RANTES), and PGD2. Thus, mice were pre-treated with a mast cell degranulating agent compound 48/80 which was capable to impair leptin-induced PGD2 release, as well as eosinophil recruitment and activation. In agreement with an indirect mast cell-driven phenomenon, eosinophil accumulation induced by leptin was abolished in TNFR-1 deficient and also in HQL-79-pretreated mice, but not in mice pretreated with neutralizing antibodies against CCL5, indicating that both typical mast cell-driven signals TNFα and PGD2, but not CCL5, contribute to leptin-induced eosinophil influx. Distinctly, leptin-induced eosinophil lipid body (lipid droplet) assembly and LTC4 synthesis appears to depend on both PGD2 and CCL5, since both HQL-79 and anti-CCL5 treatments were able to inhibit these eosinophil activation markers. Altogether, our data show that leptin triggers eosinophilic inflammation in vivo via an indirect mechanism dependent on activation of resident mast cell secretory activity and mediation by TNFα, CCL5, and specially PGD2.
Collapse
Affiliation(s)
- Natália R. T. Amorim
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glaucia Souza-Almeida
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz - IOC, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Imunoinflamação, Instituto de Biologia, Universidade de Campinas, Campinas, Brazil
| | - Tatiana Luna-Gomes
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Ciências da Natureza, Instituto de Aplicação Fernando Rodrigues da Silveira, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz - IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno L. Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa M. Maya-Monteiro
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz - IOC, FIOCRUZ, Rio de Janeiro, Brazil
- *Correspondence: Christianne Bandeira-Melo, ; Clarissa M. Maya-Monteiro,
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Christianne Bandeira-Melo, ; Clarissa M. Maya-Monteiro,
| |
Collapse
|
28
|
Abstract
In the present study, we identify and describe an important cross-talk between leptin signaling and macrophage functions in the context of Salmonella Typhimurium infection. Genetic ablation of leptin receptor or pharmacological antagonization of leptin augmented lysosomal functions in macrophages, reduced S. Typhimurium burden, and diminished inflammation both in vitro and in vivo. Leptin signaling activates mTORC2/Akt pathway through the down-regulation of Phlpp1 phosphatase, thus impairs lysosome-mediated pathogen clearance. The dynamic interplay between metabolism and immune responses in health and disease, by which different immune cells impact on metabolic processes, are being increasingly appreciated. However, the potential of master regulators of metabolism to control innate immunity are less understood. Here, we studied the cross-talk between leptin signaling and macrophage function in the context of bacterial infections. We found that upon infection with Gram-negative pathogens, such as Salmonella Typhimurium, leptin receptor (Lepr) expression increased in both mouse and human macrophages. Unexpectedly, both genetic Lepr ablation in macrophages and global pharmacologic leptin antagonization augmented lysosomal functions, reduced S. Typhimurium burden, and diminished inflammation in vitro and in vivo. Mechanistically, we show that leptin induction activates the mTORC2/Akt pathway and subsequently down-regulates Phlpp1 phosphatase, allowing for phosphorylated Akt to impair lysosomal-mediated pathogen clearance. These data highlight a link between leptin signaling, the mTORC2/Phlpp1/Akt axis, and lysosomal activity in macrophages and have important therapeutic implications for modulating innate immunity to combat Gram-negative bacterial infections.
Collapse
|
29
|
Bruno A, Di Sano C, Lorusso F, Dino P, Russo D, Ballacchino A, Gallina S, Modica DM, Chiappara G, Simon HU, Pace E. Notch-1 decreased expression contributes to leptin receptor downregulation in nasal epithelium from allergic turbinates. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1642-1650. [PMID: 30951821 DOI: 10.1016/j.bbadis.2019.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Allergic rhinitis is characterized by a remodeling of nasal epithelium. Since the Notch and TGF-β signaling pathways are known to be involved in cell differentiation and remodeling processes and leptin adipokine has already been identified as a marker for homeostasis in human bronchial and nasal epithelial cells of asthmatics, roles played by these pathways have been investigated for chronic allergic rhinitis. METHODS The leptin/leptin receptor expression has been investigated in a study with 40 biopsies from allergic (AR, n = 18) and non-allergic (C, n = 22) inferior turbinates, using immunohistochemistry, immunofluorescence staining and RT-PCR. In addition, extracts from in vitro samples prepared from primary cells of inferior turbinates as well as in vitro cultured human nasal epithelial RPMI 2650 cells (ATCC-CCL-30) were also tested for leptin expression and activation of the Notch-1 pathway. RESULTS With regards to AR, in vivo expression levels of both leptin and its receptor significantly decreased in comparison to C. Furthermore, leptin receptor mRNA was significantly reduced in AR as compared to C. Immunofluorescence showed an apparent co-expression of leptin receptor with Notch-1, which was not seen with TGF-β. In vitro, in primary turbinate epithelial cells, the expression of leptin receptor and Notch-1 significantly decreased in AR as compared to C. Moreover, in RPMI 2650 cells, leptin receptor expression was shown to be induced by Notch-1 ligand signaling. CONCLUSION Thus, both the leptin and Notch-1 pathways appear to represent markers for epithelial homeostasis in allergic rhinitis.
Collapse
Affiliation(s)
- Andreina Bruno
- CNR, Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| | - Caterina Di Sano
- CNR, Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| | - Francesco Lorusso
- Otorhinolaryngology Section, Department of Experimental Biomedicine and Clinical Neurosciences, (BioNeC), University of Palermo, Italy
| | - Paola Dino
- CNR, Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| | - Domenica Russo
- CNR, Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| | | | - Salvatore Gallina
- Otorhinolaryngology Section, Department of Experimental Biomedicine and Clinical Neurosciences, (BioNeC), University of Palermo, Italy
| | - Domenico Michele Modica
- Otorhinolaryngology Section, Department of Experimental Biomedicine and Clinical Neurosciences, (BioNeC), University of Palermo, Italy
| | | | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Elisabetta Pace
- CNR, Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| |
Collapse
|