1
|
Castel J, Li G, Onimus O, Leishman E, Cani PD, Bradshaw H, Mackie K, Everard A, Luquet S, Gangarossa G. NAPE-PLD in the ventral tegmental area regulates reward events, feeding and energy homeostasis. Mol Psychiatry 2024; 29:1478-1490. [PMID: 38361126 DOI: 10.1038/s41380-024-02427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA→NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food- and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.
Collapse
Affiliation(s)
- Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Guangping Li
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Oriane Onimus
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Patrice D Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Heather Bradshaw
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
- Gill Center for Biomolecular Science, Indiana University Bloomington, Bloomington, IN, USA
| | - Amandine Everard
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
- Institut universitaire de France (IUF), Paris, France.
| |
Collapse
|
2
|
Tutunchi H, Zolrahim F, Nikbaf-Shandiz M, Naeini F, Ostadrahimi A, Naghshi S, Salek R, Najafipour F. Effects of oleoylethanolamide supplementation on inflammatory biomarkers, oxidative stress and antioxidant parameters of obese patients with NAFLD on a calorie-restricted diet: A randomized controlled trial. Front Pharmacol 2023; 14:1144550. [PMID: 37089938 PMCID: PMC10119414 DOI: 10.3389/fphar.2023.1144550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Background: Oxidative stress is considered a major factor in the pathophysiology of non-alcoholic liver disease (NAFLD). A growing body of evidence indicates that oleoylethanolamide (OEA), a bioactive lipid mediator, has anti-inflammatory and antioxidant properties. This trial investigated the effects of OEA administration on inflammatory markers, oxidative stress and antioxidant parameters of patients with NAFLD. Methods: The present randomized controlled trial was conducted on 60 obese patients with NAFLD. The patients were treated with OEA (250 mg/day) or placebo along with a low-calorie diet for 12 weeks. Inflammatory markers and oxidative stress and antioxidant parameters were evaluated pre-and post-intervention. Results: At the end of the study, neither the between-group changes, nor the within-group differences were significant for serum levels of high-sensitivity C-reactive protein (hs-CRP), interleukin-1 beta (IL-1β), IL-6, IL-10, and tumor necrosis-factor α (TNF-α). Serum levels of total antioxidant capacity (TAC) and superoxide dismutase (SOD) significantly increased and serum concentrations of malondialdehyde (MDA) and oxidized-low density lipoprotein (ox-LDL) significantly decreased in the OEA group compared to placebo at study endpoint (p = 0.039, 0.018, 0.003 and 0.001, respectively). Although, no significant between-group alterations were found in glutathione peroxidase and catalase. There were significant correlations between percent of changes in serum oxidative stress and antioxidant parameters with percent of changes in some anthropometric indices in the intervention group. Conclusion: OEA supplementation could improve some oxidative stress/antioxidant biomarkers without any significant effect on inflammation in NAFLD patients. Further clinical trials with longer follow-up periods are demanded to verify profitable effects of OEA in these patients. Clinical Trial Registration: www.irct.ir, Iranian Registry of Clinical Trials IRCT20090609002017N32.
Collapse
Affiliation(s)
- Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farideh Zolrahim
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatemeh Naeini
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Naghshi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salek
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Najafipour
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Farzad Najafipour,
| |
Collapse
|
3
|
Diao X, Ye F, Zhang M, Ren X, Tian X, Lu J, Sun X, Hou Z, Chen X, Li F, Zhuang J, Ding H, Peng C, Rastinejad F, Luo C, Wu D. Identification of oleoylethanolamide as an endogenous ligand for HIF-3α. Nat Commun 2022; 13:2529. [PMID: 35534502 PMCID: PMC9085743 DOI: 10.1038/s41467-022-30338-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are α/β heterodimeric transcription factors modulating cellular responses to the low oxygen condition. Among three HIF-α isoforms, HIF-3α is the least studied to date. Here we show that oleoylethanolamide (OEA), a physiological lipid known to regulate food intake and metabolism, binds selectively to HIF-3α. Through crystallographic analysis of HIF-3 α/β heterodimer in both apo and OEA-bound forms, hydrogen-deuterium exchange mass spectrometry (HDX-MS), molecular dynamics (MD) simulations, and biochemical and cell-based assays, we unveil the molecular mechanism of OEA entry and binding to the PAS-B pocket of HIF-3α, and show that it leads to enhanced heterodimer stability and functional modulation of HIF-3. The identification of HIF-3α as a selective lipid sensor is consistent with recent human genetic findings linking HIF-3α with obesity, and demonstrates that endogenous metabolites can directly interact with HIF-α proteins to modulate their activities, potentially as a regulatory mechanism supplementary to the well-known oxygen-dependent HIF-α hydroxylation.
Collapse
Affiliation(s)
- Xiaotong Diao
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Fei Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Meina Zhang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Xintong Ren
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Xiaoxu Tian
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, 201210, Shanghai, China
| | - Jingping Lu
- Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK
| | - Xiangnan Sun
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Zeng Hou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310053, Hangzhou, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Xiaoyu Chen
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Fengwei Li
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Jingjing Zhuang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Hong Ding
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, 201210, Shanghai, China
| | - Fraydoon Rastinejad
- Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK.
| | - Cheng Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310053, Hangzhou, China.
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China.
| |
Collapse
|
4
|
Aguilera Vasquez N, Nielsen DE. The Endocannabinoid System and Eating Behaviours: a Review of the Current State of the Evidence. Curr Nutr Rep 2022; 11:665-674. [PMID: 35980538 PMCID: PMC9750929 DOI: 10.1007/s13668-022-00436-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF THE REVIEW The endocannabinoid system (ENS) has emerged as an important factor in food intake and may have implications for nutrition research. The objective of the current report is to summarise the available evidence on the ENS and eating behaviour from both animal and human studies. RECENT FINDINGS The literature reviewed demonstrates a clear link between the ENS and eating behaviours. Overall, studies indicate that 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA) via cannabinoid receptor-1 (CNR1) binding may stimulate hunger and food intake while oleylethanolamide (OEA) may inhibit hunger. Mechanisms of these associations are not yet well understood, although the evidence suggests that there may be interactions with other physiological systems to consider. Most studies have been conducted in animal models, with few human studies available. Additional research is warranted among human populations into the ENS and eating behaviour. Evaluation of relationships between variation in ENS genes and dietary outcomes is an important area for investigation.
Collapse
Affiliation(s)
- Nathaly Aguilera Vasquez
- grid.14709.3b0000 0004 1936 8649School of Human Nutrition, McGill University, Macdonald Campus, 21111 Lakeshore Rd, Ste. Anne-de-Bellevue, Quebec, H9X 3V9 Canada
| | - Daiva E. Nielsen
- grid.14709.3b0000 0004 1936 8649School of Human Nutrition, McGill University, Macdonald Campus, 21111 Lakeshore Rd, Ste. Anne-de-Bellevue, Quebec, H9X 3V9 Canada
| |
Collapse
|
5
|
Zarrow JE, Tian J, Dutter B, Kim K, Doran AC, Sulikowski GA, Davies SS. Selective measurement of NAPE-PLD activity via a PLA 1/2-resistant fluorogenic N-acyl-phosphatidylethanolamine analog. J Lipid Res 2022; 63:100156. [PMID: 34843683 PMCID: PMC8953660 DOI: 10.1016/j.jlr.2021.100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
N-acyl-phosphatidylethanolamine (NAPE)-hydrolyzing phospholipase D (NAPE-PLD) is a zinc metallohydrolase enzyme that converts NAPEs to bioactive N-acyl-ethanolamides. Altered NAPE-PLD activity may contribute to pathogenesis of obesity, diabetes, atherosclerosis, and neurological diseases. Selective measurement of NAPE-PLD activity is challenging, however, because of alternative phospholipase pathways for NAPE hydrolysis. Previous methods to measure NAPE-PLD activity involved addition of exogenous NAPE followed by TLC or LC/MS/MS, which are time and resource intensive. Recently, NAPE-PLD activity in cells has been assayed using the fluorogenic NAPE analogs PED-A1 and PED6, but these substrates also detect the activity of serine hydrolase-type lipases PLA1 and PLA2. To create a fluorescence assay that selectively measured cellular NAPE-PLD activity, we synthesized an analog of PED-A1 (flame-NAPE) where the sn-1 ester bond was replaced with an N-methyl amide to create resistance to PLA1 hydrolysis. Recombinant NAPE-PLD produced fluorescence when incubated with either PED-A1 or flame-NAPE, whereas PLA1 only produced fluorescence when incubated with PED-A1. Furthermore, fluorescence in HepG2 cells using PED-A1 could be partially blocked by either biothionol (a selective NAPE-PLD inhibitor) or tetrahydrolipstatin (an inhibitor of a broad spectrum of serine hydrolase-type lipases). In contrast, fluorescence assayed in HepG2 cells using flame-NAPE could only be blocked by biothionol. In multiple cell types, the phospholipase activity detected using flame-NAPE was significantly more sensitive to biothionol inhibition than that detected using PED-A1. Thus, using flame-NAPE to measure phospholipase activity provides a rapid and selective method to measure NAPE-PLD activity in cells and tissues.
Collapse
Affiliation(s)
- Jonah E Zarrow
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jianhua Tian
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Brendan Dutter
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Amanda C Doran
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gary A Sulikowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Igarashi M, Iwasa K, Hayakawa T, Tsuduki T, Kimura I, Maruyama K, Yoshikawa K. Dietary oleic acid contributes to the regulation of food intake through the synthesis of intestinal oleoylethanolamide. Front Endocrinol (Lausanne) 2022; 13:1056116. [PMID: 36733808 PMCID: PMC9886573 DOI: 10.3389/fendo.2022.1056116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Among the fatty acid ethanolamides (FAEs), oleoylethanolamide (OEA), linoleoylethanolamide (LEA), and palmitoylethanolamide (PEA) are reported to be involved in feeding regulation. In particular, OEA is well characterized as a satiety signal. Following food consumption, OEA is synthesized from oleic acid (OA) via an N-acyl phosphatidylethanolamine-specific phospholipase D-dependent pathway in the gastroenterocytes, and OEA induces satiety by recruiting sensory fibers. Thus, we hypothesized that dietary OA is an important satiety-inducing molecule. However, there has been no direct demonstration of the effect of dietary OA on satiety induction without the influence of the endogenous biosynthesis of OA from stearic acid (SA) or other FAEs. METHODS In this study, we used two experimental diets to test our hypothesis: (i) an OA diet (OAD; 38.4 mg of OA/g and 7.2 mg of SA/g) and (ii) a low OA diet (LOAD; 3.1 mg of OA/g and 42.4 mg of SA/g). RESULTS Relative to mice fed the OAD, mice fed the LOAD for two weeks exhibited reduced levels of jejunal OEA but not jejunal LEA and PEA. The LOAD-fed mice showed an increase in food intake and body weight gain. Moreover, LOAD-induced increase in food intake was immediately observed after the switch from the OAD, whereas these effects were diminished by the switch back to the OAD. Furthermore, treatment with OA and OEA diminished the effects of LOAD on food intake. CONCLUSION Collectively, these results show that dietary OA is a key factor in the reduction of food intake and increase in satiety mediated by OEA signaling.
Collapse
Affiliation(s)
- Miki Igarashi
- Advanced Clinical Research Center, Institute of Neurological Disorders, Kawasaki, Japan
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- *Correspondence: Miki Igarashi,
| | - Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Tetsuhiko Hayakawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tsuyoshi Tsuduki
- Department of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
7
|
Grabacka M, Pierzchalska M, Płonka PM, Pierzchalski P. The Role of PPAR Alpha in the Modulation of Innate Immunity. Int J Mol Sci 2021; 22:10545. [PMID: 34638886 PMCID: PMC8508635 DOI: 10.3390/ijms221910545] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor α is a potent regulator of systemic and cellular metabolism and energy homeostasis, but it also suppresses various inflammatory reactions. In this review, we focus on its role in the regulation of innate immunity; in particular, we discuss the PPARα interplay with inflammatory transcription factor signaling, pattern-recognition receptor signaling, and the endocannabinoid system. We also present examples of the PPARα-specific immunomodulatory functions during parasitic, bacterial, and viral infections, as well as approach several issues associated with innate immunity processes, such as the production of reactive nitrogen and oxygen species, phagocytosis, and the effector functions of macrophages, innate lymphoid cells, and mast cells. The described phenomena encourage the application of endogenous and pharmacological PPARα agonists to alleviate the disorders of immunological background and the development of new solutions that engage PPARα activation or suppression.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland;
| | - Małgorzata Pierzchalska
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland;
| | - Przemysław M. Płonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland;
| | - Piotr Pierzchalski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Cracow, Poland;
| |
Collapse
|
8
|
Rahman SMK, Uyama T, Hussain Z, Ueda N. Roles of Endocannabinoids and Endocannabinoid-like Molecules in Energy Homeostasis and Metabolic Regulation: A Nutritional Perspective. Annu Rev Nutr 2021; 41:177-202. [PMID: 34115519 DOI: 10.1146/annurev-nutr-043020-090216] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endocannabinoid system is involved in signal transduction in mammals. It comprises principally G protein-coupled cannabinoid receptors and their endogenous agonists, called endocannabinoids, as well as the enzymes and transporters responsible for the metabolism of endocannabinoids. Two arachidonic acid-containing lipid molecules, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, function as endocannabinoids. N-acylethanolamines and monoacylglycerols, in which the arachidonic acid chain is replaced with a saturated or monounsaturated fatty acid, are not directly involved in the endocannabinoid system but exhibit agonistic activities for other receptors. These endocannabinoid-like molecules include palmitoylethanolamide, oleoylethanolamide (OEA), and 2-oleoylglycerol. Endocannabinoids stimulate feeding behavior and the anabolism of lipids and glucose, while OEA suppresses appetite. Both central and peripheral systems are included in these nutritional and metabolic contexts. Therefore, they have potential in the treatment and prevention of obesity. We outline the structure, metabolism, and biological activities of endocannabinoids and related molecules, and focus on their involvement in energy homeostasis and metabolic regulation. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- S M Khaledur Rahman
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| | - Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Pharmaceutical Sciences, School of Pharmacy, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA;
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| |
Collapse
|
9
|
Prentice RN, Younus M, Krittaphol-Bailey W, Rizwan SB. A sensitive LC-MS/MS method for the study of exogenously administered 13 C-oleoylethanolamide in rat plasma and brain tissue. J Sep Sci 2021; 44:2693-2704. [PMID: 33939878 DOI: 10.1002/jssc.202001210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023]
Abstract
Oleoylethanolamide is an endogenous molecule with neuroprotective effects. It has been reported that exogenous oleoylethanolamide can be administered therapeutically, but the confounding presence of the endogenous molecule has led to conflicting reports regarding the mechanisms of the effects and highlights a need for an adequate methodology to differentiate them. We have developed a liquid chromatography-tandem mass spectrometry method to study oleoylethanolamide in rat plasma and brain using a 13 C-labeled isotope, 13 C-oleoylethanolamide. 13 C-oleoylethanolamide was extracted using a liquid-liquid extraction employing acetonitrile and tert-butyl methyl ether (1:4). Analysis was performed using a gradient with a total run time of 12 min. 13 C-oleoylethanolamide, d4 -oleoylethanolamide (internal standard), and 12 C-oleoylethanolamide (endogenous background) eluted simultaneously at 1.64 min. The method was validated for specificity, sensitivity, accuracy, and precision and found to be capable of quantification within acceptable limits of ±15% over the calibration range of 0.39-25 ng/mL for the plasma and 1.17-75 ng/g for the brain. It was then applied to quantify 13 C-oleoylethanolamide over 90 min after intravenous administration of a solution (1 mg/kg) in rats. Results suggest that 13 C-oleoylethanolamide does not reach therapeutic concentrations in the brain, despite a relatively prolonged plasma circulation, suggesting that rapid degradation in the brain remains an obstacle to its clinical application to neurological disease.
Collapse
Affiliation(s)
| | - Mohammad Younus
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
10
|
Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021; 11:1425-1447. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long-term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood-brain barrier) or indirectly (e.g., via vagal input) the "homeostatic" brainstem-hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425-1447, 2021.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Mitchell A Head
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Im DS. GPR119 and GPR55 as Receptors for Fatty Acid Ethanolamides, Oleoylethanolamide and Palmitoylethanolamide. Int J Mol Sci 2021; 22:ijms22031034. [PMID: 33494185 PMCID: PMC7864322 DOI: 10.3390/ijms22031034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Oleoylethanolamide and palmitoylethanolamide are members of the fatty acid ethanolamide family, also known as acylethanolamides. Their physiological effects, including glucose homeostasis, anti-inflammation, anti-anaphylactic, analgesia, and hypophagia, have been reported. They have affinity for different receptor proteins, including nuclear receptors such as PPARα, channels such as TRPV1, and membrane receptors such as GPR119 and GPR55. In the present review, the pathophysiological functions of fatty acid ethanolamides have been discussed from the perspective of receptor pharmacology and drug discovery.
Collapse
Affiliation(s)
- Dong-Soon Im
- Laboratory of Pharmacology, College of Pharmacy, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; ; Tel.: +82-2-961-9377; Fax: +82-2-961-9580
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
12
|
Rochefort G, Provencher V, Castonguay-Paradis S, Perron J, Lacroix S, Martin C, Flamand N, Di Marzo V, Veilleux A. Intuitive eating is associated with elevated levels of circulating omega-3-polyunsaturated fatty acid-derived endocannabinoidome mediators. Appetite 2020; 156:104973. [PMID: 32971226 DOI: 10.1016/j.appet.2020.104973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
The regulation of food intake and eating behaviours involves interactions between different systems. The endocannabinoidome, comprising several fatty acid-derived mediators, plays a central role in the regulation of food intake. Alterations of this system have been suggested to intervene in the aetiology of eating disorders. This study aimed to examine the associations between non-pathological eating behaviours and circulating endocannabinoidome mediators in a heterogeneous human population. Plasma 2-monoacyl-glycerol and N-acyl-ethanolamine congeners were measured by LC-MS/MS in a sample of 190 men and women. Eating behaviours were assessed using the Three-Factor Eating Questionnaire (TFEQ) and the Intuitive Eating Scale-2 (IES-2). Following adjustment for body mass index and age, plasma levels of omega-3 polyunsaturated fatty acid-derived 2-monoacyl-glycerols, 2-eicosapentaenoyl-glycerol (2-EPG) and 2-docosapentaenoyl-glycerol (2-DPG), were associated with higher intuitive eating scores (0.15 ≤ rho ≤ 0.20; p < 0.05). These associations were independent of the dietary intake of the fatty acid precursors of these 2-monoacyl-glycerols. However, almost no association was found between plasma levels of N-acyl-ethanolamine congeners and the TFEQ or the IES-2 scores. The results of the present study suggest the association of 2-monoacyl-glycerols, especially 2-EPG and 2-DPG, in the regulation of intuitive eating and the potential implication therein of bioactive lipids.
Collapse
Affiliation(s)
- Gabrielle Rochefort
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Véronique Provencher
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada
| | - Sophie Castonguay-Paradis
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Julie Perron
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Sébastien Lacroix
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Cyril Martin
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Nicolas Flamand
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, 1050 Avenue de La Médecine, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Vincenzo Di Marzo
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, 1050 Avenue de La Médecine, Québec, G1V 0A6, QC, Canada; Joint International Unit on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Alain Veilleux
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada.
| |
Collapse
|
13
|
Rastelli M, Van Hul M, Terrasi R, Lefort C, Régnier M, Beiroa D, Delzenne NM, Everard A, Nogueiras R, Luquet S, Muccioli GG, Cani PD. Intestinal NAPE-PLD contributes to short-term regulation of food intake via gut-to-brain axis. Am J Physiol Endocrinol Metab 2020; 319:E647-E657. [PMID: 32776827 DOI: 10.1152/ajpendo.00146.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to explore the physiological role of the intestinal endocannabinoids in the regulation of appetite upon short-term exposure to high-fat-diet (HFD) and understand the mechanisms responsible for aberrant gut-brain signaling leading to hyperphagia in mice lacking Napepld in the intestinal epithelial cells (IECs). We generated a murine model harboring an inducible NAPE-PLD deletion in IECs (NapepldΔIEC). After an overnight fast, we exposed wild-type (WT) and NapepldΔIEC mice to different forms of lipid challenge (HFD or gavage), and we compared the modification occurring in the hypothalamus, in the vagus nerve, and at endocrine level 30 and 60 min after the stimulation. NapepldΔIEC mice displayed lower hypothalamic levels of N-oleoylethanolamine (OEA) in response to HFD. Lower mRNA expression of anorexigenic Pomc occurred in the hypothalamus of NapepldΔIEC mice after lipid challenge. This early hypothalamic alteration was not the consequence of impaired vagal signaling in NapepldΔIEC mice. Following lipid administration, WT and NapepldΔIEC mice had similar portal levels of glucagon-like peptide-1 (GLP-1) and similar rates of GLP-1 inactivation. Administration of exendin-4, a full agonist of GLP-1 receptor (GLP-1R), prevented the hyperphagia of NapepldΔIEC mice upon HFD. We conclude that in response to lipid, NapepldΔIEC mice displayed reduced OEA in brain and intestine, suggesting an impairment of the gut-brain axis in this model. We speculated that decreased levels of OEA likely contributes to reduce GLP-1R activation, explaining the observed hyperphagia in this model. Altogether, we elucidated novel physiological mechanisms regarding the gut-brain axis by which intestinal NAPE-PLD regulates appetite rapidly after lipid exposure.
Collapse
Affiliation(s)
- Marialetizia Rastelli
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Romano Terrasi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Charlotte Lefort
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Marion Régnier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Daniel Beiroa
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium
| |
Collapse
|
14
|
Abstract
AbstractKnowing the biological signals associated with appetite control is crucial for understanding the regulation of food intake. Biomarkers of appetite have been defined as physiological measures that relate to subjective appetite ratings, measured food intake, or both. Several metabolites including amino acids, lipids and glucose were proposed as key molecules associated with appetite control over 60 years ago, and along with bile acids are all among possible appetite biomarker candidates. Additional metabolites that have been associated with appetite include endocannabinoids, lactate, cortisol and β-hydroxybutyrate. However, although appetite is a complex integrative process, studies often investigated a limited number of markers in isolation. Metabolomics involves the study of small molecules or metabolites present in biological samples such as urine or blood, and may present a powerful approach to further the understanding of appetite control. Using multiple analytical techniques allows the characterisation of molecules, such as carbohydrates, lipids, amino acids, bile acids and fatty acids. Metabolomics has proven successful in identifying markers of consumption of certain foods and biomarkers implicated in several diseases. However, it has been underexploited in appetite control or obesity. The aim of the present narrative review is to: (1) provide an overview of existing metabolites that have been identified in human biofluids and associated with appetite control; and (2) discuss the potential of metabolomics to deepen understanding of appetite control in humans.
Collapse
|
15
|
Tutunchi H, Saghafi-Asl M, Ostadrahimi A. A systematic review of the effects of oleoylethanolamide, a high-affinity endogenous ligand of PPAR-α, on the management and prevention of obesity. Clin Exp Pharmacol Physiol 2020; 47:543-552. [PMID: 31868943 DOI: 10.1111/1440-1681.13238] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/23/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Along with an increase in overweight and obesity among all age groups, the development of efficacious and safe anti-obesity strategies for patients, as well as health systems, is critical. Oleoylethanolamide (OEA), a high-affinity endogenous ligand of nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-α), plays important physiological and metabolic actions. OEA is derived from oleic acid, a monounsaturated fatty acid, which has beneficial effects on body composition and regional fat distribution. The role of OEA in the modulation of food consumption and weight management makes it an attractive molecule requiring further exploration in obesogenic environments. This systematic review was conducted to assess the effects of OEA on the obesity management, with emphasizing on its physiological roles and possible mechanisms of action in energy homeostasis. We searched PubMed/Medline, Google Scholar, ScienceDirect, Scopus, ProQuest, and EMBASE up until September 2019. Out of 712 records screened, 30 articles met the study criteria. The evidence reviewed here indicates that OEA, an endocannabinoid-like compound, leads to satiation or meal termination through PPAR-α activation and fatty acid translocase (FAT)/CD36. Additionally, the lipid-amide OEA stimulates fatty acid uptake, lipolysis, and beta-oxidation, and also promotes food intake control. OEA also exerts satiety-inducing effects by activating the hedonic dopamine pathways and increasing homeostatic oxytocin and brain histamine. In conclusion, OEA may be a key component of the physiological system involved in the regulation of dietary fat consumption and energy homeostasis; therefore, it is suggested as a possible therapeutic agent for the management of obesity.
Collapse
Affiliation(s)
- Helda Tutunchi
- Student Research Committee, Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Veilleux A, Di Marzo V, Silvestri C. The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus. Curr Diab Rep 2019; 19:117. [PMID: 31686231 DOI: 10.1007/s11892-019-1248-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The endocannabinoid (eCB) system, i.e. the receptors that respond to the psychoactive component of cannabis, their endogenous ligands and the ligand metabolic enzymes, is part of a larger family of lipid signals termed the endocannabinoidome (eCBome). We summarize recent discoveries of the roles that the eCBome plays within peripheral tissues in diabetes, and how it is being targeted, in an effort to develop novel therapeutics for the treatment of this increasingly prevalent disease. RECENT FINDINGS As with the eCB system, many eCBome members regulate several physiological processes, including energy intake and storage, glucose and lipid metabolism and pancreatic health, which contribute to the development of type 2 diabetes (T2D). Preclinical studies increasingly support the notion that targeting the eCBome may beneficially affect T2D. The eCBome is implicated in T2D at several levels and in a variety of tissues, making this complex lipid signaling system a potential source of many potential therapeutics for the treatments for T2D.
Collapse
Affiliation(s)
- Alain Veilleux
- École de nutrition, Université Laval, Québec, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada
- Canadian Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec, Canada
| | - Vincenzo Di Marzo
- École de nutrition, Université Laval, Québec, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada
- Canadian Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec, Canada
- Institut de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
- Department de médecine, Université Laval, Québec, QC, Canada
| | - Cristoforo Silvestri
- Canadian Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec, Canada.
- Institut de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada.
- Department de médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
17
|
Tutunchi H, Ostadrahimi A, Saghafi-Asl M, Maleki V. The effects of oleoylethanolamide, an endogenous PPAR-α agonist, on risk factors for NAFLD: A systematic review. Obes Rev 2019; 20:1057-1069. [PMID: 31111657 DOI: 10.1111/obr.12853] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease. Recently, some novel compounds have been investigated for the prevention and treatment of NAFLD. Oleoylethanolamide (OEA), an endogenous PPAR-α agonist, has exhibited a plethora of pharmacological properties for the treatment of obesity and other obesity-associated metabolic complications. This systematic review was performed with a focus on the effects of OEA on the risk factors for NAFLD. PubMed, Scopus, Embase, ProQuest, and Google Scholar databases were searched up to December 2018 using relevant keywords. All articles written in English evaluating the effects of OEA on the risk factors for NAFLD were eligible for the review. The evidence reviewed in this article illustrates that OEA regulates multiple biological processes associated with NAFLD, including lipid metabolism, inflammation, oxidative stress, and energy homeostasis through different mechanisms. In summary, many beneficial effects of OEA have led to the understanding that OEA may be an effective therapeutic strategy for the management of NAFLD. Although a wide range of studies have demonstrated the most useful effects of OEA on NAFLD and the associated risk factors, further clinical trials, from both in vivo studies and in vitro experiments, are warranted to verify these outcomes.
Collapse
Affiliation(s)
- Helda Tutunchi
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Fedele S, Arnold M, Krieger JP, Wolfstädter B, Meyer U, Langhans W, Mansouri A. Oleoylethanolamide-induced anorexia in rats is associated with locomotor impairment. Physiol Rep 2019; 6. [PMID: 29388342 PMCID: PMC5817840 DOI: 10.14814/phy2.13517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/24/2022] Open
Abstract
The endogenous peroxisome proliferator‐activated receptor alpha (PPAR‐α) agonist Oleoylethanolamide (OEA) inhibits eating in rodents, mainly by delaying the onset of meals. The underlying mechanisms of OEA‐induced anorexia, however, remain unclear. Animals treated with high OEA doses were shown to display signs of discomfort and impaired locomotion. Therefore, we first examined whether the impaired locomotion may contribute to OEA's anorectic effect. Second, it is controversial whether abdominal vagal afferents are necessary for OEA's anorectic effect. Thus, we explored alternative peripheral neural pathways mediating IP OEA's anorectic effect by performing a celiac‐superior mesenteric ganglionectomy (CGX) or a subdiaphragmatic vagal deafferentation (SDA) alone or in combination. Exogenously administered OEA at a commonly used dose (10 mg/kg BW, IP) concurrently reduced food intake and compromised locomotor activity. Attempts to dissociate both phenomena using the dopamine D2/D3 receptor agonist Quinpirole (1 mg/kg BW, SC) failed because Quinpirole antagonized both, OEA‐induced locomotor impairment and delay in eating onset. CGX attenuated the prolongation of the latency to eat by IP OEA, but neither SDA nor CGX prevented IP OEA‐induced locomotor impairment. Our results indicate that IP OEA's anorectic effect may be secondary to impaired locomotion rather than due to physiological satiety. They further confirm that vagal afferents do not mediate exogenous OEA's anorectic effects, but suggest a role for spinal afferents in addition to an alternative, nonneuronal signaling route.
Collapse
Affiliation(s)
- Shahana Fedele
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Bernd Wolfstädter
- Laboratorium für Organische Chemie, ETH Zurich, Zürich, Switzerland.,Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Abdelhak Mansouri
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
19
|
Misto A, Provensi G, Vozella V, Passani MB, Piomelli D. Mast Cell-Derived Histamine Regulates Liver Ketogenesis via Oleoylethanolamide Signaling. Cell Metab 2019; 29:91-102.e5. [PMID: 30318340 DOI: 10.1016/j.cmet.2018.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/11/2018] [Accepted: 09/12/2018] [Indexed: 01/30/2023]
Abstract
The conversion of lipolysis-derived fatty acids into ketone bodies (ketogenesis) is a crucial metabolic adaptation to prolonged periods of food scarcity. The process occurs primarily in liver mitochondria and is initiated by fatty-acid-mediated stimulation of the ligand-operated transcription factor, peroxisome proliferator-activated receptor-α (PPAR-α). Here, we present evidence that mast cells contribute to the control of fasting-induced ketogenesis via a paracrine mechanism that involves secretion of histamine into the hepatic portal circulation, stimulation of liver H1 receptors, and local biosynthesis of the high-affinity PPAR-α agonist, oleoylethanolamide (OEA). Genetic or pharmacological interventions that disable any one of these events, including mast cell elimination, deletion of histamine- or OEA-synthesizing enzymes, and H1 blockade, blunt ketogenesis without affecting lipolysis. The results reveal an unexpected role for mast cells in the regulation of systemic fatty-acid homeostasis, and suggest that OEA may act in concert with lipolysis-derived fatty acids to activate liver PPAR-α and promote ketogenesis.
Collapse
Affiliation(s)
- Alessandra Misto
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy; School of Advanced Studies Sant'Anna, Pisa 56127, Italy
| | - Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence 50139, Italy
| | - Valentina Vozella
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | | | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Biological Chemistry and Pharmacology, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Igarashi M, Watanabe K, Tsuduki T, Kimura I, Kubota N. NAPE-PLD controls OEA synthesis and fat absorption by regulating lipoprotein synthesis in an in vitro model of intestinal epithelial cells. FASEB J 2018; 33:3167-3179. [PMID: 30399323 DOI: 10.1096/fj.201801408r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oleoylethanolamide (OEA), a fatty acid ethanolamide (FAE), is a lipid mediator that controls food intake and lipid metabolism. Accumulating data imply the importance of intestinal OEA in controlling satiety in addition to gastrointestinal peptide hormones. Although the biochemical pathway of FAE production has been illustrated, the enzymes responsible for the cleavage of OEA from its precursor N-acyl-phosphatidylethanolamine (NAPE) must be identified among reported candidates in the gut. In this study, we assessed the involvement of NAPE-specific phospholipase D (NAPE-PLD), which can directly release FAEs from NAPE, in intestinal OEA synthesis and lipid metabolism. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPER-associated protein 9 (Cas9)-mediated deletion of the NAPE-PLD gene in intestinal epithelial-like Caco-2 cells reduced OEA levels, regardless of their differentiation states. Transcriptome analysis revealed that deletion of NAPE-PLD activates a transcriptional program for nutrient transportation, including lipids and lipoproteins, and inactivates cell-cycle or mitosis-related genes in Caco-2 cells. In addition, the basolateral secretion of lipoproteins was increased in NAPE-PLD-deleted cells although lipoprotein size was not affected. By contrast, cellular lipid levels were reduced in NAPE-PLD-deleted cells. Overall, these results indicate that NAPE-PLD plays important roles in OEA synthesis and fat absorption by regulating lipoprotein production in the intestinal epithelial cells.-Igarashi, M., Watanabe, K., Tsuduki, T., Kimura, I., Kubota, N. NAPE-PLD controls OEA synthesis and fat absorption by regulating lipoprotein synthesis in an in vitro model of intestinal epithelial cells.
Collapse
Affiliation(s)
- Miki Igarashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | | | - Tsuyoshi Tsuduki
- Department of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naoto Kubota
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Nutrition, National Institute of Health and Nutrition, Tokyo, Japan; and.,Department of Clinical Nutrition Therapy, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Di Paola M, Bonechi E, Provensi G, Costa A, Clarke G, Ballerini C, De Filippo C, Passani MB. Oleoylethanolamide treatment affects gut microbiota composition and the expression of intestinal cytokines in Peyer's patches of mice. Sci Rep 2018; 8:14881. [PMID: 30291258 PMCID: PMC6173739 DOI: 10.1038/s41598-018-32925-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
The lipid sensor oleoylethanolamide (OEA), an endogenous high-affinity agonist of peroxisome proliferator-activated receptor-α (PPAR-α) secreted in the proximal intestine, is endowed with several distinctive homeostatic properties, such as control of appetite, anti-inflammatory activity, stimulation of lipolysis and fatty acid oxidation. When administered exogenously, OEA has beneficial effects in several cognitive paradigms; therefore, in all respects, OEA can be considered a hormone of the gut-brain axis. Here we report an unexplored modulatory effect of OEA on the intestinal microbiota and on immune response. Our study shows for the first time that sub-chronic OEA administration to mice fed a normal chow pellet diet, changes the faecal microbiota profile, shifting the Firmicutes:Bacteroidetes ratio in favour of Bacteroidetes (in particular Bacteroides genus) and decreasing Firmicutes (Lactobacillus), and reduces intestinal cytokines expression by immune cells isolated from Peyer's patches. Our results suggest that sub-chronic OEA treatment modulates gut microbiota composition towards a "lean-like phenotype", and polarises gut-specific immune responses mimicking the effect of a diet low in fat and high in polysaccharides content.
Collapse
Affiliation(s)
- Monica Di Paola
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Elena Bonechi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Universitá di Firenze, Firenze, Italy
| | - Gustavo Provensi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Universitá di Firenze, Firenze, Italy
| | - Alessia Costa
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Firenze, Italy
| | - Carlotta De Filippo
- Instituto di Biologia e Biotecnologie Agrarie (IBBA), Consiglio Nazionale delle Ricerce (CNR), Pisa, Italy
| | - M Beatrice Passani
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy.
| |
Collapse
|
22
|
Yang D, Xu L, Guo F, Sun X, Zhang D, Wang M. Orexin-A and endocannabinoid signaling regulate glucose-responsive arcuate nucleus neurons and feeding behavior in obese rats. Neuropeptides 2018; 69:26-38. [PMID: 29678290 DOI: 10.1016/j.npep.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
Abstract
Obesity is a global public health problem. Orexin and endocannabinoid signaling in the hypothalamus have been shown to regulate feeding and are promising molecular targets for obesity treatment. In this study, we attempted to analyze effects of orexin-A and endocannabinoid signaling modulation in the arcuate nucleus (Arc) on feeding and glucose-responsive (GR) neurons physiology in a diet-induced obesity (DIO) and diet-induced obesity resistant (DR) rat model. Administration of orexin-A or cannabinoid receptor type-1 (CB1R) antagonist AM251 altered the firing of GR neurons in the Arc. The effects of orexin-A were eliminated by pre-administrating orexin-1 receptor (OX-1R) antagonist SB334867, respectively. Behavioral studies showed that orexin-A increased food intake, while AM251 reduced feeding. Histological studies showed that mRNA and protein expression of OX-1R (orexin-1 receptor) and CB1R were increased in the Arc of DIO and DR rats. Our results strongly suggest that orexin-A and endocannabinoid signaling in Arc plays an important role in regulating GR neuronal excitability and food intake in obesity.
Collapse
Affiliation(s)
- Dandan Yang
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Shandong, Qingdao 266071, China
| | - Luo Xu
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Shandong, Qingdao 266071, China.
| | - Feifei Guo
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Shandong, Qingdao 266071, China
| | - Xiangrong Sun
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Shandong, Qingdao 266071, China
| | - Di Zhang
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Shandong, Qingdao 266071, China
| | - Mi Wang
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Shandong, Qingdao 266071, China
| |
Collapse
|
23
|
Hansen HS, Vana V. Non-endocannabinoid N-acylethanolamines and 2-monoacylglycerols in the intestine. Br J Pharmacol 2018; 176:1443-1454. [PMID: 29473944 DOI: 10.1111/bph.14175] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
This review focuses on recent findings of the physiological and pharmacological role of non-endocannabinoid N-acylethanolamines (NAEs) and 2-monoacylglycerols (2-MAGs) in the intestine and their involvement in the gut-brain signalling. Dietary fat suppresses food intake, and much research concerns the known gut peptides, for example, glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK). NAEs and 2-MAGs represent another class of local gut signals most probably involved in the regulation of food intake. We discuss the putative biosynthetic pathways and targets of NAEs in the intestine as well as their anorectic role and changes in intestinal levels depending on the dietary status. NAEs can activate the transcription factor PPARα, but studies to evaluate the role of endogenous NAEs are generally lacking. Finally, we review the role of diet-derived 2-MAGs in the secretion of anorectic gut peptides via activation of GPR119. Both PPARα and GPR119 have potential as pharmacological targets for the treatment of obesity and the former for treatment of intestinal inflammation. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Vasiliki Vana
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Cifarelli V, Abumrad NA. Intestinal CD36 and Other Key Proteins of Lipid Utilization: Role in Absorption and Gut Homeostasis. Compr Physiol 2018; 8:493-507. [PMID: 29687890 PMCID: PMC6247794 DOI: 10.1002/cphy.c170026] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several proteins have been implicated in fatty acid (FA) transport by enterocytes including the scavenger receptor CD36 (SR-B2), the scavenger receptor B1 (SR-B1) a member of the CD36 family and the FA transport protein 4 (FATP4). Here, we review the regulation of enterocyte FA uptake and its function in lipid absorption including prechylomicron formation, assembly and transport. Emphasis is given to CD36, which is abundantly expressed along the digestive tract of rodents and humans and has been the most studied. We also address the pleiotropic functions of CD36 that go beyond lipid absorption and metabolism to include recent evidence of its impact on intestinal homeostasis and barrier maintenance. Areas of progress involving contribution of membrane phospholipid remodeling and of cytosolic FA-binding proteins, FABP1 and FABP2 to fat absorption will be covered. © 2018 American Physiological Society. Compr Physiol 8:493-507, 2018.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Nada A. Abumrad
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
25
|
Zambrana-Infantes E, Rosell del Valle C, Ladrón de Guevara-Miranda D, Galeano P, Castilla-Ortega E, Rodríguez De Fonseca F, Blanco E, Santín LJ. Palmitoylethanolamide attenuates cocaine-induced behavioral sensitization and conditioned place preference in mice. Pharmacol Biochem Behav 2018; 166:1-12. [DOI: 10.1016/j.pbb.2018.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022]
|
26
|
Sihag J, Jones PJH. Oleoylethanolamide: The role of a bioactive lipid amide in modulating eating behaviour. Obes Rev 2018; 19:178-197. [PMID: 29124885 DOI: 10.1111/obr.12630] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Fatty acid ethanolamides are lipid mediators that regulate a plethora of physiological functions. One such bioactive lipid mediator, oleoylethanolamide (OEA), is a potent agonist of the peroxisome proliferator-activated receptor-alpha (PPAR-α), which modulates increased expression of the fatty acid translocase CD36 that enables the regulation of feeding behaviour. Consumption of dietary fat rich in oleic acid activates taste receptors in the gut activating specific enzymes that lead to the formation of OEA. OEA further combines with PPAR-α to enable fat oxidation in the liver, resulting in enhanced energy production. Evidence suggests that sustained ingestion of a high-fat diet abolishes the anorexic signal of OEA. Additionally, malfunction of the enterocyte that transforms oleic acid produced during fat digestion into OEA might be responsible for reduced satiety and hyperphagia, resulting in overweight and obesity. Thus, OEA anorectic signalling may be an essential element of the physiology and metabolic system regulating dietary fat intake and obesity. The evidence reviewed in this article indicates that intake of oleic acid, and thereby the resulting OEA imparting anorexic properties, is dependent on CD36, PPAR-α, enterocyte fat sensory receptors, histamine, oxytocin and dopamine; leading to increased fat oxidation and enhanced energy expenditure to induce satiety and increase feeding latency; and that a disruption in any of these systems will cease/curb fat-induced satiety.
Collapse
Affiliation(s)
- J Sihag
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, Winnipeg, Manitoba, Canada
| | - P J H Jones
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
27
|
Yang JW, Kim HS, Choi YW, Kim YM, Kang KW. Therapeutic application of GPR119 ligands in metabolic disorders. Diabetes Obes Metab 2018; 20:257-269. [PMID: 28722242 DOI: 10.1111/dom.13062] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 02/06/2023]
Abstract
GPR119 belongs to the G protein-coupled receptor family and exhibits dual modes of action upon ligand-dependent activation: pancreatic secretion of insulin in a glucose-dependent manner and intestinal secretion of incretins. Hence, GPR119 has emerged as a promising target for treating type 2 diabetes mellitus without causing hypoglycaemia. However, despite continuous efforts by many major pharmaceutical companies, no synthetic GPR119 ligand has been approved as a new class of anti-diabetic agents thus far, nor has any passed beyond phase II clinical studies. Herein, we summarize recent advances in research concerning the physiological/pharmacological effects of GPR119 and its synthetic ligands on the regulation of energy metabolism, and we speculate on future applications of GPR119 ligands for the treatment of metabolic diseases, focusing on non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Jin Won Yang
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyo Seon Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yong-Won Choi
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Young-Mi Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Keon Wook Kang
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Abstract
Hypothalamic integration of gastrointestinal and adipose tissue-derived hormones serves as a key element of neuroendocrine control of food intake. Leptin, adiponectin, oleoylethanolamide, cholecystokinin, and ghrelin, to name a few, are in a constant "cross talk" with the feeding-related brain circuits that encompass hypothalamic populations synthesizing anorexigens (melanocortins, CART, oxytocin) and orexigens (Agouti-related protein, neuropeptide Y, orexins). While this integrated neuroendocrine circuit successfully ensures that enough energy is acquired, it does not seem to be equally efficient in preventing excessive energy intake, especially in the obesogenic environment in which highly caloric and palatable food is constantly available. The current review presents an overview of intricate mechanisms underlying hypothalamic integration of energy balance-related peripheral endocrine input. We discuss vulnerabilities and maladaptive neuroregulatory processes, including changes in hypothalamic neuronal plasticity that propel overeating despite negative consequences.
Collapse
|
29
|
Zhou J, Ren T, Li Y, Cheng A, Xie W, Xu L, Peng L, Lin J, Lian L, Diao Y, Jin X, Yang L. Oleoylethanolamide inhibits α-melanocyte stimulating hormone-stimulated melanogenesis via ERK, Akt and CREB signaling pathways in B16 melanoma cells. Oncotarget 2017; 8:56868-56879. [PMID: 28915638 PMCID: PMC5593609 DOI: 10.18632/oncotarget.18097] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/11/2017] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to examine the potential inhibitory activity of oleoylethanolamide (OEA) on α-melanocyte stimulating hormone (α-MSH)-stimulated melanogenesis and the molecular mechanism(s) involved in the process in B16 mouse melanoma cells. Our data demonstrated that OEA markedly inhibited melanin synthesis and tyrosinase activity in α-MSH-stimulated B16 cells. In addition, the expression of melanogenesis-related proteins, such as melanocortin-1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1) and tyrosinase, was suppressed in a concentration-dependent manner by OEA. In addition, OEA may suppress melanogenesis through a peroxisome proliferator-activated receptor α (PPARα)-independent pathway. Moreover, OEA activated ERK, Akt, p38 pathways and inhibits CREB pathway in α-MSH-stimulated B16 cells. The specific ERK inhibitor PD98059 partly blocked OEA-inhibited melanin synthesis and tyrosinase activity and partly abrogated the OEA-suppressed expression of melanogenic proteins. Furthermore, OEA presented remarkable inhibition on the body pigmentation in the zebrafish model system. Our findings demonstrated that OEA is an effective inhibitor of hyperpigmentation through activation of ERK, Akt and p38 pathways, inhibition of the CREB pathway, and subsequent down-regulation of MITF, TRP-1 and tyrosinase production.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Tong Ren
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Ying Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Anran Cheng
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Wanyi Xie
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Lanxi Xu
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Lu Peng
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Jinbin Lin
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Lianxiang Lian
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Yong Diao
- School of Biomedical Sciences, Huaqiao University, Quanzhou, China
| | - Xin Jin
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Lichao Yang
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| |
Collapse
|
30
|
Yang L, Guo H, Li Y, Meng X, Yan L, Dan Zhang, Wu S, Zhou H, Peng L, Xie Q, Jin X. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways. Sci Rep 2016; 6:34611. [PMID: 27721381 PMCID: PMC5056375 DOI: 10.1038/srep34611] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 09/09/2016] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.
Collapse
Affiliation(s)
- Lichao Yang
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Han Guo
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Ying Li
- Department of Pharmacology, Xiamen Medical College, Xiamen, Fujian, 361008, P. R. China
| | - Xianglan Meng
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Lu Yan
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Dan Zhang
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P. R. China
| | - Sangang Wu
- Xiamen Cancer Center, Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P. R. China
| | - Hao Zhou
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Lu Peng
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Qiang Xie
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P. R. China
| | - Xin Jin
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| |
Collapse
|
31
|
N-Oleoylethanolamine Reduces Inflammatory Cytokines and Adhesion Molecules in TNF-α-induced Human Umbilical Vein Endothelial Cells by Activating CB2 and PPAR-α. J Cardiovasc Pharmacol 2016; 68:280-291. [DOI: 10.1097/fjc.0000000000000413] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Zhao Y, Yan L, Luo XM, Peng L, Guo H, Jing Z, Yang LC, Hu R, Wang X, Huang XF, Wang YQ, Jin X. A novel PPARα agonist propane-2-sulfonic acid octadec-9-enyl-amide inhibits inflammation in THP-1 cells. Eur J Pharmacol 2016; 788:104-112. [DOI: 10.1016/j.ejphar.2016.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 12/30/2022]
|
33
|
Hodge D, Glass LL, Diakogiannaki E, Pais R, Lenaghan C, Smith DM, Wedin M, Bohlooly-Y M, Gribble FM, Reimann F. Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells. Peptides 2016; 77:16-20. [PMID: 26144594 PMCID: PMC4788502 DOI: 10.1016/j.peptides.2015.06.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 02/01/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide-1 (GLP-1) is an incretin hormone derived from proglucagon, which is released from intestinal L-cells and increases insulin secretion in a glucose dependent manner. GPR119 is a lipid derivative receptor present in L-cells, believed to play a role in the detection of dietary fat. This study aimed to characterize the responses of primary murine L-cells to GPR119 agonism and assess the importance of GPR119 for the detection of ingested lipid. METHODS GLP-1 secretion was measured from murine primary cell cultures stimulated with a panel of GPR119 ligands. Plasma GLP-1 levels were measured in mice lacking GPR119 in proglucagon-expressing cells and controls after lipid gavage. Intracellular cAMP responses to GPR119 agonists were measured in single primary L-cells using transgenic mice expressing a cAMP FRET sensor driven by the proglucagon promoter. RESULTS L-cell specific knockout of GPR119 dramatically decreased plasma GLP-1 levels after a lipid gavage. GPR119 ligands triggered GLP-1 secretion in a GPR119 dependent manner in primary epithelial cultures from the colon, but were less effective in the upper small intestine. GPR119 agonists elevated cAMP in ∼70% of colonic L-cells and 50% of small intestinal L-cells. CONCLUSIONS/INTERPRETATION GPR119 ligands strongly enhanced GLP-1 release from colonic cultures, reflecting the high proportion of colonic L-cells that exhibited cAMP responses to GPR119 agonists. Less GPR119-dependence could be demonstrated in the upper small intestine. In vivo, GPR119 in L-cells plays a key role in oral lipid-triggered GLP-1 secretion.
Collapse
Affiliation(s)
- Daryl Hodge
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Leslie L Glass
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Eleftheria Diakogiannaki
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ramona Pais
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Carol Lenaghan
- AstraZeneca, Cardiovascular & Metabolic Diseases iMed, Alderley Park, Cheshire, UK
| | - David M Smith
- AstraZeneca, Cardiovascular & Metabolic Diseases iMed, Mölndal, Sweden
| | - Marianne Wedin
- AstraZeneca, Transgenics Group, Reagents & Assay Development, Discovery Sciences, Mölndal, Sweden
| | - Mohammad Bohlooly-Y
- AstraZeneca, Transgenics Group, Reagents & Assay Development, Discovery Sciences, Mölndal, Sweden
| | - Fiona M Gribble
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Frank Reimann
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
34
|
Cvijanovic N, Isaacs NJ, Rayner CK, Feinle-Bisset C, Young RL, Little TJ. Duodenal fatty acid sensor and transporter expression following acute fat exposure in healthy lean humans. Clin Nutr 2016; 36:564-569. [PMID: 26926575 DOI: 10.1016/j.clnu.2016.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND & AIMS Free fatty acids (FFAs) and their derivatives are detected by G-protein coupled receptors (GPRs) on enteroendocrine cells, with specific transporters on enterocytes. It is unknown whether acute fat exposure affects FFA sensors/transporters, and whether this relates to hormone secretion and habitual fat intake. METHODS We studied 20 healthy participants (10M, 10F; BMI: 22 ± 1 kg/m2; age: 28 ± 2 years), after an overnight fast, on 2 separate days. On the first day, duodenal biopsies were collected endoscopically before, and after, a 30-min intraduodenal (ID) infusion of 10% Intralipid®, and relative transcript expression of FFA receptor 1 (FFAR1), FFA receptor 4 (FFAR4), GPR119 and the FFA transporter, cluster of differentiation-36 (CD36) was quantified from biopsies. On the second day, ID Intralipid® was infused for 120-min, and plasma concentrations of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) evaluated. Habitual dietary intake was assessed using food frequency questionnaires (FFQs). RESULTS ID Intralipid® increased expression of GPR119, but not FFAR1, FFAR4 and CD36, and stimulated CCK and GLP-1 secretion. Habitual polyunsaturated fatty acid (PUFA) consumption was negatively associated with basal GPR119 expression. CONCLUSIONS GPR119 is an early transcriptional responder to duodenal lipid in lean humans, although this response appeared reduced in individuals with high PUFA intake. These observations may have implications for downstream regulation of gut hormone secretion and appetite. This study was registered as a clinical trial with the Australia and New Zealand Clinical Trial Registry (Trial number: ACTRN12612000376842).
Collapse
Affiliation(s)
- Nada Cvijanovic
- University of Adelaide Discipline of Medicine, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Nicole J Isaacs
- University of Adelaide Discipline of Medicine, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Christopher K Rayner
- University of Adelaide Discipline of Medicine, Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia; Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine, Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Richard L Young
- University of Adelaide Discipline of Medicine, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Tanya J Little
- University of Adelaide Discipline of Medicine, Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
35
|
Interference with acute nausea and anticipatory nausea in rats by fatty acid amide hydrolase (FAAH) inhibition through a PPARα and CB1 receptor mechanism, respectively: a double dissociation. Psychopharmacology (Berl) 2015; 232:3841-8. [PMID: 26297326 DOI: 10.1007/s00213-015-4050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/07/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Fatty acid amide hydrolase (FAAH) inhibition elevates anandamide (AEA), which acts on cannabinoid (CB1 and CB2) receptors, as well as N-palmitoylethanolamide (PEA) and N-oleoylethanolamine (OEA), which act on peroxisome proliferator-activated receptor alpha (PPARα). Here, we determine the mechanism of action of FAAH inhibition on acute and anticipatory nausea (AN). OBJECTIVE We compared the effectiveness and mechanism of action of two FAAH inhibitors, URB597 and PF-3845, to reduce acute nausea and AN in rodent models of conditioned gaping. MATERIALS AND METHODS For assessment of acute nausea, rats were pretreated with vehicle (VEH), URB597 (0.3 and 10 mg/kg, experiment 1a) or PF-3845 (10 mg/kg, experiment 1b) 120 min prior to a saccharin-lithium chloride (LiCl) pairing. To assess the CB1 receptor or PPARα mediation of the effect of PF-3845 on acute nausea, rats were also pretreated with rimonabant or MK886, respectively. For assessment of AN, following four pairings of a novel context with LiCl, rats received a pretreatment of VEH, URB597 (0.3 mg/kg, experiment 2a), or PF-3845 (10, 20 mg/kg, experiment 2b) 120 min prior to placement in the AN context. To assess the CB1 receptor or PPARα mediation of the effect, rats were also pretreated with rimonabant or MK886, respectively. RESULTS PF-3845 (10 mg/kg, but not URB597 0.3 or 10 mg/kg) suppressed acute nausea via PPARα, but not CB1 receptors. URB597 (0.3 and 10 mg/kg) or PF-3845 (10 and 20 mg/kg) reduced AN via CB1 receptors, but not PPARα. CONCLUSIONS FAAH inhibition reduces acute nausea and AN through PPARα and CB1 receptor mediated effects, respectively.
Collapse
|
36
|
Romano A, Tempesta B, Provensi G, Passani MB, Gaetani S. Central mechanisms mediating the hypophagic effects of oleoylethanolamide and N-acylphosphatidylethanolamines: different lipid signals? Front Pharmacol 2015; 6:137. [PMID: 26167152 PMCID: PMC4481858 DOI: 10.3389/fphar.2015.00137] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/19/2015] [Indexed: 12/19/2022] Open
Abstract
The spread of “obesity epidemic” and the poor efficacy of many anti-obesity therapies in the long-term highlight the need to develop novel efficacious therapy. This necessity stimulates a large research effort to find novel mechanisms controlling feeding and energy balance. Among these mechanisms a great deal of attention has been attracted by a family of phospholipid-derived signaling molecules that play an important role in the regulation of food-intake. They include N-acylethanolamines (NAEs) and N-acylphosphatidylethanolamines (NAPEs). NAPEs have been considered for a long time simply as phospholipid precursors of the lipid mediator NAEs, but increasing body of evidence suggest a role in many physiological processes including the regulation of feeding behavior. Several observations demonstrated that among NAEs, oleoylethanolamide (OEA) acts as a satiety signal, which is generated in the intestine, upon the ingestion of fat, and signals to the central nervous system. At this level different neuronal pathways, including oxytocinergic, noradrenergic, and histaminergic neurons, seem to mediate its hypophagic action. Similarly to NAEs, NAPE (with particular reference to the N16:0 species) levels were shown to be regulated by the fed state and this finding was initially interpreted as fluctuations of NAE precursors. However, the observation that exogenously administered NAPEs are able to inhibit food intake, not only in normal rats and mice but also in mice lacking the enzyme that converts NAPEs into NAEs, supported the hypothesis of a role of NAPE in the regulation of feeding behavior. Indirect observations suggest that the hypophagic action of NAPEs might involve central mechanisms, although the molecular target remains unknown. The present paper reviews the role that OEA and NAPEs play in the mechanisms that control food intake, further supporting this group of phospholipids as optimal candidate for the development of novel anti-obesity treatments.
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , Rome,Italy
| | - Bianca Tempesta
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , Rome,Italy
| | - Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Discovery and Child Health (NEUROFARBA), University of Florence , Florence, Italy
| | - Maria B Passani
- Department of Neuroscience, Psychology, Drug Discovery and Child Health (NEUROFARBA), University of Florence , Florence, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , Rome,Italy
| |
Collapse
|
37
|
Effect of propane-2-sulfonic acid octadec-9-enyl-amide on the expression of adhesion molecules in human umbilical vein endothelial cells. Eur J Pharmacol 2015; 756:15-21. [DOI: 10.1016/j.ejphar.2015.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 11/16/2022]
|
38
|
Mennella I, Savarese M, Ferracane R, Sacchi R, Vitaglione P. Oleic acid content of a meal promotes oleoylethanolamide response and reduces subsequent energy intake in humans. Food Funct 2015; 6:204-10. [PMID: 25347552 DOI: 10.1039/c4fo00697f] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Animal data suggest that dietary fat composition may influence endocannabinoid (EC) response and dietary behavior. This study tested the hypothesis that fatty acid composition of a meal can influence the short-term response of ECs and subsequent energy intake in humans. Fifteen volunteers on three occasions were randomly offered a meal containing 30 g of bread and 30 mL of one of three selected oils: sunflower oil (SO), high oleic sunflower oil (HOSO) and virgin olive oil (VOO). Plasma EC concentrations and appetite ratings over 2 h and energy intake over 24 h following the experimental meal were measured. Results showed that after HOSO and VOO consumption the circulating oleoylethanolamide (OEA) was significantly higher than after SO consumption; a concomitantly significant reduction of energy intake was found. For the first time the oleic acid content of a meal was demonstrated to increase the post-prandial response of circulating OEA and to reduce energy intake at subsequent meals in humans.
Collapse
Affiliation(s)
- Ilario Mennella
- Department of Agricultural and Food Science, University of Naples Federico II, Portici (NA), Italy.
| | | | | | | | | |
Collapse
|
39
|
Jones PJH, Lin L, Gillingham LG, Yang H, Omar JM. Modulation of plasma N-acylethanolamine levels and physiological parameters by dietary fatty acid composition in humans. J Lipid Res 2014; 55:2655-64. [PMID: 25262934 PMCID: PMC4242457 DOI: 10.1194/jlr.p051235] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/05/2014] [Indexed: 12/30/2022] Open
Abstract
N-Acylethanolamines (NAEs) are endogenous lipid-signaling molecules involved in satiety and energetics; however, how diet impacts circulating NAE concentrations and their downstream metabolic actions in humans remains unknown. Objectives were to examine effects of diets enriched with high-oleic canola oil (HOCO) or HOCO blended with flaxseed oil (FXCO), compared with a Western diet (WD), on plasma NAE levels and the association with energy expenditure and substrate oxidation. Using a randomized controlled crossover design, 36 hypercholesterolemic participants consumed three isoenergetic diets for 28 days, each containing 36% energy from fat, of which 70% was HOCO, FXCO, or WD. Ultra-performance liquid chromatography-MS/MS was used to measure plasma NAE levels and indirect calorimetry to assess energy expenditure and substrate oxidation. After 28 days, compared with WD, plasma oleoylethanolamide (OEA) and alpha-linolenoyl ethanolamide (ALEA) levels were significantly increased in response to HOCO and FXCO (P = 0.002, P < 0.001), respectively. Correlation analysis demonstrated an inverse association between plasma OEA levels and percent body fat (r = -0.21, P = 0.04), and a positive association was observed between the plasma arachidonoyl ethanolamide (AEA)/OEA ratio and android:gynoid fat (r = 0.23, P = 0.02), respectively. Results suggest that plasma NAE levels are upregulated via their dietary lipid substrates and may modulate regional and total fat mass through lipid-signaling mechanisms.
Collapse
Affiliation(s)
- Peter J. H. Jones
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Lin Lin
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Leah G. Gillingham
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Haifeng Yang
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Jaclyn M. Omar
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| |
Collapse
|
40
|
D’Addario C, Micioni Di Bonaventura M, Pucci M, Romano A, Gaetani S, Ciccocioppo R, Cifani C, Maccarrone M. Endocannabinoid signaling and food addiction. Neurosci Biobehav Rev 2014; 47:203-24. [DOI: 10.1016/j.neubiorev.2014.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
41
|
Kleberg K, Hassing HA, Hansen HS. Classical endocannabinoid-like compounds and their regulation by nutrients. Biofactors 2014; 40:363-72. [PMID: 24677570 DOI: 10.1002/biof.1158] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/08/2022]
Abstract
Endocannabinoid-like compounds are structurally related to the true endocannabinoids but do not contain highly unsaturated fatty acids, and they do not bind the cannabinoid receptors. The classical endocannabinoid-like compounds include N-acylethanolamines and 2-monoacylglycerols, and their structural resemblance to the endocannabinoids makes them players in the endocannabinoid system, where they can interfere with the actions of the true endocannabinoids, because they in several cases engage the same synthesizing and degrading enzymes. In addition they have pharmacological actions of their own, which are particularly interesting in a nutritional and metabolic context. Exogenously supplied oleoylethanolamide, palmitoylethanolamide, and linoleoylethanolamide have anorexic effects, and the endogenous formation of these N-acylethanolamines in the small intestine may serve an important role in regulating food intake, through signaling via PPARα and the vagus nerve to the brain appetite center. A chronic high-fat diet will decrease intestinal levels of these anorectic N-acylethanolamines and this may contribute to the hyperphagic effect of high-fat diet; 2-monoacylglycerols mediate endocrine responses in the small intestine; probably trough activation of GPR119 on enteroendocrine cells, and diet-derived 2-monoacylglycerols, for example, 2-oleoylglycerol and 2-palmitoylglycerol might be important for intestinal fat sensing. Whether these 2-monoacylglycerols have signaling functions in other tissues is unclear at present.
Collapse
Affiliation(s)
- Karen Kleberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
42
|
Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS, Printz RL, Morris LC, Matafonova E, Stien X, Kang L, Coulon D, McGuinness OP, Niswender KD, Davies SS. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 2014; 124:3391-406. [PMID: 24960158 DOI: 10.1172/jci72517] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 05/08/2014] [Indexed: 12/30/2022] Open
Abstract
Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person's microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders.
Collapse
|
43
|
Diep TA, Madsen AN, Krogh-Hansen S, Al-Shahwani M, Al-Sabagh L, Holst B, Hansen HS. Dietary non-esterified oleic Acid decreases the jejunal levels of anorectic N-acylethanolamines. PLoS One 2014; 9:e100365. [PMID: 24959837 PMCID: PMC4068999 DOI: 10.1371/journal.pone.0100365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/27/2014] [Indexed: 01/22/2023] Open
Abstract
Background and Aims Oleoylethanolamide and several other N-acylethanolamines (NAEs), e.g. linoleoylethanolamide and palmitoylethanolamide, have anorectic properties in rats, and prolonged intake of a high-fat diet decreases the levels of the anorectic NAEs in jejunum. Jejunal anorectic NAEs are thought to add to the control of food intake via activation of PPARalpha and the vagus nerve. The fat-induced decrease may explain part of the hyperphagic effect of high-fat diets. In the present study, we investigated 1) whether the reduced levels of anorectic NAEs were reversible in rats, 2) whether mice respond to dietary fat (olive oil) by reducing levels of anorectic NAEs, and 3) whether dietary non-esterified oleic acid also can decrease levels of anorectic NAEs in mice. We are searching for the fat sensor in the intestine, which mediates the decreased levels of anorectic NAEs. Methods Male rats and mice were fed diets high (45 energy% fat) in either triacylglycerol or free fatty acids for 7–14 days, and jejunal NAE and N-acylphosphatidylethanolamine (NAPE) levels were determined by liquid-chromatography mass spectrometry. Results In rats, reduced levels of anorectic NAEs could be reversed after 3 days from changing the diet from high-fat to chow. Corresponding NAPE levels tended to show the same changes. In mice, jejunal levels of anorectic NAEs were also reduced when fed a high-fat diet. In addition, we found that non-esterified oleic acid were also able to reduce levels of anorectic NAEs in mice. Conclusions These results suggest that the down-regulation of the jejunal level of anorectic NAEs by dietary fat is not restricted to rats, and that the fatty acid component oleic acid, in dietary olive oil may be sufficient to mediate this regulation. Thus, a fatty acid sensor may mediate this effect of dietary fat.
Collapse
Affiliation(s)
- Thi Ai Diep
- Department of Drug Design & Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas N. Madsen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Krogh-Hansen
- Department of Drug Design & Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marwa Al-Shahwani
- Department of Drug Design & Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laila Al-Sabagh
- Department of Drug Design & Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Harald S. Hansen
- Department of Drug Design & Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
44
|
Esposito E, Cordaro M, Cuzzocrea S. Roles of fatty acid ethanolamides (FAE) in traumatic and ischemic brain injury. Pharmacol Res 2014; 86:26-31. [PMID: 24874648 DOI: 10.1016/j.phrs.2014.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/30/2022]
Abstract
Ethanolamides of long-chain fatty acids are a class of endogenous lipid mediators generally referred to as N-acylethanolamines (NAEs). NAEs include anti-inflammatory and analgesic palmitoylethanolamide, anorexic oleoylethanolamide, stearoylethanolamide, and the endocannabinoid anandamide. Traumatic brain injury (TBI), associated with a high morbidity and mortality and no specific therapeutic treatment, has become a pressing public health and medical problem. TBI is a complex process evoking systemic immune responses as well as direct local responses in the brain tissues. The direct (primary) damage disrupts the blood-brain barrier (BBB), injures the neurons and initiates a cascade of inflammatory reactions including chemokine production and activation of resident immune cells. The effect of TBI is not restricted to the brain; it can cause multi-organ damage and evoke systemic immune response with cytokine and chemokine production. This facilitates the recruitment of immune cells to the site of injury and progression of the inflammatory reaction. Depending on severity, TBI induces immediate neuropathologic effects that, for the mildest form, may be transient; however, with increasing severity, these injuries cause cumulative neural damage and degeneration. Moreover, TBI leads to increased catabolism of phospholipids, resulting in a series of phospholipid breakdown products, some of which have potent biological activity. Ischemia-reperfusion (I/R) injury resulting from stroke leads to metabolic distress, oxidative stress and neuroinflammation, making it likely that multiple therapeutic intervention strategies may be needed for successful treatment. Current therapeutic strategies for stroke need complimentary neuroprotective treatments to provide a better outcome. Prior studies on NAEs have demonstrated neurotrophic/neuroprotective activities across a broad spectrum of cellular and animal models of neurodegenerative and acute cerebrovascular disorders. The present review will summarize our knowledge of the biological role of these lipid signaling molecules in brain and highlights their therapeutic effect from multipotential actions on neuronal cell death and neuroinflammatory pathways.
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
45
|
Oleoylethanolamide: a novel potential pharmacological alternative to cannabinoid antagonists for the control of appetite. BIOMED RESEARCH INTERNATIONAL 2014; 2014:203425. [PMID: 24800213 PMCID: PMC3996326 DOI: 10.1155/2014/203425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/18/2014] [Accepted: 03/05/2014] [Indexed: 01/05/2023]
Abstract
The initial pharmaceutical interest for the endocannabinoid system as a target for antiobesity therapies has been restricted by the severe adverse effects of the CB1 antagonist rimonabant. This study points at oleoylethanolamide (OEA), a monounsaturated analogue, and functional antagonist of anandamide, as a potential and safer antiobesity alternative to CB1 antagonism. Mice treated with equal doses (5 or 10 mg/kg, i.p.) of OEA or rimonabant were analyzed for the progressive expression of spontaneous behaviors (eating, grooming, rearing, locomotion, and resting) occurring during the development of satiety, according to the paradigm called behavioral satiety sequence (BSS). Both drugs reduced food (wet mash) intake to a similar extent. OEA treatment decreased eating activity within the first 30 min and caused a temporary increase of resting time that was not accompanied by any decline of horizontal, vertical and total motor activity. Besides decreasing eating activity, rimonabant caused a marked increase of the time spent grooming and decreased horizontal motor activity, alterations that might be indicative of aversive nonmotivational effects on feeding. These results support the idea that OEA suppresses appetite by stimulating satiety and that its profile of action might be predictive of safer effects in humans as a novel antiobesity treatment.
Collapse
|
46
|
Bystrowska B, Smaga I, Frankowska M, Filip M. Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:1-10. [PMID: 24334211 DOI: 10.1016/j.pnpbp.2013.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/25/2013] [Accepted: 12/05/2013] [Indexed: 12/14/2022]
Abstract
Preclinical investigations have demonstrated that drugs of abuse alter the levels of lipid-based signalling molecules, including endocannabinoids (eCBs) and N-acylethanolamines (NAEs), in the rodent brain. In addition, several drugs targeting eCBs and/or NAEs are implicated in reward and/or seeking behaviours related to the stimulation of dopamine systems in the brain. In our study, the brain levels of eCBs (anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and NAEs (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)) were analyzed via an LC-MS/MS method in selected brain structures of rats during cocaine self-administration and after extinction training according to the "yoked" control procedure. Repeated (14days) cocaine (0.5mg/kg/infusion) self-administration and yoked drug delivery resulted in a significant decrease (ca. 52%) in AEA levels in the cerebellum, whereas levels of 2-AG increased in the frontal cortex, the hippocampus and the cerebellum and decreased in the hippocampus and the dorsal striatum. In addition, we detected increases (>150%) in the levels of OEA and PEA in the limbic areas in both cocaine treated groups, as well as an increase in the tissue levels of OEA in the dorsal striatum in only the yoked cocaine group and increases in the tissue levels of PEA in the dorsal striatum (both cocaine groups) and the nucleus accumbens (yoked cocaine group only). Compared to the yoked saline control group, extinction training (10days) resulted in a potent reduction in AEA levels in the frontal cortex, the hippocampus and the nucleus accumbens and in 2-AG levels in the hippocampus, the dorsal striatum and the cerebellum. The decreases in the limbic and subcortical areas were more apparent for rats that self-administered cocaine. Following extinction, there was a region-specific change in the levels of NAEs in rats previously injected with cocaine; a potent increase (ca. 100%) in the levels of OEA and PEA was detected in the prefrontal cortex and the hippocampus, whilst a drop was noted in the striatal areas versus yoked saline yoked animals. Our findings support the previous pharmacological evidence that the eCB system and NAEs are involved in reinforcement and extinction of positively reinforced behaviours and that these lipid-derived molecules may represent promising targets for the development of new treatments for drug addiction.
Collapse
Affiliation(s)
- Beata Bystrowska
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Irena Smaga
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland
| | - Małgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - Małgorzata Filip
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland; Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
47
|
Hansen HS. Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat. Pharmacol Res 2014; 86:18-25. [PMID: 24681513 DOI: 10.1016/j.phrs.2014.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
Anandamide is a well-known agonist for the cannabinoid receptors. Along with endogenous anandamide other non-endocannabinoid N-acylethanolamines are also formed, apparently in higher amounts. These include mainly oleoylethanolamide (OEA), palmitoyelethanolamide (PEA) and linoleoylethanolamide (LEA), and they have biological activity by themselves being anorectic and anti-inflammatory. It appears that the major effect of dietary fat on the level of these molecules is in the gastrointestinal system, where OEA, PEA and LEA in the enterocytes may function as homeostatic signals, which are decreased by prolonged consumption of a high-fat diet. These lipid amides appear to mediate their signaling activity via activation of PPARα in the enterocyte followed by activation of afferent vagal fibers leading to the brain. Through this mechanism OEA, PEA and LEA may both reduce the consumption of a meal as well as increase the reward value of the food. Thus, they may function as homeostatic intestinal signals involving hedonic aspects that contribute to the regulation of the amounts of dietary fat to be ingested.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
48
|
Bystrowska B, Smaga I, Tyszka-Czochara M, Filip M. Troubleshooting in LC-MS/MS method for determining endocannabinoid and endocannabinoid-like molecules in rat brain structures applied to assessing the brain endocannabinoid/endovanilloid system significance. Toxicol Mech Methods 2014; 24:315-22. [DOI: 10.3109/15376516.2014.898356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
49
|
Abstract
The absorptive epithelium of the proximal small intestine converts oleic acid released during fat digestion into oleoylethanolamide (OEA), an endogenous high-affinity agonist of peroxisome proliferator-activated receptor-α (PPAR-α). OEA interacts with this receptor to cause a state of satiety characterized by prolonged inter-meal intervals and reduced feeding frequency. The two main branches of the autonomic nervous system, sympathetic and parasympathetic, contribute to this effect: the former by enabling OEA mobilization in the gut and the latter by relaying the OEA signal to brain structures, such as the hypothalamus, that are involved in feeding regulation. OEA signaling may be a key component of the physiological system devoted to the monitoring of dietary fat intake, and its dysfunction might contribute to overweight and obesity.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92612, USA.
| |
Collapse
|
50
|
Hayes AC, Stupak J, Li J, Cox AD. Identification of N-acylethanolamines in Dictyostelium discoideum and confirmation of their hydrolysis by fatty acid amide hydrolase. J Lipid Res 2013; 54:457-66. [PMID: 23187822 PMCID: PMC3588872 DOI: 10.1194/jlr.m032219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/26/2012] [Indexed: 11/20/2022] Open
Abstract
N-acylethanolamines (NAEs) are endogenous lipid-based signaling molecules best known for their role in the endocannabinoid system in mammals, but they are also known to play roles in signaling pathways in plants. The regulation of NAEs in vivo is partly accomplished by the enzyme fatty acid amide hydrolase (FAAH), which hydrolyses NAEs to ethanolamine and their corresponding fatty acid. Inhibition of FAAH has been shown to increase the levels of NAEs in vivo and to produce desirable phenotypes. This has led to the development of pharmaceutical-based therapies for a variety of conditions targeting FAAH. Recently, our group identified a functional FAAH homolog in Dictyostelium discoideum, leading to our hypothesis that D. discoideum also possesses NAEs. In this study, we provide a further characterization of FAAH and identify NAEs in D. discoideum for the first time. We also demonstrate the ability to modulate their levels in vivo through the use of a semispecific FAAH inhibitor and confirm that these NAEs are FAAH substrates through in vitro studies. We believe the demonstration of the in vivo modulation of NAE levels suggests that D. discoideum could be a good simple model organism in which to study NAE-mediated signaling.
Collapse
Affiliation(s)
- Alexander C Hayes
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|