1
|
Zhang Z, Liu P, Yang L, Zhao N, Ou W, Zhang X, Zhang Y, Chen S, Wu S, Yang X. Association between the High-Sensitivity C-Reactive Protein/Albumin Ratio and New-Onset Chronic Kidney Disease in Chinese Individuals. Nephron Clin Pract 2023; 148:160-170. [PMID: 37699382 PMCID: PMC10911139 DOI: 10.1159/000534034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
INTRODUCTION Inflammation is associated with development of chronic kidney disease (CKD). However, the association of the high-sensitivity C-reactive protein (hs-CRP)/albumin ratio (CAR) on the risk of CKD in the general population is unknown. This study explored the relationship between the CAR and CKD and the ability of this ratio to predict CKD in the general population. METHODS A total of 47,472 participants in the Kailuan study who met the inclusion criteria in 2010 were selected and grouped using the quartile method. A Cox proportional hazard regression model was used to evaluate the association of the CAR on the risk of CKD. The C-index, net reclassification index (NRI), and overall identification index (IDI) were calculated to evaluate the ability of the CAR to predict CKD. RESULTS During a follow-up of 378,383 person-years, CKD events occurred in 6,249 study participants (13.16%). The Cox proportional hazard regression model showed that the hazard ratio (95% confidence interval) for CKD events was 1.18 (1.10-1.28) in the Q3 group and 1.42 (1.32-1.53) in the Q4 group when compared with the Q1 group. Compared with the single index, the C-index, NRI, and IDI values were significantly improved when the CAR was added for prediction of risk of CKD. CONCLUSIONS A higher CAR was an independent risk factor for CKD. The ability of the CAR to predict CKD was better than that of hs-CRP or albumin. The CAR provides an important reference index for predicting the risk of CKD.
Collapse
Affiliation(s)
- Zihao Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Peipei Liu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ling Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Naihui Zhao
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Wenli Ou
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaofu Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Yinggen Zhang
- Department of Nuclear Medicine, Kailuan General Hospital, Tangshan, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Xiuhong Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
2
|
Lee HK, Jung NH, Lee DE, Lee H, Yang J, Kim YS, Han SS, Han N, Kim IW, Oh JM. Discovery of Biomarkers Related to Interstitial Fibrosis and Tubular Atrophy among Kidney Transplant Recipients by mRNA-Sequencing. J Pers Med 2023; 13:1242. [PMID: 37623492 PMCID: PMC10455123 DOI: 10.3390/jpm13081242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Interstitial fibrosis and tubular atrophy (IF/TA) after kidney transplantation causes a chronic deterioration of graft function. IF/TA can be diagnosed by means of a graft biopsy, which is a necessity as non-invasive diagnostic methods are unavailable. In this study, we identified IF/TA-related differentially expressed genes (DEGs) through next-generation sequencing using peripheral blood mononuclear cells. Blood samples from kidney transplant recipients undergoing standard immunosuppressive therapy (tacrolimus/mycophenolate mofetil or mycophenolate sodium/steroid) and diagnosed as IF/TA (n = 41) or normal (controls; n = 41) at their one-year protocol biopsy were recruited between January of 2020 and August of 2020. DEGs were derived through mRNA sequencing and validated by means of a quantitative real-time polymerase chain reaction. We identified 34 DEGs related to IF/TA. ADAMTS2, PLIN5, CLDN9, and KCNJ15 demonstrated a log2(fold change) of >1.5 and an area under the receiver operating characteristic curve (AUC) value of >0.6, with ADAMTS2 showing the largest AUC value and expression levels, which were 3.5-fold higher in the IF/TA group relative to that observed in the control group. We identified and validated DEGs related to IF/TA progression at one-year post-transplantation. Specifically, we identified ADAMTS2 as a potential IF/TA biomarker.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Na Hyun Jung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Da Eun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Hajeong Lee
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea (Y.S.K.)
- Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jaeseok Yang
- Transplantation Center, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yon Su Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea (Y.S.K.)
- Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung Seok Han
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea (Y.S.K.)
- Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Nayoung Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - In-Wha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Jung Mi Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| |
Collapse
|
3
|
Hydrogen-rich water reduced oxidative stress and renal fibrosis in rats with unilateral ureteral obstruction. Pediatr Res 2022; 91:1695-1702. [PMID: 34365467 DOI: 10.1038/s41390-021-01648-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Congenital obstructive nephropathy (CKD) is commonly implicated in the pathophysiology of chronic kidney disease occurring in the pediatric and adolescent age groups and the release of reactive oxygen species contribute to the worsening of renal fibrosis. Molecular hydrogen (H2) protects against tissue injury by reducing oxidative stress. We evaluated the efficacy of oral H2-rich water (HW) intake in preventing unilateral ureteral obstruction (UUO)-induced renal injury in rats. METHODS Male Sprague-Dawley UUO or control rats were administered with distilled water (DW) or HW for 2 weeks post-surgery. Histopathological and immunohistochemical analyses of kidney samples were performed. RESULTS Histological changes were not apparent in the sham-operated kidneys. However, UUO kidneys were found to have widened interstitial spaces and tubular dilatation. Compared with the UUO + DW group, HW administration attenuated tubulointerstitial injury and reduced interstitial fibrotic area, causing a substantial decline in the frequency of α-SMA-, ED-1-, and TGF-β1-positive cells in the UUO + HW group. The decrease in the klotho mRNA expression in the UUO + HW group was less pronounced than that in the UUO + DW group. CONCLUSION Oral HW intake reduced oxidative stress and prevented interstitial fibrosis in UUO kidneys, potentially involving klotho in the underlying mechanism. IMPACT Oral intake of hydrogen-rich water (HW) can reduce oxidative stress and suppress interstitial fibrosis in unilateral ureteral obstruction-induced renal injury in rats. This mechanism possibly involves klotho, which is known for its antiaging roles. The association between molecular hydrogen and klotho in renal fibrosis is well known; this is the first report on the association in a unilateral ureteral obstruction model. Drinking HW is a safe and convenient treatment for oxidative stress-induced pathologies, without side effects. As a prospect for future research, oral HW intake to treat oxidative stress may improve renal fibrosis in congenital obstructive nephropathy.
Collapse
|
4
|
SAITOH MASAHITO, ENDO AMANE, MATSUDA AKINA, MIYANO HIROKI, GONDA YUSUKE, MIZUTANI AKIRA, HARA TAICHI, NAKAGAWA MAYU, SAKURAYA KOJI, MURANO YAYOI, NISHIZAKI NAOTO, FUJINAGA SHUICHIRO, OHTOMO YOSHIYUKI, SHIMIZU TOSHIAKI. Protective Effects of Hydrogen-rich Water Intake on Renal Injury in Neonatal Rats with High Oxygen Loading. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2022; 68:235-241. [PMID: 39021721 PMCID: PMC11250013 DOI: 10.14789/jmj.jmj21-0048-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 07/20/2024]
Abstract
Objectives This study aimed to investigate the protective effects of hydrogen-rich water (HW) intake on renal injury in neonatal rats with high oxygen loading. Materials We used pregnant and newborn Sprague-Dawley rats. Methods Four groups were set up, with mother and newborn rats immediately after delivery as one group: RA-PW (room air and purified water), RA-HW (room air and HW), O2-PW (80% oxygen and purified water), and O2-HW (80% oxygen and HW). The newborn rats were maintained in either a normoxic (room air, 21% oxygen) or controlled hyperoxic (80% oxygen) environment from birth. Then, HW (O2-HW and RA-HW groups) or PW (O2-PW and RA-PW groups) was administered to parents of each group. Results The number of immature glomeruli significantly increased in the O2-PW group (exposed to hyperoxia). Conversely, the O2-HW group had significantly fewer immature glomeruli than O2-PW group. In the RT-PCR analysis of kidney tissue, α-SMA, TGF-β, and TNF-α levels were significantly higher in the O2-PW group than in the RA-PW group and significantly lower in the O2-HW group than in the O2-PW group. Conclusions HW intake can potentially reduce oxidative stress and prevent renal injury in neonates with high oxygen loading.
Collapse
Affiliation(s)
| | - AMANE ENDO
- Corresponding author: Amane Endo, Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, TEL: +81-3-3813-3111 ext. 5670 FAX: +81-3-5800-1580 E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cheng L, Yao P, Weng B, Yang M, Wang Q. Meta-analysis of the associations of IMPDH and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking mycophenolic acid. Eur J Clin Pharmacol 2022; 78:1227-1238. [PMID: 35524809 DOI: 10.1007/s00228-022-03311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/05/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the associations of IMPDH and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking mycophenolic acid (MPA). METHODS PubMed, Web of Science, Embase, Cochrane Library, Wanfang Data, and the China Academic Journal Network Publishing Database were systematically searched for studies investigating the associations of IMPDH1, IMPDH2, and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking MPA. Associations were evaluated by pooled odds ratios (ORs) and effect sizes (ESs) with 95% confidence intervals (CIs). RESULTS Twelve studies were included in the analysis, including a total of 2342 kidney transplant recipients. The results showed that compared with the TC + CC variant genotypes, the TT genotype of IMPDH2 3757 T > C was significantly associated with a higher risk of rejection (ES = 1.60, 95% CI = 1.07-2.40, P = 0.021), while there was no significant association of the IMPDH2 3757 T > C polymorphism with acute rejection within 1 year in kidney transplant recipients (OR = 1.49, 95% CI = 0.79-2.80, P = 0.217; ES = 1.44, 95% CI = 0.88-2.36, P = 0.142). The GG genotypes of IMPDH1 125G > A and IMPDH1 106G > A were significantly associated with a higher risk of rejection (ES = 1.91, 95% CI = 1.11-3.28, P = 0.019) and acute rejection within 1 year (ES = 2.12, 95% CI = 1.45-3.10, P < 0.001) than the variant genotypes GA + AA. The TT genotype of UGT1A9 275 T > A showed a decreased risk of rejection compared with the variant genotypes TA + AA (ES = 0.44, 95% CI = 0.23-0.84, P = 0.013). CONCLUSIONS IMPDH1, IMPDH2, and UGT1A9 polymorphisms were associated with rejection in kidney transplant recipients, and the genetic backgrounds of patients should be considered when using MPA.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pu Yao
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Bangbi Weng
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ming Yang
- Department of Pharmacy, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Qian Wang
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Inorganic nitrate and nitrite ameliorate kidney fibrosis by restoring lipid metabolism via dual regulation of AMP-activated protein kinase and the AKT-PGC1α pathway. Redox Biol 2022; 51:102266. [PMID: 35217293 PMCID: PMC8866060 DOI: 10.1016/j.redox.2022.102266] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background Renal fibrosis, associated with oxidative stress and nitric oxide (NO) deficiency, contributes to the development of chronic kidney disease and renal failure. As major energy source in maintaining renal physiological functions, tubular epithelial cells with decreased fatty acid oxidation play a key role in renal fibrosis development. Inorganic nitrate, found in high levels in certain vegetables, can increase the formation and signaling by bioactive nitrogen species, including NO, and dampen oxidative stress. In this study, we evaluated the therapeutic value of inorganic nitrate treatment on development of kidney fibrosis and investigated underlying mechanisms including regulation of lipid metabolism in tubular epithelial cells. Methods Inorganic nitrate was supplemented in a mouse model of complete unilateral ureteral obstruction (UUO)-induced fibrosis. Inorganic nitrite was applied in transforming growth factor β-induced pro-fibrotic cells in vitro. Metformin was administrated as a positive control. Fibrosis, oxidative stress and lipid metabolism were evaluated. Results Nitrate treatment boosted the nitrate-nitrite-NO pathway, which ameliorated UUO-induced renal dysfunction and fibrosis in mice, represented by improved glomerular filtration and morphological structure and decreased renal collagen deposition, pro-fibrotic marker expression, and inflammation. In human proximal tubule epithelial cells (HK-2), inorganic nitrite treatment prevented transforming growth factor β-induced pro-fibrotic changes. Mechanistically, boosting the nitrate-nitrite-NO pathway promoted AMP-activated protein kinase (AMPK) phosphorylation, improved AKT-mediated peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α) activity and restored mitochondrial function. Accordingly, treatment with nitrate (in vivo) or nitrite (in vitro) decreased lipid accumulation, which was associated with dampened NADPH oxidase activity and mitochondria-derived oxidative stress. Conclusions Our findings indicate that inorganic nitrate and nitrite treatment attenuates the development of kidney fibrosis by targeting oxidative stress and lipid metabolism. Underlying mechanisms include modulation of AMPK and AKT-PGC1α pathways. Inorganic nitrate treatment attenuates renal fibrosis in ureteral obstructed mice Underlying mechanisms include:dampened oxidative stress. increased formation/signaling of nitrogen species including nitric oxide.
A novel TGFβ-AKT-kidney fibrosis pathway are related to lipid metabolism.
Collapse
|
7
|
Lai C, Yee SY, Ying T, Chadban S. Biomarkers as diagnostic tests for delayed graft function in kidney transplantation. Transpl Int 2021; 34:2431-2441. [PMID: 34626503 DOI: 10.1111/tri.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
Delayed graft function (DGF) after kidney transplantation is associated with inferior outcomes and higher healthcare costs. DGF is currently defined as the requirement for dialysis within seven days post-transplant; however, this definition is subjective and nonspecific. Novel biomarkers have potential to improve objectivity and enable earlier diagnosis of DGF. We reviewed the literature to describe the range of novel biomarkers previously studied to predict DGF. We identified marked heterogeneity and low reporting quality of published studies. Among the novel biomarkers, serum NGAL had the greatest potential as a biomarker to predict DGF, but requires further assessment and validation through larger scale studies of diagnostic test performance. Given inadequacies in the dialysis-based definition, coupled with the high incidence and impact of DGF, such studies should be pursued.
Collapse
Affiliation(s)
- Christina Lai
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Kidney Node, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Seow Yeing Yee
- Nephrology Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Tracey Ying
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Kidney Node, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Steve Chadban
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Kidney Node, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Granick M, Leuin AS, Trepanier LA. Plasma and urinary F 2-isoprostane markers of oxidative stress are increased in cats with early (stage 1) chronic kidney disease. J Feline Med Surg 2021; 23:692-699. [PMID: 33146574 PMCID: PMC10812189 DOI: 10.1177/1098612x20969358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Oxidative stress contributes to chronic kidney disease (CKD) progression in humans and rodent models; F2-isoprostanes (F2-IsoPs) are established biomarkers of oxidative stress. Our primary aim was to evaluate plasma F2-IsoPs in cats with International Renal Interest Society stage 1 and 2 CKD, compared with healthy cats, and to determine whether plasma and urinary F2-IsoPs are equivalent biomarkers. The secondary aim was to assess whether consumption of a renal diet enriched in omega-3 fatty acids led to improvements in plasma and urinary F2-IsoPs. METHODS Plasma and urinary F2-IsoPs were measured in 24 cats with stage 1 or 2 CKD, and 12 unaffected controls aged ⩾6 years. Twelve CKD cats were re-evaluated after feeding a commercial renal diet for at least 4 weeks. RESULTS Median plasma F2-IsoPs were significantly higher in stage 1 CKD (96.2 pg/ml), early stage 2 CKD (83.2 pg/ml) and late stage 2 CKD (80.8 pg/ml) compared with healthy cats (22.8 pg/ml; P = 0.03-0.002). Median urinary F2-IsoPs were significantly higher in cats with stage 1 CKD (231.2 pg/mg) compared with healthy cats (152.5 pg/mg) or cats with late stage 2 CKD (124.8 pg/mg; P = 0.01). Plasma F2-IsoPs remained increased, while urinary F2-IsoPs fell with transition from stage 1 to stage 2 CKD. Feeding a commercial renal diet led to significant decreases in plasma F2-IsoPs in the small group of cats with stage 1 CKD (25-75% decrease) compared with cats with stage 2 CKD (20% decrease to 53% increase; P = 0.01). CONCLUSIONS AND RELEVANCE Oxidative stress is prominent in cats with stage 1 CKD. Plasma and urinary F2-IsoPs are not interchangeable biomarkers in cats with stage 2 CKD. Placebo-controlled studies are indicated to evaluate dietary or pharmacologic doses of omega-3 fatty acids on redox stress and progression of renal dysfunction in cats with stage 1 CKD.
Collapse
Affiliation(s)
- Martin Granick
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Allison S Leuin
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Lauren A Trepanier
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
9
|
Urinary Carnosinase-1 Excretion is Associated with Urinary Carnosine Depletion and Risk of Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Cohort Study. Antioxidants (Basel) 2021; 10:antiox10071102. [PMID: 34356335 PMCID: PMC8301129 DOI: 10.3390/antiox10071102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Carnosine affords protection against oxidative and carbonyl stress, yet high concentrations of the carnosinase-1 enzyme may limit this. We recently reported that high urinary carnosinase-1 is associated with kidney function decline and albuminuria in patients with chronic kidney disease. We prospectively investigated whether urinary carnosinase-1 is associated with a high risk for development of late graft failure in kidney transplant recipients (KTRs). Carnosine and carnosinase-1 were measured in 24 h urine in a longitudinal cohort of 703 stable KTRs and 257 healthy controls. Cox regression was used to analyze the prospective data. Urinary carnosine excretions were significantly decreased in KTRs (26.5 [IQR 21.4–33.3] µmol/24 h versus 34.8 [IQR 25.6–46.8] µmol/24 h; p < 0.001). In KTRs, high urinary carnosinase-1 concentrations were associated with increased risk of undetectable urinary carnosine (OR 1.24, 95%CI [1.06–1.45]; p = 0.007). During median follow-up for 5.3 [4.5–6.0] years, 84 (12%) KTRs developed graft failure. In Cox regression analyses, high urinary carnosinase-1 excretions were associated with increased risk of graft failure (HR 1.73, 95%CI [1.44–2.08]; p < 0.001) independent of potential confounders. Since urinary carnosine is depleted and urinary carnosinase-1 imparts a higher risk for graft failure in KTRs, future studies determining the potential of carnosine supplementation in these patients are warranted.
Collapse
|
10
|
El Hennawy HM, Faifi ASA, El Nazer W, Mahedy A, Kamal A, Al Faifi IS, Abdulmalik H, Safar O, Zaitoun MF, Fahmy AE. Calcineurin Inhibitors Nephrotoxicity Prevention Strategies With Stress on Belatacept-Based Rescue Immunotherapy: A Review of the Current Evidence. Transplant Proc 2021; 53:1532-1540. [PMID: 34020797 DOI: 10.1016/j.transproceed.2021.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND A traditional narrative review was performed to evaluate clinical studies that have examined the clinical implications, risk factors, and prevention of calcineurin inhibitors (CNIs) nephrotoxicity with stress on a belatacept-based rescue regimen. METHODS The Cochrane Library, PubMed/MEDLINE, EBSCO (Academic Search Ultimate), ProQuest (Central), and Excerpta Medical databases and Google scholar were searched using the keywords (CNI AND Nephrotoxicity prevention) OR ("Calcineurin inhibitor" AND Nephrotoxicity) OR (Tacrolimus AND Nephrotoxicity) OR (Ciclosporin AND Nephrotoxicity) OR (cyclosporine AND Nephrotoxicity) OR (Belatacept) OR (CNI Conversion) for the period from 1990 to 2020. Fifty-five related articles and reviews were found. CONCLUSION A better understanding of the mechanisms underlying calcineurin inhibitor nephrotoxicity could help in the individualization of therapy for and prevention of CNI nephrotoxicity. Identification of high-risk patients for CNI nephrotoxicity before renal transplantation enables better use and selection of immunosuppression with reduced adverse effects and, eventually, successful treatment of the kidney recipients. Belatacept conversion is a good and safe option in patients with deteriorating renal function attributed to CNI nephrotoxicity.
Collapse
Affiliation(s)
- Hany M El Hennawy
- Transplant Surgery Section, Surgery Department, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia.
| | - Abdullah S Al Faifi
- Transplant Surgery Section, Surgery Department, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Weam El Nazer
- Nephrology Department, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Ahmed Mahedy
- Nephrology Department, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Ahmed Kamal
- Nephrology Department, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Ibrahim S Al Faifi
- Department of Family Medicine, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Hana Abdulmalik
- Department of Surgery, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Omar Safar
- Department of Urology, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Mohammad F Zaitoun
- Department of Pharmacy, Armed Forces Hospital-Southern Regions, Khamis Mushayt, Saudi Arabia
| | - Ahmed E Fahmy
- Department of Surgery, Division of Transplantation, North Shore University Hospital, Northwell Health, Manhasset, New York
| |
Collapse
|
11
|
Morita S, Shinoda K, Yoshida T, Shimoda M, Kanno Y, Mizuno R, Kono H, Asanuma H, Nakagawa K, Umezawa K, Oya M. Dehydroxymethylepoxyquinomicin, a novel nuclear factor-κB inhibitor, prevents the development of cyclosporine A nephrotoxicity in a rat model. BMC Pharmacol Toxicol 2020; 21:60. [PMID: 32787951 PMCID: PMC7424678 DOI: 10.1186/s40360-020-00432-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/16/2020] [Indexed: 12/29/2022] Open
Abstract
Background Cyclosporine A (CsA) is an essential immunosuppressant in organ transplantation. However, its chronic nephrotoxicity is an obstacle to long allograft survival that has not been overcome. Nuclear factor-κB (NF-κB) is activated in the renal tissue in CsA nephropathy. In this study, we aimed to investigate the effect of the specific NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), in a rat model of CsA nephrotoxicity. Methods We administered CsA (15 mg/kg) daily for 28 days to Sprague-Dawley rats that underwent 5/6 nephrectomy under a low-salt diet. We administered DHMEQ (8 mg/kg) simultaneously with CsA to the treatment group, daily for 28 days and evaluated its effect on CsA nephrotoxicity. Results DHMEQ significantly inhibited NF-κB activation and nuclear translocation due to CsA treatment. Elevated serum urea nitrogen and creatinine levels due to repeated CsA administration were significantly decreased by DHMEQ treatment (serum urea nitrogen in CsA + DHMEQ vs CsA vs control, 69 ± 6.4 vs 113.5 ± 8.8 vs 43.1 ± 1.1 mg/dL, respectively, p < 0.0001; serum creatinine in CsA + DHMEQ vs CsA vs control, 0.75 ± 0.02 vs 0.91 ± 0.02 vs 0.49 ± 0.02 mg/dL, respectively, p < 0.0001), and creatinine clearance was restored in the treatment group (CsA + DHMEQ vs CsA vs control, 2.57 ± 0.09 vs 1.94 ± 0.12 vs 4.61 ± 0.18 ml/min/kg, respectively, p < 0.0001). However, DHMEQ treatment did not alter the inhibitory effect of CsA on urinary protein secretion. The development of renal fibrosis due to chronic CsA nephrotoxicity was significantly inhibited by DHMEQ treatment (CsA + DHMEQ vs CsA vs control, 13.4 ± 7.1 vs 35.6 ± 18.4 vs 9.4 ± 5.4%, respectively, p < 0.0001), and these results reflected the results of renal functional assessment. DHMEQ treatment also had an inhibitory effect on the increased expression of chemokines, monocyte chemoattractant protein-1, and chemokine (c-c motif) ligand 5 due to repeated CsA administration, which inhibited the infiltration of macrophages and neutrophils into the renal tissue. Conclusions These findings suggest that DHMEQ treatment in combination therapy with CsA-based immunosuppression is beneficial to prevent the development of CsA-induced nephrotoxicity.
Collapse
Affiliation(s)
- Shinya Morita
- Department of Urology, Keio University School of Medicine, Tokyo, Japan.,Apheresis and Dialysis Center, Keio University School of Medicine, Tokyo, Japan
| | - Kazunobu Shinoda
- Department of Urology, Keio University School of Medicine, Tokyo, Japan. .,Department of Nephrology, Toho University Faculty of Medicine, 7-5-23 Omorinishi Ota-ku, Tokyo, 143-0015, Japan.
| | - Tadashi Yoshida
- Apheresis and Dialysis Center, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiko Kanno
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Ryuichi Mizuno
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Hidaka Kono
- Department of Urology, Tokyo Dental College Ichikawa General Hospital, Chiba, Japan
| | - Hiroshi Asanuma
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Nakagawa
- Department of Urology, Tokyo Dental College Ichikawa General Hospital, Chiba, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine Screening, Aichi Medical University, Aichi, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan.,Apheresis and Dialysis Center, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Zhang Q, Li J, Li Y, Che H, Chen Y, Dong J, Xian CJ, Miao D, Wang L, Ren Y. Bmi deficiency causes oxidative stress and intervertebral disc degeneration which can be alleviated by antioxidant treatment. J Cell Mol Med 2020; 24:8950-8961. [PMID: 32583517 PMCID: PMC7417700 DOI: 10.1111/jcmm.15528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/07/2020] [Accepted: 06/02/2020] [Indexed: 02/01/2023] Open
Abstract
The transcriptional repressor Bmi‐1 is involved in cell‐cycle regulation and cell senescence, the deficiency of which has been shown to cause oxidative stress. This study investigated whether Bmi‐1 deficiency plays a role in promoting disc degeneration and the effect of treatment with antioxidant N‐acetylcysteine (NAC) on intervertebral disc degeneration. Bmi‐1−/− mice were treated with the antioxidant NAC, supplied in drinking water (Bmi‐1−/−+NAC). For in vitro experiments, mouse intervertebral discs were cultured under low oxygen tension and serum‐limiting conditions in the presence of tumour necrosis factor α and interleukin 1β in order to mimic degenerative insult. Disc metabolism parameters in these in vitro and in vivo studies were evaluated by histopathological, immunohistochemical and molecular methods. Bmi‐1−/− mice showed lower collagen Ⅱ and aggrecan levels and higher collagen Ⅹ levels than wild‐type and Bmi‐1−/−+NAC mice. Bmi‐1−/− mice showed significantly lower superoxide dismutase (SOD)‐1, SOD‐2, glutathione peroxidase (GPX)‐1 and GPX‐3 levels than their wild‐type littermates and Bmi‐1−/−+ NAC mice. Relative to Bmi‐1−/− mice, the control and Bmi‐1−/−+NAC mice showed significantly lower p16, p21, and p53 levels. These results demonstrate that Bmi‐1 plays an important role in attenuating intervertebral disc degeneration in mice by inhibiting oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Qunhu Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Orthopaedics, Suqian First Hospital, Suqian, Jiangsu, China
| | - Jie Li
- Department of Orthopaedics, Xuzhou Central Hospital, Xuzhou Clinical College of Nanjing Medical University, The Affiliated Xuzhou Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - You Li
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Che
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghui Dong
- Department of Hand Surgery, Department of Plastic Reconstructive Surgery, Ningbo No. 6 Hospital, Ningbo, Zhejiang, China.,UniSA Clinical and Health Sciences and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Cory J Xian
- UniSA Clinical and Health Sciences and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liping Wang
- Department of Hand Surgery, Department of Plastic Reconstructive Surgery, Ningbo No. 6 Hospital, Ningbo, Zhejiang, China.,UniSA Clinical and Health Sciences and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Yongxin Ren
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Dufour L, Ferhat M, Robin A, Inal S, Favreau F, Goujon JM, Hauet T, Gombert JM, Herbelin A, Thierry A. [Ischemia-reperfusion injury after kidney transplantation]. Nephrol Ther 2020; 16:388-399. [PMID: 32571740 DOI: 10.1016/j.nephro.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ischemia-reperfusion injury is an inescapable phenomenon in kidney transplantation. It combines lesional processes of biochemical origin associated with oxydative stress and of immunological origin in connection with the recruitment and activation of innate immunity cells. Histological lesions associate acute tubular necrosis and interstitial œdema, which can progress to interstitial fibrosis. The extent of these lesions depends on donor characteristics (age, expanded criteria donor, etc.) and cold ischemia time. In the short term, ischemia-reperfusion results in delayed recovery of graft function. Cold ischemia time also impacts long-term graft survival. Preclinical models, such as murine and porcine models, have furthered understanding of the pathophysiological mechanisms of ischemia-reperfusion injury. Due to its renal anatomical proximity to humans, the porcine model is relevant to assessment of the molecules administered to a donor or recipient, and also of additives to preservation solutions. Different donor resuscitation and graft perfusion strategies can be studied. In humans, prevention of ischemia-reperfusion injury is a research subject as concerns donor conditioning, additive molecules in preservation solutions, graft reperfusion modalities and choice of the molecules administered to the recipient. Pending significant advances in research, the goal is to achieve the shortest possible cold ischemia time.
Collapse
Affiliation(s)
- Léa Dufour
- Service de néphrologie-hémodialyse-transplantation rénale, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Maroua Ferhat
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Aurélie Robin
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Sofiane Inal
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Service de biochimie, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Frédéric Favreau
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Jean-Michel Goujon
- Service d'anatomopathologie, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Thierry Hauet
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Service de biochimie, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Fédération hospitalo-universitaire de transplantation Survival Optimization in Organ Transplantation (Support) Tours Poitiers Limoges, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Plateforme Infrastructures en biologie, santé et agronomie (Ibisa) Modélisation préclinique - innovation chirurgicale et technologique (Mopict), 86000 Poitiers cedex, France
| | - Jean-Marc Gombert
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Service d'immunologie, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - André Herbelin
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Antoine Thierry
- Service de néphrologie-hémodialyse-transplantation rénale, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Fédération hospitalo-universitaire de transplantation Survival Optimization in Organ Transplantation (Support) Tours Poitiers Limoges, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France.
| |
Collapse
|
14
|
Kidney allograft fibrosis: what we learned from latest translational research studies. J Nephrol 2020; 33:1201-1211. [PMID: 32193834 DOI: 10.1007/s40620-020-00726-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
To add new molecular and pathogenetic insights into the biological machinery associated to kidney allograft fibrosis is a major research target in nephrology and organ transplant translational medicine. Interstitial fibrosis associated to tubular atrophy (IF/TA) is, in fact, an inevitable and progressive process that occurs in almost every type of chronic allograft injury (particularly in grafts from expanded criteria donors) characterized by profound remodeling and excessive production/deposition of fibrillar extracellular matrix (ECM) with a great clinical impact. IF/TA is detectable in more than 50% of kidney allografts at 2 years. However, although well studied, the complete cellular/biological network associated with IF/TA is only partially evaluated. In the last few years, then, thanks to the introduction of new biomolecular technologies, inflammation in scarred/fibrotic parenchyma areas (recently acknowledged by the BANFF classification) has been recognized as a pivotal element able to accelerate the onset and development of the allograft chronic damage. Therefore, in this review, we focused on some new pathogenetic elements involved in graft fibrosis (including epithelial/endothelial to mesenchymal transition, oxidative stress, activation of Wnt and Hedgehog signaling pathways, fatty acids oxidation and cellular senescence) that, in our opinion, could become in future good candidates as potential biomarkers and therapeutic targets.
Collapse
|
15
|
Pan C, Lang H, Zhang T, Wang R, Lin X, Shi P, Zhao F, Pang X. Conditioned medium derived from human amniotic stem cells delays H2O2‑induced premature senescence in human dermal fibroblasts. Int J Mol Med 2019; 44:1629-1640. [PMID: 31545472 PMCID: PMC6777671 DOI: 10.3892/ijmm.2019.4346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Stem cells derived from human amniotic membrane (hAM) are promising targets in regenerative medicine. A previous study focused on human amniotic stem cells in skin wound and scar-free healing. The present study aimed to investigate whether hydrogen peroxide (H2O2)-induced senescence of human dermal fibroblasts (hDFs) was influenced by the anti-aging effect of conditioned medium (CdM) derived from human amniotic stem cells. First, the biological function of two types of amniotic stem cells, namely human amniotic epithelial cells (hAECs) and human amniotic mesenchymal stem cells (hAMSCs), on hDFs was compared. The results of cell proliferation and wound healing assays showed that CdM promoted cell proliferation and migration. In addition, CdM from hAECs and hAMSCs significantly promoted proliferation of senescent hDFs induced by H2O2. These results indicated that CdM protects cells from damage caused by H2O2. Treatment with CdM decreased senescence-associated β-galactosidase activity and improved the entry of proliferating cells into the S phase. Simultaneously, it was found that CdM increased the activity of superoxide dismutase and catalase and decreased malondialdehyde by reducing H2O2-induced intracellular reactive oxygen species production. It was found that CdM downregulated H2O2-stimulated 8-hydroxydeoxy-guanosine and γ-H2AX levels and decreased the expression of the senescence-associated proteins p21 and p16. In conclusion, the findings indicated that the paracrine effects derived from human amniotic stem cells aided delaying oxidative stress-induced premature senescence.
Collapse
Affiliation(s)
- Changwei Pan
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, Liaoning 110013, P.R. China
| | - Hongxin Lang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, Liaoning 110013, P.R. China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, Liaoning 110013, P.R. China
| | - Rui Wang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, Liaoning 110013, P.R. China
| | - Xuewen Lin
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, Liaoning 110013, P.R. China
| | - Ping Shi
- Shenyang Amnion Biological Engineering Technology Research and Development Center Limited Company, Shenyang, Liaoning 110629, P.R. China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, Liaoning 110013, P.R. China
| | - Xining Pang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, Liaoning 110013, P.R. China
| |
Collapse
|
16
|
Bentata Y. Tacrolimus: 20 years of use in adult kidney transplantation. What we should know about its nephrotoxicity. Artif Organs 2019; 44:140-152. [PMID: 31386765 DOI: 10.1111/aor.13551] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/21/2022]
Abstract
Tacrolimus (or FK506), a calcineurin inhibitor (CNI) introduced in field of transplantation in the 1990s, is the cornerstone of most immunosuppressive regimens in solid organ transplantation. Its use has revolutionized the future of kidney transplantation (KT) and has been associated with better graft survival, a lower incidence of rejection, and improved drug tolerance with fewer side effects compared to cyclosporine. However, its monitoring remains complicated and underexposure increases the risk of rejection, whereas overexposure increases the risk of adverse effects, primarily nephrotoxicity, neurotoxicity, infections, malignancies, diabetes, and gastrointestinal complaints. Tacrolimus nephrotoxicity can be nonreversible and can lead to kidney graft loss, and its diagnosis is therefore best made with reference to the clinical context and after exclusion of other causes of graft dysfunction. Many factors contribute to its development including: systemic levels of tacrolimus; local renal exposure to tacrolimus; exposure to metabolites of tacrolimus; local susceptibility factors for CNI nephrotoxicity independent of systemic or local tacrolimus levels, such as the age of a kidney; local renal P-glycoprotein, local intestinal and hepatic cytochrome P450A3, and renin angiotensin system activation. The aim of this review is to describe the pharmacokinetics, pharmacodynamics, and mechanisms of acute and chronic tacrolimus nephrotoxicity in adult KT.
Collapse
Affiliation(s)
- Yassamine Bentata
- Nephrology and Kidney Transplantation Unit, University Hospital Mohammed VI, University Mohammed First, Oujda, Morocco.,Laboratory of Epidemiology, Clinical Research and Public Health, Medical School, University Mohammed First, Oujda, Morocco
| |
Collapse
|
17
|
Burat B, Faucher Q, Čechová P, Arnion H, Di Meo F, Sauvage F, Marquet P, Essig M. Cyclosporine A inhibits MRTF-SRF signaling through Na +/K + ATPase inhibition and actin remodeling. FASEB Bioadv 2019; 1:561-578. [PMID: 32123851 PMCID: PMC6996406 DOI: 10.1096/fba.2019-00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 03/22/2019] [Accepted: 07/25/2019] [Indexed: 01/07/2023] Open
Abstract
Calcineurin inhibitors (CNI) are the pillars of immunosuppression in transplantation. However, they display a potent nephrotoxicity whose mechanisms remained widely unsolved. We used an untargeted quantitative proteomic approach (iTRAQ technology) to highlight new targets of CNI in renal proximal tubular cells (RPTCs). CNI-treated RPTCs proteome displayed an over-representation of actin-binding proteins with a CNI-specific expression profile. Cyclosporine A (CsA) induced F-actin remodeling and depolymerization, decreased F-actin-stabilizing, polymerization-promoting cofilin (CFL) oligomers, and inhibited the G-actin-regulated serum response factor (SRF) pathway. Inhibition of CFL canonical phosphorylation pathway reproduced CsA effects; however, S3-R, an analogue of the phosphorylation site of CFL prevented the effects of CsA which suggests that CsA acted independently from the canonical CFL regulation. CFL is known to be regulated by the Na+/K+-ATPase. Molecular docking calculations identified two inhibiting sites of CsA on Na+/K+-ATPase and a 23% decrease in Na+/K+-ATPase activity of RPTCs was observed with CsA. Ouabain, a specific inhibitor of Na+/K+-ATPase also reproduced CsA effects on actin organization and SRF activity. Altogether, these results described a new original pathway explaining CsA nephrotoxicity.
Collapse
Affiliation(s)
- Bastien Burat
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Quentin Faucher
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Petra Čechová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
| | - Hélène Arnion
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Florent Di Meo
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - François‐Ludovic Sauvage
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Pierre Marquet
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
- Department of Pharmacology and ToxicologyLimoges University HospitalLimogesFrance
| | - Marie Essig
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| |
Collapse
|
18
|
Wei H, Cai WJ, Liu HK, Han D, Zhu XM, Yang YX, Jin JY, Xie SQ. Effects of photoperiod on growth, lipid metabolism and oxidative stress of juvenile gibel carp (Carassius auratus). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111552. [PMID: 31382089 DOI: 10.1016/j.jphotobiol.2019.111552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 12/30/2022]
Abstract
A 58-day cultivation experiment was carried out to investigate the effects of photoperiods on growth, lipid metabolism and oxidative stress of juvenile gibel carp. Juveniles (5.41 ± 0.01 g) were cultured under seven light photoperiods (0 h of light (L):24 h of darkness (D), 4L:20D (12:00-16:00 light), 8L:16D (10:00-18:00 light), 12L:12D (8:00-20:00 light), 16L:8D (6:00-22:00 light), 20L:4D (4:00-24:00 light) and 24L:0D) in an indoor recirculating aquaculture system. The light intensity was 1.02 μmol·m-2·s-1 (at the tank bottom in a 0.5-m water depth). The fish were fed to satiety three times daily (8:30, 14:30 and 18:30). At the end of the experiment, final body weight, specific growth rate, feed efficiency and feed intake were significantly higher in 16L:8D, 20L:4D and 24L:0D groups than those in other groups (P < 0.05). Long-day photoperiods (16L:8D, 20L:4D and 24L:0D) simultaneously promoted lipogenesis, lipolysis and fatty acid oxidation. The increases in lipid retention efficiency, whole body lipid concentration and liver lipid content (P < 0.05) indicated that lipogenesis exceeded fatty acid oxidation. Liver oxidative stress was induced in juvenile gibel carp by short day lengths. The hepatic total antioxidant capacity, superoxide dismutase, glutathione peroxidase and the contents of metabolite glutathione were the highest in the short-day-length groups (0L:24D, 4L:20D and 8L:16D) (P < 0.05). Based on the growth performance and health status in the long-term cultivation experiment, the optimal photoperiods were 16L:8D, 20L:4D and 24L:0D in juvenile gibel carp.
Collapse
Affiliation(s)
- Hui Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Jie Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao-Kun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, Hubei, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, Hubei, China
| | - Yun-Xia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun-Yan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shou-Qi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, Hubei, China
| |
Collapse
|
19
|
Ahmad T, Suzuki YJ. Juglone in Oxidative Stress and Cell Signaling. Antioxidants (Basel) 2019; 8:antiox8040091. [PMID: 30959841 PMCID: PMC6523217 DOI: 10.3390/antiox8040091] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Juglone (5-hydroxyl-1,4-naphthoquinone) is a phenolic compound found in walnuts. Because of the antioxidant capacities of phenolic compounds, juglone may serve to combat oxidative stress, thereby protecting against the development of various diseases and aging processes. However, being a quinone molecule, juglone could also act as a redox cycling agent and produce reactive oxygen species. Such prooxidant properties of juglone may confer health effects, such as by killing cancer cells. Further, recent studies revealed that juglone influences cell signaling. Notably, juglone is an inhibitor of Pin1 (peptidyl-prolyl cis/trans isomerase) that could regulate phosphorylation of Tau, implicating potential effects of juglone in Alzheimer’s disease. Juglone also activates mitogen-activated protein kinases that could promote cell survival, thereby protecting against conditions such as cardiac injury. This review describes recent advances in the understanding of the effects and roles of juglone in oxidative stress and cell signaling.
Collapse
Affiliation(s)
- Taseer Ahmad
- College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan.
| | - Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
20
|
Fenofibrate Improved Interstitial Fibrosis of Renal Allograft through Inhibited Epithelial-Mesenchymal Transition Induced by Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8936856. [PMID: 30911353 PMCID: PMC6397988 DOI: 10.1155/2019/8936856] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/30/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
The best treatment for end-stage renal disease is renal transplantation. However, it is often difficult to maintain a renal allograft healthy for a long time following transplantation. Interstitial fibrosis and tubular atrophy (IF/TA) are significant histopathologic characteristics of a compromised renal allograft. There is no effective therapy to improve renal allograft function once IF/TA sets in. Although there are many underlying factors that can induce IF/TA, the pathogenesis of IF/TA has not been fully elucidated. It has been found that epithelial-mesenchymal transition (EMT) significantly contributes to the development of IF/TA. Oxidative stress is one of the main causes that induce EMT in renal allografts. In this study, we have used H2O2 to induce oxidative stress in renal tubular epithelial cells (NRK-52e) of rats. We also pretreated NRK-52e cells with an antioxidant (N-acetyl L-cysteine (NAC)) 1 h prior to the treatment with H2O2. Furthermore, we used fenofibrate (a peroxisome proliferator-activated receptor α agonist) to treat NRK-52e cells and a renal transplant rat model. Our results reveal that oxidative stress induces EMT in NRK-52e cells, and pretreatment with NAC can suppress EMT in these cells. Moreover, fenofibrate suppresses fibrosis by ameliorating oxidative stress-induced EMT in a rat model. Thus, fenofibrate may effectively prevent the development of fibrosis in renal allograft and improve the outcome.
Collapse
|
21
|
Hosohata K, Jin D, Takai S, Iwanaga K. Vanin-1 in Renal Pelvic Urine Reflects Kidney Injury in a Rat Model of Hydronephrosis. Int J Mol Sci 2018; 19:ijms19103186. [PMID: 30332759 PMCID: PMC6214032 DOI: 10.3390/ijms19103186] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/24/2022] Open
Abstract
Urinary tract obstruction and the subsequent development of hydronephrosis can cause kidney injuries, which results in chronic kidney disease. Although it is important to detect kidney injuries at an early stage, new biomarkers of hydronephrosis have not been identified. In this study, we examined whether vanin-1 could be a potential biomarker for hydronephrosis. Male Sprague-Dawley rats were subjected to unilateral ureteral obstruction (UUO). On day 7 after UUO, when the histopathological renal tubular injuries became obvious, the vanin-1 level in the renal pelvic urine was significantly higher than that in voided urine from sham-operated rats. Furthermore, vanin-1 remained at the same level until day 14. There was no significant difference in the serum vanin-1 level between sham-operated rats and rats with UUO. In the kidney tissue, the mRNA and protein expressions of vanin-1 significantly decreased, whereas there was increased expression of transforming growth factor (TGF)-β1 and Snail-1, which plays a pivotal role in the pathogenesis of renal fibrosis via epithelial-to-mesenchymal transition (EMT). These results suggest that vanin-1 in the renal pelvic urine is released from the renal tubular cells of UUO rats and reflects renal tubular injuries at an early stage. Urinary vanin-1 may serve as a candidate biomarker of renal tubular injury due to hydronephrosis.
Collapse
Affiliation(s)
- Keiko Hosohata
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan.
| | - Denan Jin
- Department of Innovative Medicine, Osaka Medical College, Osaka 569-8686, Japan.
| | - Shinji Takai
- Department of Innovative Medicine, Osaka Medical College, Osaka 569-8686, Japan.
| | - Kazunori Iwanaga
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan.
| |
Collapse
|
22
|
Abstract
One of the first structural changes in diabetic nephropathy (DN) is the renal enlargement. These changes resulted in renal hypertrophy in both glomerular and tubular cells. Shrink in the kidney size, which described as kidney atrophy resulted from the loss of nephrons or abnormal nephron function and lead to loss of the kidney function. On the other hand, increase in kidney size, which described as hypertrophy resulted from increase in proximal tubular epithelial and glomerular cells size. However overtime, tubular atrophy and tubulointerstitial fibrosis occurs as subsequent changes in tubular cell hypertrophy, which is associated with the infiltration of fibroblast cells into the tubulointerstitial space. The rate of deterioration of kidney function shows a strong correlation with the degree of tubulointerstitial fibrosis. A consequence of long-standing diabetes/hyperglycemia may lead to major changes in renal structure that occur but not specific only to nephropathy. Identifying type of cells that involves in renal atrophy and hypertrophy may help to find a therapeutic target to treat diabetic nephropathy. In summary, the early changes in diabetic kidney are mainly includes the increase in tubular basement membrane thickening which lead to renal hypertrophy. On the other hand, only renal tubule is subjected to apoptosis, which is one of the characteristic morphologic changes in diabetic kidney to form tubular atrophy at the late stage of diabetes.
Collapse
Affiliation(s)
- Samy L Habib
- a Department of Geriatric, Geriatric Research, Education, and Clinical Center , South Texas Veterans Healthcare System , San Antonio , TX.,b Department of Cell Systems and Anatomy , University of Texas Health Science Center at San Antonio , San Antonio , TX
| |
Collapse
|
23
|
See SB, Aubert O, Loupy A, Veras Y, Lebreton X, Gao B, Legendre C, Anglicheau D, Zorn E. Post-Transplant Natural Antibodies Associate with Kidney Allograft Injury and Reduced Long-Term Survival. J Am Soc Nephrol 2018; 29:1761-1770. [PMID: 29602833 DOI: 10.1681/asn.2017111157] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/26/2018] [Indexed: 11/03/2022] Open
Abstract
Background The development of antibodies specific to HLA expressed on donor tissue (donor-specific antibodies [DSAs]) is a prominent risk factor for kidney graft loss. Non-HLA antibodies with pathogenic potential have also been described, including natural antibodies (Nabs). These IgG Nabs bind to immunogenic self-determinants, including oxidation-related antigens.Methods To examine the relationship of Nabs with graft outcomes, we assessed Nabs in blinded serum specimens collected from a retrospective cohort of 635 patients who received a transplant between 2005 and 2010 at Necker Hospital in Paris, France. Serum samples were obtained immediately before transplant and at the time of biopsy-proven rejection within the first year or 1 year after transplant. Nabs were detected by ELISA through reactivity to the generic oxidized epitope malondialdehyde.Results Univariate Cox regression analysis identified the development of post-transplant Nabs (defined as 50% increase in reactivity to malondialdehyde) as a significant risk factor for graft loss (hazard ratio, 2.68; 95% confidence interval, 1.49 to 4.82; P=0.001). Post-transplant Nabs also correlated with increased mean Banff scores for histologic signs of graft injury in post-transplant biopsy specimens. Multivariable Cox analyses confirmed Nabs development as a risk factor independent from anti-HLA DSAs (hazard ratio, 2.07; 95% confidence interval, 1.03 to 4.17; P=0.04). Moreover, patients with Nabs and DSAs had a further increased risk of kidney graft loss.Conclusions These findings reveal an association between Nabs, kidney graft injury, and eventual graft failure, suggesting the involvement of Nabs in immune mechanisms of rejection.
Collapse
Affiliation(s)
- Sarah B See
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Olivier Aubert
- Department of Kidney Transplantation, Hopital Necker, Université Paris Descartes and Assistance Publique Hopitaux de Paris, Paris, France.,Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S970, Paris, France; and
| | - Alexandre Loupy
- Department of Kidney Transplantation, Hopital Necker, Université Paris Descartes and Assistance Publique Hopitaux de Paris, Paris, France.,Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S970, Paris, France; and
| | - Yokarla Veras
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Xavier Lebreton
- Department of Kidney Transplantation, Hopital Necker, Université Paris Descartes and Assistance Publique Hopitaux de Paris, Paris, France
| | - Baoshan Gao
- Department of Urology/Transplant Center, The First Hospital of Jilin University, Changchun, China
| | - Christophe Legendre
- Department of Kidney Transplantation, Hopital Necker, Université Paris Descartes and Assistance Publique Hopitaux de Paris, Paris, France
| | - Dany Anglicheau
- Department of Kidney Transplantation, Hopital Necker, Université Paris Descartes and Assistance Publique Hopitaux de Paris, Paris, France
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York;
| |
Collapse
|
24
|
Leal R, Tsapepas D, Crew RJ, Dube GK, Ratner L, Batal I. Pathology of Calcineurin and Mammalian Target of Rapamycin Inhibitors in Kidney Transplantation. Kidney Int Rep 2018; 3:281-290. [PMID: 30276344 PMCID: PMC6161639 DOI: 10.1016/j.ekir.2017.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/15/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022] Open
Abstract
The recent evolution in immunosuppression therapy has led to significant improvement in short-term kidney allograft outcomes; however, this progress did not translate into similar improvement in long-term graft survival. The latter, at least in part, is likely to be attributed to immunosuppressant side effects. In this review, we focus on the histologic manifestations of calcineurin inhibitor and mammalian target of rapamycin inhibitor toxicity. We discuss the pathologic features attributed to such toxicity and allude to the lack of highly specific pathognomonic lesions. Finally, we highlight the importance of clinicopathologic correlation to achieve a meaningful pathologic interpretation.
Collapse
Affiliation(s)
- Rita Leal
- Department of Nephrology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Demetra Tsapepas
- Department of Pharmacy, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Russell J. Crew
- Department of Medicine, Division of Nephrology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Geoffrey K. Dube
- Department of Medicine, Division of Nephrology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Lloyd Ratner
- Department of Surgery, Division of Transplantation, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Ibrahim Batal
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
25
|
Dou F, Miao H, Wang JW, Chen L, Wang M, Chen H, Wen AD, Zhao YY. An Integrated Lipidomics and Phenotype Study Reveals Protective Effect and Biochemical Mechanism of Traditionally Used Alisma orientale Juzepzuk in Chronic Kidney Disease. Front Pharmacol 2018; 9:53. [PMID: 29472858 PMCID: PMC5809464 DOI: 10.3389/fphar.2018.00053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 01/15/2018] [Indexed: 01/02/2023] Open
Abstract
Alisma orientale Juzepzuk (AO) is widely used for various diuretic and nephropathic treatments in traditional Chinese medicines (TCM). In a clinical setting, AO is used as both a lipid-lowering and tubular interstitial fibrosis agent. However, the mechanisms of AO for the treatment of renal interstitial fibrosis and abnormal lipid metabolism are not well-understood. In this study, pharmacological and UPLC-HDMS-based lipidomic approaches were employed to investigate the lipid-lowering and tubular interstitial fibrosis effect of AO on rats with adenine-induced chronic kidney disease (CKD). Rats with CKD showed increased serum levels of creatinine and urea, tubular damage, and tubular interstitial fibrosis. Moreover, multiple lipid species were identified in CKD rats. Among these lipids, polyunsaturated fatty acid, eicosapentaenoic acid, 8,9-epoxyeicosatrienoic acid, and docosahexaenoic acid levels were significantly decreased in CKD rats compared to control rats. In CKD rats, up-regulation of the NF-κB pathway may impair polyunsaturated fatty acid metabolism, causing renal fibrosis. In addition, CKD rats showed significantly decreased diglyceride levels and increased triglyceride levels compared to the control group. Pathway over-representation analysis demonstrated that 30 metabolic pathways were associated with lipid species. AO treatment suppressed up-regulation of inflammation, and partly restored the deregulation of polyunsaturated fatty acids and glycerolipids metabolism. Our results indicated that AO treatment attenuated renal fibrosis by down-regulating inflammation, and mitigating lipid metabolism in CKD rats. In conclusion, this study has identified the therapeutic lipid-lowering and anti-fibrosis effects of AO on CKD.
Collapse
Affiliation(s)
- Fang Dou
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Miao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Ming Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Ai-Dong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
26
|
The Optimal PEG for Kidney Preservation: A Preclinical Porcine Study. Int J Mol Sci 2018; 19:ijms19020454. [PMID: 29401654 PMCID: PMC5855676 DOI: 10.3390/ijms19020454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/26/2017] [Accepted: 01/29/2018] [Indexed: 01/12/2023] Open
Abstract
University of Wisconsin (UW) solution is not optimal for preservation of marginal organs. Polyethylene glycol (PEG) could improve protection. Similarly formulated solutions containing either 15 or 20 g/L PEG 20 kDa or 5, 15 and 30 g/L PEG 35 kDa were tested in vitro on kidney endothelial cells, ex vivo on preserved kidneys, and in vivo in a pig kidney autograft model. In vitro, all PEGs provided superior preservation than UW in terms of cell survival, adenosine triphosphate (ATP) production, and activation of survival pathways. Ex vivo, tissue injury was lower with PEG 20 kDa compared to UW or PEG 35 kDa. In vivo, function recovery was identical between UW and PEG 35 kDa groups, while PEG 20 kDa displayed swifter recovery. At three months, PEG 35 kDa 15 and 30 g/L animals had worse outcomes than UW, while 5 g/L PEG 35 kDa was similar. PEG 20 kDa was superior to both UW and PEG 35 kDa in terms of function and fibrosis development, with low activation of damage pathways. PEG 20 kDa at 15 g/L was superior to 20 g/L. While in vitro models did not discriminate between PEGs, in large animal models of transplantation we showed that PEG 20 kDa offers a higher level of protection than UW and that longer chains such as PEG 35 kDa must be used at low doses, such as found in Institut George Lopez (IGL1, 1g/L).
Collapse
|
27
|
He P, Li Z, Yue Z, Gao H, Feng G, Wang P, Huang Y, Luo W, Hong H, Liang L, Chen S, Liu P. SIRT3 prevents angiotensin II-induced renal tubular epithelial-mesenchymal transition by ameliorating oxidative stress and mitochondrial dysfunction. Mol Cell Endocrinol 2018; 460:1-13. [PMID: 28579116 DOI: 10.1016/j.mce.2017.04.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 01/08/2023]
Abstract
Silent mating type information regulation 2 homolog 3 (SIRT3) is a major protective mediator that ameliorates oxidative stress and mitochondrial dysfunction, which are associated with the pathogenesis of epithelial-mesenchymal transition (EMT). The present study was aimed to investigate the potential role of SIRT3 in renal tubular EMT both in vitro and in vivo. Firstly, we showed that the expression of SIRT3 was repressed in angiotensin II-induced EMT. SIRT3 deficiency triggered EMT response, while over-expression of SIRT3 attenuated EMT response. In addition, over-expression of SIRT3 repressed AngⅡ-induced excessive production of mitochondrial superoxide, as well as mitochondrial dysfunction evidenced by the maintenance of mitochondrial number and morphology, and the stabilization of mitochondrial membrane potential. In conclusion, these findings identify a protective role of SIRT3 against angiotensin II-induced EMT in the kidney, and suggest SIRT3 upregulation is a potential therapeutic strategy for the treatment of renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Ping He
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Zhuoming Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Zhongbao Yue
- Research & Development Center, Infinitus (China) Company Ltd., Guangzhou, People's Republic of China
| | - Hui Gao
- Department of Pharmacology, School of Medicine, Jishou University, Jishou 416000, Hunan Province, People's Republic of China
| | - Guoshuai Feng
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Panxia Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Yi Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Wenwei Luo
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Huiqi Hong
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Liying Liang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China
| | - Shaorui Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China.
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China; National and Local Joint Engineering Laboratory of Druggabilitiy Assessment and Evaluation, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, People's Republic of China.
| |
Collapse
|
28
|
Wu C, Chen HC, Chen ST, Chiang SY, Wu KY. Elevation in and persistence of multiple urinary biomarkers indicative of oxidative DNA stress and inflammation: Toxicological implications of maleic acid consumption using a rat model. PLoS One 2017; 12:e0183675. [PMID: 29073142 PMCID: PMC5658196 DOI: 10.1371/journal.pone.0183675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/09/2017] [Indexed: 01/20/2023] Open
Abstract
Maleic acid (MA), an intermediate reagent used in many industrial products, instigated public health concerns in Taiwan when it was used to adulterate an array of starch-based delicacies to improve texture and storage time. Established studies reported that exposure to high concentrations of MA induce renal injury; little is known whether oxidative stress is induced at a relative low dose. This study aims to investigate the effect of oral single dose exposure of MA on the status of oxidative stress and inflammation. Single dose of MA at 0, 6 and 60 mg/kg (control, low- and high-dose groups, respectively) were orally administered to adult male and female rats. Urine samples were collected and analyzed to measure 8-hydroxy-2’-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-IsoPGF2α), 8-nitroguanine (8-NO2Gua) and N-acetyl-S-(tetrahydro-5-hydroxy-2-pentyl-3-furanyl)-L-cysteine (HNE-MA) using LC-MS/MS. Results revealed that oral consumption of MA induced oxidative DNA damage and lipid peroxidation, as demonstrated by the statistically significant increases in urinary levels of 8-NO2Gua, 8-OHdG, and 8-isoPGF2α, in high-dosed male rats within 12 h of oral gavage (p < 0.05). Additionally, increases in concentration of these biomarkers persist for days after consumption; male rats appear to be more sensitive to oxidative burden compared to their counterparts. The aforementioned findings could help elucidate the mechanisms through which nephrotoxicity occur.
Collapse
Affiliation(s)
- Charlene Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsin-Chang Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shu-Ting Chen
- National Environmental Health Research Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Su-Yin Chiang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- * E-mail: (KYW); (SYC)
| | - Kuen-Yuh Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
- * E-mail: (KYW); (SYC)
| |
Collapse
|
29
|
Abstract
BACKGROUND We hypothesized that nicotinamide adenosine diphosphate oxidase 2 (Nox2) plays an important role in cyclosporine A (CsA)-induced chronic hypoxia. METHODS We tested this hypothesis in Fisher 344 rats, C57BL/6 J wild type and Nox2-/- mice, and in liver transplant recipients with chronic CsA nephrotoxicity. We used noninvasive molecular imaging (blood oxygen level-dependent magnetic resonance imaging and dynamic contrast-enhanced magnetic resonance imaging) and molecular diagnostic tools to assess intrarenal oxygenation and perfusion, and the molecular phenotype of CsA nephrotoxicity. RESULTS We observed that chemical and genetic inhibition of Nox2 in rats and mice resulted in the prevention of CsA-induced hypoxia independent of regional perfusion (blood oxygen level-dependent magnetic resonance imaging and dynamic contrast-enhanced magnetic resonance imaging, pimonidazole, HIF-1α). Nicotinamide adenosine diphosphate oxidase 2 knockout was also associated with decreased oxidative stress (Nox2, HIF-1α, hydrogen peroxide, hydroxynonenal), and fibrogenesis (α-smooth muscle actin, picrosirius red, trichrome, vimentin). The molecular signature of chronic CsA nephrotoxicity using transcriptomic analyses demonstrated significant changes in 40 genes involved in injury repair, metabolism, and oxidative stress in Nox2-/- mice. Immunohistochemical analyses of kidney biopsies from liver transplant recipients with chronic CsA nephrotoxicity showed significantly greater Nox2, α-smooth muscle actin and picrosirius levels compared with controls. CONCLUSIONS These studies suggest that Nox2 is a modulator of CsA-induced hypoxia upstream of HIF-1α and define the molecular characteristics that could be used for the diagnosis and monitoring of chronic calcineurin inhibitor nephrotoxicity.
Collapse
|
30
|
Wang Z, Han Z, Tao J, Wang J, Liu X, Zhou W, Xu Z, Zhao C, Wang Z, Tan R, Gu M. Role of endothelial-to-mesenchymal transition induced by TGF-β1 in transplant kidney interstitial fibrosis. J Cell Mol Med 2017; 21:2359-2369. [PMID: 28374926 PMCID: PMC5618680 DOI: 10.1111/jcmm.13157] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/12/2017] [Indexed: 01/18/2023] Open
Abstract
Chronic allograft dysfunction (CAD) induced by kidney interstitial fibrosis is the main cause of allograft failure in kidney transplantation. Endothelial‐to‐mesenchymal transition (EndMT) may play an important role in kidney fibrosis. We, therefore, undertook this study to characterize the functions and potential mechanism of EndMT in transplant kidney interstitial fibrosis. Proteins and mRNAs associated with EndMT were examined in human umbilical vein endothelial cells (HUVECs) treated with transforming growth factor‐beta1 (TGF‐β1) at different doses or at different intervals with western blotting, qRT‐PCR and ELISA assays. Cell motility and migration were evaluated with motility and migration assays. The mechanism of EndMT induced by TGF‐β1 was determined by western blotting analysis of factors involved in various canonical and non‐canonical pathways. In addition, human kidney tissues from control and CAD group were also examined for these proteins by HE, Masson's trichrome, immunohistochemical, indirect immunofluorescence double staining and western blotting assays. TGF‐β1 significantly promoted the development of EndMT in a time‐dependent and dose‐dependent manner and promoted the motility and migration ability of HUVECs. The TGF‐β/Smad and Akt/mTOR/p70S6K signalling pathways were found to be associated with the pathogenesis of EndMT induced by TGF‐β1, which was also proven in vivo by the analysis of specimens from the control and CAD groups. EndMT may promote transplant kidney interstitial fibrosis by targetting the TGF‐β/Smad and Akt/mTOR/p70S6K signalling pathways, and hence, result in the development of CAD in kidney transplant recipients.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhijian Han
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Urology, the Affiliated Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China
| | - Xuzhong Liu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Wanli Zhou
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen Xu
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chunchun Zhao
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Whitehouse W, Quimby J, Wan S, Monaghan K, Robbins R, Trepanier LA. Urinary F 2 -Isoprostanes in Cats with International Renal Interest Society Stage 1-4 Chronic Kidney Disease. J Vet Intern Med 2017; 31:449-456. [PMID: 28160524 PMCID: PMC5354001 DOI: 10.1111/jvim.14634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 11/15/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND F2 -isoprostanes, a biomarker of oxidant injury, increase with advancing chronic kidney disease (CKD) in humans. In cats, the relationship between CKD and oxidative stress is poorly understood. OBJECTIVES To determine whether cats with advancing CKD have increasing urinary F2 -isoprostanes. ANIMALS Control cats without evidence of CKD (≥6 years old; n = 11), and cats with IRIS stage 1 (n = 8), 2 (n = 38), 3 (n = 21), and 4 (n = 10) CKD. METHODS This was a prospective observational study. Urinary F2 -isoprostanes (specifically free 15-F2t -isoprostanes) normalized to urine creatinine (IsoPs) were compared among groups and tested for correlations with blood pressure, proteinuria, serum creatinine concentration, and urine specific gravity. The IsoPs also were compared between cats with and without hypertension or proteinuria, and in cats fed predominantly standard versus renal diets. RESULTS Urinary IsoPs were increased, but not significantly, in cats with stage 1 CKD (median 263 pg/mg creatinine; range, 211-380) compared to controls (182 pg/mg; range, 80-348) and decreased significantly from stage 1 through advancing CKD (stage 2, 144 pg/mg; range, 49-608; stage 3, 102 pg/mg; range, 25-158; stage 4, 67 pg/mg; range, 26-117; P < .01). Urinary IsoPs were inversely correlated with serum creatinine (r = -0.66, P < .0001). CONCLUSION AND CLINICAL IMPORTANCE Urinary IsoPs are significantly higher in early CKD (stage 1) compared to cats with more advanced CKD. Additional studies are warranted to characterize oxidative stress in cats with stage 1 CKD and determine whether early antioxidant treatments have a protective effect on CKD progression.
Collapse
Affiliation(s)
- W Whitehouse
- Department of Medical Sciences, University of Wisconsin-Madison, Madison, WI
| | - J Quimby
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - S Wan
- Department of Medical Sciences, University of Wisconsin-Madison, Madison, WI
| | - K Monaghan
- Department of Medical Sciences, University of Wisconsin-Madison, Madison, WI
| | - R Robbins
- Department of Medical Sciences, University of Wisconsin-Madison, Madison, WI
| | - L A Trepanier
- Department of Medical Sciences, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
32
|
The Oxidative and Inflammatory State in Patients with Acute Renal Graft Dysfunction Treated with Tacrolimus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5405847. [PMID: 27872679 PMCID: PMC5107219 DOI: 10.1155/2016/5405847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 11/18/2022]
Abstract
Objective. To determine the oxidative stress/inflammation behavior in patients with/without acute graft dysfunction (AGD) with Tacrolimus. Methods. Cross-sectional study, in renal transplant (RT) recipients (1-yr follow-up). Patients with AGD and without AGD were included. Serum IL-6, TNF-α, 8-isoprostanes (8-IP), and Nitric Oxide (NO) were determined by ELISA; C-reactive protein (CRP) was determined by nephelometry; lipid peroxidation products (LPO) and superoxide dismutase (SOD) were determined by colorimetry. Results. The AGD presentation was at 5.09 ± 3.07 versus 8.27 ± 3.78 months (p < 0.001); CRP >3.19 mg/L was found in 21 versus 19 in the N-AGD group (p = 0.83); TNF-α 145.53 ± 18.87 pg/mL versus 125.54 ± 15.92 pg/mL in N-AGD (p = 0.64); IL-6 2110.69 ± 350.97 pg/mL versus 1933.42 ± 235.38 pg/mL in N-AGD (p = 0.13). The LPO were higher in AGD (p = 0.014): 4.10 ± 0.69 µM versus 2.41 ± 0.29 µM; also levels of 8-IP were higher in AGD 27.47 ± 9.28 pg/mL versus 8.64 ± 1.54 pg/mL (p = 0.01). Serum levels of NO in AGD were lower 138.44 ± 19.20 µmol/L versus 190.57 ± 22.04 µmol/L in N-AGD (p = 0.042); antioxidant enzyme SOD activity was significantly diminished in AGD with 9.75 ± 0.52 U/mL versus 11.69 ± 0.55 U/mL in N-AGD (p = 0.012). Discussion. Patients with RT present with a similar state of the proinflammatory cytokines whether or not they have AGD. The patients with AGD showed deregulation of the oxidative state with increased LPO and 8-IP and decreased NO and SOD.
Collapse
|
33
|
Xiao Y, Liu J, Peng Y, Xiong X, Huang L, Yang H, Zhang J, Tao L. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression. PLoS One 2016; 11:e0160855. [PMID: 27602565 PMCID: PMC5014405 DOI: 10.1371/journal.pone.0160855] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/26/2016] [Indexed: 01/22/2023] Open
Abstract
Tubular epithelial-mesenchymal transition (EMT) has been widely accepted as the underlying mechanisms of renal interstitial fibrosis (RIF). The production of reactive oxygen species (ROS) plays a vital role in tubular EMT process. The purpose of this study was to investigate the involved molecular mechanisms in TGF-beta-induced EMT and identify the potential role of glutathione S-transferase alpha 3 (GSTA3) in this process. The iTRAQ screening was performed to identify protein alterations of the rats underwent unilateral-ureteral obstruction (UUO). Protein expression of GSTA3 in patients with obstructive nephropathy and UUO rats was detected by immunohistochemistry. Protein and mRNA expression of GSTA3 in UUO rats and NRK-52E cells were determined by Western blot and RT-PCR. siRNA and overexpression plasmid were transfected specifically to assess the role of GSTA3 in RIF. The generation of ROS was measured by dichlorofluorescein fluorescence analysis. GSTA3 protein and mRNA expression was significantly reduced in UUO rats. Immunohistochemical analysis revealed that GSTA3 expression was reduced in renal cortex in UUO rats and patients with obstructive nephropathy. Treating with TGF-β1 down-regulated GSTA3 expression in NRK-52E cells, which have been found to be correlated with the decreased expression in E-cadherin and megalin and increased expression in α-smooth muscle actin. Furthermore, knocking down GSTA3 in NRK-52 cells led to increased production of ROS and tubular EMT, whereas overexpressing GSTA3 ameliorated ROS production and prevented the occurrence of tubular EMT. GSTA3 plays a protective role against tubular EMT in renal fibrosis, suggesting GSTA3 is a potential therapeutic target for RIF.
Collapse
Affiliation(s)
- Yun Xiao
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China, 410078.,Division of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, 510120
| | - Jishi Liu
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China, 410078
| | - Yu Peng
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China, 410078
| | - Xuan Xiong
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China, 410078
| | - Ling Huang
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China, 410078
| | - Huixiang Yang
- Division of Digestive Medicine, Xiangya Hospital, Central South University, Changsha, China, 410078
| | - Jian Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Lijian Tao
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China, 410078.,State Key Laboratory of Medical Genetics of China, Central South University, Changsha, China, 410078
| |
Collapse
|
34
|
Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M. Oxidative Stress in Neurodegenerative Diseases. Mol Neurobiol 2016; 53:4094-4125. [PMID: 26198567 PMCID: PMC4937091 DOI: 10.1007/s12035-015-9337-5] [Citation(s) in RCA: 514] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
Abstract
The pathophysiologies of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD), are far from being fully explained. Oxidative stress (OS) has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders. Clinical and preclinical studies indicate that neurodegenerative diseases are characterized by higher levels of OS biomarkers and by lower levels of antioxidant defense biomarkers in the brain and peripheral tissues. In this article, we review the current knowledge regarding the involvement of OS in neurodegenerative diseases, based on clinical trials and animal studies. In addition, we analyze the effects of the drug-induced modulation of oxidative balance, and we explore pharmacotherapeutic strategies for OS reduction.
Collapse
Affiliation(s)
- Ewa Niedzielska
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Irena Smaga
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Maciej Gawlik
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Andrzej Moniczewski
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Piotr Stankowicz
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University, Medical College, Botaniczna 3, 31-503, Krakow, Poland
| | - Małgorzata Filip
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland.
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
35
|
Sosa Peña MDP, Lopez-Soler R, Melendez JA. Senescence in chronic allograft nephropathy. Am J Physiol Renal Physiol 2016; 315:F880-F889. [PMID: 27306980 DOI: 10.1152/ajprenal.00195.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite increasing numbers of patients on dialysis, the numbers of renal transplants performed yearly have remained relatively static. During the last 50 years, there have been many advances in the pharmacology of prevention of organ rejection. However, most patients will suffer from a slow but steady decline in renal function leading to graft loss. The most common cause of long-term graft loss is chronic allograft nephropathy (CAN). Therefore, elucidating and understanding the mechanisms involved in CAN is crucial for achieving better posttransplant outcomes. It is thought that the development of epithelial to mesenchymal transition (EMT) in proximal tubules is one of the first steps towards CAN, and has been shown to be a result of cellular senescence. Cells undergoing senescence acquire a senescence associated secretory phenotype (SASP) leading to the production of interleukin-1 alpha (IL-1α), which has been implicated in several degenerative and inflammatory processes including renal disease. A central mediator in SASP activation is the production of reactive oxygen species (ROS), which are produced in response to numerous physiological and pathological stimuli. This review explores the connection between SASP and the development of EMT/CAN in an effort to suggest future directions for research leading to improved long-term graft outcomes.
Collapse
Affiliation(s)
| | - Reynold Lopez-Soler
- Albany Medical Center, Department of Surgery, Division of Transplantation, Albany, New York
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, New York
| |
Collapse
|
36
|
Zepeda-Orozco D, Kong M, Scheuermann RH. Molecular Profile of Mitochondrial Dysfunction in Kidney Transplant Biopsies Is Associated With Poor Allograft Outcome. Transplant Proc 2016; 47:1675-82. [PMID: 26293032 DOI: 10.1016/j.transproceed.2015.04.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND In kidney transplantation (KT), progression of chronic histological damage with subclinical inflammation is associated with poor long-term allograft survival. The role of nonimmunological pathways in chronic allograft injury has not been fully assessed. METHODS We analyzed a public microarray dataset that used 1-year protocol kidney transplant biopsy specimens to investigate whether nonimmunological genes and pathways might influence long-term allograft outcome. The selected microarray dataset included 3 patient/sample groups based on their histological findings: normal histology (n = 25), interstitial fibrosis alone (IF alone, n = 24), and interstitial fibrosis with inflammation (IF+i, n = 16). The IF+i group had lower death-censored graft survival and renal function in patients with a mean follow-up of 4 years. We performed statistical analysis comparing gene expression patterns in the 3 group samples. RESULTS Gene cluster enrichment and group-specific expression patterns demonstrated a divergent pattern between mitochondrial and immune response genes, with downregulation of mitochondrial genes in the IF+i group. Gene ontological analysis of the downregulated mitochondrial genes identified generation of precursor metabolite and energy, and response to oxidative stress as the most significant biological processes. The transcription regulation pathway analysis of downregulated gene cluster demonstrated transcription factors involved in mitochondrial biogenesis. CONCLUSIONS The molecular signature of mitochondrial dysfunction reflects mitochondrial energetic insufficiency, and inadequate antioxidant response involved in mitochondria biogenesis pathways is associated with IF+i and worse long-term allograft survival. Thus, mitochondria function impairment appears to be an important nonimmune factor involved in chronic allograft injury.
Collapse
Affiliation(s)
- D Zepeda-Orozco
- Stead Family Department of Pediatrics, Division of Pediatric Nephrology, Dialysis and Transplantation, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States.
| | - M Kong
- Academic Information Systems, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - R H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, California, United States; Department of Pathology, University of California, San Diego, California, United States
| |
Collapse
|
37
|
Davran F, Yilmaz VT, Erdem BK, Gultekin M, Suleymanlar G, Akbas H. Association of interleukin 18-607A/C and -137C/G polymorphisms with oxidative stress in renal transplant recipients. Ren Fail 2016; 38:717-22. [PMID: 26983036 DOI: 10.3109/0886022x.2016.1158034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objectives IL-18 mediates various inflammatory and oxidative responses including renal injury, fibrosis, and graft rejection. It has been reported that the promoter -607 and -137 polymorphisms of IL-18 influence the level of IL-18. This prospective observational study investigated the association between oxidative stress with IL-18-607 and -137 polymorphisms in renal transplant recipients. Patients and methods This study included 75 renal transplant recipients (28 female, 47 male) from living-related donors. Blood samples were collected immediately before and after transplantation at day 7 and month 1. Serum IL-18, creatinine, cystatin C, CRP, and oxidative stress markers (TOS, TAC) were measured. The Oxidative Stress Index (OSI) was calculated. Polymorphisms of the promoter region of the IL-18 gene, IL18-607A/C, and -137C/G were determined by analysis of a "real-time PCR/Melting curve". Results Serum creatinine, cystatin C, CRP, IL-18, TOS, and OSI levels significantly decreased after transplantation. Post-transplant levels of serum TAC and estimated GFR demonstrated consistent significant increases. Serum IL-18 levels were significantly higher in patients with IL-18-137 GG and IL-18-607 CC genotypes before transplantation. Conclusion Our results indicate that the IL-18-137 GG and -607 CC genotypes contribute to higher IL-18 levels; however, the influence of these polymorphisms on oxidative stress has not been observed.
Collapse
Affiliation(s)
- Fatih Davran
- a Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Vural Taner Yilmaz
- b Division of Nephrology, Department of Internal Medicine, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Bilge Karatoy Erdem
- a Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Meral Gultekin
- c Department of Microbiology, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Gultekin Suleymanlar
- b Division of Nephrology, Department of Internal Medicine, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Halide Akbas
- a Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| |
Collapse
|
38
|
Protective effects of protocatechuic acid against cisplatin-induced renal damage in rats. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.08.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Karim AS, Reese SR, Wilson NA, Jacobson LM, Zhong W, Djamali A. Nox2 is a mediator of ischemia reperfusion injury. Am J Transplant 2015; 15:2888-99. [PMID: 26104383 PMCID: PMC4636908 DOI: 10.1111/ajt.13368] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 01/25/2023]
Abstract
Delayed graft function (DGF) results from ischemia-reperfusion injury (IRI) and the generation of reactive oxygen species. We hypothesized that NADPH oxidase 2 (Nox2) plays an important role in pathways leading to DGF. We tested this hypothesis in vitro, in an animal model of IRI using wild type and Nox2(-/-) mice, and in patients with DGF. Under hypoxic conditions, primary tubular epithelial cells from Nox2(-/-) mice had reduced expression of MMP2, vimentin, and HSP27. BUN and creatinine levels were significantly increased in both Nox2(-/-) and WT mice at 4 weeks and 6 months after IRI, suggesting the development of acute and chronic kidney injury. At 4 weeks, kidney fibrosis (α-SMA, picrosirius) and oxidative stress (dihydroethidine, HNE) were significantly reduced in Nox2(-/-) mice, confirming the oxidative and pro-fibrotic effects of Nox2. The molecular signature of IRI using genomic analyses demonstrated a significant decline in hypoxia reponse, oxidative stress, fibrosis, and inflammation in Nox2(-/-) mice. Immunohistochemical analyses of pre-implanatation kidney allograft biopsies from patients with subsequent DGF showed significantly greater Nox2 levels and vascular injury compared with patients without DGF. These studies demonstrate that Nox2 is a modulator of IRI and its absence is associated with reduced inflammation, OS, and fibrosis.
Collapse
Affiliation(s)
- Aos S. Karim
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Shannon R. Reese
- University of Wisconsin Department of Medicine
- Division of Nephrology, Madison, WI
| | - Nancy A. Wilson
- University of Wisconsin Department of Medicine
- Division of Nephrology, Madison, WI
| | - Lynn M. Jacobson
- University of Wisconsin Department of Medicine
- Division of Nephrology, Madison, WI
| | - Weixiong Zhong
- University of Wisconsin Department of Pathology and Laboratory Medicine
| | - Arjang Djamali
- University of Wisconsin School of Medicine and Public Health, Madison, WI,University of Wisconsin Department of Medicine
- Division of Nephrology, Madison, WI
| |
Collapse
|
40
|
Xie C, Jin J, Lv X, Tao J, Wang R, Miao D. Anti-aging Effect of Transplanted Amniotic Membrane Mesenchymal Stem Cells in a Premature Aging Model of Bmi-1 Deficiency. Sci Rep 2015; 5:13975. [PMID: 26370922 PMCID: PMC4570627 DOI: 10.1038/srep13975] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/12/2015] [Indexed: 02/01/2023] Open
Abstract
To determine whether transplanted amniotic membrane mesenchymal stem cells (AMSCs) ameliorated the premature senescent phenotype of Bmi-1-deficient mice, postnatal 2-day-old Bmi-1(-/-) mice were injected intraperitoneally with the second-passage AMSCs from amniotic membranes of β-galactosidase (β-gal) transgenic mice or wild-type (WT) mice labeled with DiI. Three reinjections were given, once every seven days. Phenotypes of 5-week-old β-gal(+) AMSC-transplanted or 6-week-old DiI(+) AMSC-transplanted Bmi-1(-/-) mice were compared with vehicle-transplanted Bmi-1(-/-) and WT mice. Vehicle-transplanted Bmi-1(-/-) mice displayed growth retardation and premature aging with decreased cell proliferation and increased cell apoptosis; a decreased ratio and dysmaturity of lymphocytic series; premature osteoporosis with reduced osteogenesis and increased adipogenesis; redox imbalance and DNA damage in multiple organs. Transplanted AMSCs carried Bmi-1 migrated into multiple organs, proliferated and differentiated into multiple tissue cells, promoted growth and delayed senescence in Bmi-1(-/-) transplant recipients. The dysmaturity of lymphocytic series were ameliorated, premature osteoporosis were rescued by promoting osteogenesis and inhibiting adipogenesis, the oxidative stress and DNA damage in multiple organs were inhibited by the AMSC transplantation in Bmi-1(-/-) mice. These findings indicate that AMSC transplantation ameliorated the premature senescent phenotype of Bmi-1-deficient mice and could be a novel therapy to delay aging and prevent aging-associated degenerative diseases.
Collapse
Affiliation(s)
- Chunfeng Xie
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jianliang Jin
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xianhui Lv
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jianguo Tao
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Li M, Luan F, Zhao Y, Hao H, Zhou Y, Han W, Fu X. Epithelial-mesenchymal transition: An emerging target in tissue fibrosis. Exp Biol Med (Maywood) 2015; 241:1-13. [PMID: 26361988 DOI: 10.1177/1535370215597194] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/19/2015] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibroses. Fibroblasts/myofibroblasts derived from epithelial cells contribute to the excessive accumulation of fibrous connective tissue in damaged tissue, which can lead to permanent scarring or organ malfunction. Therefore, EMT-related fibrosis cannot be neglected. This review highlights the findings that demonstrate the EMT to be a direct contributor to the fibroblast/myofibroblast population in the development of tissue fibrosis and helps to elucidate EMT-related anti-fibrotic strategies, which may enable the development of therapeutic interventions to suppress EMT and potentially reverse organ fibrosis.
Collapse
Affiliation(s)
- Meirong Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya 572014, P. R. China
| | - Fuxin Luan
- Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya 572014, P. R. China
| | - Yali Zhao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya 572014, P. R. China
| | - Haojie Hao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yong Zhou
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Weidong Han
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| |
Collapse
|
42
|
Potential role of tacrolimus in erythrocytes' antioxidative capacity in long-term period after renal transplantation. Eur J Pharm Sci 2015; 70:132-9. [PMID: 25657088 DOI: 10.1016/j.ejps.2015.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/23/2014] [Accepted: 01/23/2015] [Indexed: 11/21/2022]
Abstract
The main goal of this study was to evaluate the influence of tacrolimus daily dose (TDD) as well as cytochrome P450 (CYP) 3A5 6986A>G and ABCB1 3435C>T polymorphisms on the erythrocytes' oxidative stress parameters in long-term period after renal transplantation (Tx). Secondly, we investigated whether tacrolimus and/or oxidative injury might have affected renal function or it was independent from both. In order to evaluate erythrocytes' oxidative stress status in 72 renal transplant recipients and 62 healthy volunteers, we measured the levels of thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione reductase (GR) as well. Also, we performed allele-specific PCR to determine CYP 3A5 and ABCB1 polymorphisms. Erythrocytes' TBARS positively correlated with SOD, GPX and negatively with GFR. Tested polymorphisms affected TDD, but not oxidative stress parameters. TDD positively correlated with GSH and negatively with GFR. Additionally, tacrolimus dose-adjusted trough concentrations positively correlated with GFR and negatively with GPX and GSH. Furthermore, regression analysis showed that TBARS and TDD independently and negatively affected GFR in long term period after Tx. Our findings suggest that tacrolimus may increase erythrocytes' antioxidative capacity. Regardless, it may be involved in renal function decline in a long-term period after Tx, which seems to be independent from oxidative stress mediated reduction in renal function.
Collapse
|
43
|
Boor P, Floege J. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant 2015; 15:863-86. [PMID: 25691290 DOI: 10.1111/ajt.13180] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/30/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Renal tubulointerstitial fibrosis is the final common pathway of progressive renal diseases. In allografts, it is assessed with tubular atrophy as interstitial fibrosis/tubular atrophy (IF/TA). IF/TA occurs in about 40% of kidney allografts at 3-6 months after transplantation, increasing to 65% at 2 years. The origin of renal fibrosis in the allograft is complex and includes donor-related factors, in particular in case of expanded criteria donors, ischemia-reperfusion injury, immune-mediated damage, recurrence of underlying diseases, hypertensive damage, nephrotoxicity of immunosuppressants, recurrent graft infections, postrenal obstruction, etc. Based largely on studies in the non-transplant setting, there is a large body of literature on the role of different cell types, be it intrinsic to the kidney or bone marrow derived, in mediating renal fibrosis, and the number of mediator systems contributing to fibrotic changes is growing steadily. Here we review the most important cellular processes and mediators involved in the progress of renal fibrosis, with a focus on the allograft situation, and discuss some of the challenges in translating experimental insights into clinical trials, in particular fibrosis biomarkers or imaging modalities.
Collapse
Affiliation(s)
- P Boor
- Division of Nephrology and Clinical Immunology, RWTH University of Aachen, Aachen, Germany; Department of Pathology, RWTH University of Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Bratislava, Slovakia
| | | |
Collapse
|
44
|
Zununi Vahed S, Ardalan M, Samadi N, Omidi Y. Pharmacogenetics and drug-induced nephrotoxicity in renal transplant recipients. BIOIMPACTS : BI 2015; 5:45-54. [PMID: 25901296 PMCID: PMC4401167 DOI: 10.15171/bi.2015.12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/07/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The advent of calcineurin inhibitors (CNIs), as the leading immunosuppressive agents, not only has revolutionized the transplant medicine but also made it a better therapeutic intervention that guarantees the graft outcome and improves the survival rate of patients. However, genetic polymorphism(s) in the CNIs metabolic substrates genes (CYP3A4, CYP3A5) and their transporter such as P-glycoprotein (P-gp) can influence the CNIs metabolism and elicit some possible systemic and intra-renal exposures to drugs and/or metabolites with differential risk of nephrotoxicity, jeopardizing the transplantation. METHODS In the current study, we review the recent literatures to evaluate the effects of genetic polymorphisms of the genes involved in development of chronic calcineurin nephrotoxicity and progression of chronic allograft dysfunction (CAD) providing an extensive overview on their clinical impacts. RESULTS Identifying the inherited genetic basis for the inter-individual differences in terms of drug responses and determining the risk of calcineurin-mediated nephrotoxicity and CAD allow optimized personalized administration of these agents whith minimal adverse effects. CONCLUSION Pharmacogenetics characteristics of CYP isoforms (CYP3A) and efflux transporters (P-gp and MRP), involved in metabolism and extracellular transportation of the immunosuppressive CNIs, can be of pivotal information in the pharmacotherapy of the renal-transplant recipients. Such information can be used for the successes clinical interventions to attain an improved drug administration strategy with reduced rates of rejection and toxicity.
Collapse
Affiliation(s)
- Sepideh Zununi Vahed
- Research Center for Pharmaceutical Nanotechnology, School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Chronic Kidney Disease Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Ardalan
- Research Center for Pharmaceutical Nanotechnology, School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Chronic Kidney Disease Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Research Center for Pharmaceutical Nanotechnology, School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Symmetric dimethylarginine as predictor of graft loss and all-cause mortality in renal transplant recipients. Transplantation 2015; 98:1219-25. [PMID: 24999963 PMCID: PMC4240460 DOI: 10.1097/tp.0000000000000205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental digital content is available in the text. Background Elevated symmetric dimethylarginine (SDMA) has been shown to predict cardiovascular events and all cause mortality in diverse populations. The potential role of SDMA as a risk marker in renal transplant recipients (RTR) has not been investigated. Methods We analyzed SDMA in the placebo arm of the Assessment of Lescol in Renal Transplantation study, a randomized controlled trial of fluvastatin in RTR. Mean follow-up was 5.1 years. Patients were grouped into quartiles based on SDMA levels at study inclusion. Relationships between SDMA and traditional risk factors for graft function and all-cause mortality were analyzed in 925 RTR using univariate and multivariate survival analyses. Results In univariate analysis, SDMA was significantly associated with renal graft loss, all-cause death, and major cardiovascular events. After adjustment for established risk factors including estimated glomerular filtration rate, an elevated SDMA-level (4th quartile, >1.38 μmol/L) was associated with renal graft loss; hazard ratio (HR), 5.51; 95% confidence interval (CI), 1.95–15.57; P=0.001, compared to the 1st quartile. Similarly, SDMA in the 4th quartile was independently associated with all-cause mortality (HR, 4.56; 95% CI, 2.15–9.71; P<0.001), and there was a strong borderline significant trend for an association with cardiovascular mortality (HR, 2.86; 95% CI, 0.99–8.21; P=0.051). Conclusion In stable RTR, an elevated SDMA level is independently associated with increased risk of all-cause mortality and renal graft loss.
Collapse
|
46
|
Fernando M, Peake PW, Endre ZH. Biomarkers of calcineurin inhibitor nephrotoxicity in transplantation. Biomark Med 2014; 8:1247-62. [DOI: 10.2217/bmm.14.86] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over 35 years of use has demonstrated the revolutionary therapeutic benefits of calcineurin inhibitors (CNI) in not only preventing transplant rejection, but also the renal and nonrenal toxicity of CNI. Acute reversible and insidious irreversible forms of CNI nephrotoxicity have been identified, with ischemia from an imbalance between vasoconstrictors and vasodilators playing an important role. The ongoing search to define toxicity pathways has been enriched by ‘Omics’ studies. Changes in proteins including those involved in activation of pro-inflammatory responses, oxidative stress, ER stress and the unfolded protein response have been identified, and these may serve as biomarkers of toxicity. However, the current standard of CNI toxicity, histology, lacks specificity, which creates challenges for biomarker validation. This review focuses on progress in nephrotoxic pathway identification of CNI and biomarker validation.
Collapse
Affiliation(s)
- Mangalee Fernando
- Department of Nephrology, Prince of Wales Hospital, Barker St., Randwick, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Philip W Peake
- Department of Nephrology, Prince of Wales Hospital, Barker St., Randwick, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Zoltan H Endre
- Department of Nephrology, Prince of Wales Hospital, Barker St., Randwick, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
47
|
Kim J, Yoon SP, Toews ML, Imig JD, Hwang SH, Hammock BD, Padanilam BJ. Pharmacological inhibition of soluble epoxide hydrolase prevents renal interstitial fibrogenesis in obstructive nephropathy. Am J Physiol Renal Physiol 2014; 308:F131-9. [PMID: 25377915 DOI: 10.1152/ajprenal.00531.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Treating chronic kidney disease (CKD) has been challenging because of its pathogenic complexity. Epoxyeicosatrienoic acids (EETs) are cytochrome P-450-dependent derivatives of arachidonic acid with antihypertensive, anti-inflammatory, and profibrinolytic functions. We recently reported that genetic ablation of soluble epoxide hydrolase (sEH), an enzyme that converts EETs to less active dihydroxyeicosatrienoic acids, prevents renal tubulointerstitial fibrosis and inflammation in experimental mouse models of CKD. Here, we tested the hypothesis that pharmacological inhibition of sEH after unilateral ureteral obstruction (UUO) would attenuate tubulointerstitial fibrosis and inflammation in mouse kidneys and may provide a novel approach to manage the progression of CKD. Inhibition of sEH enhanced levels of EET regioisomers and abolished tubulointerstitial fibrosis, as demonstrated by reduced collagen deposition and myofibroblast formation after UUO. The inflammatory response was also attenuated, as demonstrated by decreased influx of neutrophils and macrophages and decreased expression of inflammatory cytokines keratinocyte chemoattractant, macrophage inflammatory protein-2, monocyte chemotactic protein-1, TNF-α, and ICAM-1 in kidneys after UUO. UUO upregulated transforming growth factor-β1/Smad3 signaling and induced NF-κB activation, oxidative stress, tubular injury, and apoptosis; in contrast, it downregulated antifibrotic factors, including peroxisome proliferator-activated receptor (PPAR) isoforms, especially PPAR-γ. sEH inhibition mitigated the aforementioned malevolent effects in UUO kidneys. These data demonstrate that pharmacological inhibition of sEH promotes anti-inflammatory and fibroprotective effects in UUO kidneys by preventing tubular injury, downregulation of NF-κB, transforming growth factor-β1/Smad3, and inflammatory signaling pathways, and activation of PPAR isoforms. Our data suggest the potential use of sEH inhibitors in treating fibrogenesis in the UUO model of CKD.
Collapse
Affiliation(s)
- Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Anatomy, Jeju National University School of Medicine, Jeju, Republic of Korea; Department of Biomedicine and Drug Development, Jeju National University, Jeju, Republic of Korea
| | - Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Myron L Toews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - John D Imig
- Department of Pharmacology and Toxicology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sung Hee Hwang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California; and
| | - Bruce D Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California; and
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
48
|
A comparative study on renal biopsy before and after long-term calcineurin inhibitors therapy: an insight for pathogenesis of its toxicity. Hum Pathol 2014; 46:34-9. [PMID: 25449629 DOI: 10.1016/j.humpath.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 12/25/2022]
Abstract
Calcineurin inhibitors (CNIs) are effective immunosuppressive agents for the successful treatment of childhood steroid-resistant nephrotic syndrome (SRNS). Because these patients require long-term treatment, the identification of early markers of CNI-induced nephrotoxicity (CNIN) is imperative. The monitoring of CNI trough levels, serum creatinine, and glomerular filtration rate is not an accurate marker of CNIN. The present study has been undertaken to identify early markers of CNIN in SRNS patients. Twenty-four pediatric SRNS patients were included with paired renal biopsies, before initiation (time zero biopsy) and at least 1 year after CNI therapy (protocol renal biopsy) with standard dosage. Semiquantitative morphologic grading of the histologic features was done for assessing CNIN. Immunohistochemical markers for oxidative stress (nitrotyrosine [NT]), fibrogenic cytokine (transforming growth factor β1 [TGF-β1]), and endothelial injury (endothelial nitric oxide synthase [eNOS]) were evaluated. In addition, ultrastructural study was done to assess mitochondrial injury in endothelial and tubular epithelial cells. The protocol renal biopsies in comparison with time zero biopsies showed significant increase in glomerulosclerosis, juxtaglomerular apparatus hyperplasia, tubular atrophy, interstitial fibrosis, arteriolar hyalinosis, and smooth muscle vacuolization (P < .05 - P < .001). Significantly higher immunoexpression of eNOS (91.6%), NT (71%), and TGF-β1 (87.5%) was noted in posttreatment biopsies. Mean mitochondrial injury grade among post-CNI cases in endothelial cells and proximal tubular cells was 2.28 and 1.4, whereas in pre-CNI, it was 0.28 and 0.27, respectively. We propose that immunohistochemical overexpression of NT, eNOS, and TGF-β1 is an early marker of CNIN. Endothelial and proximal tubular mitochondrial injury may play an important role in the pathogenesis of CNIN.
Collapse
|
49
|
Jin J, Lv X, Chen L, Zhang W, Li J, Wang Q, Wang R, Lu X, Miao D. Bmi-1 plays a critical role in protection from renal tubulointerstitial injury by maintaining redox balance. Aging Cell 2014; 13:797-809. [PMID: 24915841 PMCID: PMC4331754 DOI: 10.1111/acel.12236] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2014] [Indexed: 12/18/2022] Open
Abstract
To determine whether Bmi-1 deficiency could lead to renal tubulointerstitial injury by mitochondrial dysfunction and increased oxidative stress in the kidney, 3-week-old Bmi-1(-/-) mice were treated with the antioxidant N-acetylcysteine (NAC, 1 mg mL(-1) ) in their drinking water, or pyrro-quinoline quinone (PQQ, 4 mg kg(-1) diet) in their diet for 2 weeks, and their renal phenotypes were compared with vehicle-treated Bmi1(-/-) and wild-type mice. Bmi-1 was knocked down in human renal proximal tubular epithelial (HK2) cells which were treated with 1 mm NAC for 72 or 96 h, and their phenotypes were compared with control cells. Five-week-old vehicle-treated Bmi-1(-/-) mice displayed renal interstitial fibrosis, tubular atrophy, and severe renal function impairment with decreased renal cell proliferation, increased renal cell apoptosis and senescence, and inflammatory cell infiltration. Impaired mitochondrial structure, decreased mitochondrial numbers, and increased oxidative stress occurred in Bmi-1(-/-) mice; subsequently, this caused DNA damage, the activation of TGF-β1/Smad signaling, and the imbalance between extracellular matrix synthesis and degradation. Oxidative stress-induced epithelial-to-mesenchymal transition of renal tubular epithelial cells was enhanced in Bmi-1 knocked down HK2 cells. All phenotypic alterations caused by Bmi-1 deficiency were ameliorated by antioxidant treatment. These findings indicate that Bmi-1 plays a critical role in protection from renal tubulointerstitial injury by maintaining redox balance and will be a novel therapeutic target for preventing renal tubulointerstitial injury.
Collapse
Affiliation(s)
- Jianliang Jin
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, China
| | - Xianhui Lv
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, China
| | - Lulu Chen
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, China
| | - Wei Zhang
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, China
| | - Jinbo Li
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, China
| | - Qian Wang
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, China
| | - Rong Wang
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, China
| | - Xiang Lu
- Department of Gerontology, The Second Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Dengshun Miao
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical UniversityNanjing, China
- Department of Gerontology, The Second Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| |
Collapse
|
50
|
Shrestha B, Butt I, Da Silva M, Sanchez-Lara A, Wagner B, Raftery A, Johnson T, Haylor J. Upregulation of transglutaminase and ε (γ-glutamyl)-lysine in the Fisher-Lewis rat model of chronic allograft nephropathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:651608. [PMID: 25143942 PMCID: PMC4131109 DOI: 10.1155/2014/651608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/11/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Tissue transglutaminase (TG2), a cross-linking enzyme, modulates deposition of extracellular matrix protein in renal fibrosis. This study aimed to examine TG2 and its cross-link product ε(γ-glutamyl)-lysine in the Fisher-Lewis rat renal transplantation (RTx) model of chronic allograft nephropathy (CAN). MATERIALS AND METHODS Left renal grafts from male Fisher and Lewis were transplanted into Lewis rats, generating allografts and isografts, respectively. Blood pressure, renal function, and proteinuria were monitored for up to 52 weeks. At termination, CAN was assessed in the renal tissue by light and electron microscopy, TG2 and ε(γ-glutamyl)-lysine by immunofluorescence, and the urinary ε(γ-glutamyl)-lysine by high performance liquid chromatography. RESULTS Compared to the isograft, the allografts were hypertensive, proteinuric, and uraemic and developed CAN. Extracellular TG2 (glomerulus: 64.55 ± 17.61 versus 2.11 ± 0.17, P < 0.001; interstitium: 13.72 ± 1.62 versus 3.19 ± 0.44, P < 0.001), ε(γ-glutamyl)-lysine (glomerulus: 21.74 ± 2.71 versus 1.98 ± 0.37, P < 0.01; interstitium: 37.96 ± 17.06 versus 0.42 ± 0.11, P < 0.05), TG2 enzyme activity (1.09 ± 0.13 versus 0.41 ± 0.03 nmol/h/mg protein, P < 0.05), TG2 mRNA (20-fold rise), and urinary ε(γ-glutamyl)-lysine (534.2 ± 198.4 nmol/24 h versus 57.2 ± 4.1 nmol/24 h, P < 0.05) levels were significantly elevated in the allografts and showed a positive linear correlation with tubulointerstitial fibrosis. CONCLUSION CAN was associated with upregulation of renal TG2 pathway, which has a potential for pharmacological intervention. The elevated urinary ε(γ-glutamyl)-lysine, measured for the first time in RTx, is a potential biomarker of CAN.
Collapse
Affiliation(s)
- Badri Shrestha
- Division of Renal Transplantation, Sheffield Kidney Institute, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - Imran Butt
- Division of Renal Transplantation, Sheffield Kidney Institute, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - Michelle Da Silva
- Academic Nephrology Unit, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Armando Sanchez-Lara
- Academic Nephrology Unit, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Bart Wagner
- Division of Renal Transplantation, Sheffield Kidney Institute, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - Andrew Raftery
- Division of Renal Transplantation, Sheffield Kidney Institute, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - Timothy Johnson
- Academic Nephrology Unit, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - John Haylor
- Academic Nephrology Unit, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|