1
|
Liang Q, Wang L, Xu J, Lin A, Wu Y, Tao Q, Zhang B, Min H, Song S, Gao Q. A burns and COVID-19 shared stress responding gene network deciphers CD1C-CD141- DCs as the key cellular components in septic prognosis. Cell Death Discov 2023; 9:258. [PMID: 37488118 PMCID: PMC10366195 DOI: 10.1038/s41420-023-01518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
Differential body responses to various stresses, infectious or noninfectious, govern clinical outcomes ranging from asymptoma to death. However, the common molecular and cellular nature of the stress responsome across different stimuli is not described. In this study, we compared the expression behaviors between burns and COVID-19 infection by choosing the transcriptome of peripheral blood from related patients as the analytic target since the blood cells reflect the systemic landscape of immune status. To this end, we identified an immune co-stimulator (CD86)-centered network, named stress-response core (SRC), which was robustly co-expressed in burns and COVID-19. The enhancement of SRC genes (SRCs) expression indicated favorable prognosis and less severity in both conditions. An independent whole blood single-cell RNA sequencing of COVID-19 patients demonstrated that the monocyte-dendritic cell (Mono-DC) wing was the major cellular source of SRC, among which the higher expression of the SRCs in the monocyte was associated with the asymptomatic COVID-19 patients, while the quantity-restricted and function-defected CD1C-CD141-DCs were recognized as the key signature which linked to bad consequences. Specifically, the proportion of the CD1C-CD141-DCs and their SRCs expression were step-wise reduced along with worse clinic conditions while the subcluster of CD1C-CD141-DCs from the critical COVID-19 patients was characterized of IFN signaling quiescence, high mitochondrial metabolism and immune-communication inactivation. Thus, our study identified an expression-synchronized and function-focused gene network in Mono-DC population whose expression status was prognosis-related and might serve as a new target of diagnosis and therapy.
Collapse
Affiliation(s)
- Qiao Liang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Lei Wang
- Department of Clinical Laboratory, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Jing Xu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Anqi Lin
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Yongzheng Wu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Bin Zhang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China
- Central Laboratory, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, 210028, China
| | - Haiyan Min
- Central Laboratory, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China.
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China.
| |
Collapse
|
2
|
Siwicka-Gieroba D, Dabrowski W. Credibility of the Neutrophil-to-Lymphocyte Count Ratio in Severe Traumatic Brain Injury. Life (Basel) 2021; 11:life11121352. [PMID: 34947883 PMCID: PMC8706648 DOI: 10.3390/life11121352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide. The consequences of a TBI generate the activation and accumulation of inflammatory cells. The peak number of neutrophils entering into an injured brain is observed after 24 h; however, cells infiltrate within 5 min of closed brain injury. Neutrophils release toxic molecules including free radicals, proinflammatory cytokines, and proteases that advance secondary damage. Regulatory T cells impair T cell infiltration into the central nervous system and elevate reactive astrogliosis and interferon-γ gene expression, probably inducing the process of healing. Therefore, the neutrophil-to-lymphocyte ratio (NLR) may be a low-cost, objective, and available predictor of inflammation as well as a marker of secondary injury associated with neutrophil activation. Recent studies have documented that an NLR value on admission might be effective for predicting outcome and mortality in severe brain injury patients.
Collapse
|
3
|
Gómez BI, He C, Chao T, Dubick MA, Burmeister DM. Effect of Intravenous Fluid Volumes on the Adrenal Glucocorticoid Response After Burn Injury in Swine. J Burn Care Res 2020; 39:652-660. [PMID: 29757442 DOI: 10.1093/jbcr/iry024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Severe thermal injury induces metabolic and physiological stress, prompting a disruption in the hypothalamic-pituitary-adrenal axis. The objective of this study was to evaluate potential confounding effects of Lactated Ringer's (LR) resuscitation on adrenal damage and cortisol production following burn. Anesthetized swine were instrumented with jugular catheters and sustained 40% TBSA burns from brass probes heated to 100°C. Animals recovered to consciousness and received IV fluid resuscitation with LR at two different volumes: 15 ml/kg/d (limited volume [LV], n = 6) or 2 ml/kg/%TBSA/d (modified Brooke [MB], n = 6). Nonburned animals (Sham) were both oral and IV fluid restricted (S-FR, n = 4) to induce stress. Computed tomography (CT) angiographies were performed at baseline (BL) and 48 hours postburn, while blood and urine samples were collected at BL, 6, 24, and 48 hours postburn, with euthanasia at 48 hours for adrenal harvesting. Urinary cortisol was elevated following burn/surgery in all animals and returned back to BL in S-FR (404 ± 48 pg/mg creatinine) but not MB (1332 ± 176 pg/mg creatinine; P = .005) or LV (1223 ± 335 pg/mg creatinine; P = .07) by 48 hours. Gene expression of cleavage enzymes (3β-HSD, CYP17, CYP11, and CYP21) along the cortisol synthesis pathway showed minimal changes. Adrenal apoptosis (Terminal deoxynucleotidyl transferase dUTP nick-end labeling [TUNEL] staining) was greatest in the MB group (P ≤ .01) when compared to S-FR, partly due to elevations in c-Jun N-terminal kinase. Adrenal hemorrhaging was also greatest in MB animals, with no differences in tissue volume or wet-to-dry ratio. However, tissue levels of cytokines IL-1β, IL-10, and IL-12 were greatest in LV. Burn injury elevates urinary cortisol and compromises adrenal gland integrity, which is affected by IV fluid volume.
Collapse
Affiliation(s)
- Belinda I Gómez
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Celestine He
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Tony Chao
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Michael A Dubick
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - David M Burmeister
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| |
Collapse
|
4
|
Xu J, Ma X, Yu K, Wang R, Wang S, Liu R, Liu H, Gao H, Yu K, Wang C. Lactate up-regulates the expression of PD-L1 in kidney and causes immunosuppression in septic Acute Renal Injury. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 54:404-410. [PMID: 31727535 DOI: 10.1016/j.jmii.2019.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/12/2019] [Accepted: 10/08/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND This study aims to explore the mechanism of immunosuppression in septic Acute Renal Injury (AKI) and the role of programmed death-1 (PD-1/PD-L1) pathway in septic AKI. METHODS This study established a septic AKI model by Cecal ligation and puncture (CLP) in C57/B6 mice, ELISA was used to test the level of lactate and creatinine in serum, blood was collected for flow cytometry and kidney samples for Western blot analyses. This study further analyzed the expression of PD-L1 in kidney and the expression of PD-1 in CD4+, CD8+ T cell, and the number of CD3+ T cells to identify apoptosis in T cells in the blood. RESULTS The CLP sepsis model induced AKI in C57/B6 mice; The expression of PD-1 and PD-L1 were increased in septic AKI mice; PD-1/PD-L1 induced apoptosis in T cells: the number of lymphocytes decreased by 64%, while the number of CD3+ T cells decreased by 27% compared with the sham group; Results also indicated that lactate up-regulates expression of PD-L1 in the kidney. CONCLUSIONS Lactate activated PD-1/PD-L1 pathway can induce immunosuppression by inducing apoptosis in lymphocytes in septic AKI. Moreover, blocking the receptor of lactate or PD-1/PD-L1 might be a new therapy for septic AKI.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaohui Ma
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Kaili Yu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Ruitao Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Sicong Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Ruijin Liu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Haitao Liu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Hong Gao
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Changsong Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
5
|
Flt3 Ligand Treatment Attenuates T Cell Dysfunction and Improves Survival in a Murine Model of Burn Wound Sepsis. Shock 2018; 47:40-51. [PMID: 27454384 DOI: 10.1097/shk.0000000000000688] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Sepsis is a leading cause of death among severely burned patients. Burn injury disrupts the protective skin barrier and causes immunological dysfunction. In our previous studies, we found that burn injury and wound infection causes a significant decline in lymphocyte populations, implying adaptive immune system dysfunction. In the present study, we examined the effect of treatment with Fms-like tyrosine kinase-3 Ligand (Flt3L) on T cell phenotype and function in a model of burn wound sepsis. FLt3L is an essential cytokine required for hematopoietic progenitor cell development and expansion of both myeloid and lymphoid lineages. Flt3L has been shown to potentiate innate immune functions of dendritic cells and neutrophils during burn wound sepsis. However, the ability of Flt3L to improve T cell function during burn wound sepsis has not been previously evaluated. METHODS Mice underwent 35% total body surface area scald burn and were treated with Flt3L (10 μg) or vehicle daily via the intraperitoneal route starting 1 day after burn injury. On day 4 after burn injury, Pseudomonas aeruginosa was used to induce wound infection. Leukocytes in spleen and wound draining lymph nodes were characterized using flow cytometry. Bacterial clearance, organ injury, and survival were also assessed. RESULTS Flt3L treatment prevented the decline in splenic CD4 and CD8 T cells caused by burn injury and infection. Flt3L treatment also attenuated the decline in CD28 expression on CD4 and CD8 T cells and IFNγ production by CD8 T cells in the spleen and wound draining lymph nodes. Furthermore, Flt3L decreased the levels of programmed death ligand 1 expression on splenic dendritic cells and macrophages. Flt3 treatment improved systemic bacterial clearance, decreased liver and kidney injury, and significantly improved survival in mice with burn wound sepsis. CONCLUSION Burn injury and associated sepsis causes significant loss of T cells and evidence of T cell dysfunction. Flt3L attenuates T cell dysfunction and improves host resistance to burn wound sepsis in mice.
Collapse
|
6
|
Effect of parenteral glutamine supplementation combined with enteral nutrition on Hsp90 expression and Peyer's patch apoptosis in severely burned rats. Nutrition 2018; 47:97-103. [PMID: 29429543 DOI: 10.1016/j.nut.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the effects of parenteral glutamine (GLN) supplementation combined with enteral nutrition (EN) on heat shock protein (Hsp) 90 expression and Peyer's patch (PP) apoptosis in severely burned rats. METHODS Male Sprague-Dawley (SD) rats were randomly assigned to four groups: Sham burn + EN + GLN-free amino acid (AA; n = 10), sham burn + EN + GLN (n = 10), burn + EN + AA (n = 10), and burn + EN + GLN (n = 10). Two hours after a 30% total body surface area (TBSA), full-thickness scald burn injury on the back, burned rats in two of the experimental groups (burn + EN + AA and burn + EN + GLN groups) were fed with a conventional EN solution by oral gavage for 7 d. Simultaneously, rats in the burn + EN + GLN group were given 0.35 g GLN/kg body weight/d once via a tail vein injection for 7 d and rats in the burn + EN + AA group were administered isocaloric/isonitrogenous GLN-free amino acid solution (Tyrosine) for comparison. Rats in two sham burn control groups (sham burn + EN + AA and sham burn + EN + GLN groups) were treated in the same manner except for the burn injury. All rats in the four groups were given 175 kcal/kg body wt/d. There was isonitrogenous, isovolumic, and isocaloric intake among the four groups. At the end of the seventh day after completion of the nutritional program, all rats were anesthetized and samples were collected for further analysis. PP apoptosis was measured by terminal deoxyuridine nick-end labeling (TUNEL). The expression of Hsp90 in PPs was analyzed by western blotting. Caspase-3 activity of PPs was also assessed. Levels of proinflammatory cytokines of gut tissues were evaluated by enzyme-linked immunosorbent assay (ELISA). The intestinal immunoglobulin A (IgA) content was also determined by ELISA. RESULTS The results revealed that intestinal IgA content in rats of the burn + EN + GLN group were significantly increased compared with those in the burn + EN + AA group (P < 0.05). The expression of Hsp90 of PPs in rats in the burn + EN + GLN group was significantly upregulated compared with those in the burn + EN + AA group (P < 0.05). On the other hand, levels of proinflammatory cytokines of gut tissues, caspase-3 activity, and the number of TUNEL-stained cells of PPs in rats of the burn + EN + GLN group were markedly decreased compared with those of the burn + EN + AA group (P < 0.05). CONCLUSIONS The results of this study show that parenteral glutamine supplementation combined with EN may upregulate the expression of Hsp90, reduce caspase-3 activity, lessen the release of proinflammatory cytokines, attenuate PP apoptosis, and improve intestinal IgA response in burned rats. Clinically, therapeutic efforts to improve intestinal immunity may contribute to a favorable outcome in severely burned patients.
Collapse
|
7
|
Patil NK, Luan L, Bohannon JK, Hernandez A, Guo Y, Sherwood ER. Frontline Science: Anti-PD-L1 protects against infection with common bacterial pathogens after burn injury. J Leukoc Biol 2017; 103:23-33. [PMID: 29345058 DOI: 10.1002/jlb.5hi0917-360r] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/13/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
Burn patients are susceptible to infections due, in part, to immune dysfunction. Upregulation of programmed death-1 (PD-1) receptor on T cells and programmed cell death ligand-1 (PD-L1) on myeloid cells contribute to immune dysfunction in nonburn-related sepsis. We hypothesized that PD-1/PDL1 interactions contribute to immune dysfunction after burn injury. To determine the impact of burn injury and infection on PD-L1, PD-1 and costimulatory receptor expression by leukocytes and its relationship to T cell functions. The efficacy of anti-PD-L1 antibody was evaluated in a clinically relevant mouse model of burn injury and bacterial infection. Mice underwent 35% scald burn followed by Pseudomonas aeruginosa or Staphylococcus aureus infection on day 4 postburn. Anti-PD-L1 was administered on day 3 postburn. Numbers and phenotype of leukocytes, plasma cytokine concentrations, bacterial clearance, organ injury, and survival were assessed. Burn injury and infection with P. aeruginosa caused a significant upregulation of PD-L1 on myeloid cells, along with a decrease in T cell numbers and function, significant multiorgan injury, and decreased survival. Treatment with anti-PD-L1 antibody improved bacterial clearance, reduced organ injury, and enhanced survival during Pseudomonas burn wound infection. Furthermore, anti-PD-L1 effectively protected against multiorgan injury, and improved bacterial clearance and survival following systemic S. aureus infection after burn injury. Blockade of PD-1/PD-L1 interactions might represent a viable treatment to improve outcomes among critically ill burn-injured subjects and increased leukocyte PD-L1 expression could serve as a valuable biomarker to select appropriate patients for such treatment.
Collapse
Affiliation(s)
- Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yin Guo
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward R Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Effect of parenteral glutamine supplementation combined with enteral nutrition on Hsp90 expression and lymphoid organ apoptosis in severely burned rats. Burns 2016; 42:1494-1506. [PMID: 27613477 DOI: 10.1016/j.burns.2016.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of this study is to investigate the effects of parenteral glutamine(GLN) supplementation combined with enteral nutrition (EN) on heat shock protein 90(Hsp90) expression, apoptosis of lymphoid organs and circulating lymphocytes, immunological function and survival in severely burned rats. METHODS Male SD rats were randomly assigned into 4 groups: a sham burn+EN+GLN-free amino acid (AA) group (n=10), a sham burn+EN+GLN group (n=10), a burn+EN+AA group (n=10), and a burn +EN +GLN group (n=10). Two hours after a 30% total body surface area (TBSA), full-thickness scald burn injury on the back was made, the burned rats in two experimental groups (the burn+EN+AA group and the burn+EN +GLN group) were fed with a conventional enteral nutrition solution by oral gavage for 7 days. Simultaneously, the rats in the burn+EN+GLN group were given 0.35g GLN/kg body weight/day once via a tail vein injection for 7 days, whereas those in the burn+EN+AA group were administered isocaloric/isonitrogenous GLN-free amino acid solution (Tyrosine) for comparison. The rats in two sham burn control groups (the sham burn+EN+AA group and the sham burn+EN +GLN group) were treated in the same procedure as above, except for burn injury. All rats in each of the four groups were given 175kcal/kg body wt/day. There was isonitrogenous, isovolumic and isocaloric intake among four groups. At the end of the 7th day after nutritional programme were finished, all rats were anesthetized and samples were collected for further analysis. Serum immunoglobulin quantification was conducted by ELISA. Circulating lymphocyte numbers were counted by Coulter LH-750 Analyzer. The percentages and apoptotic ratio of CD4 and CD8T lymphocytes in circulation were determined by flow cytometry (FCM). The neutrophil phagocytosis index (NPI) was examined. The GLN concentrations in plasma, thymus, spleen and skeletal muscle were measured by high performance liquid chromatography (HPLC). The organ index evaluation and TUNEL analysis of thymus and spleen were carried out. The expression of Hsp90 in thymus and spleen was analyzed by western blotting. Moreover, the survival in burned rats was observed. RESULTS The results revealed that parenteral GLN supplementation combined with EN significantly increased the GLN concentrations of plasma and tissues, the serum immunoglobulin content, the circulating lymphocyte number, the CD4/CD8 ratio, the indexes of thymus and spleen, NPI and survival as compared with the burn+EN+AA group (p<0.05). The expression of Hsp90 in thymus and spleen in the burn+EN+GLN group was significantly up-regulated as compared with the burn+EN+AA group (p<0.05). The apoptosis in circulating CD4 and CD8 lymphocytes, thymus and spleen in the burn+EN+GLN group was significantly decreased as compared with the burn+EN+AA group (p<0.05). CONCLUSION The results of this study show that parenteral GLN supplementation combined with EN may increase the GLN concentrations of plasma and tissues, up-regulate the expression of Hsp90, attenuate apoptosis in lymphoid organ and circulating lymphocyte, enhance the immunological function and improve survival in severely burned rats. Clinically, therapeutic efforts at the modulation of the immune dysfunction may contribute to a favorable outcome in severely burned patients.
Collapse
|
9
|
Shults JA, Curtis BJ, Boe DM, Ramirez L, Kovacs EJ. Ethanol intoxication prolongs post-burn pulmonary inflammation: role of alveolar macrophages. J Leukoc Biol 2016; 100:1037-1045. [PMID: 27531926 DOI: 10.1189/jlb.3ma0316-111r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
In this study, the role and fate of AMs were examined in pulmonary inflammation after intoxication and injury. Clinical evidence has revealed that half of all burn patients brought to the emergency department are intoxicated at the time of injury. This combined insult results in amplified neutrophil accumulation and pulmonary edema, with an increased risk of lung failure and mortality, relative to either insult alone. We believe that this excessive pulmonary inflammation, which also parallels decreased lung function, is mediated in part by AMs. Restoration of lung tissue homeostasis is dependent on the eradication of neutrophils and removal of apoptotic cells, both major functions of AMs. Thirty minutes after binge ethanol intoxication, mice were anesthetized and given a 15% total body surface area dorsal scald injury. At 24 h, we found a 50% decrease in the total number of AMs (P < 0.05) and observed a proinflammatory phenotype on the remaining lung AMs. Loss of AMs paralleled a 6-fold increase in the number of TUNEL+ lung apoptotic cells (P < 0.05) and a 3.5-fold increase in the percentage of annexin V+ apoptotic cells in BAL (P < 0.05), after intoxication and injury, relative to controls. In contrast to the reduction in the number of cells, AMs from intoxicated and injured mice had a 4-fold increase in efferocytosis (P < 0.05). In summary, these data suggest that loss of AMs may delay resolution of inflammation, resulting in the pulmonary complications and elevated mortality rates observed in intoxicated and burn-injured patients.
Collapse
Affiliation(s)
- Jill A Shults
- Alcohol Research Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Department of Surgery, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Integrative Cell Biology Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA
| | - Brenda J Curtis
- Alcohol Research Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Department of Surgery, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA
| | - Devin M Boe
- Alcohol Research Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Department of Surgery, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Integrative Cell Biology Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA
| | - Luis Ramirez
- Alcohol Research Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Department of Surgery, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA
| | - Elizabeth J Kovacs
- Alcohol Research Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA; .,Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Department of Surgery, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Integrative Cell Biology Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
10
|
Patil NK, Luan L, Bohannon JK, Guo Y, Hernandez A, Fensterheim B, Sherwood ER. IL-15 Superagonist Expands mCD8+ T, NK and NKT Cells after Burn Injury but Fails to Improve Outcome during Burn Wound Infection. PLoS One 2016; 11:e0148452. [PMID: 26859674 PMCID: PMC4747596 DOI: 10.1371/journal.pone.0148452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/18/2016] [Indexed: 01/01/2023] Open
Abstract
Background Severely burned patients are highly susceptible to opportunistic infections and sepsis, owing to the loss of the protective skin barrier and immunological dysfunction. Interleukin-15 (IL-15) belongs to the IL-2 family of common gamma chain cytokines and stimulates the proliferation and activation of T (specifically memory CD8), NK and NKT cells. It has been shown to preserve T cell function and improve survival during cecal ligation and puncture (CLP)-induced sepsis in mice. However, the therapeutic efficacy of IL-15 or IL-15 superagonist (SA) during infection after burn injury has not been evaluated. Moreover, very few, if any, studies have examined, in detail, the effect of burn injury and infection on the adaptive immune system. Thus, we examined the effect of burn and sepsis on adaptive immune cell populations and the effect of IL-15 SA treatment on the host response to infection. Methods Mice were subjected to a 35% total body surface area burn, followed by wound infection with Pseudomonas aeruginosa. In some experiments, IL-15 SA was administered after burn injury, but before infection. Leukocytes in spleen, liver and peritoneal cavity were characterized using flow cytometry. Bacterial clearance, organ injury and survival were also assessed. Results Burn wound infection led to a significant decline in total white blood cell and lymphocyte counts and induced organ injury and sepsis. Burn injury caused decline in CD4+ and CD8+ T cells in the spleen, which was worsened by infection. IL-15 treatment inhibited this decline and significantly increased cell numbers and activation, as determined by CD69 expression, of CD4+, CD8+, B, NK and NKT cells in the spleen and liver after burn injury. However, IL-15 SA treatment failed to prevent burn wound sepsis-induced loss of CD4+, CD8+, B, NK and NKT cells and failed to improve bacterial clearance and survival. Conclusion Cutaneous burn injury and infection cause significant adaptive immune dysfunction. IL-15 SA does not augment host resistance to burn wound sepsis in mice despite inducing proliferation and activation of lymphocyte subsets.
Collapse
Affiliation(s)
- Naeem K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Julia K. Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Yin Guo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Benjamin Fensterheim
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Edward R. Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
11
|
Bergquist M, Huss F, Hästbacka J, Lindholm C, Martijn C, Rylander C, Hedenstierna G, Fredén F. Glucocorticoid receptor expression and binding capacity in patients with burn injury. Acta Anaesthesiol Scand 2016; 60:213-21. [PMID: 26338204 DOI: 10.1111/aas.12604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/25/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Burn injuries are associated with strong inflammation and risk of secondary sepsis which both may affect the function of the glucocorticoid receptor (GR). The aim of this study was to determine GR expression and binding capacity in leucocytes from patients admitted to a tertiary burn center. METHODS Blood was sampled from 13 patients on admission and days 7, 14 and 21, and once from 16 healthy subjects. Patients were grouped according to the extent of burn and to any sepsis on day 7. Expression and binding capacity of GR were determined as arbitrary units using flow cytometry. RESULTS GR expression and binding capacity were increased compared to healthy subjects in most circulating leucocyte subsets on admission irrespective of burn size. Patients with sepsis on day 7 displayed increased GR expression in T lymphocytes (51.8%, P < 0.01) compared to admission. There was a negative correlation between GR binding capacity in neutrophils and burn size after 14 days (P < 0.05). CONCLUSIONS GR expression and binding capacity are increased in most types of circulating leucocytes of severely burned patients on their admission to specialized burn care. If sepsis is present after 1 week, it is associated with higher GR expression in T lymphocytes and NK cells.
Collapse
Affiliation(s)
- M. Bergquist
- Department of Medical Sciences, Clinical Physiology; Uppsala University; Uppsala Sweden
- Department of Rheumatology and Inflammation Research; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - F. Huss
- Uppsala Burn Center; Uppsala University Hospital; Uppsala Sweden
- Department of Surgical Sciences, Plastic Surgery; Uppsala University; Uppsala Sweden
| | - J. Hästbacka
- Department of Anaesthesia and Intensive Care Medicine; Helsinki University Central Hospital; Helsinki Finland
| | - C. Lindholm
- Department of Rheumatology and Inflammation Research; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - C. Martijn
- Department of Chemistry; Biomedical Center; Uppsala University; Uppsala Sweden
| | - C. Rylander
- Department of Anaesthesia and Intensive Care; Sahlgrenska University Hospital; Gothenburg Sweden
| | - G. Hedenstierna
- Department of Medical Sciences, Clinical Physiology; Uppsala University; Uppsala Sweden
| | - F. Fredén
- Uppsala Burn Center; Uppsala University Hospital; Uppsala Sweden
- Department of Surgical Sciences, Anaesthesiology and Intensive Care; Uppsala University; Uppsala Sweden
| |
Collapse
|
12
|
Chen S, Li J, Peng H, Zhou J, Fang H. Administration of erythropoietin exerts protective effects against glucocorticoid-induced osteonecrosis of the femoral head in rats. Int J Mol Med 2014; 33:840-8. [PMID: 24503957 PMCID: PMC3976124 DOI: 10.3892/ijmm.2014.1644] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/23/2014] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence has indicated that erythropoietin (EPO) plays a role in anti-apoptosis and tissue protection in a number of human diseases. The present study was implemented to evaluate these anti-apoptotic and tissue-protective effects in glucocorticoid-induced osteonecrosis in rats. Osteonecrosis was induced by low-dose lipopolysaccharide and subsequent high-dose methylprednisolone pulse. Rats in the preventive group were treated with 500 U/kg/day recombinant human EPO (rhuEPO) for 1 week. Hematological and histomorphometric methods were then used to determine the effects of the administration of rhuEPO. An analysis of trabecular bone architecture was performed to evaluate bone mass change in the osteonecrosis zone. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay was performed to determine the apoptotic index of osteoblasts and osteocytes. Immunoblot analysis was performed to assess the expression of caspase-3 and vascular endothelial growth factor (VEGF) in the femoral head. Treatment with rhuEPO greatly improved the histological performance. Additionally, the incidence of osteonecrosis markedly decreased in the rats in the rhuEPO-treated group (22.2%) compared with the control group (66.7%). Furthermore, the expression of caspase-3 markedly decreased in the rhuEPO-treated group. Consistently, the apoptosis of osteoblasts and osteocytes, as determined by TUNEL assays, was inhibited following the administration of rhuEPO. By contrast, the expression of VEGF increased in the osteonecrosis zone in the rats treated with rhuEPO. The results from the present study demonstrate that EPO exerts prominent protective effects against glucocorticoid-induced osteonecrosis of the femoral head in rats by inhibiting the apoptosis of osteoblasts and osteocytes and increasing the expression of VEGF.
Collapse
Affiliation(s)
- Sen Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jianping Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hao Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hongsong Fang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
13
|
Ochoa-Cortes F, Guerrero-Alba R, Valdez-Morales EE, Spreadbury I, Barajas-Lopez C, Castro M, Bertrand J, Cenac N, Vergnolle N, Vanner SJ. Chronic stress mediators act synergistically on colonic nociceptive mouse dorsal root ganglia neurons to increase excitability. Neurogastroenterol Motil 2014; 26:334-45. [PMID: 24286174 DOI: 10.1111/nmo.12268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/01/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Stress hormones can signal to colonic dorsal root ganglia (DRG) neurons and may play a role in sustained hyperexcitability of nociceptors. METHODS Mouse DRG neurons were exposed overnight to epinephrine (Epi) 5 nM and/or corticosterone (Cort) 1 μM or prior water-avoidance stress. Patch clamp recordings, visceromotor reflexes (VMRs) and molecular studies were conducted. KEY RESULTS Water-avoidance stress induced neuronal hyperexcitability. Incubation of DRG neurons in both Cort and Epi (but neither alone) induced hyperexcitability (rheobase decreased 51%, p < 0.05; action potential discharge increased 95%, p < 0.01); this was blocked by antagonists of the β2 adrenoreceptor (butoxamine, But) and Cort receptor (mifepristone) in combination or alone. Stress hormones enhanced voltage-gated Nav 1.7 currents (p < 0.05) and suppressed IA (p < 0.0001) and IK+ (p < 0.05) currents. Furthermore, stress hormones increased DRG β2 adrenoreceptor mRNA (59%, p = 0.007) and protein (125%, p < 0.05), also Nav 1.7 transcript (45%, p = 0.004) and protein (114%, p = 0.002). In whole-animal studies, the WAS hyperexcitability of DRG neurons was blocked by antagonists of the β2 and glucocorticoid receptors (GCR) but together they paradoxically increased VMRs to colorectal balloon distension. CONCLUSIONS & INFERENCES Stress mediators Epi and Cort activate β2 and GCR on DRG neurons which synergistically induce hyperexcitability of nociceptive DRG neurons and cause corresponding changes in voltage-gated Na(+) and K(+) currents. Furthermore, they increase the expression of β2 adrenoreceptors and Nav1.7 channels, suggesting transcriptional changes could contribute to sustained signaling following stress. The paradoxical effects of But and mifepristone in electrophysiological compared to VMR testing may reflect different peripheral and central actions on sensory signaling.
Collapse
Affiliation(s)
- F Ochoa-Cortes
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University School of Medicine, Kingston, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fazal N, Shelip A, Alzahrani AJ. Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells. RESULTS IN IMMUNOLOGY 2013; 3:85-94. [PMID: 24600563 DOI: 10.1016/j.rinim.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/06/2013] [Accepted: 09/11/2013] [Indexed: 01/18/2023]
Abstract
After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.
Collapse
Affiliation(s)
- Nadeem Fazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL 60628, USA
| | - Alla Shelip
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL 60628, USA
| | - Alhusain J Alzahrani
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Moxibustion at mingmen reduces inflammation and decreases IL-6 in a collagen-induced arthritis mouse model. J Acupunct Meridian Stud 2011; 5:29-33. [PMID: 22309905 DOI: 10.1016/j.jams.2011.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/04/2011] [Accepted: 10/21/2011] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to compare the effectiveness of moxibustion (MOX) treatment at the GV4 and CV12 acupoints, and to determine the correlations between MOX treatment and interleukin (IL)-6 and corticosterone levels in a collagen-induced arthritis (CIA) mouse model. CIA mice were immunized twice intradermally over a 3-week interval with bovine type II collagen. After the second immunization (day 21), MOX was applied to the mouse equivalent of the GV4 and CV12 acupoints with a 1mg moxa cone five times/day. Clinical symptoms of CIA were observed three times/week until day 35. The concentrations of IL-6 and corticosterone in the blood samples were measured by immunoassay kits. At day 35, the incidence of CIA was significantly decreased in mice treated with MOX at the GV4 acupoint (78%, n=23, p<0.05), compared to untreated CIA mice (100%) and mice treated with MOX at the CV12 acupoint (100%). IL-6 and corticosterone levels were significantly increased by immunization. IL-6 levels significantly decreased in mice treated with MOX at the GV4 acupoint. These results suggest that MOX treatment suppressed CIA at the GV4 acupoint, not at the CV12 acupoint, possibly through inhibition of IL-6 production.
Collapse
|
16
|
Up-regulation of tim-3 expression contributes to development of burn-induced T cell immune suppression in mice. ACTA ACUST UNITED AC 2011; 31:642. [DOI: 10.1007/s11596-011-0575-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Indexed: 01/08/2023]
|
17
|
Li J, Carr B, Goyal M, Gaieski DF. Sepsis: the inflammatory foundation of pathophysiology and therapy. Hosp Pract (1995) 2011; 39:99-112. [PMID: 21881397 DOI: 10.3810/hp.2011.08.585] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sepsis, defined as an infection accompanied by inflammation, is a complex disease process wherein the body's response to a pathogen is amplified far beyond the initial site of infection. The process begins when pathogen-associated molecular patterns on the bacteria or other pathogens induce an inflammatory cascade in the host. In the United States, it is estimated that every minute a patient with severe sepsis or septic shock presents to an emergency department and that > 751 000 cases of severe sepsis occur annually, resulting in an estimated 215 000 deaths. A rapid progression of illness severity from sepsis to severe sepsis to septic shock frequently occurs, driven by the body's inflammatory and anti-inflammatory responses to a pathogen, making sepsis a condition requiring timely intervention. The clinical management of severe sepsis and septic shock has evolved dramatically over the past decade and these new therapeutic approaches have been built on a deeper understanding of the natural evolution of sepsis. This article examines the underlying pathophysiological mechanisms of sepsis to help explain the clinical signs and symptoms manifested by severe sepsis patients. It also examines the significance of current proposed treatment strategies, including early goal-directed therapy, from a pathophysiological and inflammatory perspective.
Collapse
Affiliation(s)
- Joan Li
- The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
18
|
D'Elia M, Patenaude J, Dupras C, Bernier J. T cells from burn-injured mice demonstrate a loss of sensitivity to glucocorticoids. Am J Physiol Endocrinol Metab 2010; 299:E299-307. [PMID: 20516260 DOI: 10.1152/ajpendo.00084.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids (GC) are steroid hormones that modulate T cell functions and restrain their hyperresponsiveness following stimulation. Naive T lymphocytes are sensitive to GC but become more resistant when they are activated. A balance between activation and inhibition signals is important for a targeted and effective T cell response. Thermal injury is characterized by an immune dysfunction and hyperactive T cells visible at day 10 postburn. In this study, our objective was to evaluate T cell sensitivity to GC following thermal injury and to identify mechanisms that could modulate their sensitivity. One mechanism that we hypothesized was increased p38 mitogen-activated protein kinase (MAPK) activity that could lead to GC resistance. Male C57BL/6 mice underwent a full-thickness 20% total body surface area. At 10 days postinjury, splenic T cells were isolated. Glucocorticoid receptor (GR) expression was higher in T cells from burn-injured mice. Interestingly, these cells were also less sensitive to GC-induced apoptosis prior to and poststimulation. Furthermore, anti-CD3-activated T cells from burn-injured mice showed increased proliferation and CD25 expression, which resisted corticosterone's (CORT) suppressive effect. Anti-CD3-activated CD4(+)CD44(+) memory cells from burn-injured mice expressed the highest level of CD25 and were resistant to CORT. Increased phosphorylation of p38 MAPK was also noted in activated T cells from burn-injured mice. Pharmacological inhibition of p38 MAPK decreased cell proliferation and normalized interferon-gamma (IFNgamma) production. In conclusion, we demonstrate that a unique event like burn injury induces a loss of sensitivity to GC in splenic T cells and have identified p38 MAPK as a key modulator for this resistance.
Collapse
Affiliation(s)
- Michele D'Elia
- INRS, Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Quebec, Canada
| | | | | | | |
Collapse
|
19
|
Fan J, Meng Q, Guo G, Xie Y, Li X, Xiu Y, Li T, Feng W, Ma L. Effects of glutamine added to enteral nutrition on Peyer's patch apoptosis in severely burned mice. Burns 2010; 36:409-17. [DOI: 10.1016/j.burns.2009.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 11/24/2022]
|
20
|
Lucin KM, Sanders VM, Popovich PG. Stress hormones collaborate to induce lymphocyte apoptosis after high level spinal cord injury. J Neurochem 2009; 110:1409-21. [PMID: 19545280 DOI: 10.1111/j.1471-4159.2009.06232.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Post-traumatic immune suppression renders individuals with spinal cord injury (SCI) susceptible to infection. Normally, proper immune function is regulated by collaboration between the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis and involves the controlled release of glucocorticoids (GCs) and norepinephrine (NE). Recently, we showed that after high thoracic (T3) SCI, aberrant levels of GCs and NE accumulate in the blood and spleen, respectively. These changes are associated with splenic atrophy, splenic leucopenia, increased intrasplenic caspase 3 levels, and suppressed B lymphocyte function. As GCs boost SNS function, in part by increasing the expression and affinity of beta2 adrenergic receptors (beta2ARs) while simultaneously preventing beta2AR down-regulation, we predicted that surges in stress hormones (i.e., GCs and NE) in the blood and spleen of mice with high-level SCI would act concurrently to adversely affect lymphocyte function and survival. Here, we show that post-SCI concentrations of GCs enhance the sensitivity of lymphocytes to beta2AR stimulation causing an increase in intracellular Bcl-2 interacting mediator of cell death (Bim) and subsequent apoptosis. In vivo, the combined antagonism of GC receptors and beta2ARs significantly diminished lymphocyte Bim levels and SCI-induced splenic lymphopenia. Together, these data suggest that pharmacological antagonists of the HPA/SNS axes should be considered as adjunct therapies for ameliorating post-traumatic immune suppression in quadriplegics and high paraplegics.
Collapse
Affiliation(s)
- Kurt M Lucin
- Department of Molecular Virology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | |
Collapse
|
21
|
Fan J, Xie Y, Li X, Guo G, Meng Q, Xiu Y, Li T, Feng W, Ma L. The influence of Peyer's patch apoptosis on intestinal mucosal immunity in burned mice. Burns 2009; 35:687-94. [PMID: 19269747 DOI: 10.1016/j.burns.2008.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
The aim of this study was to investigate the influence of apoptosis on Peyer's patches and the intestinal immunoglobulin A (IgA) response in burned mice. Sixty male Balb/c mice were randomly assigned into the sham-burn (control) group (n=30) and the burn group (n=30). The mice in the burn group received a full-thickness scald burn over 20% of the total body surface area (TBSA), on the back. At 12, 24 and 72 h, respectively, after injury, the burned mice (n=10, at every time point) were anaesthetised and their entire intestines were collected. The mice in the sham-burn group were treated with the same procedure as above, except for the burn injury. The number of Peyer's patches on every entire intestine and the total Peyer's patches cell yield were counted. The changes of lymphocyte subpopulations in Peyer's patches were measured by flow cytometry (FCM). And the levels of intestinal IgA were examined by enzyme-linked immunosorbent assay (ELISA). Fluoresceinisothiocyanate (FITC)-conjugated Annexin-tau and propidium iodide (PI) double-staining cells were analysed by FCM for apoptotic ratio in Peyer's patches. The results showed that the total Peyer's patch cell yield and the numbers of CD3, CD4, CD8 and CD19 cells were significantly decreased at 12, 24 and 72 h after injury (P<0.05), and that the intestinal IgA levels were markedly reduced at 24 and 72 h (P<0.05). On the other hand, total apoptotic ratio and all cell subpopulation apoptosis in Peyer's patches were dramatically increased at 12, 24 and 72 h after injury (P<0.05). These results indicated that severe burns led to a significant decrease in the number of Peyer's patch cells and in intestinal IgA levels, which was closely associated with strongly increased apoptosis in Peyer's patches.
Collapse
Affiliation(s)
- Jun Fan
- Department of Burns, Northern Hospital, 83 Wenhua Road, Shenyang 110015, Liaoning, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
D'Elia M, Patenaude J, Bernier J. Regulation of glucocorticoid sensitivity in thymocytes from burn-injured mice. Am J Physiol Endocrinol Metab 2009; 296:E97-104. [PMID: 19001548 DOI: 10.1152/ajpendo.90582.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids (GC) are important steroid hormones that regulate metabolism, development, and the immune system. GC are produced continuously, and maximal levels are reached following stress-related stimuli. Previous studies have demonstrated that increased GC production following thermal injury was responsible for thymic involution. Although GC are mainly synthesized by the adrenal glands, there is increasing evidence that GC may also be produced in nonadrenal tissues. The thymus was reported to express steroidogenic enzymes and to release GC. 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is predominantly a reductase in cells and is essential for the local reactivation of GC. Here, we report that increased GC-induced apoptosis in thymocytes from burn-injured mice is related to increased glucocorticoid receptor (GR) expression and 11beta-HSD1 expression in thymocytes at day 1 postburn injury. In vitro, thymocytes were able to convert 11-dehydrocorticosterone (DHC) to corticosterone (CORT), which induced their apoptosis, and this was pharmacologically inhibited by 18beta-glycyrrhetinic acid, a specific 11beta-HSD inhibitor. Moreover, 11beta-HSD1 expression was confirmed in the 267S3 thymoma-derived cell line, and its activity was responsible for greater sensitivity of these cells to CORT-induced apoptosis. Finally, proinflammatory cytokines [tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-6] increased thymocyte sensitivity to DHC-induced apoptosis through a mechanism involving 11beta-HSD1. Overall, we have shown that burn injury induced 11beta-HSD1 expression in thymocytes, which led to a greater sensitivity of these cells to CORT-induced apoptosis. Increased expression of 11beta-HSD1 and GR may play a role in intrathymic T cell development and can be major determinants of GC sensitivity after a trauma.
Collapse
Affiliation(s)
- Michele D'Elia
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec, Canada
| | | | | |
Collapse
|
23
|
Bird MD, Kovacs EJ. Organ-specific inflammation following acute ethanol and burn injury. J Leukoc Biol 2008; 84:607-13. [PMID: 18362209 DOI: 10.1189/jlb.1107766] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Clinical and experimental evidence demonstrates that ethanol exposure prior to injury alters local and systemic inflammatory responses, increasing morbidity and mortality. Moreover, the aberrant inflammatory responses can directly and indirectly lead to the poor prognosis after injury by altering leukocyte infiltration into the wound site and remote organs and by suppressing immunity leading to increased susceptibility to opportunistic infections. Recent studies from our laboratory have focused on inflammatory responses at the wound site and in other distal organs after exposure to acute ethanol and burn injury. This combined insult leads to increased mortality after dermal or intratracheal pseudomonas infection, relative to infected mice given ethanol or burn injury alone. The increased mortality in mice given ethanol and burn injury parallels elevated serum levels of proinflammatory cytokines, IL-6 and TNF-alpha, marked infiltration of leukocytes into the lung and gut, as well as immunosuppression at the sites of infection. Bacterial translocation from the gut is likely to be responsible, in part, for the aberrant accumulation of leukocytes in the lungs of ethanol-exposed, burn-injured mice. Additionally, other factors, such as expression of adhesion molecules, increased chemokine production, and leakiness of the vascular endothelium, may also be involved.
Collapse
Affiliation(s)
- Melanie D Bird
- Department of Surgery, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | |
Collapse
|
24
|
Butts CL, Sternberg EM. Neuroendocrine factors alter host defense by modulating immune function. Cell Immunol 2008; 252:7-15. [PMID: 18329009 DOI: 10.1016/j.cellimm.2007.09.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 09/01/2007] [Indexed: 01/07/2023]
Abstract
An increasing body of evidence demonstrates that there is bidirectional communication between the neuroendocrine and immune systems. Interaction between these systems results in a variety of outcomes, including the well documented "sickness behavior" elicited by cytokines of the immune system that can enter the brain and activate second messengers that modify neuronal activity. Crosstalk between the neuroendocrine and immune systems can also result in production of factors by the nervous and endocrine systems that alter immune cell function and subsequent modulation of immune responses against infectious agents and other pathogens. Continued exposure to molecules produced by the neuroendocrine system has also been known to increase susceptibility and/or severity of disease. Furthermore, neuroendocrine factors are thought to play a major role in gender-specific differences in development of certain disorders, including autoimmune/inflammatory diseases that have a two to tenfold higher incidence in females compared to males. Neuroendocrine factors can affect immune cells at the level of gene transcription but have also been shown to modify immune cell activity by interacting with intracellular molecules, resulting in modified ability of these cells to mount a potent immune response. In this review, we will consider various effects of the neuroendocrine system and its proteins on specific populations of immune cells and associated responses in host immunity against pathogens. We will further discuss how this modification of immune cell activity by the neuroendocrine system can contribute to susceptibility/severity of disease development.
Collapse
Affiliation(s)
- Cherie L Butts
- Section on Neuroendocrine Immunology and Behavior, National Institute of Mental Health/NIH, 5625 Fishers Lane, Room 4N15, MSC 9401, Bethesda, MD 20892, USA
| | | |
Collapse
|
25
|
A role for corticosterone in impaired intestinal immunity and barrier function in a rodent model of acute alcohol intoxication and burn injury. J Neuroimmune Pharmacol 2008; 1:428-34. [PMID: 18040815 DOI: 10.1007/s11481-006-9031-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alcohol (EtOH) intoxication and burn injury independently activate hypothalamic-pituitary-adrenal (HPA) axis, and glucocorticoids, the end product of the HPA axis, play a role in shaping the immune response under those conditions. By utilizing a rat model of acute EtOH intoxication and burn injury, studies in our laboratory have investigated the role of corticosterone (i.e., glucocorticoids in rodents) in altered intestinal immunity and barrier function following a combined insult of EtOH and burn injury. Results from these studies suggest that EtOH intoxication prior to burn injury augments corticosterone release, which in turn suppresses intestinal T cell function by inhibiting mitogen-activated protein kinase (i.e., p38 and ERK) pathway. Furthermore, we found that corticosterone does not directly alter the intestinal barrier function; rather, it up-regulates interleukin-18, which then directly or indirectly contributes to impaired intestinal barrier function. The loss of intestinal immunity/barrier function may result in increased bacterial translocation and thereby contribute to postinjury pathogenesis, leading to sepsis and organ dysfunction in burn patients as well as in patients with a history of EtOH intoxication.
Collapse
|
26
|
Fazal N, Al-Ghoul WM. Thermal injury-plus-sepsis contributes to a substantial deletion of intestinal mesenteric lymph node CD4 T cell via apoptosis. Int J Biol Sci 2007; 3:393-401. [PMID: 17895960 PMCID: PMC1989035 DOI: 10.7150/ijbs.3.393] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 08/30/2007] [Indexed: 12/16/2022] Open
Abstract
Thermal injury (TI) with septic complications continues to be a serious clinical problem. One of the main concerns in such patients is immunosuppression related to functional derangements in intestinal CD4+ T lymphocytes. Extensive previous studies in thermal injury/septic patients and animal models of thermal injury/sepsis have shown decreased responsiveness of intestinal CD4+ T cells to antigen/mitogen. This hyporesponsiveness could significantly contribute to increase injured host susceptibility to pathogens including those translocating from host's gut lumen. Our previous studies indicated that while thermal injury or sepsis alone lead to suppressed proliferation and IL-2 production of intestinal CD4+ T cells, this study showed a substantial deletion via apoptosis of the Mesenteric Lymph Nodes (MLN) CD4+ T cells. Hence, thermal injury-plus-sepsis contributes not only to suppressed CD4+ T proliferation/IL-2 production but also to a substantial modulation of CD4+ T cell survivability. These findings allow us to conclude that while thermal injury alone can produce attenuated cell mediated responses without an overt change in CD4+ T cell survival, thermal injury with septic complications causes CD4+ T cell death and an irreversible loss of cell-mediated responses. The latter happening could be responsible for high morbidity and mortality in the injured host afflicted with thermal injury plus a critical infection.
Collapse
Affiliation(s)
- Nadeem Fazal
- Department of Biological Sciences, Chicago State University, Chicago, IL 60628, USA.
| | | |
Collapse
|
27
|
Newbery HJ, Loh DH, O'Donoghue JE, Tomlinson VAL, Chau YY, Boyd JA, Bergmann JH, Brownstein D, Abbott CM. Translation elongation factor eEF1A2 is essential for post-weaning survival in mice. J Biol Chem 2007; 282:28951-28959. [PMID: 17640869 DOI: 10.1074/jbc.m703962200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translation elongation factor eEF1A, formerly known as EF-1 alpha, exists as two variant forms; eEF1A1, which is almost ubiquitously expressed, and eEF1A2, whose expression is restricted to muscle and brain at the level of whole tissues. Expression analysis of these genes has been complicated by a general lack of availability of antibodies that specifically recognize each variant form. Wasted mice (wst/wst) have a 15.8-kilobase deletion that abolishes activity of eEF1A2, but before this study it was unknown whether the deletion also affected neighboring genes. We have generated a panel of anti-peptide antibodies and used them to show that eEF1A2 is expressed at high levels in specific cell types in tissues previously thought not to express this variant, such as pancreatic islet cells and enteroendocrine cells in colon crypts. Expression of eEF1A1 and eEF1A2 is shown to be generally mutually exclusive, and we relate the expression pattern of eEF1A2 to the phenotype seen in wasted mice. We then carried out a series of transgenic experiments to establish whether the expression of other genes is affected by the deletion in wasted mice. We show that aspects of the phenotype such as motor neuron degeneration relate precisely to the relative expression of eEF1A1 and eEF1A2, whereas the immune system abnormalities are likely to result from a stress response. We conclude that loss of eEF1A2 function is solely responsible for the abnormalities seen in these mice.
Collapse
Affiliation(s)
- H J Newbery
- Medical Genetics, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom and
| | - D H Loh
- Medical Genetics, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom and
| | - J E O'Donoghue
- Medical Genetics, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom and
| | - V A L Tomlinson
- Medical Genetics, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom and
| | - Y-Y Chau
- Medical Genetics, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom and
| | - J A Boyd
- Medical Genetics, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom and
| | - J H Bergmann
- Medical Genetics, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom and
| | - D Brownstein
- Research Animal Pathology Core Facility, Room W3.03, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - C M Abbott
- Medical Genetics, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom and.
| |
Collapse
|
28
|
Abstract
The systemic pathophysiologic changes following thermal injuries affect multiple organs and body systems leading to clinical manifestations including shock, intestinal alterations, respiratory and renal failure, immunosuppression and others. Recent advances in the comprehension of mechanisms underlying systemic complications of thermal injuries have contributed to uncover part of the cellular and molecular basis that underlie such changes. Recently, programmed cell death (apoptosis) has been considered playing an important role in the development of such pathological events. Therefore, investigators utilizing animal models and clinical studies involving human primates have produced a large body of information suggesting that apoptosis is associated with most of the tissue damages triggered by severe thermal injuries. In order to draw the attention on the important role of apoptosis on systemic complications of thermal injuries, in this review we describe most of these studies, discuss possible cellular and molecular mechanisms and indicate ways to utilize them for the development of therapeutic strategies by which apoptosis may be prevented or counteracted.
Collapse
Affiliation(s)
- G Gravante
- Department of Surgery, University of Rome Tor Vergata, Via U Maddalena 40/a 00043, Ciampino, Rome, Italy.
| | | | | |
Collapse
|
29
|
Dasgupta R, Saha I, Pal S, Bhattacharyya A, Sa G, Nag TC, Das T, Maiti BR. Immunosuppression, hepatotoxicity and depression of antioxidant status by arecoline in albino mice. Toxicology 2006; 227:94-104. [PMID: 16945459 DOI: 10.1016/j.tox.2006.07.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/17/2006] [Accepted: 07/18/2006] [Indexed: 11/18/2022]
Abstract
BACKGROUND There are about 600 million betel quid chewers in the world. Betal quid chewing is one of the major risk factors of hepatocarcinoma, oropharyngeal and esophagus cancers. Arecoline, the main Areca alkaloid of the betel nut is reported to have cytotoxic, genotoxic and mutagenic effects in various cells. It shows strong correlation to the incidence of oral submucosal fibrosis, leukoplakia and oral cancer, and has also been found to impose toxic manifestations in immune, hepatic and other defense systems of the recipient. AIM The precise molecular mechanisms underlying the toxic effects of arecoline deserve investigation. To clarify the action of arecoline on defense systems, immune, hepatic and detoxification system were studied in mice. METHOD Cell count and cell cycle of the splenocytes were studied for evaluating cell immunity. Liver function test (LFT) was followed by assaying different enzyme systems from serum (SGPT, SGOT and ALP) and liver (GST for detoxication enzyme, SOD and catalase for antioxidant enzymes and GSH for non-enzymatic antioxidant) and by ultrastructural studies of hepatocytes. RESULTS Here we report that arecoline arrested splenic lymphocyte cell cycle at lower concentration with induced apoptosis at higher concentration thereby causing immunosuppression in arecoline recipients. Besides, it resulted in hepatotoxicity in arecoline recipient mice by disrupting the hepatocyte ultrastructure, as judged by liver ultrastructural studies that showed decreased nuclear size, RER with profusely inflated cysternae and abundance of lipid droplets, and by up regulating hepatotoxic marker enzymes (SGOT and SGPT) in serum. Arecoline also caused depression of antioxidants, i.e., superoxide dismutase (SOD), catalase, reduced glutathione (GSH) and glutathione-S-transferase (GST) that are known to neutralize reactive oxygen species. CONCLUSION All these above-mentioned results led us to conclude that arecoline attacks multiple targets to finally generate systemic toxicity in mice.
Collapse
Affiliation(s)
- Romi Dasgupta
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019, India
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Quadrilatero J, Hoffman-Goetz L. Mouse thymocyte apoptosis and cell loss in response to exercise and antioxidant administration. Brain Behav Immun 2005; 19:436-44. [PMID: 16061151 DOI: 10.1016/j.bbi.2004.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 12/07/2004] [Accepted: 12/15/2004] [Indexed: 10/25/2022] Open
Abstract
Various physical and psychological stressors can cause thymocyte apoptosis and cell loss in rodents. Although glucocorticoids (GC) are commonly implicated, oxidative stress may also play a role. The purpose of this study was to examine the effect of an acute bout of strenuous treadmill running, and the antioxidant N-acetyl-L-cysteine (NAC) on thymocyte loss and apoptosis. Eighty-eight female C57BL/6 mice were given NAC (1 g/kg, i.p.) or saline (SAL) 30 min before 90 min of treadmill exercise at a 2 degrees slope (EX; 30 min at 22 m/min; 30 min at 25 m/min; and 30 min at 28 m/min) and sacrificed immediately (Imm) or 24 h following EX. Control mice (NonEX) were exposed to treadmill noise and vibration without running. Thymocytes were isolated and analyzed for phosphatidylserine (PS) externalization (Annexin V), loss of membrane integrity, mitochondria membrane depolarization, intracellular hydrogen peroxide (H(2)O(2)) production, and intracellular glutathione (GSH) as well as protein levels of caspase 3, Bcl-2, and cytosolic cytochrome c. Blood was analyzed for corticosterone (CORT) concentrations by radioimmunoassay. Exercise stress caused a significant increase in plasma CORT concentrations in EX + SAL + Imm and EX + NAC + Imm groups compared to NonEX mice. Relative to NonEX mice, thymocytes isolated from EX + SAL + Imm mice showed signs of an early apoptotic profile as indicated by decreased GSH stores and increased mitochondrial membrane depolarization. These effects were followed by a 50% reduction in thymocyte numbers 24 h post-exercise (EX + SAL + 24 h). Alterations in GSH levels, mitochondrial membrane depolarization, and thymocyte loss were not observed in mice receiving NAC. These results suggest that exercise-induced thymocyte apoptosis and cell loss may be mediated via an oxidative stress pathway.
Collapse
Affiliation(s)
- Joe Quadrilatero
- Department of Health Studies and Gerontology, Faculty of Applied Health Sciences, University of Waterloo, Ont., Canada
| | | |
Collapse
|
31
|
Bumbasirevic V, Karamarkovic A, Lesic A, Bumbasirevic M. Trauma-related sepsis and multiple organ failure: Current concepts in the diagnosis and management. CURRENT ORTHOPAEDICS 2005; 19:314-321. [DOI: 10.1016/j.cuor.2005.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Quadrilatero J, Hoffman-Goetz L. In vivo corticosterone administration at levels occurring with intense exercise does not induce intestinal lymphocyte apoptosis in mice. J Neuroimmunol 2005; 162:137-48. [PMID: 15833369 DOI: 10.1016/j.jneuroim.2005.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 02/14/2005] [Indexed: 11/17/2022]
Abstract
Intestinal lymphocyte apoptosis can occur following physiological and pathophysiological stress as well as exhaustive exercise. In this study we investigated whether corticosterone (CORT) administration at physiological concentrations observed following strenuous exercise induces intestinal lymphocyte apoptosis and cell loss in mice. CORT injection (14 mg/kg; i.p.) caused a four-fold increase in plasma CORT concentrations, but did not affect intestinal lymphocyte cell loss or alter baseline intestinal lymphocyte apoptosis, as measured by phosphatidylserine externalization, cell viability, mitochondrial membrane depolarization, caspase 3, Bcl-2 and cytosolic cytochrome c protein levels. These findings indicate that CORT at levels observed following strenuous exercise is not involved in intestinal lymphocyte apoptosis and cell loss.
Collapse
Affiliation(s)
- J Quadrilatero
- Department of Health Studies and Gerontology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
33
|
Quadrilatero J, Hoffman-Goetz L. N-acetyl-l-cysteine protects intestinal lymphocytes from apoptotic death after acute exercise in adrenalectomized mice. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1664-72. [PMID: 15886359 DOI: 10.1152/ajpregu.00843.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lymphocyte apoptosis has been observed after strenuous exercise. Both glucocorticoids (GC) and reactive oxygen species (ROS) have been suggested to contribute to exercise-induced lymphocyte apoptosis. The aims of this study were to 1) examine the direct contribution of GC during exercise-induced intestinal lymphocyte (IL) apoptosis and 2) determine the contribution of oxidative stress, in the absence of GC, to exercise-induced IL apoptosis. Mice were bilaterally adrenalectomized (ADX) and randomly assigned to receive saline (SAL) or N-acetyl-l-cysteine (NAC) 30 min before treadmill exercise (EX). EX consisted of 90 min of continuous running at a 2 degrees slope (30 min at 22 m/min, 30 min at 25 m/min; and 30 min at 28 m/min), and then killed immediately (Imm) or 24 h (24 h) postexercise. Control mice were exposed to a nonexercised (NonEX) condition consisting of treadmill noise and vibration without running. ILs were isolated and measured for apoptotic (phosphatidylserine externalization, mitochondrial membrane depolarization, Bcl-2, caspase 3, and cytosolic cytochrome c) and oxidative stress (H(2)O(2) and glutathione) markers. Plasma was analyzed for corticosterone (CORT) by radioimmunoassay. ADX eliminated the exercise-induced elevation in CORT but did not prevent IL apoptosis and cell loss relative to NonEX mice. In contrast, administration of NAC to ADX mice protected ILs from apoptotic cell death and inhibited post-exercise cell loss. These findings suggest that GC are not responsible for exercise-induced apoptosis and cell loss of ILs. The protective effect provided by the antioxidant NAC strongly suggest that oxidative stress is the primary pathway for IL apoptosis and cell loss after strenuous exercise.
Collapse
Affiliation(s)
- Joe Quadrilatero
- Department of Health Studies and Gerontology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
34
|
D'Elia M, Patenaude J, Hamelin C, Garrel DR, Bernier J. Corticosterone binding globulin regulation and thymus changes after thermal injury in mice. Am J Physiol Endocrinol Metab 2005; 288:E852-60. [PMID: 15598670 DOI: 10.1152/ajpendo.00407.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermal injury is extremely stressful, and data characterizing the systemic endocrine stress response to this injury are sparse. The objective of this study was to measure the effects of thermal injury on mice on corticosterone (Cort) levels in relation with corticosteroid-binding globulin (CBG) and thymus cell populations. The endocrine stress response was determined by measuring total Cort, free Cort, CBG binding capacity, liver CBG mRNA, and circulating CBG levels at 1, 2, 5, and 10 days postburn. Thymus cell populations were also analyzed. After thermal injury, a rapid increase of total Cort was observed in the first 48 h. This was associated with a decrease of hepatic CBG mRNA, protein levels, and binding capacity. Percentage of free Cort in the burn group peaked at day 2 postburn with a dramatic (+500%) increase. This correlated with a significant decrease of thymus cellularity (50% less). Phenotypic analyses showed that corticosensitive cells were significantly altered. After treatment (5 days), both endocrine and immune parameters returned to control levels. Our results demonstrate that, after a thermal injury, CBG is mainly responsible for Cort's action on corticosensitive immune cells.
Collapse
Affiliation(s)
- Michele D'Elia
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, 245 boul. Hymus, Pointe-Claire, Québec, Canada
| | | | | | | | | |
Collapse
|
35
|
Li X, Rana SN, Kovacs EJ, Gamelli RL, Chaudry IH, Choudhry MA. Corticosterone suppresses mesenteric lymph node T cells by inhibiting p38/ERK pathway and promotes bacterial translocation after alcohol and burn injury. Am J Physiol Regul Integr Comp Physiol 2005; 289:R37-44. [PMID: 15718389 DOI: 10.1152/ajpregu.00782.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previous studies showed that alcohol (EtOH) intoxication before burn injury suppresses mesenteric lymph node (MLN) T cell functions and increases gut bacterial translocation. In this study, we examined whether corticosterone (Cort) plays any role in suppressing MLN T cell function and bacterial accumulation after EtOH intoxication and burn injury. Rats were gavaged with EtOH to achieve a blood EtOH level of approximately 100 mg/dl before receiving 25% total body surface area burn or sham injury. A group of rats was treated with the Cort synthesis inhibitor metyrapone (25 mg/kg) at the time of injury and on day 1 after injury. Two days after injury, a significant increase in blood Cort levels and suppression of MLN T cell proliferation and IL-2 production was observed in rats receiving combined insult of EtOH intoxication and burn injury compared with rats receiving EtOH intoxication or burn injury alone. There was no change in T cell apoptosis after combined insult of EtOH and burn injury. Furthermore, T cell suppression was accompanied by a significant decrease in p38 and ERK1/2 activation (phosphorylation). There was no difference in JNK activation after EtOH and burn injury. Treatment of rats with metyrapone prevented the suppression of MLN T cell proliferation, IL-2 production, and p38 and ERK1/2 phosphorylation. Restoration of T cell function in metyrapone-treated animals was also associated with the decrease in bacterial accumulation in MLN. These findings suggest that EtOH intoxication before burn injury augments Cort release, which suppresses MLN T cell function by inhibiting p38 and ERK1/2 activation and promotes bacterial accumulation in MLN after EtOH and burn injury.
Collapse
Affiliation(s)
- Xiaoling Li
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, VolkerHall G 094, 1670 Univ. Boulevard, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
36
|
Efron PA, Tinsley K, Minnich DJ, Monterroso V, Wagner J, Lainée P, Lorré K, Swanson PE, Hotchkiss R, Moldawer LL. Increased lymphoid tissue apoptosis in baboons with bacteremic shock. Shock 2005; 21:566-71. [PMID: 15167687 DOI: 10.1097/01.shk.0000126648.58732.8c] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The molecular mechanisms of immune cell apoptosis during sepsis remain unclear. Two young adult baboons (Papio sp.) received a lethal dose of live Escherichia coli and were sacrificed at either 16 (for animal welfare concerns) or 24 h post-septic shock. An additional baboon, which received no bacteria, served as a control. Necropsy was performed immediately with subsequent immunohistochemical staining of lymphoid tissue. Immunohistologic analysis of tissues from the septic baboons revealed marked systemic lymphocyte apoptosis occurring in all lymphoid tissues examined. Focally, pyknotic and karyorrhectic lymphocytes demonstrated activation of a mitochondrial-dependent cell death pathway (active caspase 9 and apoptosis-inducing factor). Other regions demonstrated apoptotic lymphocytes with activation of a death receptor-dependent cell pathway (Fas ligand). Thus, we have demonstrated for the first time in primates that overwhelming gram-negative bacteremia produces an early and profound lymphocyte death that occurs through multiple cell death pathways. Bacteremic shock in the baboon may be an appropriate model for studying experimental therapies aimed at blocking lymphocyte apoptosis because their response appears comparable to humans dying from sepsis.
Collapse
Affiliation(s)
- Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hoffman-Goetz L, Quadrilatero J, Boudreau J, Guan J. Adrenalectomy in mice does not prevent loss of intestinal lymphocytes after exercise. J Appl Physiol (1985) 2005; 96:2073-81. [PMID: 15133013 DOI: 10.1152/japplphysiol.01262.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exhaustive exercise is associated with an increase in circulating glucocorticoids (GCs), lymphocyte apoptosis, and a reduction in intestinal lymphocyte number. The present study examined the role of GCs on the numerical changes seen in intestinal lymphocytes after exercise. Female C57BL/6 mice were bilaterally adrenalectomized (ADX; n = 18) or given sham surgery (Sham; n = 18) and assigned to one of three exercise conditions: treadmill running (28 m/min, 90 min, 2 degrees slope) and killed immediately or after 24 h recovery, or not exercised and killed immediately after 90-min exposure to the treadmill environment. Lymphocytes were isolated from the intestines with CD45(+) cells collected by positive selection using magnetic bead separation columns, and lymphocyte subpopulations were analyzed by flow cytometry for CD45(+), CD3alphabeta(+), CD3gammadelta(+), CD8beta(+), CD8alpha(+), CD4(+), and NK(+) phenotypic markers. ADX mice had significantly more intestinal CD45(+) leukocytes (P < 0.05) and CD3alphabeta(+) (P < 0.05), CD3gammadelta(+) (P < 0.01), CD8alpha(+) (P < 0.001), and NK(+) (P < 0.05) intestinal lymphocytes than Sham mice. There was a significant effect of exercise condition on total intestinal CD45(+) leukocytes (P < 0.01) and CD3alphabeta(+) (P < 0.05), CD8alpha(+) (P < 0.001), and CD4(+) (P < 0.05) intestinal lymphocytes, with fewer cells at 24 h postexercise compared with the other treatment conditions. There were no surgical x exercise interaction effects on the CD3 and CD8 phenotype numbers. Plasma corticosterone was virtually nil in ADX mice regardless of exercise condition but was significantly elevated in Sham mice immediately postexercise (P < 0.001). The data indicate that ADX does not prevent the loss of lymphocytes from the intestinal mucosa 24 h after strenuous exercise and GCs are not directly causal in the leukopenia of exercise.
Collapse
Affiliation(s)
- L Hoffman-Goetz
- Department of Health Studies and Gerontology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|
38
|
Patenaude J, D'Elia M, Hamelin C, Garrel D, Bernier J. Burn injury induces a change in T cell homeostasis affecting preferentially CD4+T cells. J Leukoc Biol 2004; 77:141-50. [PMID: 15542542 DOI: 10.1189/jlb.0703314] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Burn injuries are known to be associated with altered immune functions, resulting in decreased resistance to subsequent infection. In the present study, we determined the in vivo changes in T cell homeostasis following burn injury. Two groups of mice were used: a sham-burn group receiving buprenorphine as an analgesic and a burn group receiving buprenorphine and subjected to burn injury on 20% of the total body surface area. Results showed an important decrease in splenocytes following burn injury. This decrease persisted for 5 days and was followed, at day 10, by a 63% increase in number of cells. In vivo cell proliferation, as determined by the incorporation of 5-bromo-2'-dexoxyuridine, showed a significant increase of cycling splenocytes between days 2 and 10 after burn injury. The percentage of CD4+ and CD8+ T cells in the spleen was altered for 10 days after thermal injury. Analysis of naive (CD62Lhigh CD44low) and effector/memory (CD62Llow CD44high) T cells showed a percent decrease, independent of the expression of CD4 or CD8 molecules. However, early activation markers, such as CD69+, were expressed only on CD4+ T cells after a number of days following injury. Even with an activated phenotype, 10 days post-burn injury, CD4+ naive T cells significantly increased spontaneous apoptosis, detected by using a fluorescent DNA-binding agent 7-amino-actinomycin D. CD8+ T lymphocytes did not express early activation markers and were more resistant to apoptosis. Using purified T cells, we have shown unresponsiveness at day 10. Overall, these results demonstrate that mechanisms of T cell homeostasis were perturbed following burn injury. However, after 10 days, this perturbation persisted only in CD4+ T cells.
Collapse
Affiliation(s)
- Julie Patenaude
- INRS-Institut Armand-Frappier, Pointe-Claire, Quebec, Canada
| | | | | | | | | |
Collapse
|
39
|
Efron PA, Martins A, Minnich D, Tinsley K, Ungaro R, Bahjat FR, Hotchkiss R, Clare-Salzler M, Moldawer LL. Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. THE JOURNAL OF IMMUNOLOGY 2004; 173:3035-43. [PMID: 15322163 DOI: 10.4049/jimmunol.173.5.3035] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DCs) play a key role in critical illness and are depleted in spleens from septic patients and mice. To date, few studies have characterized the systemic effect of sepsis on DC populations in lymphoid tissues. We analyzed the phenotype of DCs and Th cells present in the local (mesenteric) and distant (inguinal and popliteal) lymph nodes of mice with induced polymicrobial sepsis (cecal ligation and puncture). Flow cytometry and immunohistochemical staining demonstrated that there was a significant local (mesenteric nodes) and partial systemic (inguinal, but not popliteal nodes) loss of DCs from lymph nodes in septic mice, and that this process was associated with increased apoptosis. This sepsis-induced loss of DCs occurred after CD3(+)CD4(+) T cell activation and loss in the lymph nodes, and the loss of DCs was not preceded by any sustained increase in their maturation status. In addition, there was no preferential loss of either mature/activated (MHCII(high)/CD86(high)) or immature (MHCII(low)/CD86(low)) DCs during sepsis. However, there was a preferential loss of CD8(+) DCs in the local and distant lymph nodes. The loss of DCs in lymphoid tissue, particularly CD8(+) lymphoid-derived DCs, may contribute to the alterations in acquired immune status that frequently accompany sepsis.
Collapse
Affiliation(s)
- Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville 32608, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Sepsis is a syndrome of significant morbidity and mortality. Unlike the advances made in other diseases processes, improvements in outcome from sepsis, severe sepsis, and septic shock have been modest. Current research has altered our understanding of sepsis pathogenesis such that present models and definitions are still evolving. One relatively novel cell type, the dendritic cell, is the subject of much current investigation in sepsis. Although our present understanding of dendritic cell biology is incomplete, growing evidence supports the importance of this antigen-presenting cell in the normal and maladaptive responses to microbial invasion and tissue injury. A better understanding of this cell's basic biology as well as its potential as a therapeutic target will undoubtedly play increasing roles in the development of new strategies for the treatment of the septic patient.
Collapse
Affiliation(s)
- Philip Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville 32610, USA
| | | |
Collapse
|
41
|
Jeong J, Adamson LK, Greenhalgh DG, Cho K. Injury-associated differential regulation of histone expression and modification in the thymus of mice. Exp Biol Med (Maywood) 2004; 229:327-34. [PMID: 15044716 DOI: 10.1177/153537020422900407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
One of the key events in the regulation of gene expression is chromatin remodeling involving histone regulation. We investigated the effects of burns on the expression of histone that might be associated with altered molecular and pathological profiles in the thymus. A markedly decreased expression of histone variant H2A.1 mRNA was identified in the thymus after burn during a differential display experiment. Subsequently, we examined the histone expression (mRNA and protein) and posttranslational modification in the thymus after burn. Also, changes in proliferating cell nuclear antigen (PCNA), a central molecule in chromatin assembly, was examined. Reverse-transcription polymerase chain reaction analysis revealed a transient decrease in the expression of several histone variants (H2A.1, H1(r1), H3-B, H3-1, and H4-D) mRNAs in the thymus at 1 day after burn. A decrease in histone subtypes H2A, H2B, H3, and H4, but not H1, was demonstrated 1 and 3 days after burn according to the results of Western blot. Furthermore, there were different levels of decreases in acetylated and dimethylated forms of histone H3 1 and 3 days after burn. In addition, decreased levels of PCNA were evident in the thymus 1 day after burn. Changes in the expression of histones and PCNA may reflect mere decrease in proliferating cells and/or a reorganization of the chromatin structure associated with altered transcriptional activities, eventually contributing to the phenotypic changes in the thymus after burn.
Collapse
Affiliation(s)
- Jayoung Jeong
- Burn Research, Shriners Hospitals for Children Northern California, Sacramento, California 95817, USA
| | | | | | | |
Collapse
|
42
|
Feezor RJ, Paddock HN, Baker HV, Varela JC, Barreda J, Moldawer LL, Schultz GS, Mozingo DW. Temporal patterns of gene expression in murine cutaneous burn wound healing. Physiol Genomics 2004; 16:341-8. [PMID: 14966252 DOI: 10.1152/physiolgenomics.00101.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The global changes in gene expression in injured murine skin were characterized following a second-degree scald burn. Dorsal skin was harvested from uninjured and from burned mice at 2 h and at 3 and 14 days following immersion in 65 degrees C water for 45 s. Gene expression was surveyed using an Affymetrix U74Av2 GeneChip, and patterns of gene expression were analyzed using hierarchical clustering and supervised analysis. Burn injury produced significant alterations in the expression of a number of genes, with the greatest changes seen 3 and 14 days after the scald burn. Using a supervised analysis with a false discovery rate of 1% or 5%, differences in the expression of 192 or 1,116 genes, respectively, discriminated among the unburned skin and the three time points after the burn injury. Gene expression was primarily a transient and time-dependent upregulation. The expression of only 24 of the 192 discriminating genes was downregulated after the burn injury. No gene exhibited a sustained increase in expression over the entire 14 days following the burn injury. Gene ontologies revealed an integrated upregulation of inflammatory and protease genes at acute time intervals, and a diminution of cytoskeletal and muscle contractile genes at 3 or 14 days after the injury. Following a second-degree scald burn, global patterns of gene expression in the burn wound change dramatically over several weeks in a time-dependent manner, and these changes can be categorized based on the biological relevance of the genes.
Collapse
|
43
|
Fee D, Crumbaugh A, Jacques T, Herdrich B, Sewell D, Auerbach D, Piaskowski S, Hart MN, Sandor M, Fabry Z. Activated/effector CD4+ T cells exacerbate acute damage in the central nervous system following traumatic injury. J Neuroimmunol 2003; 136:54-66. [PMID: 12620643 DOI: 10.1016/s0165-5728(03)00008-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD4(+) helper T cells (Th) have been demonstrated to participate in the chronic phase of traumatic injury repair in the central nervous system (CNS). Here, we show that CD4(+) T cells can also contribute to the severity of the acute phase of CNS traumatic injury. We compared the area of tissue damage and the level of cellular apoptosis in aseptic cerebral injury (ACI) sites of C57BL/6 wild type and RAG1(-/-) immunodeficient mice. We demonstrate that ACI is attenuated in RAG1(-/-) mice compared to C57BL/6 animals. Adoptive transfer of CD4(+)CD62L(low)CD44(high) activated/effector T cells 24 h prior to ACI into RAG1(-/-) mice resulted in a significantly enhanced acute ACI that was comparable to ACI in the C57BL/6 animals. Adoptive transfer of CD4(+)CD62L(high)CD44(low) naive/non-activated T cells did not increase ACI in the brains of RAG1(-/-) mice. T cell inhibitory agents, cyclosporin A (CsA) and FK506, significantly decreased ACI-induced acute damage in C57BL/6 mice. These results suggest a previously undescribed role for activated/effector CD4(+) T cells in exacerbating ACI-induced acute damage in the CNS and raise a novel possibility for acute treatment of sterile traumatic brain injury.
Collapse
Affiliation(s)
- Dominic Fee
- Department of Neurology, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Richard S Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
45
|
Valenti L, Mathieu J, Chancerelle Y, Levacher M, Chanaud B, De Sousa M, Strzalko S, Dinh-Xuan AT, Giroud JP, Florentin I. Nitric oxide inhibits spleen cell proliferative response after burn injury by inducing cytostasis, apoptosis, and necrosis of activated T lymphocytes: role of the guanylate cyclase. Cell Immunol 2003; 221:50-63. [PMID: 12742382 DOI: 10.1016/s0008-8749(03)00064-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously showed that an overproduction of nitric oxide (NO) by macrophages was responsible for the collapse of lymphoproliferative responses after burn injury in rats. First, we demonstrate here that 10 days post-burn, the inhibition of splenocyte response to concanavalin-A results from cytostatic, apoptotic, and necrotic effects of NO on activated T cells. This was evidenced by various criteria at the levels of DNA, mitochondria, and plasma membrane. Inhibition of NO synthase by S-methylisothiourea (10 microM) normalized all the parameters. Second, we show that two soluble guanylate cyclase (sGC) inhibitors, LY83583 and ODQ, restored the proliferative response in a concentration-dependent manner. LY83583 (0.5 microM) rescued T cells from apoptosis. Similar results were obtained with KT5823 (5 microM) a specific inhibitor of protein kinase G (PKG). In contrast, neither LY83583 nor KT5823 inhibited NO-induced necrosis. These results suggest that NO blocked T cells in the G1 phase and induced apoptosis through a sGC-PKG-dependent pathway and necrosis through an independent one.
Collapse
Affiliation(s)
- Lionel Valenti
- Département de Pharmacologie, CNRS UPRES-A 8068, Pavillon Gustave Roussy, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75679 Paris cedex 14, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Spies M, Dasu MRK, Svrakic N, Nesic O, Barrow RE, Perez-Polo JR, Herndon DN. Gene expression analysis in burn wounds of rats. Am J Physiol Regul Integr Comp Physiol 2002; 283:R918-30. [PMID: 12228062 DOI: 10.1152/ajpregu.00170.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The events occurring early in the burn wound trigger a sequence of local and systemic responses that influence cell and tissue survival and, consequently, wound healing and recovery. Using high-density oligonucleotide arrays we identified gene expression patterns in skin samples taken from a region of injury in the burn rat model. The associated genomic events include the differential expression of genes involved in cell survival and death, cell growth regulation, cell metabolism, inflammation, and immune response. The functional gene cluster detected and their time appearance matched the time sequence known to occur in burn wound healing.
Collapse
Affiliation(s)
- Marcus Spies
- Department of Surgery, University of Texas Medical Branch and Shriners Hospitals for Children, Galveston 77550, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Spies M, Chappell VL, Dasu MR, Herndon DN, Thompson JC, Wolf SE. Role of TNF-alpha in gut mucosal changes after severe burn. Am J Physiol Gastrointest Liver Physiol 2002; 283:G703-8. [PMID: 12181186 DOI: 10.1152/ajpgi.00149.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gut epithelial cell death by apoptosis is increased in the gut epithelium after severe burn associated with mucosal atrophy. We hypothesized that tumor necrosis factor (TNF)-alpha-TNF receptor (TNFR) interaction activates apoptosis in small bowel mucosal cells after severe burn. C57BL6 mice received a 30% total body surface area scald burn and were treated with neutralizing anti-TNF-alpha. The proximal small bowel was assessed for mucosal atrophy. Proliferation and apoptosis of mucosal cells were assessed by proliferative cell nuclear antigen-immunostaining and terminal deoxyuridine nick-end labeling assay, respectively. Mucosal height and mucosal cell number decreased after burn. Anti-TNF-alpha-treated mice showed significantly less mucosal atrophy. Proliferation of intestinal cells was not changed with burn or anti-TNF-alpha treatment. An over threefold increase in apoptotic cell number was seen after burn, which was diminished by anti-TNF-alpha treatment. Changes in gut mucosal homeostasis after severe burn are affected, in part, by the activation of apoptosis by TNF-alpha-TNFR interaction.
Collapse
Affiliation(s)
- Marcus Spies
- Shriners Hospitals for Children and Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | | | | | | | | | | |
Collapse
|
48
|
Maekawa T, Kajihara H, Okabayashi K, Otani M, Yuge O. Impairment of splenic B and T lymphocytes in the early period after severe thermal injury: immunohistochemical and electron microscopic analysis. Burns 2002; 28:329-39. [PMID: 12052371 DOI: 10.1016/s0305-4179(01)00104-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Immunocompetent cells, such as lymphocytes and macrophages are easily damaged after severe thermal injury. In the present study, we investigated structural changes in splenic lymphocytes in the early period after a full skin thickness burn of 30% of the body surface area in rats. At 2h after thermal injury, numerous B lymphocytes had accumulated in the markedly expanded marginal zone of the splenic white pulp. Electron microscopy showed a small number of apoptotic cells in the marginal zone of the white pulp. After 5h, B lymphocytes in the marginal zone as well as in the lymphoid sheath and follicles were markedly decreased in number with an increase of tingible bodies and tingible body macrophages. The number of apoptotic cells had increased not only in the marginal zone, but also in the lymphoid sheath and follicles. After 12h, the splenic white pulp became atrophic with the appearance of a small number of large blastic cells and mitotic figures. After 24h, the splenic white pulp was still atrophic with a decrease in the number of lymphocytes, especially B lymphocytes. On the other hand, the large blastic cells and mitotic figures increased in number. Apoptotic cells decreased in number in the white pulp. After 48h, the lymph follicles were slightly enlarged and a small germinal centre occasionally appeared. A small number of T lymphocytes were observed in the splenic white pulp of the normal rats. However, the T lymphocytes almost disappeared shortly after thermal injury. A recovery in T cell number was observed only after 48h. These findings indicate that severe impairment of both B and T lymphocytes, circulating and in the lymphoid organs, occurs shortly after thermal injury and continues for several days. This severe damage to the lymphocytes is considered to be closely related to severe immune suppression after thermal injury.
Collapse
Affiliation(s)
- Takahide Maekawa
- Division of Anaesthesiology and Critical Care Medicine, Faculty of Medicine, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
49
|
Oberholzer C, Oberholzer A, Bahjat FR, Minter RM, Tannahill CL, Abouhamze A, LaFace D, Hutchins B, Clare-Salzler MJ, Moldawer LL. Targeted adenovirus-induced expression of IL-10 decreases thymic apoptosis and improves survival in murine sepsis. Proc Natl Acad Sci U S A 2001; 98:11503-8. [PMID: 11553765 PMCID: PMC58759 DOI: 10.1073/pnas.181338198] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sepsis remains a significant clinical conundrum, and recent clinical trials with anticytokine therapies have produced disappointing results. Animal studies have suggested that increased lymphocyte apoptosis may contribute to sepsis-induced mortality. We report here that inhibition of thymocyte apoptosis by targeted adenovirus-induced thymic expression of human IL-10 reduced blood bacteremia and prevented mortality in sepsis. In contrast, systemic administration of an adenovirus expressing IL-10 was without any protective effect. Improvements in survival were associated with increases in Bcl-2 expression and reductions in caspase-3 activity and thymocyte apoptosis. These studies demonstrate that thymic apoptosis plays a critical role in the pathogenesis of sepsis and identifies a gene therapy approach for its therapeutic intervention.
Collapse
Affiliation(s)
- C Oberholzer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Brunner T, Arnold D, Wasem C, Herren S, Frutschi C. Regulation of cell death and survival in intestinal intraepithelial lymphocytes. Cell Death Differ 2001; 8:706-14. [PMID: 11464215 DOI: 10.1038/sj.cdd.4400854] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2000] [Revised: 01/31/2001] [Accepted: 02/07/2001] [Indexed: 11/09/2022] Open
Abstract
Intraepithelial lymphocytes (IEL) of the small murine bowel represent a unique population of mostly CD8(+) T lymphocytes that reside within the epithelial cell layer of the intestinal mucosa. The close interaction with epithelial cells appears to be crucial for IEL survival since isolation and ex vivo culture induces massive apoptosis in this lymphocyte population. Here, we provide evidence that this form of IEL cell death may be mediated at least in part by endogenously produced glucocorticoids since adrenalectomy or treatment of mice with a glucocorticoid receptor antagonist significantly enhanced ex vivo survival of IEL. We further demonstrate that ex vivo activation of IEL induces upregulation of anti-apoptotic gene products, compensates for the lack of survival cytokines and rescues from apoptotic cell death. Thus, similar to thymocytes and T cell hybridomas, IEL survival may be regulated by the antagonistic action of TCR activation and glucocorticoids.
Collapse
Affiliation(s)
- T Brunner
- Division of Immunopathology, Institute of Pathology, University of Bern, Murtenstrasse 31, 3010 Bern, Switzerland.
| | | | | | | | | |
Collapse
|