1
|
Song WS, Shen X, Du K, Ramirez CB, Park SH, Cao Y, Le J, Bae H, Kim J, Chun Y, Khong NJ, Kim M, Jung S, Choi W, Lopez ML, Said Z, Song Z, Lee SG, Nicholas D, Sasaki Y, Milbrandt J, Imagawa DK, Skowronska-Krawczyk D, Chen D, Lee G, Jang C, Yang Q. Nicotinic acid riboside maintains NAD + homeostasis and ameliorates aging-associated NAD + decline. Cell Metab 2025:S1550-4131(25)00217-7. [PMID: 40315855 DOI: 10.1016/j.cmet.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 02/05/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025]
Abstract
Liver-derived circulating nicotinamide from nicotinamide adenine dinucleotide (NAD+) catabolism primarily feeds systemic organs for NAD+ synthesis. We surprisingly found that, despite blunted hepatic NAD+ and nicotinamide production in liver-specific nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) deletion mice (liver-specific knockout [LKO]), circulating nicotinamide and extra-hepatic organs' NAD+ are unaffected. Metabolomics reveals a massive accumulation of a novel molecule in the LKO liver, which we identify as nicotinic acid riboside (NaR). We further demonstrate cytosolic 5'-nucleotidase II (NT5C2) as the NaR-producing enzyme. The liver releases NaR to the bloodstream, and kidneys take up NaR to synthesize NAD+ through nicotinamide riboside kinase 1 (NRK1) and replenish circulating nicotinamide. Serum NaR levels decline with aging, whereas oral NaR supplementation in aged mice boosts serum nicotinamide and multi-organ NAD+, including kidneys, and reduces kidney inflammation and albuminuria. Thus, the liver-kidney axis maintains systemic NAD+ homeostasis via circulating NaR, and NaR supplement ameliorates aging-associated NAD+ decline and kidney dysfunction.
Collapse
Affiliation(s)
- Won-Suk Song
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Xiyu Shen
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Kang Du
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Cuauhtemoc B Ramirez
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA; Department of Microbiology and Molecular Genetics, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Sang Hee Park
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Yang Cao
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Johnny Le
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Hosung Bae
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Joohwan Kim
- Department of Microbiology and Molecular Genetics, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Yujin Chun
- Department of Microbiology and Molecular Genetics, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Nikki Joyce Khong
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Marie Kim
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Sunhee Jung
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Wonsuk Choi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Miranda L Lopez
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Zaid Said
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Zehan Song
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sang-Guk Lee
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA; Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Dequina Nicholas
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, School of Biological Sciences, Irvine, CA 92697, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David K Imagawa
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California, Irvine, Orange, CA 92868, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA.
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA.
| |
Collapse
|
2
|
Li J, He W, Wu Q, Qin Y, Luo C, Dai Z, Long Y, Yan P, Huang W, Cao L. Ketogenic diets and β-hydroxybutyrate in the prevention and treatment of diabetic kidney disease: current progress and future perspectives. BMC Nephrol 2025; 26:127. [PMID: 40055596 PMCID: PMC11887203 DOI: 10.1186/s12882-025-04019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/12/2025] [Indexed: 05/13/2025] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease. Ketogenic diets (KD) is a high-fat, low-carbohydrate diet. KD produces ketone bodies to supplement energy in the case of insufficient glucose in the body. β-Hydroxybutyrate (BHB) is the main component of ketone bodies. BHB serves as "ancillary fuel" substituting (but also inducing) anti-oxidative, anti-inflammatory, and cardio-protective features by binding to several target proteins, including histone acylation modification, or G protein-coupled receptors (GPCRs). KD have been used to treat epilepsy, obesity, type-2 diabetes mellitus, polycystic ovary syndrome, cancers, and other diseases. According to recent research, KD and the induced BHB delay DKD progression by improving the metabolism of glucose and lipids, regulating autophagy, as well as alleviating inflammation, oxidative stress and fibrosis. However, due to some side-effects, the role and mechanism of action of KD and BHB in the prevention and treatment of DKD are controversial. This review focuses on recent progress in the research of KD and BHB in clinical and preclinical studies of DKD, and provides new perspectives for DKD treatment.
Collapse
Affiliation(s)
- Junle Li
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Wanhong He
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Qianshi Wu
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Yuanyuan Qin
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Luzhou People's Hospital, Luzhou, China
| | - Changfang Luo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Zhuojun Dai
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| | - Ling Cao
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
3
|
Alhumaidi R, Huang H, Saade MC, Clark AJ, Parikh SM. NAD + metabolism in acute kidney injury and chronic kidney disease transition. Trends Mol Med 2025:S1471-4914(24)00337-X. [PMID: 39757045 DOI: 10.1016/j.molmed.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
Disturbances in kidney tubular cell metabolism are increasingly recognized as a feature of acute kidney injury (AKI). In AKI, tubular epithelial cells undergo abnormal metabolic shifts that notably disrupt NAD+ metabolism. Recent advancements have highlighted the critical role of NAD+ metabolism in AKI, revealing that acute disruptions may lead to lasting cellular changes, thereby promoting the transition to chronic kidney disease (CKD). This review explores the molecular mechanisms underlying metabolic dysfunction in AKI, with a focus on NAD+ metabolism, and proposes several cellular processes through which acute aberrations in NAD+ may contribute to long-term changes in the kidney.
Collapse
Affiliation(s)
- Rahil Alhumaidi
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huihui Huang
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Marie Christelle Saade
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda J Clark
- Division of Nephrology, Department of Pediatrics, University of Texas Southwestern and Children's Medical Center, Dallas, TX, USA
| | - Samir M Parikh
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Bauset C, Carda-Diéguez M, Cejudo-Garcés A, Buetas E, Seco-Cervera M, Macias-Ceja DC, Navarro-Vicente F, Esplugues JV, Calatayud S, Mira Á, Ortiz-Masiá D, Barrachina MD, Cosín-Roger J. A disturbed metabolite-GPCR axis is associated with microbial dysbiosis in IBD patients: Potential role of GPR109A in macrophages. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167489. [PMID: 39233260 DOI: 10.1016/j.bbadis.2024.167489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/20/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract characterized by disrupted immune function. Indeed, gut microbiota dysbiosis and metabolomic profile alterations, are hallmarks of IBD. In this scenario, metabolite-sensing G-protein coupled receptors (GPCRs), involved in several biological processes, have emerged as pivotal players in the pathophysiology of IBD. The aim of this study was to characterize the axis microbiota-metabolite-GPCR in intestinal surgical resections from IBD patients. Results showed that UC patients had a lower microbiota richness and bacterial load, with a higher proportion of the genus Cellulosimicrobium and a reduced proportion of Escherichia, whereas CD patients showed a decreased abundance of Enterococcus. Furthermore, metabolomic analysis revealed alterations in carboxylic acids, fatty acids, and amino acids in UC and CD samples. These patients also exhibited upregulated expression of most metabolite-sensing GPCRs analysed, which positively correlated with pro-inflammatory and pro-fibrotic markers. The role of GPR109A was studied in depth and increased expression of this receptor was detected in epithelial cells and cells from lamina propria, including CD68+ macrophages, in IBD patients. The treatment with β-hydroxybutyrate increased gene expression of GPR109A, CD86, IL1B and NOS2 in U937-derived macrophages. Besides, when GPR109A was transiently silenced, the mRNA expression and secretion of IL-1β, IL-6 and TNF-α were impaired in M1 macrophages. Finally, the secretome from siGPR109A M1 macrophages reduced the gene and protein expression of COL1A1 and COL3A1 in intestinal fibroblasts. A better understanding of metabolite-sensing GPCRs, such as GPR109A, could establish their potential as therapeutic targets for managing IBD.
Collapse
Affiliation(s)
- Cristina Bauset
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - Andrea Cejudo-Garcés
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Elena Buetas
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | | | | | | | - Juan Vicente Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain
| | - Sara Calatayud
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain
| | - Álex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain; CIBER Center for Epidemiology and Public Health, Madrid, Spain
| | - Dolores Ortiz-Masiá
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
| | - María Dolores Barrachina
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain.
| | - Jesús Cosín-Roger
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain
| |
Collapse
|
5
|
Li Q, Lan W. L-shaped association between dietary niacin intake and chronic kidney disease among adults in the USA: a cross-sectional study. Ren Fail 2024; 46:2399742. [PMID: 39238253 PMCID: PMC11382734 DOI: 10.1080/0886022x.2024.2399742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/03/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD), which has become a global public health issue, is associated with mitochondrial dysfunction. Niacin is a necessary coenzyme for mitochondrial energy metabolism. However, the association between dietary niacin intake and CKD remains uncertain. This study aimed to investigate the association between dietary niacin intake and CKD in American adults. METHODS This is a cross-sectional study. 25,608 individuals aged ≥20 years from the National Health and Nutrition Examination Survey from 2007 to 2018 were involved.Dietary niacin intake was estimated based on 24-hour dietary recalls conducted by trained personnel. CKD was determined by an estimated glomerular filtration rate (eGFR) (<60 ml/min/1.73 m2) or a urinary albumin-to-creatinine ratio (ACR) (≥30mg/g). The association between dietary niacin intake and CKD was investigated using multivariable logistic regression analysis. RESULTS Of 25,608 participants, 17.14% (4388/25,608) had CKD. Compared to individuals with lower niacin intake (quartile [Q]1, ≤15.30 mg/day), those with higher niacin intake in Q2 (15.31-22.07 mg/day), Q3 (22.08-31.09 mg/day), and Q4 (≥31.10 mg/day) exhibited adjusted odds ratios for CKD of 0.89 (95% confidence interval [CI]:0.81-0.99, p = 0.024), 0.83 (95% CI:0.75-0 .92, p < 0 .001), and 0.83 (95% CI:0.75-0.93, p = 0.001) respectively. The relationship between dietary niacin intake and CKD among U.S. adults follows an L-shaped pattern, with an inflection point at approximately 28.04 mg/day. CONCLUSIONS These results suggest an L-shaped association between dietary niacin intake and CKD. Individuals with low dietary niacin intake levels should be alert to the risk of CKD.
Collapse
Affiliation(s)
- Qishu Li
- Department of Nephrology, Guangzhou Twelfth People's Hospital, Guangzhou, Guangdong, China
| | - Wei Lan
- Department of Nephrology, Guangzhou Twelfth People's Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Zhou Z, Yao X. Dietary niacin intake and mortality among chronic kidney disease patients. Front Nutr 2024; 11:1435297. [PMID: 39639940 PMCID: PMC11617148 DOI: 10.3389/fnut.2024.1435297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background The relationship between niacin and the risk of mortality in chronic kidney disease (CKD) patients remains unclear. This study aims to investigate the potential correlation. Methods This cohort study utilized data from the 2003-2018 National Health and Nutrition Examination Survey (NHANES). The study included 6,110 patients with CKD aged 18 years or older. Weighted Cox proportional hazards models and restricted cubic splines (RCS) were employed to estimate hazard ratios for all-cause mortality and cardiovascular disease (CVD) mortality. Niacin intake was estimated using the 24 h dietary recall method, based on the type and amount of food consumed. All-cause mortality and cardiac mortality rates were determined using National Death Index (NDI) mortality data (as of 31 December 2018). Results The median niacin intake was 20.89 mg/day, with an interquartile range of 15.67-27.99 mg/day. During the follow-up period (median of 87 months), there were 1,984 all-cause deaths, including 714 CVD deaths. Compared with low niacin intake, the multivariate-adjusted hazard ratio for dietary intake of 22 mg or higher was 0.71 (95% CI, 0.57-0.88) for all-cause mortality and 0.75 (95% CI, 0.57, 0.98) for CVD mortality. Conclusion Dietary niacin intake is associated with a reduction in all-cause and cardiac mortality among CKD patients.
Collapse
Affiliation(s)
- Zhengxi Zhou
- Department of Urology, Ningbo Mingzhou Hospital, Zhejiang, China
| | - Xiaotian Yao
- Department of Urology, Ningbo Mingzhou Hospital, Zhejiang, China
- The Division of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Ding C, Wu Y, Zhan C, Naseem A, Chen L, Li H, Yang B, Liu Y. Research progress on the role and inhibitors of Keap1 signaling pathway in inflammation. Int Immunopharmacol 2024; 141:112853. [PMID: 39159555 DOI: 10.1016/j.intimp.2024.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Inflammation is a protective mechanism against endogenous and exogenous pathogens. It is a typical feature of numerous chronic diseases and their complications. Keap1 is an essential target in oxidative stress and inflammatory diseases. Among them, the Keap1-Nrf2-ARE pathway (including Keap1-Nrf2-HO-1) is the most significant pathway of Keap1 targets, which participates in the control of inflammation in multiple organs (including renal inflammation, lung inflammation, liver inflammation, neuroinflammation, etc.). Identifying new Keap1 inhibitors is crucial for new drug discovery. However, most drugs have specificity issues as they covalently bind to cysteine residues of Keap1, causing off-target effects. Therefore, direct inhibition of Keap1-Nrf2 PPIs is a new research idea. Through non-electrophilic and non-covalent binding, its inhibitors have better specificity and ability to activate Nrf2, and targeting therapy against Keap1-Nrf2 PPIs has become a new method for drug development in chronic diseases. This review summarizes the members and downstream genes of the Keap1-related pathway and their roles in inflammatory disease models. In addition, we summarize all the research progress of anti-inflammatory drugs targeting Keap1 from 2010 to 2024, mainly describing their biological functions, molecular mechanisms of action, and therapeutic roles in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Ding
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Chaochao Zhan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
8
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
9
|
Xie Z, Peng S, Ou G, Zhou X, Zhang G, Jiang H, Zhang T, Chen N. U-shaped association between dietary niacin intake and chronic kidney disease among US elderly: a nationwide cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1438373. [PMID: 39497801 PMCID: PMC11532146 DOI: 10.3389/fendo.2024.1438373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Background In addition to hypertension or diabetes, elderly people are also considered one of the high-risk groups for chronic kidney disease (CKD). Although niacin is recognized for its renal protective properties, the link between dietary niacin intake and CKD remains uncertain. This study investigated this relationship in the elderly. Methods We included participants aged 60 and older from the National Health and Nutrition Examination Survey (NHANES) for the years 2003-2018. Dietary niacin intake was assessed through two non-consecutive 24-hour dietary recalls. CKD was diagnosed in individuals with a urine albumin-to-creatinine ratio exceeding 30 mg/g or an estimated glomerular filtration rate below 60 mL/min per 1.73 m^2. The study cohort comprised 4,649 participants, 1,632 of whom had CKD. Propensity score matching (PSM) was utilized to adjust for baseline differences between the groups. Results Our analysis, using smooth curve fitting and generalized additive models both before and after PSM, found a U-shaped curve depicting the relationship between dietary niacin intake and CKD risk, confirmed by a log-likelihood ratio test (P < 0.05). Threshold effect analysis (after PSM) indicated a reduced risk of CKD in older adults with a niacin intake below 38.83 mg per day [odds ratio (OR) = 0.99, 95% confidence interval (CI) 0.97-1.00]. In contrast, higher intake levels significantly increased the risk (OR = 1.03, 95% CI 1.00-1.06). Subgroup analysis indicated that these associations were consistent across different stratification variables (P for interaction > 0.05). Conclusion Our findings suggested a U-shaped association between dietary niacin intake and CKD risk among older Americans. However, further prospective cohort studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Zhouzhou Xie
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Shansen Peng
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Gejun Ou
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Xiaoqi Zhou
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Guihao Zhang
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Huiming Jiang
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Tianhui Zhang
- Departments of Radiology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Nanhui Chen
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| |
Collapse
|
10
|
Zhou J, Han J. Association of niacin intake and metabolic dysfunction-associated steatotic liver disease: findings from National Health and Nutrition Examination Survey. BMC Public Health 2024; 24:2742. [PMID: 39379884 PMCID: PMC11462762 DOI: 10.1186/s12889-024-20161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
AIM This study aims to explore the relationship between niacin intake and the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) within a large, multi-ethnic cohort. METHODS A total of 2946 participants from the National Health and Nutrition Examination Survey (NHANES) were carefully selected based on strict inclusion and exclusion criteria. Participants meeting the eligibility criteria underwent two dietary recall interviews, and niacin intake was calculated using the USDA's Food and Nutrient Database for Dietary Studies (FNDDS). Liver steatosis was diagnosed using a Controlled Attenuation Parameter (CAP) of 248 dB/m, and MASLD diagnosis was based on metabolic indicators. Weighted multivariate logistic regression was utilized to analyze the correlation between niacin intake and MASLD prevalence, with potential nonlinear relationships explored through restricted cubic spline (RCS) regression. RESULTS Analysis of baseline data revealed that MASLD patients had lower niacin intake levels and poorer metabolic biomarker profiles. Both RCS analysis and multivariate logistic regression indicated a U-shaped association between niacin intake and MASLD prevalence. Specifically, there was a non-linear dose-response relationship, with the odds of MASLD gradually decreasing with increasing niacin intake until reaching a threshold of 23.6 mg, beyond which the odds of MASLD began to increase. CONCLUSION This study confirms a U-shaped nonlinear relationship between niacin intake and MASLD prevalence within the diverse American population.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Infectious Diseases, Affiliated Wuxi Fifth Hospital of Jiangnan University, The Fifth People's Hospital of Wuxi, Wuxi, 214065, China
| | - Jun Han
- Department of Infectious Diseases, Affiliated Wuxi Fifth Hospital of Jiangnan University, The Fifth People's Hospital of Wuxi, Wuxi, 214065, China.
| |
Collapse
|
11
|
Mahdavifard S, Shahi Z. Hepatoprotective Effect of Nicotinamide Versus Lead-Motivated Hepatotoxicity in Rats via Correcting Effect on Nuclear Factor-kβ Pathway and Glutathione Metabolism. Biol Trace Elem Res 2024; 202:4047-4053. [PMID: 38087034 DOI: 10.1007/s12011-023-03980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/27/2023] [Indexed: 07/18/2024]
Abstract
Lead (Pb) poisoning is one of the pivotal environmental issues and prompts liver dysfunction by elevating oxidative stress and inflammation. Nicotinamide (NA) deficiency enhances sensitivity to Pb toxicity. So, we investigated the effect of nicotinamide (NA) on the rat's liver histopathological and biochemical profiles in a rat model of Pb toxicity. Thirty-six rats were divided into four groups (nine rats at each): normal (N), lead toxicity (Pbt), and NA-treated N and Pbt groups. Treated groups took NA (180 mg/L in drinking water for one month). Pb intoxication was motivated in rats by acquiring 50 mg/L lead acetate in drinking water. Oxidative stress markers (advanced oxidation protein products and malondialdehyde), antioxidant markers (total glutathione, reduced glutathione to oxidized glutathione ratio, ferric ion reducing power, catalase, and paraoxonase-1), and inflammatory markers (hepatic nuclear factor-kβ expression, interleukin 1β level, and myeloperoxidase activity) in sera and liver homogenates were determined. In addition, the biochemical parameters of the liver function were measured. Finally, the liver of rats was evaluated by histopathological observation. NA corrected lead-persuaded biochemical and histopathological changes in the rat's liver. In addition, treatment decreased Pb, oxidative stress, and inflammatory markers in the sera and liver homogenates of N and Pbt groups. In addition, it elevated antioxidant markers (p < 0.001). NA prevented Pb-induced liver histopathological alternations and reduced liver dysfunction by reducing Pb, oxidative stress, and inflammation. Moreover, raising GSH/GSSG and diminishing the hepatic NF-kβ pathway are cardinal mechanisms of the treatment against Pb-motivated hepatotoxicity in rats.
Collapse
Affiliation(s)
- Sina Mahdavifard
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Zahra Shahi
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
12
|
Theodosis-Nobelos P, Rekka EA. The Antioxidant Potential of Vitamins and Their Implication in Metabolic Abnormalities. Nutrients 2024; 16:2740. [PMID: 39203876 PMCID: PMC11356998 DOI: 10.3390/nu16162740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Vitamins are micronutrients necessary for the normal function of the body. Although each vitamin has different physicochemical properties and a specific role in maintaining life, they may also possess a common characteristic, i.e., antioxidant activity. Oxidative stress can harm all the main biological structures leading to protein, DNA and lipid oxidation, with concomitant impairment of the cell. It has been established that oxidative stress is implicated in several pathological conditions such as atherosclerosis, diabetes, obesity, inflammation and metabolic syndrome. In this review we investigate the influence of oxidative stress on the above conditions, examine the interrelation between oxidative stress and inflammation and point out the importance of vitamins in these processes, especially in oxidative load manipulation and metabolic abnormalities.
Collapse
Affiliation(s)
| | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
13
|
Kounatidis D, Tentolouris N, Vallianou NG, Mourouzis I, Karampela I, Stratigou T, Rebelos E, Kouveletsou M, Stamatopoulos V, Tsaroucha E, Dalamaga M. The Pleiotropic Effects of Lipid-Modifying Interventions: Exploring Traditional and Emerging Hypolipidemic Therapies. Metabolites 2024; 14:388. [PMID: 39057711 PMCID: PMC11278853 DOI: 10.3390/metabo14070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerotic cardiovascular disease poses a significant global health issue, with dyslipidemia standing out as a major risk factor. In recent decades, lipid-lowering therapies have evolved significantly, with statins emerging as the cornerstone treatment. These interventions play a crucial role in both primary and secondary prevention by effectively reducing cardiovascular risk through lipid profile enhancements. Beyond their primary lipid-lowering effects, extensive research indicates that these therapies exhibit pleiotropic actions, offering additional health benefits. These include anti-inflammatory properties, improvements in vascular health and glucose metabolism, and potential implications in cancer management. While statins and ezetimibe have been extensively studied, newer lipid-lowering agents also demonstrate similar pleiotropic effects, even in the absence of direct cardiovascular benefits. This narrative review explores the diverse pleiotropic properties of lipid-modifying therapies, emphasizing their non-lipid effects that contribute to reducing cardiovascular burden and exploring emerging benefits for non-cardiovascular conditions. Mechanistic insights into these actions are discussed alongside their potential therapeutic implications.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | | | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
14
|
Ganjiani V, Bigham-Sadegh A, Ahmadi N, Divar MR, Meimandi-Parizi A, Asude M. The potential prophylactic and therapeutic impacts of niacin on ischemia/reperfusion injury of testis. J Pediatr Urol 2024; 20:281.e1-281.e7. [PMID: 38212166 DOI: 10.1016/j.jpurol.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The testicular ischemia-reperfusion (I/R) injury is characterized by the excessive aggregation of un-scavenged reactive oxygen species, leading to the heightened levels of oxidative stress. This phenomenon plays a pivotal role in the pathophysiology of testicular torsion damage. OBJECTIVE The current study aimed to detect the prophylactic and therapeutic effects of niacin on testicular I/R injury. STUDY DESIGN Twenty-four healthy adult male Sprague Dawley rats were randomly allocated into three groups as follows: (1) sham group, (2) torsion/detorsion (T/D) group, and (3) treatment group which received 200 mg/kg niacin along with testicular T/D. Torsion/detorsion was induced by 2 h of torsion followed by 10 days of reperfusion period. In the treatment group, niacin was injected 30 min before the reperfusion period intraperitoneally and continued for 10 days by oral gavage. RESULTS T/D was associated with marked decreases in terms of sperm count, viability, and kinematic parameters versus the sham group (P < 0.05), which niacin significantly reverted the kinematic parameters (P < 0.05). I/R injury caused a significant increase in the number of abnormal epididymal sperms compared to the sham group (P < 0.05). Niacin decreased the epididymal sperm abnormality significantly compared to the T/D group (P < 0.05). Tissue abnormalities in T/D group, such as edema, hyperemia, inflammation, and necrosis were completely visible histopathologically, while the histological changes in the niacin-treated group were better than those in the T/D group. Regarding the pathological parametric evaluations, I/R injury significantly reduced the mean testicular biopsy score (MTBS), germinal epithelial cell thickness (GECT), and mean seminiferous tubular diameter (MSTD), and increased the tubular hypoplasia/atrophy (THA) compared to the sham group (P < 0.05), which niacin treatment significantly improved the MTBS and GECT compared to the T/D group (P < 0.05). T/D significantly increased the oxidative stress index (OSI) and lipid peroxidation (MDA) (P < 0.05). Niacin significantly reduced the OSI and MDA levels compared to the T/D group (P < 0.05). DISCUSSION The current study found that niacin has preventive/therapeutic effects against the elevation of oxidative stress markers and depletion of antioxidants during I/R injury. Following administration of niacin, a reduction in histologic injury was observed in rats. In our study, we showed the antioxidant properties of niacin and its capacity to protect against I/R damage. CONCLUSION The findings of the present investigation revealed that niacin, as an antioxidant agent, can suppress the oxidative stress induced by testicular I/R injury, and can be used as a supplementary agent in the treatment of those undergoing testicular torsion surgery.
Collapse
Affiliation(s)
- Vahid Ganjiani
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Bigham-Sadegh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrollah Ahmadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Mohammad-Reza Divar
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Mohammad Asude
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
15
|
Liu B, Hu Y, Tian D, Dong J, Li BF. Assessing the effects of tempol on renal fibrosis, inflammation, and oxidative stress in a high-salt diet combined with 5/6 nephrectomy rat model: utilizing oxidized albumin as a biomarker. BMC Nephrol 2024; 25:64. [PMID: 38395806 PMCID: PMC10893674 DOI: 10.1186/s12882-024-03495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Oxidative stress has been implicated in the pathogenesis of chronic kidney disease (CKD), prompting the exploration of antioxidants as a potential therapeutic avenue for mitigating disease progression. This study aims to investigate the beneficial impact of Tempol on the progression of CKD in a rat model utilizing oxidized albumin as a biomarker. METHODS After four weeks of treatment, metabolic parameters, including body weight, left ventricle residual weight, kidney weight, urine volume, and water and food intake, were measured. Systolic blood pressure, urinary protein, oxidized albumin level, serum creatinine (Scr), blood urea nitrogen (BUN), 8-OHdG, TGF-β1, and micro-albumin were also assessed. Renal fibrosis was evaluated through histological and biochemical assays. P65-NF-κB was quantified using an immunofluorescence test, while Smad3, P65-NF-κB, and Collagen I were measured using western blot. TNF-α, IL-6, MCP-1, TGF-β1, Smad3, and P65-NF-κB were analyzed by RT-qPCR. RESULTS Rats in the high-salt diet group exhibited impaired renal function, characterized by elevated levels of blood urea nitrogen, serum creatinine, 8-OHdG, urine albumin, and tubulointerstitial damage, along with reduced body weight. However, these effects were significantly ameliorated by Tempol administration. In the high-salt diet group, blood pressure, urinary protein, and oxidized albumin levels were notably higher compared to the normal diet group, but Tempol administration in the treatment group reversed these effects. Rats in the high-salt diet group also displayed increased levels of proinflammatory factors (TNF-α, IL-6, MCP1) and profibrotic factors (NF-κB activation, Collagen I), elevated expression of NADPH oxidation-related subunits (P65), and activation of the TGF-β1/Smad3 signaling pathway. Tempol treatment inhibited NF-κB-mediated inflammation and TGF-β1/Smad3-induced renal fibrosis signaling pathway activation. CONCLUSION These findings suggest that Tempol may hold therapeutic potential for preventing and treating rats undergoing 5/6 nephrectomy. Further research is warranted to elucidate the mechanisms underlying Tempol's protective effects and its potential clinical applications. Besides, there is a discernible positive relationship between oxidized albumin and other biomarkers, such as 8-OHG, urinary protein levels, mALB, Scr, BUN, and TGF-β1 in a High-salt diet combined with 5/6 nephrectomy rat model. These findings suggest the potential utility of oxidized albumin as a sensitive indicator for oxidative stress assessment.
Collapse
Affiliation(s)
- Beibei Liu
- College of Life and Health, Nanjing Polytechnic Institute, No.188 Xinle Road, Luhe District, 210048, Nanjing, Nanjing, Jiangsu, China
| | - Yanling Hu
- College of Life and Health, Nanjing Polytechnic Institute, No.188 Xinle Road, Luhe District, 210048, Nanjing, Nanjing, Jiangsu, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Jianlong Dong
- Hebei University of Chinese Medicine, The First Affiliated Hospital, Shijiazhuang, China
| | - Bing-Feng Li
- College of Life and Health, Nanjing Polytechnic Institute, No.188 Xinle Road, Luhe District, 210048, Nanjing, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Gao L, Huang X, Deng R, Wu S, Peng Y, Xiong G, Lu J, Liu X. Jian-Pi-Yi-Shen formula alleviates renal fibrosis by restoring NAD+ biosynthesis in vivo and in vitro. Aging (Albany NY) 2023; 16:106-128. [PMID: 38157259 PMCID: PMC10817388 DOI: 10.18632/aging.205352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) lack efficacious treatment. Jian-Pi-Yi-Shen formula (JPYSF) has demonstrated significant clinical efficacy in treating CKD for decades. However, its renoprotective mechanism has not been fully elucidated. This study aimed to determine whether JPYSF could delay renal fibrosis progression in CKD by restoring nicotinamide adenine dinucleotide (NAD+) biosynthesis. METHODS Adenine-diet feeding was used to model CKD in C57BL/6 mice. JPYSF was orally administered for 4 weeks. Human proximal tubular epithelial cells (HK-2) cells were stimulated with transforming growth factor-β1 (TGF-β1) with or without JPYSF treatment. Renal function of mice was assessed by serum creatinine and blood urea nitrogen levels. Renal histopathological changes were assessed using Periodic acid-Schiff and Masson's trichrome staining. Cell viability was assessed using a cell counting kit-8 assay. NAD+ concentrations were detected by a NAD+/NADH assay kit. Western blotting, immunohistochemistry, and immunofluorescence were employed to examine fibrosis-related proteins and key NAD+ biosynthesis enzymes expression in the CKD kidney and TGF-β1-induced HK-2 cells. RESULTS JPYSF treatment could not only improve renal function and pathological injury but also inhibit renal fibrosis in CKD mice. Additionally, JPYSF reversed fibrotic response in TGF-β1-induced HK-2 cells. Moreover, JPYSF rescued the decreased NAD+ content in CKD mice and TGF-β1-induced HK-2 cells through restoring expression of key enzymes in NAD+ biosynthesis, including quinolinate phosphoribosyltransferase, nicotinamide mononucleotide adenylyltransferase 1, and nicotinamide riboside kinase 1. CONCLUSIONS JPYSF alleviated renal fibrosis in CKD mice and reversed fibrotic response in TGF-β1-induced HK-2 cells, which may be related to the restoration of NAD+ biosynthesis.
Collapse
Affiliation(s)
- Liwen Gao
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Xi Huang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Ruyu Deng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Shanshan Wu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Yu Peng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| |
Collapse
|
17
|
Samad N, Manzoor N, Batool A, Noor A, Khaliq S, Aurangzeb S, Bhatti SA, Imran I. Protective effects of niacin following high fat rich diet: an in-vivo and in-silico study. Sci Rep 2023; 13:21343. [PMID: 38049514 PMCID: PMC10696033 DOI: 10.1038/s41598-023-48566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
Niacin had long been understood as an antioxidant. There were reports that high fat diet (HFD) may cause psychological and physical impairments. The present study was aimed to experience the effect of Niacin on % growth rate, cumulative food intake, motor activity and anxiety profile, redox status, 5-HT metabolism and brain histopathology in rats. Rats were administered with Niacin at a dose of 50 mg/ml/kg body weight for 4 weeks following normal diet (ND) and HFD. Behavioral tests were performed after 4 weeks. Animals were sacrificed to collect brain samples. Biochemical, neurochemical and histopathological studies were performed. HFD increased food intake and body weight. The exploratory activity was reduced and anxiety like behavior was observed in HFD treated animals. Activity of antioxidant enzymes was decreased while oxidative stress marker and serotonin metabolism in the brain of rat were increased in HFD treated animals than ND fed rats. Morphology of the brain was also altered by HFD administration. Conversely, Niacin treated animals decreased food intake and % growth rate, increased exploratory activity, produced anxiolytic effects, decreased oxidative stress and increased antioxidant enzyme and 5-HT levels following HFD. Morphology of brain is also normalized by the treatment of Niacin following HFD. In-silico studies showed that Niacin has a potential binding affinity with degradative enzyme of 5-HT i.e. monoamine oxidase (MAO) A and B with an energy of ~ - 4.5 and - 5.0 kcal/mol respectively. In conclusion, the present study showed that Niacin enhanced motor activity, produced anxiolytic effect, and reduced oxidative stress, appetite, growth rate, increased antioxidant enzymes and normalized serotonin system and brain morphology following HFD intake. In-silico studies suggested that increase 5-HT was associated with the binding of MAO with Niacin subsequentially an inhibition of the degradation of monoamine. It is suggested that Niacin has a great antioxidant potential and could be a good therapy for the treatment of HFD induced obesity.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ammara Batool
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Aqsa Noor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saima Khaliq
- Department of Biochemistry, Faculty of Science, Science and Technology, Federal Urdu University of Arts, Karachi, 75270, Pakistan
| | - Sana Aurangzeb
- Department of Biochemistry, Faculty of Science, University of Karachi, Karachi, 75270, Pakistan
| | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
18
|
Baj J, Bargieł J, Cabaj J, Skierkowski B, Hunek G, Portincasa P, Flieger J, Smoleń A. Trace Elements Levels in Major Depressive Disorder-Evaluation of Potential Threats and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:15071. [PMID: 37894749 PMCID: PMC10606638 DOI: 10.3390/ijms242015071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The multifactorial etiology of major depressive disorder (MDD) includes biological, environmental, genetic, and psychological aspects. Recently, there has been an increasing interest in metallomic studies in psychiatry, aiming to evaluate the role of chosen trace elements in the MDD etiology as well as the progression of symptoms. This narrative review aims to summarize the available literature on the relationship between the concentration of chosen elements in the serum of patients with MDD and the onset and progression of this psychiatric condition. The authors reviewed PubMed, Web of Science, and Scopus databases searching for elements that had been investigated so far and further evaluated them in this paper. Ultimately, 15 elements were evaluated, namely, zinc, magnesium, selenium, iron, copper, aluminium, cadmium, lead, mercury, arsenic, calcium, manganese, chromium, nickel, and phosphorus. The association between metallomic studies and psychiatry has been developing dynamically recently. According to the results of current research, metallomics might act as a potential screening tool for patients with MDD while at the same time providing an assessment of the severity of symptoms. Either deficiencies or excessive amounts of chosen elements might be associated with the progression of depressive symptoms or even the onset of the disease among people predisposed to MDD.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Julia Bargieł
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Justyna Cabaj
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Bartosz Skierkowski
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Gabriela Hunek
- Student Research Group of Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Agata Smoleń
- Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, 20-080 Lublin, Poland;
| |
Collapse
|
19
|
Ermutlu İ, Fesli R, Arıkök AT, Ergüder Bİ, Kertmen H, Gürer B. Neuroprotective Effects of Niacin on Ischemia/Reperfusion Injury of the Rabbit Spinal Cord. World Neurosurg 2023; 177:e644-e656. [PMID: 37400055 DOI: 10.1016/j.wneu.2023.06.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Previous studies have shown niacin has neuroprotective effects on the central nervous system. However, its specific effect on spinal cord ischemia/reperfusion injury has not yet been explored. This study aims to evaluate whether niacin can contribute neuroprotective effects on spinal cord ischemia/reperfusion injury. METHODS Rabbits were randomized into 4 groups of 8 animals: group I (control), group II (ischemia), group III (30 mg/kg methylprednisolone, intraperitoneal), and group IV (500 mg/kg niacin, intraperitoneal). The rabbits in group IV were premedicated with niacin for 7 days prior to inducing ischemia/reperfusion injury. The control group was subjected only to a laparotomy, while the remaining groups underwent spinal cord ischemia through a 20-minute occlusion of the aorta caudal to the left renal artery. Following the procedure, levels of catalase, malondialdehyde, xanthine oxidase, myeloperoxidase, and caspase-3 were analyzed. Ultrastructural, histopathological, and neurological evaluations were also performed. RESULTS Spinal cord ischemia/reperfusion injury resulted in increased levels of xanthine oxidase, malondialdehyde, myeloperoxidase, and caspase-3, with a concomitant decrease in catalase levels. Treatment with methylprednisolone and niacin led to decreased levels of xanthine oxidase, malondialdehyde, myeloperoxidase, and caspase-3 and an increase in catalase. Both methylprednisolone and niacin treatments demonstrated improvements in histopathological, ultrastructural, and neurological assessments. CONCLUSIONS Our findings suggest that niacin has antiapoptotic, anti-inflammatory, antioxidant, and neuroprotective effects at least equal to methylprednisolone in ischemia/reperfusion injury of the spinal cord. This study is the first to report the neuroprotective impact of niacin on spinal cord ischemia/reperfusion injury. Further research is warranted to elucidate the role of niacin in this context.
Collapse
Affiliation(s)
- İlçim Ermutlu
- Department of Neurosurgery, Cizre Selahattin Cizrelioğlu City Hospital, Şırnak, Turkey
| | - Ramazan Fesli
- Department of Neurosurgery, Medicalpark Hospital, Mersin, Turkey
| | - Ata Türker Arıkök
- Department of Pathology, Ministry of Health Dışkapı Yıldırım Beyazıt Education and Research Hospital, Ankara, Turkey
| | - Berrin İmge Ergüder
- Department of Biochemistry, Ankara University, Faculty of Medicine, Ankara, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, Ministry of Health Dışkapı Yıldırım Beyazıt Education and Research Hospital, Ankara, Turkey
| | - Bora Gürer
- Department of Neurosurgery, İstinye University, Faculty of Medicine, Istanbul, Turkey.
| |
Collapse
|
20
|
Njeim R, Alkhansa S, Fornoni A. Unraveling the Crosstalk between Lipids and NADPH Oxidases in Diabetic Kidney Disease. Pharmaceutics 2023; 15:pharmaceutics15051360. [PMID: 37242602 DOI: 10.3390/pharmaceutics15051360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of end-stage renal disease. Abnormal lipid metabolism and intrarenal accumulation of lipids have been shown to be strongly correlated with the development and progression of diabetic kidney disease (DKD). Cholesterol, phospholipids, triglycerides, fatty acids, and sphingolipids are among the lipids that are altered in DKD, and their renal accumulation has been linked to the pathogenesis of the disease. In addition, NADPH oxidase-induced production of reactive oxygen species (ROS) plays a critical role in the development of DKD. Several types of lipids have been found to be tightly linked to NADPH oxidase-induced ROS production. This review aims to explore the interplay between lipids and NADPH oxidases in order to provide new insights into the pathogenesis of DKD and identify more effective targeted therapies for the disease.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
21
|
Simões E Silva AC, Oliveira EA, Cheung WW, Mak RH. Redox Signaling in Chronic Kidney Disease-Associated Cachexia. Antioxidants (Basel) 2023; 12:antiox12040945. [PMID: 37107320 PMCID: PMC10136196 DOI: 10.3390/antiox12040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Redox signaling alterations contribute to chronic kidney disease (CKD)-associated cachexia. This review aims to summarize studies about redox pathophysiology in CKD-associated cachexia and muscle wasting and to discuss potential therapeutic approaches based on antioxidant and anti-inflammatory molecules to restore redox homeostasis. Enzymatic and non-enzymatic systems of antioxidant molecules have been studied in experimental models of kidney diseases and patients with CKD. Oxidative stress is increased by several factors present in CKD, including uremic toxins, inflammation, and metabolic and hormone alterations, leading to muscle wasting. Rehabilitative nutritional and physical exercises have shown beneficial effects for CKD-associated cachexia. Anti-inflammatory molecules have also been tested in experimental models of CKD. The importance of oxidative stress has been shown by experimental studies in which antioxidant therapies ameliorated CKD and its associated complications in the 5/6 nephrectomy model. Treatment of CKD-associated cachexia is a challenge and further studies are necessary to investigate potential therapies involving antioxidant therapy.
Collapse
Affiliation(s)
- Ana Cristina Simões E Silva
- Department of Pediatrics, Division of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Eduardo A Oliveira
- Department of Pediatrics, Division of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Wai W Cheung
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert H Mak
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Chanvillard L, Tammaro A, Sorrentino V. NAD + Metabolism and Interventions in Premature Renal Aging and Chronic Kidney Disease. Cells 2022; 12:21. [PMID: 36611814 PMCID: PMC9818486 DOI: 10.3390/cells12010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Premature aging causes morphological and functional changes in the kidney, leading to chronic kidney disease (CKD). CKD is a global public health issue with far-reaching consequences, including cardio-vascular complications, increased frailty, shortened lifespan and a heightened risk of kidney failure. Dialysis or transplantation are lifesaving therapies, but they can also be debilitating. Currently, no cure is available for CKD, despite ongoing efforts to identify clinical biomarkers of premature renal aging and molecular pathways of disease progression. Kidney proximal tubular epithelial cells (PTECs) have high energy demand, and disruption of their energy homeostasis has been linked to the progression of kidney disease. Consequently, metabolic reprogramming of PTECs is gaining interest as a therapeutic tool. Preclinical and clinical evidence is emerging that NAD+ homeostasis, crucial for PTECs' oxidative metabolism, is impaired in CKD, and administration of dietary NAD+ precursors could have a prophylactic role against age-related kidney disease. This review describes the biology of NAD+ in the kidney, including its precursors and cellular roles, and discusses the importance of NAD+ homeostasis for renal health. Furthermore, we provide a comprehensive summary of preclinical and clinical studies aimed at increasing NAD+ levels in premature renal aging and CKD.
Collapse
Affiliation(s)
- Lucie Chanvillard
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alessandra Tammaro
- Department of Pathology, Amsterdam UMC location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity, 1105AZ Amsterdam, The Netherlands
| | - Vincenzo Sorrentino
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
23
|
Wang Z, Yi Z, Wang Q, Yin L, Li J, Xie J, Yang H, Yin Y. Effect of Different Levels of Niacin on Serum Biochemical Parameters, Antioxidant Status, Cytokine Levels, Inflammatory Gene Expression and Colonic Microbial Composition in Weaned Piglets. Animals (Basel) 2022; 12:ani12213018. [PMID: 36359142 PMCID: PMC9695451 DOI: 10.3390/ani12213018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Niacin plays an important role in regulating the gut health of weaned piglets. In this study, 48 25-day-old weaned piglets (7.9 ± 0.20 kg) produced by 14 sows (3 to 4 piglets per sow) were randomly divided into 4 groups with 6 replicates in each group and 2 piglets in each replicate. Each group was fed diets supplemented with 22.5 (N1), 30 (N2), 45 (N3), and 75 (N4) mg/kg of niacin, respectively. Samples were taken at 7 and 14 d, respectively. The study shows that changes in niacin levels significantly affected the content of IgG and IgM in the serum (p < 0.05). Niacin had a significant effect on antioxidant parameters such as MDA, T-SOD, and CuZn-SOD in the jejunal mucosa of weaned piglets (p < 0.05). Moreover, significant differences were observed in the expression of cytokines such as TGF-β, TNF-α, and COX2 in the jejunal mucosa (p < 0.05). The 16S rRNA sequencing analysis showed that there were significant differences in the colonic species composition, which were also accompanied by changes in the isovaleric acid content (p < 0.05). In conclusion, an appropriate increase in niacin dose based on NRC (2012) has an important role in improving the antioxidant status of weaned piglets, alleviating intestinal inflammation in piglets, improving immunity, and regulating the structure of the microbiota.
Collapse
Affiliation(s)
- Zhaobin Wang
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhenfeng Yi
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qiye Wang
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Lanmei Yin
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jun Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Fujian Aonong Biotechnology Group Co., Ltd., Xiamen 361008, China
| | - Junyan Xie
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Correspondence: (H.Y.); (Y.Y.)
| | - Yulong Yin
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Correspondence: (H.Y.); (Y.Y.)
| |
Collapse
|
24
|
Rodríguez-Mendoza CA, González Campos RE, Lorenzo-Leal AC, Bautista Rodríguez E, Paredes Juárez GA, El Kassis EG, Hernández LR, Juárez ZN, Bach H. Phytochemical Screening and Bioactivities of Cactaceae Family Members Endemic to Mexico. PLANTS (BASEL, SWITZERLAND) 2022; 11:2856. [PMID: 36365308 PMCID: PMC9653579 DOI: 10.3390/plants11212856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Mexico is a center of diversification for the Cactaceae family, with 69% of the species recorded as endemic. Certain members of the Cactaceae family have been chemically analyzed to relate their medicinal use with their phytochemistry. Here, the phytochemistry and bioactivity of ethanol extracts of Ferocactus echidne, F. latispinus, and Mammillaria geminispina were evaluated. A preliminary phytochemical analysis was performed, detecting the presence of saponins, tannins, cardiotonic glycosides, and sesquiterpene lactones. The presence of nicotinic acid in F. echidne and F. latispinus was identified by GC-MS. Other compounds found in the extracts of these three species were gentisic acid, diosmetin, chlorogenic acid, N-methyltyramide, and hordenine. The antioxidant activity was estimated with the DPPH free radical scavenging test. To determine the toxicity of the extracts, the in vivo model of Artemia spp. was used. In addition, the cytotoxicity of the extract was tested on C6, HaCaT, THP-1, and U937 cell lines, while the inflammatory activity was tested by measuring the secretion of cytokines using macrophage cells. The three species showed different bioactivities, including antioxidant, antimicrobial, cytotoxic, and anti-inflammatory activities. To the best of our knowledge, the results presented here are the first described for these species.
Collapse
Affiliation(s)
- Clara Angélica Rodríguez-Mendoza
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - Rubí Esmeralda González Campos
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - Ana Cecilia Lorenzo-Leal
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | - Elizabeth Bautista Rodríguez
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - Genaro Alberto Paredes Juárez
- Department of degree in Medical Surgeon, Academic Secretary, Universidad de la Salud Puebla, Reforma 722, Puebla 72000, Mexico
| | - Elie Girgis El Kassis
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - Luis Ricardo Hernández
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta, Catarina Mártir S/N, San Andrés Cholula, Puebla 72810, Mexico
| | - Zaida Nelly Juárez
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
25
|
Hamdy MM, Abdel-Rahman MS, Badary DM, Sabra MS. Effects of furosemide and tadalafil in both conventional and nanoforms against adenine-induced chronic renal failure in rats. Eur J Med Res 2022; 27:117. [PMID: 35820963 PMCID: PMC9275182 DOI: 10.1186/s40001-022-00747-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic renal failure (CRF) is a progressive loss of renal function that lead to reduced sodium filtration and inappropriate suppression of tubular reabsorption that ultimately leads to volume expansion. The aim of this study was to study the efficacy of furosemide and tadalafil nanoforms compared to conventional forms against adenine-induced CRF rat-model. METHODS Addition of 0.75% adenine to the diet of rats for 4 weeks gained general acceptance as a model to study kidney damage as this intervention mimicked most of the structural and functional changes seen in human chronic kidney disease Urine analysis, histopathological changes and immunohistochemical expression of caspase-3 and interleukin-1 beta (IL-1β) in renal tissues were performed. RESULTS Our results showed that the combination of tadalafil and furosemide using conventional and nanoparticle formulations had better renoprotective effect than individual drugs. This was demonstrated by improvement of urinary, serum and renal tissue markers as indicative of organ damage. This was also reflected on the reduction of tubular expression of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Immunohistochemical studies showed that the deteriorated renal cellular changes indicated by increased expression of caspase-3 and IL-1β were greatly improved by the combined treatment particularly with the nanoforms. CONCLUSIONS The nanoforms of both furosemide and tadalafil had greater renopreventive effects compared with conventional forms against adenine-induced CRF in rats.
Collapse
Affiliation(s)
| | - Mahran S Abdel-Rahman
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sphinx University, New Assuit, 71526, Egypt
| | - Dalia M Badary
- Pathology Department, Faculty of Medicine, Assiut University, Egypt, Assuit, 71526, Egypt
| | - Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assuit, 71526, Egypt.
| |
Collapse
|
26
|
Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int J Mol Sci 2022; 23:ijms23137273. [PMID: 35806275 PMCID: PMC9266760 DOI: 10.3390/ijms23137273] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Ageing and chronic degenerative pathologies demonstrate the shared characteristics of high bioavailability of reactive oxygen species (ROS) and oxidative stress, chronic/persistent inflammation, glycation, and mitochondrial abnormalities. Excessive ROS production results in nucleic acid and protein destruction, thereby altering the cellular structure and functional outcome. To stabilise increased ROS production and modulate oxidative stress, the human body produces antioxidants, “free radical scavengers”, that inhibit or delay cell damage. Reinforcing the antioxidant defence system and/or counteracting the deleterious repercussions of immoderate reactive oxygen and nitrogen species (RONS) is critical and may curb the progression of ageing and chronic degenerative syndromes. Various therapeutic methods for ROS and oxidative stress reduction have been developed. However, scientific investigations are required to assess their efficacy. In this review, we summarise the interconnected mechanism of oxidative stress and chronic inflammation that contributes to ageing and chronic degenerative pathologies, including neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), cardiovascular diseases CVD, diabetes mellitus (DM), and chronic kidney disease (CKD). We also highlight potential counteractive measures to combat ageing and chronic degenerative diseases.
Collapse
|
27
|
Alasmari WA, Abdelfattah-Hassan A, El-Ghazali HM, Abdo SA, Ibrahim D, ElSawy NA, El-Shetry ES, Saleh AA, Abourehab MAS, Mahfouz H. Exosomes Derived from BM-MSCs Mitigate the Development of Chronic Kidney Damage Post-Menopause via Interfering with Fibrosis and Apoptosis. Biomolecules 2022; 12:biom12050663. [PMID: 35625591 PMCID: PMC9138582 DOI: 10.3390/biom12050663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
The rate of chronic kidney disease (CKD) is increasing globally, and it is caused by continuous damage to kidney tissue. With time the renal damage becomes irreversible, leading to CKD development. In females, post-menopause lack of estrogen supply has been described as a risk factor for CKD development, and studies targeting post-menopause CKD are scarce. In the present study, we used exosomes isolated from bone marrow mesenchymal stem/stromal cells (BM-MSCs) to test their therapeutic potential against the development of CKD. At first, the menopause model was achieved by surgical bilateral ovariectomy in female albino rats. After that, 100 µg of exosomes was given to ovariectomized rats, and the study continued for 2 months. Changes in urine volume, urine protein content, kidney function biochemical parameters (creatinine and BUN), kidney antioxidant parameters (SOD, GPx and CAT), histological changes, immunohistochemical levels of caspase 3, and the gene expression of NGAL (related to kidney damage), TGFβ1 and αSMA (related to fibrosis and EMT), and caspase 3 (related to apoptosis) were studied. After the ovariectomy, the occurrence of CKD was confirmed in the rats by the drastic reduction of serum estrogen and progesterone levels, reduced urine output, increased urinary protein excretion, elevated serum creatinine and BUN, reduced GPx SOD, and CAT in kidney tissue, degenerative and fibrotic lesions in the histopathological examination, higher immunohistochemical expression of caspase 3 and increased expression of all studied genes. After exosomes administration, the entire chronic inflammatory picture in the kidney was corrected, and a near-normal kidney structure and function were attained. This study shows for the first time that BM-MSCs exosomes are potent for reducing apoptosis and fibrosis levels and, thus, can reduce the chronic damage of the kidneys in females that are in their menopause period. Therefore, MSCs-derived exosomes should be considered a valuable therapy for preserving postmenopausal kidney structure and function and, subsequently, could improve the quality of females’ life during menopause.
Collapse
Affiliation(s)
- Wardah A. Alasmari
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah 24230, Saudi Arabia
- Correspondence: (W.A.A.); or (A.A.-H.)
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
- Correspondence: (W.A.A.); or (A.A.-H.)
| | - Hanaa M. El-Ghazali
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Samar A. Abdo
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Naser A. ElSawy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt; (N.A.E.); (E.S.E.-S.)
| | - Eman S. El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt; (N.A.E.); (E.S.E.-S.)
| | - Ayman A. Saleh
- Department of Animal Wealth Development, Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Hala Mahfouz
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
28
|
Abdellatif M, Bugger H, Kroemer G, Sedej S. NAD + and Vascular Dysfunction: From Mechanisms to Therapeutic Opportunities. J Lipid Atheroscler 2022; 11:111-132. [PMID: 35656147 PMCID: PMC9133775 DOI: 10.12997/jla.2022.11.2.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential and pleiotropic coenzyme involved not only in cellular energy metabolism, but also in cell signaling, epigenetic regulation, and post-translational protein modifications. Vascular disease risk factors are associated with aberrant NAD+ metabolism. Conversely, the therapeutic increase of NAD+ levels through the administration of NAD+ precursors or inhibitors of NAD+-consuming enzymes reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances oxidative metabolism in vascular cells of humans and rodents with vascular pathologies. As such, NAD+ has emerged as a potential target for combatting age-related cardiovascular and cerebrovascular disorders. This review discusses NAD+-regulated mechanisms critical for vascular health and summarizes new advances in NAD+ research directly related to vascular aging and disease, including hypertension, atherosclerosis, coronary artery disease, and aortic aneurysms. Finally, we enumerate challenges and opportunities for NAD+ repletion therapy while anticipating the future of this exciting research field, which will have a major impact on vascular medicine.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| | - Heiko Bugger
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
29
|
Soohoo M, Hashemi L, Hsiung JT, Moradi H, Budoff MJ, Kovesdy CP, Kalantar-Zadeh K, Streja E. Association of Serum Triglycerides and Renal Outcomes among 1.6 Million US Veterans. Nephron Clin Pract 2022; 146:457-468. [PMID: 35354153 PMCID: PMC9533458 DOI: 10.1159/000522388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/23/2022] [Indexed: 11/19/2022] Open
Abstract
Background Previous studies have suggested that metabolic syndrome (MetS) components are associated with renal outcomes, defined as a decline in kidney function or reaching end-stage renal disease (ESRD). Elevated triglycerides (TGs) are a component of MetS that have been reported to be associated with renal outcomes. However, the association of TGs with renal outcomes in chronic kidney disease (CKD) patients independent of the other components of the MetS remains understudied. Methods We examined 1,657,387 patients with data on TGs and other components of MetS in 2004–2006 and followed up until 2014. Patients with ESRD on renal replacement therapy were excluded. We examined time to ESRD, estimated glomerular filtration rate (eGFR) slope (renal function decline), and time to incident CKD (eGFR <60 mL/min/1.73 m<sup>2</sup>) among baseline normal kidney function (non-CKD) patients, using Cox or logistic regression, adjusted for clinical characteristics and MetS components. We also stratified analyses by the number of MetS components. Results The cohort was on average 64 years old and comprised 5% females, 15% African Americans, and 24% with nondialysis-dependent CKD. Among non-CKD patients, the adjusted relationship of TGs with time to incident CKD was strong and linear. Compared to TGs 120–<160 mg/dL, higher TGs were associated with a faster renal function decline across all CKD stages. Elevated TGs ≥240 mg/dL were associated with a faster time to ESRD among non-CKD and CKD stages 3A–3B, while the risk gradually declined to null or lower in CKD stages 4–5. Models were robust after MetS component adjustment and stratification. Conclusion Independent of MetS components, high TGs levels were associated with a higher incidence of CKD and a faster renal function decline, yet showed no or inverse associations with time to ESRD in CKD stages 4–5. Examining the effects of TGs-lowering interventions on incident CKD and kidney preserving therapy warrants further studies including clinical trials.
Collapse
Affiliation(s)
- Melissa Soohoo
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, California, USA.,Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, California, USA
| | - Leila Hashemi
- Assistant Professor of Medicine, Department of General Internal Medicine, University of California Los Angeles, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Jui-Ting Hsiung
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, California, USA.,Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, California, USA
| | - Hamid Moradi
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, California, USA.,Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, California, USA
| | - Matthew J Budoff
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Csaba P Kovesdy
- Nephrology Section, Memphis Veterans Affairs Medical Center, Memphis, Tennessee, USA.,Division of Nephrology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, California, USA.,Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, California, USA
| | - Elani Streja
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, California, USA.,Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, California, USA
| |
Collapse
|
30
|
Alasmari WA, El-Shetry ES, Ibrahim D, ElSawy NA, Eldoumani H, Metwally AS, Saleh AA, Mona MM, Abd-Elsalam MM, Hendam BM, Essawi WM, Abourehab MAS, Abdelfattah-Hassan A. Mesenchymal stem-cells' exosomes are renoprotective in postmenopausal chronic kidney injury via reducing inflammation and degeneration. Free Radic Biol Med 2022; 182:150-159. [PMID: 35218913 DOI: 10.1016/j.freeradbiomed.2022.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/06/2023]
Abstract
Chronic kidney disease (CKD) is an important global disease its rates are increasing worldwide. CKD is caused by injuries to kidney tissue that exceeds the rate of regeneration, which with time lead to irreversible renal damage and CKD become evident. In females, diminished estrogen supply in the postmenopausal period is associated with greater risk for developing CKD. In this study we isolated exosomes from bone marrow mesenchymal stem/stromal cells (BM-MSCs) and tested their therapeutic effects on post-menopause CKD (PM-CKD) and compared their effects with BM-MSCs. The menopause model was achieved by bilateral ovariectomy in 8-months-old female albino rats, then no treatment, 2 million BM-MSCs or 100 μg of exosomes (Exo) was given intravenously in tail vein to ovariectomized rats and the study continued for 8 weeks post-ovariectomy. Changes in weight, urine volume, urine protein content, kidney function biochemical parameters (creatinine and BUN), Kidney oxidative stress (MDA), kidney antioxidant parameters (SOD, GPx and CAT), histopathological changes, immunohistochemical expression of KIM-1 and, finally, genes related to renal damage (peroxiredoxin-3, KIM-1 and ICAM-1) and inflammation (TNF-α, Cox2 and IL-6) were recorded for all study groups. Post-ovariectomy there was an increased body weight, drastic reduction of estrogen and progesterone levels, reduced urine output, increased urinary protein excretion, elevated serum creatinine and BUN, increased MDA and reduced GPx SOD, and CAT in kidney tissue, chronic inflammation, degenerative and fibrotic lesions in histopathological examination, high expression of KIM-1 immunohistochemically and changes in gene expression analyses all pointing to the development of CKD in the study rats. In the PM-CKD groups receiving BM-MSCs or Exo, the whole chronic inflammatory picture was completely reversed towards a much normal kidney structure and function. The improvements were more observable with Exo compared to BM-MSCs. Overall, our results show for the first time that exosomes isolated from BM-MSCs are more potent in reducing chronic inflammatory changes in the kidney of postmenopausal females compared to the cell-based approach using BM-MSCs. Therefore, MSCs-derived exosomes are a promising therapeutic approach for preserving postmenopausal kidney structure and function and, subsequently, should improve the quality of life of postmenopausal females.
Collapse
Affiliation(s)
- Wardah A Alasmari
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah, 24230, Saudi Arabia
| | - Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Naser A ElSawy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haitham Eldoumani
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Aya Sh Metwally
- Department of Pharmacology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Ayman A Saleh
- Department of Animal Wealth Development, Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Marwa M Mona
- Department of Medical Biochemistry, Faculty of Medicine, Kafrelsheikh University, Egypt
| | - Marwa M Abd-Elsalam
- Department of Histology, Faculty of Medicine, Kafrelsheikh University, Egypt
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Walaa M Essawi
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
31
|
Nguyen HD, Oh H, Hoang NHM, Jo WH, Kim MS. Environmental science and pollution research role of heavy metal concentrations and vitamin intake from food in depression: a national cross-sectional study (2009-2017). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4574-4586. [PMID: 34414543 PMCID: PMC8376242 DOI: 10.1007/s11356-021-15986-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/11/2021] [Indexed: 04/16/2023]
Abstract
Little is known about associations between depression and serum heavy metal levels, dietary vitamin intakes. Thus, we sought to determine the nature of these associations and to predict risks of depression using marginal effects. A data set of 16,371 individuals aged ≥10 years that participated in Korea National Health and Nutrition Examination Surveys (KNHANES) conducted from 2009 to 2017 (excluding 2014 and 2015) was used to obtain information on sociodemographics, family histories, lifestyles, serum heavy metal levels, food intakes, and depression. Serum cadmium (Cd) and lead (Pb) levels were analyzed by graphite furnace atomic absorption spectrometry and mercury (Hg) levels using a mercury analyzer. Daily vitamin intakes were calculated by 24-h dietary recall. The results obtained showed that females are at higher risk of depression than males. A doubling of serum Cd was associated with a 21% increase in depression (AOR 1.21, 95% CI: 1.07-1.37, p = 0.002), whereas twofold increases in daily vitamin B1, B3 and vitamin A intakes reduced the risk of depression by 17% (0.83, 95% CI: 0.73-0.95, p = 0.005), 20% (0.80, 95% CI: 0.70-0.91, p = 0.001), and 8% (0.92, 95% CI: 0.85-0.99, p = 0.020), respectively. Interactions between heavy metals, vitamin intakes, and sex did not influence the risk of depression. The result shows that increased daily dietary vitamin intake might protect the public against depression. Further studies are needed to reduce the risks posed by heavy metals and to determine more comprehensively the effects of daily dietary vitamin intake on depression.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea
| | - Hojin Oh
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea.
| |
Collapse
|
32
|
Rotllan N, Camacho M, Tondo M, Diarte-Añazco EMG, Canyelles M, Méndez-Lara KA, Benitez S, Alonso N, Mauricio D, Escolà-Gil JC, Blanco-Vaca F, Julve J. Therapeutic Potential of Emerging NAD+-Increasing Strategies for Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:1939. [PMID: 34943043 PMCID: PMC8750485 DOI: 10.3390/antiox10121939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Aging and/or metabolic stress directly impact the cardiovascular system. Over the last few years, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism to aging and other pathological conditions closely related to cardiovascular diseases have been intensively investigated. NAD+ bioavailability decreases with age and cardiometabolic conditions in several mammalian tissues. Compelling data suggest that declining tissue NAD+ is commonly related to mitochondrial dysfunction and might be considered as a therapeutic target. Thus, NAD+ replenishment by either genetic or natural dietary NAD+-increasing strategies has been recently demonstrated to be effective for improving the pathophysiology of cardiac and vascular health in different experimental models, as well as human health, to a lesser extent. Here, we review and discuss recent experimental evidence illustrating that increasing NAD+ bioavailability, particularly by the use of natural NAD+ precursors, may offer hope for new therapeutic strategies to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Noemi Rotllan
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Mercedes Camacho
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain
| | - Mireia Tondo
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Elena M. G. Diarte-Añazco
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Marina Canyelles
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Karen Alejandra Méndez-Lara
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Sonia Benitez
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain
| | - Didac Mauricio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Francisco Blanco-Vaca
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Josep Julve
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| |
Collapse
|
33
|
Palmer RD, Vaccarezza M. Nicotinamide adenine dinucleotide and the sirtuins caution: Pro-cancer functions. Aging Med (Milton) 2021; 4:337-344. [PMID: 34964015 PMCID: PMC8711221 DOI: 10.1002/agm2.12184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
This scoping review aims to perform a brief but comprehensive assessment of existing peer-reviewed literature and determine whether raising nicotinamide adenine dinucleotide can prevent or promote tumorigenesis. The examination of extensive peer-reviewed data regarding the synthesis of nicotinamide adenine dinucleotide has been performed with a focus on nuclear dynamics and the deoxyribose nucleic acid repair pathway. Various enzymatic protective functions have been identified from nicotinamide adenine dinucleotide levels, as well as the threat role that is also explored. Nicotinamide adenine dinucleotide precursors and sirtuin-activating compounds are becoming ubiquitous in the commercial market. Further research into whether elevating levels of nicotinamide adenine dinucleotide or overexpression of sirtuins can increase the potential for neoplasm or other age-related pathophysiology is warranted due to the high energy requirements of certain diseases such as cancer.
Collapse
Affiliation(s)
| | - Mauro Vaccarezza
- School of MedicineFaculty of Health SciencesCurtin UniversityBentley, PerthWestern AustraliaAustralia
| |
Collapse
|
34
|
Li Q, Lan T, He S, Chen W, Li X, Zhang W, Liu Y, Zhang Q, Chen X, Han Y, Su Z, Zhu D, Guo H. A network pharmacology-based approach to explore the active ingredients and molecular mechanism of Lei-gong-gen formula granule on a spontaneously hypertensive rat model. Chin Med 2021; 16:99. [PMID: 34627325 PMCID: PMC8501634 DOI: 10.1186/s13020-021-00507-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022] Open
Abstract
Background Lei-gong-gen formula granule (LFG) is a folk prescription derived from Zhuang nationality, the largest ethnic minority among 56 nationalities in China. It consists of three herbs, namely Eclipta prostrata (L.) L., Smilax glabra Roxb, and Centella asiatica (L.) Urb. It has been widely used as health protection tea for hundreds of years to prevent hypertension in Guangxi Zhuang Autonomous Region. The purpose of this study is to validate the antihypertensive effect of LFG on the spontaneously hypertensive rat (SHR) model, and to further identify the effective components and anti-hypertension mechanism of LFG. Methods The effects of LFG on blood pressure, body weight, and heart rate were investigated in vivo using the SHR model. The levels of NO, ANG II, and ET-1 in the serum were measured, and pathological changes in the heart were examined by H&E staining. The main active components of LFG, their corresponding targets, and hypertension associated pathways were discerned through network pharmacology analysis based on the Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Then the predicted results were further verified by molecular biology experiments such as RT-qPCR and western blot. Additionally, the potential active compounds were predicted by molecular docking technology, and the chemical constituents of LFG were analyzed and identified by UPLC-QTOF/MS technology. Finally, an in vitro assay was performed to investigate the protective effects of potential active compounds against hydrogen peroxide (H2O2) induced oxidative damage in human umbilical vein endothelial cells (HUVEC). Results LFG could effectively reduce blood pressure and increase serum NO content in SHR model. Histological results showed that LFG could ameliorate pathological changes such as cardiac hypertrophy and interstitial inflammation. From network pharmacology analysis, 53 candidate active compounds of LFG were collected, which linked to 765 potential targets, and 828 hypertension associated targets were retrieved, from which 12 overlapped targets both related to candidate active compounds from LFG and hypertension were screened and used as the potential targets of LFG on antihypertensive effect. The molecular biology experiments of the 12 overlapped targets showed that LFG could upregulate the mRNA and protein expressions of NOS3 and proto-oncogene tyrosine-protein kinase SRC (SRC) in the thoracic aorta. Pathway enrichment analysis showed that the PI3K-AKT signaling pathway was closely related to the expression of NOS3 and SRC. Moreover, western blot results showed that LFG significantly increased the protein expression levels of PI3K and phosphorylated AKT in SHR model, suggesting that LFG may active the PI3K-AKT signaling pathway to decrease hypertension. Molecular docking study further supported that p-hydroxybenzoic acid, cedar acid, shikimic acid, salicylic acid, nicotinic acid, linalool, and histidine can be well binding with NOS3, SRC, PI3K, and AKT. UPLC-QTOF/MS analysis confirmed that p-hydroxybenzoic acid, shikimic acid, salicylic acid, and nicotinic acid existed in LFG. Pre-treatment of HUVEC with nicotinic acid could alleviate the effect on cell viability induced by H2O2 and increase the NO level in cell supernatants. Conclusions LFG can reduce the blood pressure in SHR model, which might be attributed to increasing the NO level in serum for promoting vasodilation via upregulating SRC expression level and activating the PI3K-AKT-NOS3 signaling pathway. Nicotinic acid might be the potential compound for LFG antihypertensive effect. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00507-1.
Collapse
Affiliation(s)
- Qiaofeng Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Taijin Lan
- School of preclinical medicine, Guangxi University of Chinese Medicine, 179 Mingxiu Dong Road, Nanning, 530001, China
| | - Songhua He
- Guangxi Institute for Food and Drug Control, 9 Qinghu Road, Nanning, 530021, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China.,International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Medical University, Guangxi, 530021, China
| | - Xiaolan Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Weiquan Zhang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ying Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.,College of Pharmacy, Guangxi University of Chinese Medicine, 179 Mingxiu Dong Road, Nanning, 530001, China
| | - Qiuping Zhang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.,The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Xin Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yaoyao Han
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Dan Zhu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China. .,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
35
|
Hu D, Zhang L, Jiang R, Liao C, Xu J, Jiang S, Yang Y, Lin L, Huang J, Shen Y, Tang L, Li L. Nicotinic Acid against Acetaminophen-Induced Hepatotoxicity via Sirt1/Nrf2 Antioxidative Pathway in Mice. J Nutr Sci Vitaminol (Tokyo) 2021; 67:145-152. [PMID: 34193673 DOI: 10.3177/jnsv.67.145] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Acetaminophen (N-acetyl-p-aminophenol, APAP) overdose causes hepatotoxicity, even liver failure, and oxidative stress plays pivotal role in its pathogenesis. Nicotinic acid (NA) is one form of vitamin B3, which has been used to treat a series of diseases in clinic for decades. To date, several studies have evidenced that NA has anti-oxidative property. Therefore, NA may have the hepatoprotective potential against APAP-induced toxicity. Here, our aim was to investigate the beneficial effect of NA against hepatotoxicity induced by APAP and its mechanism in vivo. BALB/c mice were intraperitoneally injected with NA (100 mg/kg) 3 times at 24, 12 and 1 h before APAP (600 mg/kg or 400 mg/kg) challenge. The results showed that pretreatment of NA markedly improved the survival rate, alleviated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and mitigated the histopathological injuries compared to APAP-exposed mice. Furthermore, NA significantly elevated the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) content, while reduced malondialdehyde (MDA) level. Finally, the signaling pathway was probed. The western blot revealed that NA up-regulated Sirtuin1 (Sirt1), nuclear factor erythroid 2-related factor 2 (Nrf2) and NAD(P)H quinone dehydrogenase-1 (NQO-1) expression and down-regulated Kelch-like ECH-associated protein 1 (Keap1) level in liver followed APAP exposure, implying Sirt1/Nrf2 axis exerted an essential role in the protective mechanism of NA on APAP toxicity. In brief, pretreatment of NA effectively protects liver against hepatotoxicity due to overdose of APAP through an antioxidant dependent manner modulated by Sirt1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Da Hu
- Department of Pathophysiology, Chongqing Medical University
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University
| | - Rong Jiang
- Department of Histology and Embryology, Chongqing Medical University
| | - Cuiting Liao
- Department of Pathophysiology, Chongqing Medical University
| | - Juanjuan Xu
- Department of Pathophysiology, Chongqing Medical University
| | - Shifang Jiang
- Department of Pathophysiology, Chongqing Medical University
| | - Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University
| | - Ling Lin
- Department of Pathophysiology, Chongqing Medical University
| | - Jiayi Huang
- Department of Pathophysiology, Chongqing Medical University
| | - Yi Shen
- Department of Pathophysiology, Chongqing Medical University
| | - Li Tang
- Department of Pathophysiology, Chongqing Medical University
| | - Longjiang Li
- Department of Pathophysiology, Chongqing Medical University
| |
Collapse
|
36
|
Caligiuri G. A vitaminic boost to rock the aortic wall. Cardiovasc Res 2021; 116:2175-2176. [PMID: 33175135 DOI: 10.1093/cvr/cvaa329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Giuseppina Caligiuri
- Université de Paris, Laboratory for Vascular Translational Science, Inserm U1148, Xavier Bichat, 46 rue Henri Huchard, F-75018 Paris, France.,Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Nord Val-de-Seine, Site Bichat, Paris, France
| |
Collapse
|
37
|
Almubarak AM, Kim E, Yu IJ, Jeon Y. Supplementation with Niacin during in vitro maturation improves the quality of porcine embryos. Theriogenology 2021; 169:36-46. [PMID: 33932650 DOI: 10.1016/j.theriogenology.2021.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 01/17/2023]
Abstract
Niacin, also known as vitamin B3, has a pivotal role in energy metabolism, cellular signaling cascades regulating gene expression, and apoptosis. However, the effect of Niacin on porcine early embryo developmental competence remains to be elucidated. The present study aimed to assess the effects of Niacin treatment during in vitro maturation (IVM) on the nuclear maturation of porcine oocytes and subsequent development of in vitro embryos. In addition, the expression profiles of selected genes related to lipid metabolism, oxidative stress, and apoptosis were assessed. The IVM medium was supplemented with different concentrations of Niacin (0, 300, 600, and 900 μM). The results showed that a high concentration of Niacin (900 μM) significantly decreased cumulus expansion compared to the other groups (p < 0.05). No significant difference was observed among the experimental groups for nuclear maturation rate. Niacin treatments (300, 600, and 900 μM) during IVM significantly (p < 0.05) enhanced glutathione levels. Treatment with 300 and 600 μM significantly (p < 0.05) lowered the reactive oxygen species levels compared to treatment with 900 μM and the control group. Niacin supplementation to the IVM media significantly improved the cleavage and blastocyst rates compared to the control group. Supplementation with 300 and 600 μM of Niacin significantly increased the total cell number of blastocysts compared to supplementation with 900 μM or the control groups. Cytoplasmic lipid droplets were significantly reduced after 600 μM treatment. Supplementation of Niacin to IVM media positively affected the relative expression of genes related to energy and oxidative status (SIRT1), pro-apoptosis (BAX), anti-apoptosis (BCL2), and lipid metabolism (ACACA and PNPLA2) in cumulus cells and oocytes. Taken together, Niacin supplementation to porcine IVM media improved the developmental competence of early embryos mainly through protection against oxidative stress and its influence on energy metabolism and apoptosis pathways.
Collapse
Affiliation(s)
- Areeg M Almubarak
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea; Department of Veterinary Medicine and Animal Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum North, Khartoum, 11111, Sudan
| | - Eunji Kim
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
38
|
Zhou F, Zou X, Zhang J, Wang Z, Yang Y, Wang D. Jian-Pi-Yi-Shen Formula Ameliorates Oxidative Stress, Inflammation, and Apoptosis by Activating the Nrf2 Signaling in 5/6 Nephrectomized Rats. Front Pharmacol 2021; 12:630210. [PMID: 33841151 PMCID: PMC8027107 DOI: 10.3389/fphar.2021.630210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic kidney disease (CKD) is an increasing global public health problem, with high morbidity and mortality. Jian-Pi-Yi-Shen (JPYS) formula is a representative traditional Chinese medicine formula in the treatment of CKD, which is widely used in clinical practice in China. However, the underlying mechanism has not been well elucidated. In the present study, we measured the markers of apoptosis, inflammation, oxidative stress, and nuclear factor erythroid 2–related factor 2 (Nrf2) signaling to investigate the effects of JPYS formula on renal function and fibrosis and its molecular mechanism in an established animal model of 5/6 nephrectomized (5/6Nx) rats. The results demonstrated that the JPYS formula exerted a significant preventive effect on renal dysfunction and fibrosis, based on analysis of correlative parameters such as urinary protein, SCr, BUN, glomerular sclerosis index, and tubulointerstitial fibrosis score and renal histopathology and ultrastructural pathology of CKD rats. JPYS formula also induced downregulation of gene expression associated with fibrosis, such as TGF-β and type I, III, and IV collagen. Moreover, the JPYS formula showed a significant protective effect in suppressing cell apoptosis according to the results of apoptotic indexes, including increased gene expression of Bcl-2, decreased gene expression of Bax, caspase 3, caspase 9, and the number of TUNEL-positive cells. JPYS formula also ameliorated the activation of the NF-κB-mediated inflammatory pathway, as manifested by the downregulation of gene expression of TNF-α, IL-1β, IκBα, NF-κB p65, MCP-1, CXCL1, COX-2, and iNOS in the kidney. Our evidence also suggested that the JPYS formula ameliorates oxidative stress by promoting antioxidant function according to antioxidant index indicators as an indicator of GSH, SOD, CAT, and GPx and abating excessive accumulation of the reactive oxygen species biomarkers, including ROS, TBARS, 8-oxo-dG, and MDA. The data also suggested that the JPYS formula reversed the downregulation of HO-1 and Nrf2 level and upregulation of Keap1 expression. Together, our data highlighted that the JPYS formula relieved renal oxidative injury mediated by activation of Nrf2 signaling by inhibiting inflammation and apoptosis in CKD rats.
Collapse
Affiliation(s)
- Fanyuan Zhou
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaohu Zou
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jing Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ziwei Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Chinese Medicine, Southern Medical University, Shenzhen, China.,Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning, China.,Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
39
|
Li Z, McCafferty KJ, Judd RL. Role of HCA 2 in Regulating Intestinal Homeostasis and Suppressing Colon Carcinogenesis. Front Immunol 2021; 12:606384. [PMID: 33708203 PMCID: PMC7940178 DOI: 10.3389/fimmu.2021.606384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Hydroxycarboxylic acid receptor 2 (HCA2) is vital for sensing intermediates of metabolism, including β-hydroxybutyrate and butyrate. It also regulates profound anti-inflammatory effects in various tissues, indicating that HCA2 may serve as an essential therapeutic target for mediating inflammation-associated diseases. Butyrate and niacin, endogenous and exogenous ligands of HCA2, have been reported to play an essential role in maintaining intestinal homeostasis. HCA2, predominantly expressed in diverse immune cells, is also present in intestinal epithelial cells (IECs), where it regulates the intricate communication network between diet, microbiota, and immune cells. This review summarizes the physiological role of HCA2 in intestinal homeostasis and its pathological role in intestinal inflammation and cancer.
Collapse
Affiliation(s)
- Zhuoyue Li
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Kayleen J McCafferty
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Robert L Judd
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
40
|
Wang J, Liu J, Pan L, Guo L, Liu C, Yang S. Association between alcohol intake and the risk of systemic lupus erythematosus: A systematic review and meta-analysis. Lupus 2021; 30:725-733. [PMID: 33557684 DOI: 10.1177/0961203321991918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Previous studies have reported inconsistent results on the relationship between alcohol intake and the risk of systemic lupus erythematosus (SLE). Therefore, we conducted a systematic review and meta-analysis to illustrate the potential role of alcohol intake on the progression of SLE. METHODS An electronic search of the PubMed, EmBase, and the Cochrane library databases was conducted from their inception up to March 2020. Observational studies that investigated the role of alcohol intake on the risk of SLE were eligible for inclusion in this study. The pooled odds ratio (OR) with 95% confidence interval (CI) was calculated as an effect estimate using the random-effects model. RESULTS Seven case-control studies (n = 3, 251) and three cohort studies (n = 322, 479) were selected for the final meta-analysis. Mild (OR: 0.85; 95% CI: 0.53-1.38; p = 0.515) or heavy (OR: 0.63; 95% CI: 0.37-1.09; p = 0.102) alcohol intake were not associated with the risk of SLE, while moderate alcohol intake could protect against the risk of SLE (OR: 0.71; 95% CI: 0.55-0.93; p = 0.012). Sensitivity analysis suggested that heavy alcohol intake was associated with a reduced risk of SLE (OR: 0.47; 95% CI: 0.32-0.67; p < 0.001). CONCLUSIONS This study found that moderate alcohol intake could protect against the risk of SLE, while mild or heavy alcohol intake did not significantly affect the risk of SLE.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Jinxiang Liu
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Lu Pan
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Lishuang Guo
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Congcong Liu
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Sirui Yang
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Ansarey SH. Inflammation and JNK's Role in Niacin-GPR109A Diminished Flushed Effect in Microglial and Neuronal Cells With Relevance to Schizophrenia. Front Psychiatry 2021; 12:771144. [PMID: 34916973 PMCID: PMC8668869 DOI: 10.3389/fpsyt.2021.771144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Schizophrenia is a neuropsychiatric illness with no single definitive aetiology, making its treatment difficult. Antipsychotics are not fully effective because they treat psychosis rather than the cognitive or negative symptoms. Antipsychotics fail to alleviate symptoms when patients enter the chronic stage of illness. Topical application of niacin showed diminished skin flush in the majority of patients with schizophrenia compared to the general population who showed flushing. The niacin skin flush test is useful for identifying patients with schizophrenia at their ultra-high-risk stage, and understanding this pathology may introduce an effective treatment. This review aims to understand the pathology behind the diminished skin flush response, while linking it back to neurons and microglia. First, it suggests that there are altered proteins in the GPR109A-COX-prostaglandin pathway, inflammatory imbalance, and kinase signalling pathway, c-Jun N-terminal kinase (JNK), which are associated with diminished flush. Second, genes from the GPR109A-COX-prostaglandin pathway were matched against the 128-loci genome wide association study (GWAS) for schizophrenia using GeneCards, suggesting that G-coupled receptor-109A (GPR109A) may have a genetic mutation, resulting in diminished flush. This review also suggests that there may be increased pro-inflammatory mediators in the GPR109A-COX-prostaglandin pathway, which contributes to the diminished flush pathology. Increased levels of pro-inflammatory markers may induce microglial-activated neuronal death. Lastly, this review explores the role of JNK on pro-inflammatory mediators, proteins in the GPR109A-COX-prostaglandin pathway, microglial activation, and neuronal death. Inhibiting JNK may reverse the changes observed in the diminished flush response, which might make it a good therapeutic target.
Collapse
Affiliation(s)
- Sabrina H Ansarey
- Department of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
42
|
B Vitamins and Their Role in Immune Regulation and Cancer. Nutrients 2020; 12:nu12113380. [PMID: 33158037 PMCID: PMC7693142 DOI: 10.3390/nu12113380] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
B group vitamins represent essential micronutrients for myriad metabolic and regulatory processes required for human health, serving as cofactors used by hundreds of enzymes that carry out essential functions such as energy metabolism, DNA and protein synthesis and other critical functions. B vitamins and their corresponding vitamers are universally essential for all cellular life forms, from bacteria to humans. Humans are unable to synthesize most B vitamins and are therefore dependent on their diet for these essential micronutrients. More recently, another source of B vitamins has been identified which is derived from portions of the 1013 bacterial cells inhabiting the gastrointestinal tract. Here we review the expanding literature examining the relationship between B vitamins and the immune system and diverse cancers. Evidence of B vitamin’s role in immune cell regulation has accumulated in recent years and may help to clarify the disparate findings of numerous studies attempting to link B vitamins to cancer development. Much work remains to be carried out to fully clarify these relationships as the complexity of B vitamins’ essential functions complicates an unequivocal assessment of their beneficial or detrimental effects in inflammation and cancers.
Collapse
|
43
|
Oyeyinka BO, Afolayan AJ. Potentials of Musa Species Fruits against Oxidative Stress-Induced and Diet-Linked Chronic Diseases: In Vitro and In Vivo Implications of Micronutritional Factors and Dietary Secondary Metabolite Compounds. Molecules 2020; 25:E5036. [PMID: 33142997 PMCID: PMC7663138 DOI: 10.3390/molecules25215036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Nutritional quality and the well-being of the body system are directly linked aspects of human survival. From the unborn foetus to adulthood, the need for sustainable access to micronutrient-rich foods is pertinent and the global consumption of banana and plantain fruits, in effect, contributes to the alleviation of the scourge of malnutrition. This review is particularly aimed at evaluating the pharmacological dimensions through the biological mechanisms of Musa fruits in the body, which represent correlations with their constituent micronutrient factors and dietary polyphenolic constituents such as minerals, vitamin members, anthocyanins, lutein, α-,β- carotenes, neoxanthins and cryptoxanthins, epi- and gallo catechins, catecholamines, 3-carboxycoumarin, β-sitosterol, monoterpenoids, with series of analytical approaches for the various identified compounds being highlighted therein. Derivative value-products from the compartments (flesh and peel) of Musa fruits are equally highlighted, bringing forth the biomedicinal and nutritional relevance, including the potentials of Musa species in dietary diversification approaches.
Collapse
Affiliation(s)
| | - Anthony Jide Afolayan
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, South Africa;
| |
Collapse
|
44
|
Ye L, Cao Z, Lai X, Shi Y, Zhou N. Niacin Ameliorates Hepatic Steatosis by Inhibiting De Novo Lipogenesis Via a GPR109A-Mediated PKC-ERK1/2-AMPK Signaling Pathway in C57BL/6 Mice Fed a High-Fat Diet. J Nutr 2020; 150:672-684. [PMID: 31858105 DOI: 10.1093/jn/nxz303] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/18/2019] [Accepted: 11/19/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. Hepatic de novo lipogenesis (DNL) has been suggested to contribute to the pathogenesis of NAFLD. Recent studies have demonstrated that niacin (NA) modulates hepatic DNL through GPR109A. However, the underlying mechanism remains largely unknown. OBJECTIVES This study aims to elucidate the potential molecular mechanism by which GPR109A inhibits hepatic DNL. METHODS C57BL/6 wild-type (WT) and Gpr109a knockout (KO) mice (male, 5 wk old) were fed a high-fat diet (60% energy from fat) firstly for 6 wk to generate a diet-induced obese model. Subsequently, they were randomly divided into 4 groups for the next 8-9 wk: WT mice with oral water [WT + vehile (VE)], WT mice with oral NA (50 mM, dissolved in water) (WT + NA), KO mice with oral water (KO + VE), and KO mice with oral NA (50 mM) (KO + NA). Mechanisms were examined in HepG2 cells. Body composition, liver histology, biomarkers of hepatic function, lipid accumulation, and lipid synthesis signals in HepG2 cells were measured. RESULTS Upon activation, GPR109A apparently protected against obesity and hepatic steatosis (P < 0.05). The concentrations of hepatic Tnf-α in the WT + NA group were about 50% of those in the WT + VE group (P < 0.05). The activities of serum alanine transaminase and aspartate transaminase were 26.7% and 53.5% lower in the WT + NA group than in the WT + VE group, respectively (P < 0.05). In HepG2 cells, activation of GPR109A resulted in remarkable inhibition of oleic acid-induced lipid accumulation via a protein kinase C-extracellular signal-regulated kinase-1/2-AMP-activated protein kinase signaling pathway. CONCLUSIONS NA inhibits hepatic lipogenesis in C57BL/6 mice through a GPR109A-mediated signaling pathway, consistent with the mechanistic studies in HepG2 cells, suggesting its potential for treatment of NAFLD and other fatty liver diseases.
Collapse
Affiliation(s)
- Lingyan Ye
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangru Lai
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
45
|
Katsyuba E, Romani M, Hofer D, Auwerx J. NAD + homeostasis in health and disease. Nat Metab 2020; 2:9-31. [PMID: 32694684 DOI: 10.1038/s42255-019-0161-5] [Citation(s) in RCA: 369] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
The conceptual evolution of nicotinamide adenine dinucleotide (NAD+) from being seen as a simple metabolic cofactor to a pivotal cosubstrate for proteins regulating metabolism and longevity, including the sirtuin family of protein deacylases, has led to a new wave of scientific interest in NAD+. NAD+ levels decline during ageing, and alterations in NAD+ homeostasis can be found in virtually all age-related diseases, including neurodegeneration, diabetes and cancer. In preclinical settings, various strategies to increase NAD+ levels have shown beneficial effects, thus starting a competitive race to discover marketable NAD+ boosters to improve healthspan and lifespan. Here, we review the basics of NAD+ biochemistry and metabolism, and its roles in health and disease, and we discuss current challenges and the future translational potential of NAD+ research.
Collapse
Affiliation(s)
- Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Nagi Bioscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Romani
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dina Hofer
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Thermo Fisher Scientific, Zug, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
46
|
Ye L, Cao Z, Lai X, Wang W, Guo Z, Yan L, Wang Y, Shi Y, Zhou N. Niacin fine-tunes energy homeostasis through canonical GPR109A signaling. FASEB J 2019; 33:4765-4779. [PMID: 30596513 DOI: 10.1096/fj.201801951r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The incidence of overweight and obesity has become a global public health problem, constituting a major risk factor for numerous comorbidities. Despite tremendous efforts, effective pharmacological agents for the treatment of obesity are still limited. Here, we showed that in contrast to lactate receptor GPR81, niacin receptor GPR109A-deficient mice had progressive weight gain and hepatic fat accumulation. Using high-fat diet-induced mouse model of obesity, we demonstrated that niacin treatment apparently protected against obesity without affecting food intake in wild-type mice but not in GPR109A-deficient mice. Further investigation showed that niacin treatment led to a remarkable inhibition of hepatic de novo lipogenesis. Additionally, we demonstrated that niacin treatment triggered brown adipose tissue and/or white adipose tissue thermogenic activity via activation of GPR109A. Moreover, we observed that mice exposed to niacin exhibited a dramatic decrease in intestinal absorption of sterols and fatty acids. Taken together, our findings demonstrate that acting on GPR109A, niacin shows the potential to maintain energy homeostasis through multipathways, representing a potential approach to the treatment of obesity, diabetes and cardiovascular disease.-Ye, L., Cao, Z., Lai, X., Wang, W., Guo, Z., Yan, L., Wang, Y., Shi, Y., Zhou, N. Niacin fine-tunes energy homeostasis through canonical GPR109A signaling.
Collapse
Affiliation(s)
- Lingyan Ye
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Xiangru Lai
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhiqiang Guo
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yuyan Wang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int J Mol Sci 2019; 20:ijms20040974. [PMID: 30813414 PMCID: PMC6412771 DOI: 10.3390/ijms20040974] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Niacin (also known as "vitamin B₃" or "vitamin PP") includes two vitamers (nicotinic acid and nicotinamide) giving rise to the coenzymatic forms nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). The two coenzymes are required for oxidative reactions crucial for energy production, but they are also substrates for enzymes involved in non-redox signaling pathways, thus regulating biological functions, including gene expression, cell cycle progression, DNA repair and cell death. In the central nervous system, vitamin B₃ has long been recognized as a key mediator of neuronal development and survival. Here, we will overview available literature data on the neuroprotective role of niacin and its derivatives, especially focusing especially on its involvement in neurodegenerative diseases (Alzheimer's, Parkinson's, and Huntington's diseases), as well as in other neuropathological conditions (ischemic and traumatic injuries, headache and psychiatric disorders).
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Matteo Sibilano
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
48
|
|
49
|
Chen G, Huang B, Fu S, Li B, Ran X, He D, Jiang L, Li Y, Liu B, Xie L, Liu J, Wang W. G Protein-Coupled Receptor 109A and Host Microbiota Modulate Intestinal Epithelial Integrity During Sepsis. Front Immunol 2018; 9:2079. [PMID: 30271409 PMCID: PMC6146091 DOI: 10.3389/fimmu.2018.02079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/22/2018] [Indexed: 01/02/2023] Open
Abstract
The intestinal epithelial barrier is important to mucosal immunity, although how it is maintained after damage is unclear. Here, we show that G protein-coupled receptor 109A (GPR109A) supports barrier integrity and decreases mortality in a mouse cecum ligation and puncture (CLP) sepsis model. Data from 16S RNA sequencing showed that the intestinal microbiota of WT and Gpr109a−/− mice clustered differently and their compositions were disrupted after CLP surgery. GPR109A-deficient mice showed increased mortality, intestinal permeability, altered inflammation, and lower tight junction gene expression. After eliminating the intestinal flora with antibiotics, all experimental mice died within 48 h of CLP surgery. This demonstrates the critical role of the gut microbiota in CLP-induced sepsis. Importantly, mortality and other pathologies in the model were decreased after Gpr109a−/− mice received WT gut microbiota. These findings indicate that GPR109A regulates the gut microbiota, contributing to intestinal epithelial barrier integrity and decreased mortality in CLP-induced sepsis.
Collapse
Affiliation(s)
- Guangxin Chen
- College of Veterinary Medicine, Jilin University, Changchun, China.,Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Bingxu Huang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bai Li
- First Hospital of Jilin University, Changchun, China
| | - Xin Ran
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dewei He
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liqiang Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuhang Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bingdong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
50
|
Pereira LC, de Paula ES, Pazin M, Carneiro MFH, Grotto D, Barbosa F, Dorta DJ. Niacin prevents mitochondrial oxidative stress caused by sub-chronic exposure to methylmercury. Drug Chem Toxicol 2018; 43:64-70. [PMID: 30192646 DOI: 10.1080/01480545.2018.1497045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Humans and animals can be exposed to different chemical forms of mercury (Hg) in the environment. For example, methylmercury (MeHg)-contaminated fish is part of the basic diet of the riparian population in the Brazilian Amazon Basin, which leads to high total blood and plasma Hg levels in people living therein. Hg induces toxic effects mainly through oxidative stress. Different compounds have been used to prevent the damage caused by MeHg-induced reactive oxygen species (ROS). This study aims to investigate the in vivo effects of sub-chronic exposure to low MeHg levels on the mitochondrial oxidative status and to evaluate the niacin protective effect against MeHg-induced oxidative stress. For this purpose, Male Wistar rats were divided into four groups: control group, treated with drinking water on a daily basis; group exposed to MeHg at a dose of 100 µg/kg/day; group that received niacin at a dose of 50 mg/kg/day in drinking water, with drinking water being administered by gavage; group that received niacin at a dose of 50 mg/kg/day in drinking water as well as MeHg at a dose of 100 µg/kg/day. After 12 weeks, the rats, which weighed 500-550 g, were sacrificed, and their liver mitochondria were isolated by standard differential centrifugation. Sub-chronic exposure to MeHg (100 µg/kg/day for 12 weeks) led to mitochondrial swelling (p < 0.05) and induced ROS overproduction as determined by increased DFCH oxidation (p < 0.05), increased gluthatione oxidation (p < 0.05), and reduced protein thiol content (p < 0.05). In contrast, niacin supplementation inhibited oxidative stress, which counteracted and minimized the toxic MeHg effects on mitochondria.
Collapse
Affiliation(s)
- Lílian Cristina Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.,Faculdade de Ciências Agronômicas, Departamento de Bioprocessos e Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil.,Departamento de Patologia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, TOXICAM - Núcleo de Avaliação do Impacto Ambiental sobre a Saúde Humana, Botucatu, São Paulo, Brazil
| | - Eloisa Silva de Paula
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Murilo Pazin
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Maria Fernanda Hornos Carneiro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Denise Grotto
- Laboratório de Pesquisa em Toxicologia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade de Sorocaba, Sorocaba, São Paulo, Brasil
| | - Fernando Barbosa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Daniel Junqueira Dorta
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.,Instituto Nacional de Tecnologias Alternativas de Detecção, Avaliação Toxicológica e Remoção de Micropututantes e Radioativos (INCT-DATREM), Unesp, Instituto de Química, Araraquara, São Paulo, Brasil
| |
Collapse
|