1
|
Krążek M, Wojciechowicz T, Fiedorowicz J, Strowski MZ, Nowak KW, Skrzypski M. Neuronostatin regulates proliferation and differentiation of rat brown primary preadipocytes. FEBS Lett 2024; 598:1996-2010. [PMID: 38794908 DOI: 10.1002/1873-3468.14934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
Neuronostatin suppresses the differentiation of white preadipocytes. However, the role of neuronostatin in brown adipose tissue remains elusive. Therefore, we investigated the impact of neuronostatin on the proliferation and differentiation of isolated rat brown preadipocytes. We report that neuronostatin and its receptor (GPR107) are synthesized in brown preadipocytes and brown adipose tissue. Furthermore, neuronostatin promotes the replication of brown preadipocytes via the AKT pathway. Notably, neuronostatin suppresses the expression of markers associated with brown adipogenesis (PGC-1α, PPARγ, PRDM16, and UCP1) and reduces cellular mitochondria content. Moreover, neuronostatin impedes the differentiation of preadipocytes by activating the JNK signaling pathway. These effects were not mimicked by somatostatin. Our results suggest that neuronostatin is involved in regulating brown adipogenesis.
Collapse
Affiliation(s)
- Małgorzata Krążek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Poznań, Poland
| | - Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Fiedorowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Poznań, Poland
| | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, Germany
- Medical Clinic III, Frankfurt (Oder), Germany
| | - Krzysztof W Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Poznań, Poland
- Faculty of Medicine and Health Sciences, University of Kalisz, Poland
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
2
|
Jasaszwili M, Wojciechowicz T, Strowski MZ, Nowak KW, Skrzypski M. The effects of neuronostatin on proliferation and differentiation of rat primary preadipocytes and 3T3-L1 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159018. [PMID: 34332074 DOI: 10.1016/j.bbalip.2021.159018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/28/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Neuronostatin is a peptide hormone encoded by the somatostatin gene. Biological effects of neuronostatin are mediated through activation of GPR107. There is evidence indicating that neuronostatin modulates energy homeostasis by suppressing food intake and insulin secretion, while stimulating glucagon secretion. While it was found that neuronostatin receptor is expressed in white adipose tissue, the role of neuronostatin in controlling adipose tissue formation is unknown. The aim of this study is to investigate the effects of neuronostatin on proliferation and differentiation of rat primary preadipocytes and 3T3-L1 cells. We found that neuronostatin receptor GPR107 is expressed in rat preadipocytes and 3T3-L1 cells. Neuronostatin promotes proliferation of preadipocytes via AKT activation. Downregulation of GPR107 mRNA expression and protein production results in an attenuation of neuronostatin-induced stimulation of preadipocyte proliferation. Moreover, neuronostatin reduces intracellular lipid content and the expression of adipogenesis-modulating genes C/ebpα, C/ebpβ, Pparγ, and Fabp4. In summary, these results show that neuronostatin, AKT-dependently, stimulates the proliferation of preadipocytes via GPR107. In contrast, neuronostatin inhibits the differentiation of preadipocytes into mature adipocytes.
Collapse
Affiliation(s)
- Mariami Jasaszwili
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, 13353 Berlin, Germany; Department of Internal Medicine-Gastroenterology & Oncology, Park-Klinik Weissensee, 13086 Berlin, Germany
| | - Krzysztof W Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland.
| |
Collapse
|
3
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Sáez-Martínez P, Jiménez-Vacas JM, León-González AJ, Herrero-Aguayo V, Montero Hidalgo AJ, Gómez-Gómez E, Sánchez-Sánchez R, Requena-Tapia MJ, Castaño JP, Gahete MD, Luque RM. Unleashing the Diagnostic, Prognostic and Therapeutic Potential of the Neuronostatin/GPR107 System in Prostate Cancer. J Clin Med 2020; 9:E1703. [PMID: 32498336 PMCID: PMC7355908 DOI: 10.3390/jcm9061703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/22/2023] Open
Abstract
Certain components of the somatostatin-system play relevant roles in Prostate Cancer (PCa), whose most aggressive phenotype (Castration-Resistant-PCa (CRPC)) remains lethal nowadays. However, neuronostatin and the G protein-coupled receptor 107 (GPR107), two novel members of the somatostatin-system, have not been explored yet in PCa. Consequently, we investigated the pathophysiological role of NST/GPR107-system in PCa. GPR107 expression was analyzed in well-characterized PCa patient's cohorts, and functional/mechanistic assays were performed in response to GPR107-silencing and NST-treatment in PCa cells (androgen-dependent (AD: LNCaP) and androgen-independent (AI: 22Rv1/PC-3), which are cell models of hormone-sensitive and CRPC, respectively), and normal prostate cells (RWPE-1 cell-line). GPR107 was overexpressed in PCa and associated with key clinical parameters (e.g., advance stage of PCa, presence of vascular invasion and metastasis). Furthermore, GPR107-silencing inhibited proliferation/migration rates in AI-PCa-cells and altered key genes and oncogenic signaling-pathways involved in PCa aggressiveness (i.e., KI67/CDKN2D/MMP9/PRPF40A, SST5TMD4/AR-v7/In1-ghrelin/EZH2 splicing-variants and AKT-signaling). Interestingly, NST treatment inhibited proliferation/migration only in AI-PCa cells and evoked an identical molecular response than GPR107-silencing. Finally, NST decreased GPR107 expression exclusively in AI-PCa-cells, suggesting that part of the specific antitumor effects of NST could be mediated through a GPR107-downregulation. Altogether, NST/GPR107-system could represent a valuable diagnostic and prognostic tool and a promising novel therapeutic target for PCa and CRPC.
Collapse
Affiliation(s)
- Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Juan M. Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Antonio J. León-González
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Antonio J. Montero Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Urology Service, HURS/IMIBIC, 14004 Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Anatomical Pathology Service, HURS, 14004 Cordoba, Spain
| | - María J. Requena-Tapia
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Urology Service, HURS/IMIBIC, 14004 Cordoba, Spain
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Manuel D. Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| |
Collapse
|
5
|
Luque RM, Kineman RD. Neuronostatin exerts actions on pituitary that are unique from its sibling peptide somatostatin. J Endocrinol 2018; 237:217-227. [PMID: 29615476 DOI: 10.1530/joe-18-0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Neuronostatin, a somatostatin gene-encoded peptide, exerts important physiological and metabolic actions in diverse tissues. However, the direct biological effects of neuronostatin on pituitary function of humans and primates are still unknown. This study used baboon (Papio anubis) primary pituitary cell cultures, a species that closely models human physiology, to demonstrate that neuronostatin inhibits basal, but not ghrelin-/GnRH-stimulated, growth hormone (GH) and luteinizing hormone (LH) secretion in a dose- and time-dependent fashion, without affecting the secretion of other pituitary hormones (prolactin, ACTH, FSH, thyroid-stimulating hormone (TSH)) or changing mRNA levels. Actions of neuronostatin differs from somatostatin which in this study reduced GH/PRL/ACTH/LH/TSH secretion and GH/PRL/POMC/LH gene expression. Remarkably, we found that inhibitory actions of neuronostatin are likely mediated through: (1) the orphan receptor GPCR107 (found to be highly expressed in pituitary compared to somatostatin-receptors), (2) common (i.e. adenylyl cyclase/protein kinase A/MAPK/extra-/intracellular Ca2+ mobilization, but not phospholipase C/protein kinase C/mTOR) and distinct (i.e. PI3K) signaling pathways than somatostatin and; (3) dissimilar molecular mechanisms than somatostatin (i.e. upregulation of GPCR107 and downregulation of GHS-R/Kiss1-R expression by neuronostatin and, upregulation of sst1-5 expression by somatostatin). Altogether, the results of this study provide the first evidence that there is a functional neuronostatin signaling circuit, unique from somatostatin, which may work in concert with somatostatin to fine-tune hormone release from somatostropes and gonadotropes.
Collapse
Affiliation(s)
- Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofia (HURS), Cordoba, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Rhonda D Kineman
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago and Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
6
|
Zhu H, Zhu L, Fang Z, Yang S, Chen Y, Jin Y, Zhao X, Shen C, Yao Y. Common variants at somatostatin are significantly associated with hypertension incidence in smoking and drinking populations. ACTA ACUST UNITED AC 2018; 12:230-237.e12. [PMID: 29426577 DOI: 10.1016/j.jash.2017.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/07/2017] [Accepted: 12/21/2017] [Indexed: 12/23/2022]
Abstract
Somatostatin (SST) and growth hormone-releasing hormone (GHRH) are involved in the development of hypertension. This study aimed to evaluate whether SST and GHRH contribute to genetic susceptibility to hypertension. A case-control study consisting of 2012 hypertensive patients and 2210 matched control individuals was performed, and three tagging single-nucleotide polymorphisms were genotyped. The association of these single-nucleotide polymorphisms with hypertension and ischemic stroke was further evaluated among 4098 participants in a follow-up study. Hazard ratio (HR) and 95% confidence interval were estimated by Cox proportional hazards regression. The follow-up study indicated that in smoking population, variants at SST presented significant association with hypertension incidence; the adjusted HR of rs3755792 (GA + AA vs. GG) was 0.634 (P = .037), and the adjusted HR of rs7624906 (TC + CC vs. TT) was 1.803 (P = .005). In drinking population, rs3755792 at SST was associated with hypertension incidence, and the adjusted HR was 0.580 (P = .009). Moreover, rs6032470 at GHRH had a statistical association with ischemic stroke incidence in smoking population, and the adjusted HR of the additive model was 1.625 (P = .049). These results suggested that SST and GHRH harbor genetic susceptible loci with incident hypertension and ischemic stroke and that smoking and drinking might modify the genetic effect.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu, China
| | - Lijun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu, China
| | - Zhengmei Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu, China
| | - Song Yang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Yanchun Chen
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Yuelong Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu, China
| | - Xianghai Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yingshui Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu, China.
| |
Collapse
|
7
|
Yosten G, Stein L, Samson W. Novel Small Peptide Hormones. ENDOCRINOLOGY OF THE HEART IN HEALTH AND DISEASE 2017:115-135. [DOI: 10.1016/b978-0-12-803111-7.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Samson WK, Stein LM, Elrick M, Salvatori A, Kolar G, Corbett JA, Yosten GLC. Hypoglycemia unawareness prevention: Targeting glucagon production. Physiol Behav 2016; 162:147-50. [PMID: 27080082 DOI: 10.1016/j.physbeh.2016.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/29/2016] [Accepted: 04/07/2016] [Indexed: 12/22/2022]
Abstract
Insulin-dependent individuals with diabetes are at risk for a severe hypoglycemic event that may predispose them to several repeat episodes during which the normal counter regulatory mechanisms that protect against hypoglycemia fail to be activated. This state of hypoglycemia unawareness is characterized by a failure of glucagon release, preventing mobilization of endogenous glucose stores from the liver. We describe the discovery of a novel hormone, produced in pancreatic delta cells, which stimulates glucagon production and release, particularly under low glucose conditions. We hypothesize that this hormone, called neuronostatin, may be effective as a co-therapy with insulin to prevent repeated, potentially fatal episodes of recurrent hypoglycemia.
Collapse
Affiliation(s)
- Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States.
| | - Lauren M Stein
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Mollisa Elrick
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Alison Salvatori
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Grant Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| |
Collapse
|
9
|
Elrick MM, Samson WK, Corbett JA, Salvatori AS, Stein LM, Kolar GR, Naatz A, Yosten GLC. Neuronostatin acts via GPR107 to increase cAMP-independent PKA phosphorylation and proglucagon mRNA accumulation in pancreatic α-cells. Am J Physiol Regul Integr Comp Physiol 2015; 310:R143-55. [PMID: 26561648 DOI: 10.1152/ajpregu.00369.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/08/2015] [Indexed: 12/17/2022]
Abstract
Neuronostatin (NST) is a recently described peptide that is produced from the somatostatin preprohormone in pancreatic δ-cells. NST has been shown to increase glucagon secretion from primary rat pancreatic islets in low-glucose conditions. Here, we demonstrate that NST increases proglucagon message in α-cells and identify a potential mechanism for NST's cellular activities, including the phosphorylation of PKA following activation of the G protein-coupled receptor, GPR107. GPR107 is abundantly expressed in the pancreas, particularly, in rodent and human α-cells. Compromise of GPR107 in pancreatic α-cells results in failure of NST to increase PKA phosphorylation and proglucagon mRNA levels. We also demonstrate colocalization of GPR107 and NST on both mouse and human pancreatic α-cells. Taken together with our group's observation that NST infusion in conscious rats impairs glucose clearance in response to a glucose challenge and that plasma levels of the peptide are elevated in the fasted compared with the fed or fasted-refed state, these studies support the hypothesis that endogenous NST regulates islet cell function by interacting with GPR107 and initiating signaling in glucagon-producing α-cells.
Collapse
Affiliation(s)
- Mollisa M Elrick
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Willis K Samson
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison S Salvatori
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Lauren M Stein
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri; and
| | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gina L C Yosten
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri;
| |
Collapse
|
10
|
Yosten GLC, Elrick MM, Salvatori A, Stein LM, Kolar GR, Ren J, Corbett JA, Samson WK. Understanding peptide biology: The discovery and characterization of the novel hormone, neuronostatin. Peptides 2015; 72:192-5. [PMID: 26051024 PMCID: PMC4641813 DOI: 10.1016/j.peptides.2015.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
The Human Genome Project provided the opportunity to use bioinformatic approaches to discover novel, endogenous hormones. Using this approach we have identified two novel peptide hormones and review here our strategy for the identification and characterization of the hormone, neuronostatin. We describe in this mini-review our strategy for determining neuronostatin's actions in brain, heart and pancreas. More importantly, we detail our deductive reasoning strategy for the identification of a neuronostatin receptor and our progress in establishing the physiological relevance of the peptide.
Collapse
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, USA
| | - Mollisa M Elrick
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, USA
| | - Alison Salvatori
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, USA
| | - Lauren M Stein
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, USA
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, USA
| | - Willis K Samson
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, USA.
| |
Collapse
|
11
|
Salvatori AS, Elrick MM, Samson WK, Corbett JA, Yosten GLC. Neuronostatin inhibits glucose-stimulated insulin secretion via direct action on the pancreatic α-cell. Am J Physiol Endocrinol Metab 2014; 306:E1257-63. [PMID: 24735892 PMCID: PMC4042099 DOI: 10.1152/ajpendo.00599.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuronostatin is a recently described peptide hormone encoded by the somatostatin gene. We previously showed that intraperitoneal injection of neuronostatin into mice resulted in c-Jun accumulation in pancreatic islets in a pattern consistent with the activation of glucagon-producing α-cells. We therefore hypothesized that neuronostatin could influence glucose homeostasis via a direct effect on the α-cell. Neuronostatin enhanced low-glucose-induced glucagon release in isolated rat islets and in the immortalized α-cell line αTC1-9. Furthermore, incubation with neuronostatin led to an increase in transcription of glucagon mRNA, as determined by RT-PCR. Neuronostatin also inhibited glucose-stimulated insulin secretion from isolated islets. However, neuronostatin did not alter insulin release from the β-cell line INS 832/13, indicating that the effect of neuronostatin on insulin secretion may be secondary to a direct action on the α-cell. In agreement with our in vitro data, intra-arterial infusion of neuronostatin in male rats delayed glucose disposal and inhibited insulin release during a glucose challenge. These studies suggest that neuronostatin participates in maintaining glucose homeostasis through cell-cell interactions between α-cells and β-cells in the endocrine pancreas, leading to attenuation in insulin secretion.
Collapse
Affiliation(s)
- Alison S Salvatori
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri; and
| | - Mollisa M Elrick
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri; and
| | - Willis K Samson
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri; and
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gina L C Yosten
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
12
|
Yang SB, Yang AM, Shao TJ, Su SF, Chen Q. Synergistic analgesic effects between neuronostatin and morphine at the supraspinal level. Peptides 2013; 44:105-10. [PMID: 23548325 DOI: 10.1016/j.peptides.2013.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 12/29/2022]
Abstract
Neuronostatin, a 13-amino acid peptide, is encoded in the somatostatin pro-hormone. I.c.v. administration of neuronostatin produces a significant antinociceptive effect in the mouse tail-flick test, which is mediated by endogenous opioid receptor. However, the direct functional interaction between morphine and neuronostatin has not been characterized. In the present study, effect of neuronostatin on morphine analgesia was investigated in the tail-flick test. Our findings showed that i.c.v. administration of neuronostatin (0.3nmol/mouse i.c.v.) significantly enhanced the antinociceptive effect of morphine (2.5, 5 or 10μg/kg) at the supraspinal level. Results of antagonism experiments suggested that the synergistic analgesia induced by morphine and neuronostatin was mediated by μ- and к-opioid receptors not δ-opioid receptor. In conclusion, there may be a cascade amplification phenomenon when morphine and neuronostatin were co-administered in acute pain model. The above results provide evidence for the potential use of neuronostatin in combination with morphine to control pain and addiction.
Collapse
Affiliation(s)
- Shao-Bin Yang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | |
Collapse
|
13
|
Yosten GLC, Redlinger LJ, Samson WK. Evidence for an interaction of neuronostatin with the orphan G protein-coupled receptor, GPR107. Am J Physiol Regul Integr Comp Physiol 2012; 303:R941-9. [PMID: 22933024 DOI: 10.1152/ajpregu.00336.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuronostatin, derived from the somatostatin preprohormone, is a recently described peptide that is produced by several tissues involved in cardiovascular regulation and metabolism, including the hypothalamus. Injection of neuronostatin into the lateral cerebroventricle led to a dose-related increase in mean arterial pressure (MAP) in rats. Any attempt to inhibit the production of neuronostatin would alter somatostatin production as well, making determination of the physiological relevance of the peptide's pharmacologic effects by compromise of production approaches impossible. Therefore, we employed an alternative approach to identify and compromise the production of the neuronostatin receptor. Because neuronostatin was shown to signal via a PKA-dependent mechanism, we hypothesized that the neuronostatin receptor was a G protein-coupled receptor (GPCR), in particular, one of the orphan GPCRs for which the ligand is unknown. Therefore, we screened neuronostatin-responsive tissues, including hypothalamus, heart, pancreatic α-cells, and the gastric tumor cell line KATOIII, for expression of orphan GPCRs. Four orphan GPCRs were expressed by all cell types, including GPR56 and GPR107. Knockdown of GPR107, but not GPR56 or GPR146, led to a loss of responsiveness to neuronostatin by KATOIII cells. Rats injected with siRNA directed against GPR107 (2 μg/day for 2 days) into the lateral cerebroventricle did not exhibit an increase in MAP in response to neuronostatin treatment. Rats with compromised GPR107 expression also displayed blunted reactivity in a baroreflex sensitivity test, indicating that GPR107 and neuronostatin may be important regulators of cardiovascular function. Thus, GPR107 is a promising candidate receptor for neuronostatin, and neuronostatin, interacting with GPR107, may play an important role in the central control of cardiovascular function.
Collapse
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacological and Physiological Science, Saint Louis Univ. School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA.
| | | | | |
Collapse
|
14
|
Zhang Y, Hu N, Hua Y, Richmond KL, Dong F, Ren J. Cardiac overexpression of metallothionein rescues cold exposure-induced myocardial contractile dysfunction through attenuation of cardiac fibrosis despite cardiomyocyte mechanical anomalies. Free Radic Biol Med 2012; 53:194-207. [PMID: 22565031 PMCID: PMC3392511 DOI: 10.1016/j.freeradbiomed.2012.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 11/20/2022]
Abstract
Cold exposure is associated with an increased prevalence of cardiovascular disease although the mechanism is unknown. Metallothionein, a heavy-metal-scavenging antioxidant, protects against cardiac anomalies. This study was designed to examine the impact of metallothionein on cold exposure-induced myocardial dysfunction, intracellular Ca(2+) derangement, fibrosis, endoplasmic reticulum (ER) stress, and apoptosis. Echocardiography, cardiomyocyte function, and Masson trichrome staining were evaluated in Friend virus B (FVB) and cardiac-specific metallothionein transgenic mice after cold exposure (3 months, 4 °C). Cold exposure increased plasma levels of norepinephrine, endothelin-1, and TGF-β; reduced plasma NO levels and cardiac antioxidant capacity; enlarged ventricular end-systolic diameter; compromised fractional shortening; promoted reactive oxygen species (ROS) production and apoptosis; and suppressed the ER stress markers Bip, calregulin, and phospho-eIF2α, accompanied by cardiac fibrosis and elevated levels of matrix metalloproteinases and Smad-2/3 in FVB mice. Cold exposure-induced echocardiographic, histological, ER stress, ROS, apoptotic, and fibrotic signaling changes (but not plasma markers) were greatly improved by metallothionein. In vitro metallothionein induction by zinc chloride ablated H(2)O(2)- but not TGF-β-induced cell proliferation in fibroblasts. In summary, our data suggest that metallothionein protects against cold exposure-induced cardiac anomalies possibly through attenuation of myocardial fibrosis.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China 710032
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Kacy L. Richmond
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Feng Dong
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| |
Collapse
|
15
|
Su SF, Yang AM, Yang SB, Wang NB, Lu SS, Wang HH, Chen Q. Intracerebroventricular administration of neuronostatin delays gastric emptying and gastrointestinal transit in mice. Peptides 2012; 35:31-5. [PMID: 22465660 DOI: 10.1016/j.peptides.2012.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 11/26/2022]
Abstract
Neuronostatin is a 13-amino acid amidated peptide widely distributed in various organs including gastrointestinal tract. However, the effect of neuronostatin on gastrointestinal motility has not been well characterized. In the present work, effects of central administration of neuronostatin on gastric emptying and gastrointestinal transit were investigated. The results indicated that intracerebroventricular (i.c.v.) administration of neuronostatin (1, 5, 10 or 20nmol/mouse) delayed gastric emptying and gastrointestinal transit in a dose-related manner in mice. The effects were significantly reversed by melanocortin 3/4 receptor antagonist SHU9119 or classical opioid receptor antagonist naloxone, suggesting that the central melanocortin system and opioid system may be involved in the gastrointestinal effects elicited by i.c.v. administration of neuronostatin. In addition, we found that C-terminal amidation modification of neuronostatin is essential to exert its gastrointestinal effects. These results indicated that neuronostatin may play an important role in regulating gastrointestinal function.
Collapse
Affiliation(s)
- Shu-Fang Su
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Vainio L, Perjes A, Ryti N, Magga J, Alakoski T, Serpi R, Kaikkonen L, Piuhola J, Szokodi I, Ruskoaho H, Kerkelä R. Neuronostatin, a novel peptide encoded by somatostatin gene, regulates cardiac contractile function and cardiomyocyte survival. J Biol Chem 2011; 287:4572-80. [PMID: 22170057 DOI: 10.1074/jbc.m111.289215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronostatin, a recently discovered peptide encoded by somatostatin gene, is involved in regulation of neuronal function, blood pressure, food intake, and drinking behavior. However, the biological effects of neuronostatin on cardiac myocytes are not known, and the intracellular signaling mechanisms induced by neuronostatin remain unidentified. We analyzed the effect of neuronostatin in isolated perfused rat hearts and in cultured primary cardiomyocytes. Neuronostatin infusion alone had no effect on left ventricular (LV) contractile function or on isoprenaline- or preload-induced increase in cardiac contractility. However, infusion of neuronostatin significantly decreased the positive inotropic response to endothelin-1 (ET-1). This was associated with an increase in phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK). Treatment of both neonatal and adult cardiomyocytes with neuronostatin resulted in reduced cardiomyocyte viability. Inhibition of JNK further increased the neuronostatin-induced cell death. We conclude that neuronostatin regulates cardiac contractile function and cardiomyocyte survival. Receptors for neuronostatin need to be identified to further characterize the biological functions of the peptide.
Collapse
Affiliation(s)
- Laura Vainio
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang AM, Ge WW, Lu SS, Yang SB, Su SF, Mi ZY, Chen Q. Central administration of neuronostatin induces antinociception in mice. Peptides 2011; 32:1893-901. [PMID: 21839129 DOI: 10.1016/j.peptides.2011.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 10/17/2022]
Abstract
Neuronostatin, a recently discovered endogenous bioactive peptide, was encoded by pro-mRNA of somatostatin that contributes to modulation of nociception. However, nociceptive effect of neuronostatin is still not fully known. The aim of this study was to evaluate effect of neuronostatin on nociception and elucidate its possible mechanism of action. Intracerebroventricular (i.c.v.) administration of neuronostatin (0.3, 3, 6, 12nmol/mouse) produced a dose- and time-related antinociceptive effect in the tail immersion assay in mice, an acute pain model. The antinociceptive effect of neuronostatin was significantly antagonized by naloxone, and was strongly inhibited by co-injection with β-funaltrexamine or nor-binaltorphimine, but not by naltrindole. Also, melanocortin 3/4 receptor antagonist, SHU9119, completely blocked the effect of neuronostatin. These data indicated the involvement of both μ- and κ-opioid receptors and central melanocortin system in the analgesic response induced by neuronostatin. In addition, neuronostatin (6nmol, i.c.v.) increased c-Fos protein expression in the periaqueductal gray (PAG) and the nucleus raphe magnus (NRM) that have a pivotal role in regulating descending pain pathways. Taken together, this study is the first to reveal that neuronostatin produces antinociceptive effect via opioid and central melanocortin systems, which is associated with an increase in neuronal activity the PAG and NRM.
Collapse
Affiliation(s)
- Ai-min Yang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
18
|
Yang AM, Ji YK, Su SF, Yang SB, Lu SS, Mi ZY, Yang QZ, Chen Q. Intracerebroventricular administration of neuronostatin induces depression-like effect in forced swim test of mice. Peptides 2011; 32:1948-52. [PMID: 21871935 DOI: 10.1016/j.peptides.2011.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 11/15/2022]
Abstract
Neuronostatin is a recently discovered endogenous bioactive peptide that is encoded by pro-mRNA of somatostatin. In the present study, we investigated the effect of neuronostatin on mood regulation in the forced swim test of mice. Our results showed intracerebroventricular (i.c.v.) administration of neuronostatin produced an increase in the immobility time, suggesting that neuronostatin induced depression-like effect. In order to rule out the possibility that neuronostatin had increased immobility time by a non-specific reduction in general activity, the effect of neuronostatin on locomotor activity was examined. Neuronostatin had no influence on locomotor activity in mice. In addition, the depression-like effect of neuronostatin was completely reversed by melanocortin 3/4 receptor antagonist SHU9119 or GABAA receptor antagonist bicuculline, but not by opioid receptor antagonist naloxone. These data suggested that the depression-like effect induced by i.c.v. administered neuronostatin was dependent upon the central melanocortin system and GABAA receptor. In conclusion, the results of this study report that neuronostatin induces depression-like effect. These findings reveal that neuronostatin is a new neuropeptide with an important role in regulating depressive behavior.
Collapse
Affiliation(s)
- Ai-min Yang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | | | | | |
Collapse
|