1
|
Miao F, Luan J, Feng X, Zhang Y, Feng Z, Wang Z, Wang Y, Yang R, Zhang C, Kopp JB, Pi J, Zhou H. Trametinib ameliorated Adriamycin-induced podocyte injury by inhibiting METTL3 modified m 6A RCAN1 RNA methylation. Eur J Pharmacol 2025; 999:177680. [PMID: 40287046 DOI: 10.1016/j.ejphar.2025.177680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
N6-methyladenosine (m6A) plays a crucial role in kidney diseases. Methyltransferase-like 3 (METTL3) as a key m6A writer can be regulated by trametinib. However, the epigenetic regulation of trametinib in focal segmental glomerulosclerosis (FSGS) remains unclear. We investigated whether trametinib protects podocytes by modulating METTL3-methylated target RNAs. Regulator of calcineurin 1 (RCAN1) was predicted as a target binding RNA of METTL3 by THEW database. Immunostaining of METTL3 and RCAN1 with podocyte marker Wilm's tumor-1 (WT-1) confirmed their localization within podocytes in renal biopsy from FSGS patients. Transfection METTL3 to human podocytes reduced WT-1, synaptopodin (SYNPO), and RCAN1 protein levels. Total m6A, m6A methylated RNA of RCAN1 increased and total RCAN1 mRNA decreased. Inhibition of METTL3 using siRNA or trametinib reversed these changes and attenuated the ADR-induced downregulation of WT-1 and SYNPO in vitro. In ADR-induced FSGS mice, trametinib ameliorated proteinuria, hypoalbuminemia, renal dysfunction, glomerulosclerosis and podocyte foot process effacement. Additionally, trametinib preserved podocyte function assessed by WT-1 and SYNPO as well as delayed renal fibrosis assessed by α-smooth muscle actin and fibronectin. Consistent with results in vitro, trametinib also decreased the ADR-induced upregulation of METTL3 and reversed the changed levels of total m6A, m6A methylated Rcan1 and total Rcan1 in FSGS mice. In conclusion, trametinib may serve as a renal protective agent for FSGS by regulating METTL3-dependent RCAN1 methylation levels.
Collapse
Affiliation(s)
- Feifei Miao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaochen Feng
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yonghe Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixuan Feng
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiduo Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuqing Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong Yang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Rutkowski N, Görlitz F, Wiesner E, Binz-Lotter J, Feil S, Feil R, Benzing T, Hackl MJ. Real-time imaging of cGMP signaling shows pronounced differences between glomerular endothelial cells and podocytes. Sci Rep 2024; 14:26099. [PMID: 39478086 PMCID: PMC11525973 DOI: 10.1038/s41598-024-76768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Recent clinical trials of drugs enhancing cyclic guanosine monophosphate (cGMP) signaling for cardiovascular diseases have renewed interest in cGMP biology within the kidney. However, the role of cGMP signaling in glomerular endothelial cells (GECs) and podocytes remains largely unexplored. Using acute kidney slices from mice expressing the FRET-based cGMP biosensor cGi500 in endothelial cells or podocytes enabled real-time visualization of cGMP. Stimulation with atrial natriuretic peptide (ANP) or SNAP (NO donor) and various phosphodiesterase (PDE) inhibitors elevated intracellular cGMP in both cell types. GECs showed a transient cGMP response upon particulate or soluble guanylyl cyclase activation, while the cGMP response in podocytes reached a plateau following ANP administration. Co-stimulation (ANP + SNAP) led to an additive response in GECs. The administration of PDE inhibitors revealed a broader basal PDE activity in GECs dominated by PDE2a. In podocytes, basal PDE activity was mainly restricted to PDE3 and PDE5 activity. Our data demonstrate the existence of both guanylyl cyclase pathways in GECs and podocytes with cell-specific differences in cGMP synthesis and degradation, potentially suggesting new therapeutic options for kidney diseases.
Collapse
Affiliation(s)
- Nelli Rutkowski
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Frederik Görlitz
- Bio- and Nanophotonics, Department of Microsystem Engineering, University of Freiburg, Freiburg, Germany
| | - Eva Wiesner
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Julia Binz-Lotter
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie (IFIB), University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), University of Tübingen, Tübingen, Germany
| | - Thomas Benzing
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Matthias J Hackl
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Nephrolab Cologne, CECAD Research Center, University Hospital of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany.
| |
Collapse
|
3
|
Huang Y, Geng J, Wang M, Liu W, Hu H, Shi W, Li M, Huo G, Huang G, Xu A. A simple protocol to establish a conditionally immortalized mouse podocyte cell line. Sci Rep 2024; 14:11591. [PMID: 38773220 PMCID: PMC11109129 DOI: 10.1038/s41598-024-62547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Podocytes are specialized terminally differentiated cells in the glomerulus that are the primary target cells in many glomerular diseases. However, the current podocyte cell lines suffer from prolonged in vitro differentiation and limited survival time, which impede research progress. Therefore, it is necessary to establish a cell line that exhibits superior performance and characteristics. We propose a simple protocol to obtain an immortalized mouse podocyte cell (MPC) line from suckling mouse kidneys. Primary podocytes were cultured in vitro and infected with the SV40 tsA58 gene to obtain immortalized MPCs. The podocytes were characterized using Western blotting and quantitative real-time PCR. Podocyte injury was examined using the Cell Counting Kit-8 assay and flow cytometry. First, we successfully isolated an MPC line and identified 39 °C as the optimal differentiation temperature. Compared to undifferentiated MPCs, the expression of WT1 and synaptopodin was upregulated in differentiated MPCs. Second, the MPCs ceased proliferating at a nonpermissive temperature after day 4, and podocyte-specific proteins were expressed normally after at least 15 passages. Finally, podocyte injury models were induced to simulate podocyte injury in vitro. In summary, we provide a simple and popularized protocol to establish a conditionally immortalized MPC, which is a powerful tool for the study of podocytes.
Collapse
Affiliation(s)
- Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jie Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mengdan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wenbin Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mei Li
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Guiyang Huo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
4
|
Kim SY, Choi YY, Kwon EJ, Seo S, Kim WY, Park SH, Park S, Chin HJ, Na KY, Kim S. Characterizing Glomerular Barrier Dysfunction with Patient-Derived Serum in Glomerulus-on-a-Chip Models: Unveiling New Insights into Glomerulonephritis. Int J Mol Sci 2024; 25:5121. [PMID: 38791159 PMCID: PMC11121116 DOI: 10.3390/ijms25105121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Glomerulonephritis (GN) is characterized by podocyte injury or glomerular filtration dysfunction, which results in proteinuria and eventual loss of kidney function. Progress in studying the mechanism of GN, and developing an effective therapy, has been limited by the absence of suitable in vitro models that can closely recapitulate human physiological responses. We developed a microfluidic glomerulus-on-a-chip device that can recapitulate the physiological environment to construct a functional filtration barrier, with which we investigated biological changes in podocytes and dynamic alterations in the permeability of the glomerular filtration barrier (GFB) on a chip. We also evaluated the potential of GN-mimicking devices as a model for predicting responses to human GN. Glomerular endothelial cells and podocytes successfully formed intact monolayers on opposite sides of the membrane in our chip device. Permselectivity analysis confirmed that the chip was constituted by a functional GFB that could accurately perform differential clearance of albumin and dextran. Reduction in cell viability resulting from damage was observed in all serum-induced GN models. The expression of podocyte-specific marker WT1 was also decreased. Albumin permeability was increased in most models of serum-induced IgA nephropathy (IgAN) and membranous nephropathy (MN). However, sera from patients with minimal change disease (MCD) or lupus nephritis (LN) did not induce a loss of permeability. This glomerulus-on-a-chip system may provide a platform of glomerular cell culture for in vitro GFB in formation of a functional three-dimensional glomerular structure. Establishing a disease model of GN on a chip could accelerate our understanding of pathophysiological mechanisms of glomerulopathy.
Collapse
Affiliation(s)
- Shin Young Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (S.Y.K.); (Y.Y.C.); (W.Y.K.); (S.H.P.)
| | - Yun Yeong Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (S.Y.K.); (Y.Y.C.); (W.Y.K.); (S.H.P.)
| | - Eun Jeong Kwon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (E.J.K.); (S.P.); (K.Y.N.)
| | - Seungwan Seo
- Osong Medical Innovation Foundation, Cheongju-si 28161, Republic of Korea; (S.S.); (H.J.C.)
| | - Wan Young Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (S.Y.K.); (Y.Y.C.); (W.Y.K.); (S.H.P.)
| | - Sung Hyuk Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (S.Y.K.); (Y.Y.C.); (W.Y.K.); (S.H.P.)
| | - Seokwoo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (E.J.K.); (S.P.); (K.Y.N.)
| | - Ho Jun Chin
- Osong Medical Innovation Foundation, Cheongju-si 28161, Republic of Korea; (S.S.); (H.J.C.)
| | - Ki Young Na
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (E.J.K.); (S.P.); (K.Y.N.)
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (S.Y.K.); (Y.Y.C.); (W.Y.K.); (S.H.P.)
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (E.J.K.); (S.P.); (K.Y.N.)
| |
Collapse
|
5
|
Saito K, Yokawa S, Kurihara H, Yaoita E, Mizuta S, Tada K, Oda M, Hatakeyama H, Ohta Y. FilGAP controls cell-extracellular matrix adhesion and process formation of kidney podocytes. FASEB J 2024; 38:e23504. [PMID: 38421271 DOI: 10.1096/fj.202301691rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
The function of kidney podocytes is closely associated with actin cytoskeleton regulated by Rho small GTPases. Loss of actin-driven cell adhesions and processes is connected to podocyte dysfunction, proteinuria, and kidney diseases. FilGAP, a GTPase-activating protein for Rho small GTPase Rac1, is abundantly expressed in kidney podocytes, and its gene is linked to diseases in a family with focal segmental glomerulosclerosis. In this study, we have studied the role of FilGAP in podocytes in vitro. Depletion of FilGAP in cultured podocytes induced loss of actin stress fibers and increased Rac1 activity. Conversely, forced expression of FilGAP increased stress fiber formation whereas Rac1 activation significantly reduced its formation. FilGAP localizes at the focal adhesion (FA), an integrin-based protein complex closely associated with stress fibers, that mediates cell-extracellular matrix (ECM) adhesion, and FilGAP depletion decreased FA formation and impaired attachment to the ECM. Moreover, in unique podocyte cell cultures capable of inducing the formation of highly organized processes including major processes and foot process-like projections, FilGAP depletion or Rac1 activation decreased the formation of these processes. The reduction of FAs and process formations in FilGAP-depleted podocyte cells was rescued by inhibition of Rac1 or P21-activated kinase 1 (PAK1), a downstream effector of Rac1, and PAK1 activation inhibited their formations. Thus, FilGAP contributes to both cell-ECM adhesion and process formation of podocytes by suppressing Rac1/PAK1 signaling.
Collapse
Affiliation(s)
- Koji Saito
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Seiji Yokawa
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hidetake Kurihara
- Department of Physical Therapy, Faculty of Health Sciences, Aino University, Osaka, Ibaraki, Japan
| | - Eishin Yaoita
- Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Sari Mizuta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kanae Tada
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Moemi Oda
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hiroyasu Hatakeyama
- Department of Physiology, School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
6
|
Schlichenmaier N, Zielinski A, Beneke S, Dietrich DR. PODO/TERT256 - A promising human immortalized podocyte cell line and its potential use for in vitro research at different oxygen levels. Chem Biol Interact 2024; 387:110813. [PMID: 38006960 DOI: 10.1016/j.cbi.2023.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023]
Abstract
Podocytes are of key interest for the prediction of nephrotoxicity as they are especially sensitive to toxic insults due to their central role in the glomerular filtration apparatus. However, currently, prediction of nephrotoxicity in humans remains insufficiently reliable, thus highlighting the need for advanced in vitro model systems using human cells with improved prediction capacity. Recent approaches for refining in vitro model systems focus on closely replicating physiological conditions as observed under the in vivo situation typical of the respective nephron section of interest. PODO/TERT256, a human immortalized podocyte cell line, were employed in a semi-static transwell system to evaluate its potential use as a human podocyte in vitro system for modelling potential human glomerular toxicity. Furthermore, the impact of routinely employed excessive oxygen tension (21 % - AtmOx), when compared to the physiological oxygen tensions (10 % - PhysOx) observed in vivo, was analyzed. Generally, cultured PODO/TERT256 formed a stable, contact-inhibited monolayer with typical podocyte morphology (large cell body, apical microvilli, finger-like cytoplasmic projections (reminiscent of foot processes), and interdigitating cell-cell junctions) and developed a size-selective filtration barrier. PhysOx, however, induced a more pronounced in vivo like phenotype, comprised of significantly larger cell bodies, significantly enhanced filtration barrier size-selectivity, and a remarkable re-localization of nephrin to the cell membrane, thus suggesting an improved in vitro replication of in vivo characteristics. Preliminary toxicity characterization with the known glomerulotoxin doxorubicin (DOX) suggested an increasing change in filtration permeability, already at the lowest DOX concentrations tested (0.01 μM) under PhysOx, whereas obvious changes under AtmOx were observed as of 0.16 μM and higher with a near all or nothing effect. The latter findings suggested that PODO/TERT256 could serve as an in vitro human podocyte model for studying glomerulotoxicity, whereby culturing at PhyOx tension appeared critical for an improved in vivo-like phenotype and functionality. Moreover, PODO/TERT256 could be incorporated into advanced human glomerulus systems in vitro, recapitulating microfluidic conditions and multiple cell types (endothelial and mesenchymal cells) that can even better predict human glomerular toxicity.
Collapse
Affiliation(s)
- Nadja Schlichenmaier
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Zielinski
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Sascha Beneke
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Daniel R Dietrich
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
7
|
Tsang TH, Wiese M, Helmstädter M, Stehle T, Seyfferth J, Shvedunova M, Holz H, Walz G, Akhtar A. Transcriptional regulation by the NSL complex enables diversification of IFT functions in ciliated versus nonciliated cells. SCIENCE ADVANCES 2023; 9:eadh5598. [PMID: 37624894 PMCID: PMC10456878 DOI: 10.1126/sciadv.adh5598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Members of the NSL histone acetyltransferase complex are involved in multiorgan developmental syndromes. While the NSL complex is known for its importance in early development, its role in fully differentiated cells remains enigmatic. Using a kidney-specific model, we discovered that deletion of NSL complex members KANSL2 or KANSL3 in postmitotic podocytes led to catastrophic kidney dysfunction. Systematic comparison of two primary differentiated cell types reveals the NSL complex as a master regulator of intraciliary transport genes in both dividing and nondividing cells. NSL complex ablation led to loss of cilia and impaired sonic hedgehog pathway in ciliated fibroblasts. By contrast, nonciliated podocytes responded with altered microtubule dynamics and obliterated podocyte functions. Finally, overexpression of wild-type but not a double zinc finger (ZF-ZF) domain mutant of KANSL2 rescued the transcriptional defects, revealing a critical function of this domain in NSL complex assembly and function. Thus, the NSL complex exhibits bifurcation of functions to enable diversity of specialized outcomes in differentiated cells.
Collapse
Affiliation(s)
- Tsz Hong Tsang
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), 79108 Freiburg, Germany
| | - Meike Wiese
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Thomas Stehle
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Janine Seyfferth
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Maria Shvedunova
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Herbert Holz
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Grubczak K, Starosz A, Makowska B, Parfienowicz Z, Krętowska M, Naumnik B, Moniuszko M. The influence of calcitriol and methylprednisolone on podocytes function in minimal change disease in vitro model. Sci Rep 2023; 13:12731. [PMID: 37543700 PMCID: PMC10404287 DOI: 10.1038/s41598-023-39893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023] Open
Abstract
Minimal change disease (MCD), considered one of the major causes of nephrotic syndrome, is a complex pathological condition with disturbances in podocytes' foot processes. Numerous studies suggested the essential role of vitamin D3 in maintaining proper glomerulus function. However, the data on direct potential of that compound in reference to podocytes are scarce. Thus, here we assessed the influence of calcitriol (active vitamin D3) on podocyte function, apart from commonly used steroids (methylprednisolone). CIHP-1 podocyte cell line was used to implement the LPS-PAN-induced MCD in vitro model. Viability, podocyte-related slit diaphragm proteins, morphology, function as a barrier was evaluated using flow cytometry, RT-PCR, confocal microscopy, and TEER analysis. Calcitriol or methylprednisolone did not affect cell viability. Podocyte-related proteins demonstrated different responses to in vitro treatment compared to previously reported changes in total glomeruli. Podocyte morphology was partially restored in the presence of the tested compounds. In addition, TEER analysis revealed improvement of LPS-PAN-induced cells' function as a barrier when vitamin D3 or steroid was used. In conclusion, a significant potential for modulation of MCD in vitro model podocytes with calcitriol or selected steroids was reported. Further studies on vitamin D3 in context of podocyte-related phenomenon accompanying MCD are of great importance.
Collapse
Affiliation(s)
- Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Jerzego Waszyngtona 13, 15-269, Białystok, Poland.
| | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Jerzego Waszyngtona 13, 15-269, Białystok, Poland
| | - Barbara Makowska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Jerzego Waszyngtona 13, 15-269, Białystok, Poland
| | - Zuzanna Parfienowicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Jerzego Waszyngtona 13, 15-269, Białystok, Poland
| | - Magdalena Krętowska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Jerzego Waszyngtona 13, 15-269, Białystok, Poland
| | - Beata Naumnik
- Ist Department of Nephrology and Transplantation with Dialysis Unit, Medical University of Bialystok, Żurawia 14, 15-540, Białystok, Poland.
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Jerzego Waszyngtona 13, 15-269, Białystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Białystok, Marii Skłodowskiej-Curie 24A, 15-276, Białystok, Poland
| |
Collapse
|
9
|
Rederer A, Rose V, Krüger R, Schmittutz L, Swierzy I, Fischer L, Thievessen I, Bauer J, Friedrich O, Schiffer M, Müller-Deile J. Partner, Neighbor, Housekeeper and Dimension: 3D versus 2D Glomerular Co-Cultures Reveal Drawbacks of Currently Used Cell Culture Models. Int J Mol Sci 2023; 24:10384. [PMID: 37373531 DOI: 10.3390/ijms241210384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Signaling-pathway analyses and the investigation of gene responses to different stimuli are usually performed in 2D monocultures. However, within the glomerulus, cells grow in 3D and are involved in direct and paracrine interactions with different glomerular cell types. Thus, the results from 2D monoculture experiments must be taken with caution. We cultured glomerular endothelial cells, podocytes and mesangial cells in 2D/3D monocultures and 2D/3D co-cultures and analyzed cell survival, self-assembly, gene expression, cell-cell interaction, and gene pathways using live/dead assay, time-lapse analysis, bulk-RNA sequencing, qPCR, and immunofluorescence staining. Without any need for scaffolds, 3D glomerular co-cultures self-organized into spheroids. Podocyte- and glomerular endothelial cell-specific markers and the extracellular matrix were increased in 3D co-cultures compared to 2D co-cultures. Housekeeping genes must be chosen wisely, as many genes used for the normalization of gene expression were themselves affected in 3D culture conditions. The transport of podocyte-derived VEGFA to glomerular endothelial cells confirmed intercellular crosstalk in the 3D co-culture models. The enhanced expression of genes important for glomerular function in 3D, compared to 2D, questions the reliability of currently used 2D monocultures. Hence, glomerular 3D co-cultures might be more suitable in the study of intercellular communication, disease modelling and drug screening ex vivo.
Collapse
Affiliation(s)
- Anna Rederer
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Victoria Rose
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - René Krüger
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Linda Schmittutz
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Izabela Swierzy
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lena Fischer
- Center for Medicine, Physics and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ingo Thievessen
- Center for Medicine, Physics and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Julian Bauer
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Janina Müller-Deile
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Kraus A, Rose V, Krüger R, Sarau G, Kling L, Schiffer M, Christiansen S, Müller-Deile J. Characterizing Intraindividual Podocyte Morphology In Vitro with Different Innovative Microscopic and Spectroscopic Techniques. Cells 2023; 12:cells12091245. [PMID: 37174644 PMCID: PMC10177567 DOI: 10.3390/cells12091245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Podocytes are critical components of the glomerular filtration barrier, sitting on the outside of the glomerular basement membrane. Primary and secondary foot processes are characteristic for podocytes, but cell processes that develop in culture were not studied much in the past. Moreover, protocols for diverse visualization methods mostly can only be used for one technique, due to differences in fixation, drying and handling. However, we detected by single-cell RNA sequencing (scRNAseq) analysis that cells reveal high variability in genes involved in cell type-specific morphology, even within one cell culture dish, highlighting the need for a compatible protocol that allows measuring the same cell with different methods. Here, we developed a new serial and correlative approach by using a combination of a wide variety of microscopic and spectroscopic techniques in the same cell for a better understanding of podocyte morphology. In detail, the protocol allowed for the sequential analysis of identical cells with light microscopy (LM), Raman spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Skipping the fixation and drying process, the protocol was also compatible with scanning ion-conductance microscopy (SICM), allowing the determination of podocyte surface topography of nanometer-range in living cells. With the help of nanoGPS Oxyo®, tracking concordant regions of interest of untreated podocytes and podocytes stressed with TGF-β were analyzed with LM, SEM, Raman spectroscopy, AFM and SICM, and revealed significant morphological alterations, including retraction of podocyte process, changes in cell surface morphology and loss of cell-cell contacts, as well as variations in lipid and protein content in TGF-β treated cells. The combination of these consecutive techniques on the same cells provides a comprehensive understanding of podocyte morphology. Additionally, the results can also be used to train automated intelligence networks to predict various outcomes related to podocyte injury in the future.
Collapse
Affiliation(s)
- Annalena Kraus
- Institute for Nanotechnology and Correlative Microscopy, INAM, 91301 Forchheim, Germany
| | - Victoria Rose
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - René Krüger
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - George Sarau
- Institute for Nanotechnology and Correlative Microscopy, INAM, 91301 Forchheim, Germany
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 91301 Forchheim, Germany
- Leuchs Emeritus Group, Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Lasse Kling
- Institute for Nanotechnology and Correlative Microscopy, INAM, 91301 Forchheim, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Research Center on Rare Kidney Diseases (RECORD), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Silke Christiansen
- Institute for Nanotechnology and Correlative Microscopy, INAM, 91301 Forchheim, Germany
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 91301 Forchheim, Germany
- Physics Department, Freie Universität Berlin, 14195 Berlin, Germany
| | - Janina Müller-Deile
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Research Center on Rare Kidney Diseases (RECORD), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
11
|
Zhang J, Zhang Y, Zhang Q, Feng Y, Deng X, Deng F, Chen B, Hu J. High glucose promotes podocyte movement: From the perspective of single cell motility assay. Cell Biol Int 2023; 47:823-830. [PMID: 36701327 DOI: 10.1002/cbin.11996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/18/2022] [Accepted: 01/14/2023] [Indexed: 01/27/2023]
Abstract
Podocytes are highly specialized glomerular epithelial cells that play a crucial role in maintaining the glomerular filtration barrier, impairment of which usually leads to proteinuria. The phenotypic alterations of podocytes are described to be one of the critical mechnisms underlying podocyte detachment from the glomerular basement membrane. High glucose is the major factor mediating the renal damages and podocyte injuries in the process of diabetic nephropathy. It was revealed that high glucose stimulated the epithelial-to-mesenchymal transition of podocyte, thus contributing to proteinuria. When the podocytes converse from epithelial phenotype to mesenchymal phenotype, their migratory capacity significantly increases. Previously, cell migration is conventionally detected by the wound healing assay and the transwell assay. In this study, we investigated and comfirmed the possibility of using single cell motility assay for the anaysis of podocyte motility under high glucose condtition.
Collapse
Affiliation(s)
- Junhui Zhang
- Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.,Department of Geriatric Oncology, Department of Palliative Care, Department of Clinical Nutrition, Chongqing University Cancer Hospital, Chongqing, China
| | - Yuping Zhang
- Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Qiong Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Yanhai Feng
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Xiuyuan Deng
- Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Fang Deng
- Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Bing Chen
- Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jiongyu Hu
- Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| |
Collapse
|
12
|
Yaoita E. Restoration of Podocyte Phenotype in Culture. Methods Mol Biol 2023; 2664:3-12. [PMID: 37423978 DOI: 10.1007/978-1-0716-3179-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The most distinctive characteristic of podocytes in the kidney is the presence of interdigitating cell processes with nephrin and podocin that are concentrated at sites of cell-cell contact. Unfortunately, these defining features are easily lost in culture. We previously reported culture conditions that can restore the differentiated phenotypes in primary cultures of rat podocyte. Since then, some of the materials used have been discontinued or improved. In this chapter, we therefore provide our most recent protocol for the restoration of the podocyte phenotype in culture.
Collapse
Affiliation(s)
- Eishin Yaoita
- Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
13
|
Liu PJ, Gunther LK, Garone ME, Zhang C, Perez D, Bi-Karchin J, Pellenz CD, Chase SE, Presti MF, Plante EL, Martin CE, Lovric S, Yengo CM, Hildebrandt F, Krendel M. Steroid-Resistant Nephrotic Syndrome-Associated MYO1E Mutations Have Differential Effects on Myosin 1e Localization, Dynamics, and Activity. J Am Soc Nephrol 2022; 33:1989-2007. [PMID: 36316095 PMCID: PMC9678034 DOI: 10.1681/asn.2021111505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myo1e is a nonmuscle motor protein enriched in podocytes. Mutations in MYO1E are associated with steroid-resistant nephrotic syndrome (SRNS). Most of the MYO1E variants identified by genomic sequencing have not been functionally characterized. Here, we set out to analyze two mutations in the Myo1e motor domain, T119I and D388H, which were selected on the basis of protein sequence conservation. METHODS EGFP-tagged human Myo1e constructs were delivered into the Myo1e-KO mouse podocyte-derived cells via adenoviral infection to analyze Myo1e protein stability, Myo1e localization, and clathrin-dependent endocytosis, which is known to involve Myo1e activity. Furthermore, truncated Myo1e constructs were expressed using the baculovirus expression system and used to measure Myo1e ATPase and motor activity in vitro. RESULTS Both mutants were expressed as full-length proteins in the Myo1e-KO cells. However, unlike wild-type (WT) Myo1e, the T119I variant was not enriched at the cell junctions or clathrin-coated vesicles (CCVs). In contrast, D388H variant localization was similar to that of WT. The rate of dissociation of the D388H variant from cell-cell junctions and CCVs was decreased, suggesting this mutation affects Myo1e interactions with binding partners. ATPase activity and ability to translocate actin filaments were drastically reduced for the D388H mutant, supporting findings from cell-based experiments. CONCLUSIONS T119I and D388H mutations are deleterious to Myo1e functions. The experimental approaches used in this study can be applied to future characterization of novel MYO1E variants associated with SRNS.
Collapse
Affiliation(s)
- Pei-Ju Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Laura K. Gunther
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Michael E. Garone
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Chunling Zhang
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York
| | - Diana Perez
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Jing Bi-Karchin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Christopher D. Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Sharon E. Chase
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Maria F. Presti
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Eric L. Plante
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Claire E. Martin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Svjetlana Lovric
- Divison of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Friedhelm Hildebrandt
- Divison of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| |
Collapse
|
14
|
Bejoy J, Farry JM, Peek JL, Cabatu MC, Williams FM, Welch RC, Qian ES, Woodard LE. Podocytes derived from human induced pluripotent stem cells: characterization, comparison, and modeling of diabetic kidney disease. Stem Cell Res Ther 2022; 13:355. [PMID: 35883199 PMCID: PMC9327311 DOI: 10.1186/s13287-022-03040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In diabetic kidney disease, high glucose damages specialized cells called podocytes that filter blood in the glomerulus. In vitro culture of podocytes is crucial for modeling of diabetic nephropathy and genetic podocytopathies and to complement animal studies. Recently, several methods have been published to derive podocytes from human-induced pluripotent stem cells (iPSCs) by directed differentiation. However, these methods have major variations in media composition and have not been compared. METHODS We characterized our accelerated protocol by guiding the cells through differentiation with four different medias into MIXL1+ primitive streak cells with Activin A and CHIR for Wnt activation, intermediate mesoderm PAX8+ cells via increasing the CHIR concentration, nephron progenitors with FGF9 and Heparin for stabilization, and finally into differentiated podocytes with Activin A, BMP-7, VEGF, reduced CHIR, and retinoic acid. The podocyte morphology was characterized by scanning and transmission electron microscopy and by flow cytometry analysis for podocyte markers. To confirm cellular identity and niche localization, we performed cell recombination assays combining iPSC-podocytes with dissociated mouse embryonic kidney cells. Finally, to test iPSC-derived podocytes for the modeling of diabetic kidney disease, human podocytes were exposed to high glucose. RESULTS Podocyte markers were expressed at similar or higher levels for our accelerated protocol as compared to previously published protocols that require longer periods of tissue culture. We confirmed that the human podocytes derived from induced pluripotent stem cells in twelve days integrated into murine glomerular structures formed following seven days of culture of cellular recombinations. We found that the high glucose-treated human podocytes displayed actin rearrangement, increased cytotoxicity, and decreased viability. CONCLUSIONS We found that our accelerated 12-day method for the differentiation of podocytes from human-induced pluripotent stem cells yields podocytes with comparable marker expression to longer podocytes. We also demonstrated that podocytes created with this protocol have typical morphology by electron microscopy. The podocytes have utility for diabetes modeling as evidenced by lower viability and increased cytotoxicity when treated with high glucose. We found that multiple, diverse methods may be utilized to create iPSC-podocytes, but closely mimicking developmental cues shortened the time frame required for differentiation.
Collapse
Affiliation(s)
- Julie Bejoy
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Justin M Farry
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jennifer L Peek
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mariana C Cabatu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Felisha M Williams
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Richard C Welch
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eddie S Qian
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Lauren E Woodard
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
| |
Collapse
|
15
|
Doi K, Kimura H, Matsunaga YT, Fujii T, Nangaku M. Glomerulus-on-a-Chip: Current Insights and Future Potential Towards Recapitulating Selectively Permeable Filtration Systems. Int J Nephrol Renovasc Dis 2022; 15:85-101. [PMID: 35299832 PMCID: PMC8922329 DOI: 10.2147/ijnrd.s344725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Glomerulopathy, characterized by a dysfunctional glomerular capillary wall, results in proteinuria, leading to end-stage renal failure and poor clinical outcomes, including renal death and increased overall mortality. Conventional glomerulopathy research, including drug discovery, has mostly relied on animal experiments because in-vitro glomerulus models, capable of evaluating functional selective permeability, was unavailable in conventional in-vitro cell culture systems. However, animal experiments have limitations, including time- and cost-consuming, multi-organ effects, unstable reproducibility, inter-species reliability, and the social situation in the EU and US, where animal experiments have been discouraged. Glomerulus-on-a-chip, a new in-vitro organ model, has recently been developed in the field of organ-on-a-chip research based on microfluidic device technology. In the glomerulus-on-a-chip, the podocytes and endothelial cells are co-cultured in a microfluidic device with physical stimuli that mimic the physiological environment to enhance cell function to construct a functional filtration barrier, which can be assessed by permeability assays using fluorescently labeled molecules including inulin and albumin. A combination of this glomerulus-on-a chip technology with the culture technology to induce podocytes and endothelial cells from the human pluripotent stem cells could provide an alternative organ model and solve the issue of animal experiments. Additionally, previous experiments have verified the difference in the leakage of albumin using differentiated podocytes derived from patients with Alport syndrome, such that it could be applied to intractable hereditary glomerulopathy models. In this review, we provide an overview of the features of the existing glomerulus-on-a-chip systems, focusing on how they can address selective permeability verification tests, and the challenges they involved. We finally discuss the future approaches that should be developed for solving those challenges and allow further improvement of glomerulus-on-a-chip technologies.
Collapse
Affiliation(s)
- Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | | | | | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Doi K, Kimura H, Wada T, Tanaka T, Hiromura K, Saleem MA, Inagi R, Nangaku M, Fujii T. A novel method for successful induction of interdigitating process formation in conditionally immortalized podocytes from mice, rats, and humans. Biochem Biophys Res Commun 2021; 570:47-52. [PMID: 34271436 DOI: 10.1016/j.bbrc.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Formation of processes in podocytes is regarded as the hallmark of maturity and normal physical condition for the cell. There are many accumulated findings about molecular mechanisms that cause retraction of podocyte processes; however, there is little knowledge of the positive mechanisms that promote process formation in vitro, and most previous reports about this topic have been limited to low-density cultures. Here, we found that process formation can be induced in 100% confluent cultures of conditionally immortalized podocytes in mouse, rat, and human species by combining serum depletion and Y-27632 ROCK inhibitor supplementation on the scaffold of laminin-521(L521). We noted the cytoskeletal reorganization of the radial extension pattern of vimentin filaments and downregulation of actin stress fiber formation under that condition. We also found that additional standard amount of serum, depletion of ROCK inhibitor, or slight mismatch of the scaffold as laminin-511(L511) hinder process formation. These findings suggest that the combination of reduced serum, podocyte-specific scaffold, and intracellular signaling to reduce the overexpression of ROCK are required factors for process formation.
Collapse
Affiliation(s)
- Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, 153-8503, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, Japan
| | - Takehiko Wada
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology and Endocrinology, Faculty of Medicine, The University of Tokyo, Japan
| | - Keiju Hiromura
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Japan
| | - Moin A Saleem
- University of Bristol, And Bristol Royal Hospital for Children, UK
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology the University of Tokyo Graduate School of Medicine, Japan
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, Faculty of Medicine, The University of Tokyo, Japan
| | - Teruo Fujii
- Institute of Industrial Science, The University of Tokyo, 153-8503, Japan.
| |
Collapse
|
17
|
Establishment and characterization of a novel conditionally immortalized human parietal epithelial cell line. Exp Cell Res 2021; 405:112712. [PMID: 34181939 DOI: 10.1016/j.yexcr.2021.112712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022]
Abstract
Parietal epithelial cells (PECs) are epithelial cells in the kidney, surrounding Bowman's space. When activated, PECs increase in cell volume, proliferate, migrate to the glomerular tuft and excrete extracellular matrix. Activated PECs are crucially involved in the formation of sclerotic lesions, seen in focal segmental glomerulosclerosis (FSGS). In FSGS, a number of glomeruli show segmental sclerotic lesions. Further disease progression will lead to increasing number of involved glomeruli and gradual destruction of the affected glomeruli. Although the involvement of PECs in FSGS has been acknowledged, little is known about the molecular processes driving PEC activation. To get more insights in this process, accurate in vivo and in vitro models are needed. Here, we describe the development and characterization of a novel conditionally immortalized human PEC (ciPEC) line. We demonstrated that ciPECs are differentiated when grown under growth-restrictive conditions and express important PEC-specific markers, while lacking podocyte and endothelial markers. In addition, ciPECs showed PEC-like morphology and responded to IL-1β treatment. We therefore conclude that we have successfully generated a novel PEC line, which can be used for future studies on the role of PECs in FSGS.
Collapse
|
18
|
Przepiorski A, Crunk AE, Espiritu EB, Hukriede NA, Davidson AJ. The Utility of Human Kidney Organoids in Modeling Kidney Disease. Semin Nephrol 2021; 40:188-198. [PMID: 32303281 DOI: 10.1016/j.semnephrol.2020.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of three-dimensional kidney tissue (organoids) from human pluripotent stem cell lines provides a valuable tool to examine kidney function in an in vitro model and could be used for regenerative medicine approaches. Kidney organoids have the potential to model kidney diseases and congenital defects, be used for drug development, and to further our understanding of acute kidney injury, fibrosis, and chronic kidney disease. In this review, we examine the current stage of pluripotent stem cell-derived kidney organoid technology, challenges, shortcomings, and regenerative potential of kidney organoids in the future.
Collapse
Affiliation(s)
- Aneta Przepiorski
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA.
| | - Amanda E Crunk
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA; Center for Critical Care Nephrology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Impaired NEPHRIN localization in kidney organoids derived from nephrotic patient iPS cells. Sci Rep 2021; 11:3982. [PMID: 33597637 PMCID: PMC7890052 DOI: 10.1038/s41598-021-83501-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Mutations in the NPHS1 gene, which encodes NEPHRIN, cause congenital nephrotic syndrome, resulting from impaired slit diaphragm (SD) formation in glomerular podocytes. We previously reported NEPHRIN and SD abnormalities in the podocytes of kidney organoids generated from patient-derived induced pluripotent stem cells (iPSCs) with an NPHS1 missense mutation (E725D). However, the mechanisms underlying the disease may vary depending on the mutations involved, and thus generation of iPSCs from multiple patients is warranted. Here we established iPSCs from two additional patients with different NPHS1 mutations and examined the podocyte abnormalities in kidney organoids derived from these cells. One patient had truncating mutations, and NEPHRIN was undetectable in the resulting organoids. The other patient had a missense mutation (R460Q), and the mutant NEPHRIN in the organoids failed to accumulate on the podocyte surface to form SD precursors. However, the same mutant protein behaved normally when overexpressed in heterologous cells, suggesting that NEPHRIN localization is cell context-dependent. The localization of another SD-associated protein, PODOCIN, was impaired in both types of mutant organoids in a cell domain-specific manner. Thus, the new iPSC lines and resultant kidney organoids will be useful resources for dissecting the disease mechanisms, as well as for drug development for therapies.
Collapse
|
20
|
van den Broek M, Smeets B, Schreuder MF, Jansen J. The podocyte as a direct target of glucocorticoids in nephrotic syndrome. Nephrol Dial Transplant 2021; 37:1808-1815. [PMID: 33515261 DOI: 10.1093/ndt/gfab016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Nephrotic syndrome (NS) is characterized by massive proteinuria; podocyte loss or altered function is a central event in its pathophysiology. Treatment with glucocorticoids is the mainstay of therapy. However, many patients experience one or multiple relapses and prolonged use may be associated with severe adverse effects. Recently, the beneficial effects of glucocorticoids have been attributed to a direct effect on podocytes in addition to the well-known immunosuppressive effects. The molecular effects of glucocorticoid action have been studied using animal and cell models of NS. This review provides a comprehensive overview of different molecular mediators regulated by glucocorticoids including an overview of the model systems that were used to study them. Glucocorticoids are described to stimulate podocyte recovery by restoring pro-survival signaling of slit diaphragm related proteins and limiting inflammatory responses. Of special interest is the effect of glucocorticoids on stabilizing the cytoskeleton of podocytes, since these effects are also described for other therapeutic agents used in NS, such as cyclosporin. Current models provide much insight, but do not fully recapitulate the human condition since the pathophysiology underlying NS is poorly understood. New and promising models include the glomerulus-on-a-chip and kidney organoids, which have the potential to be further developed into functional NS models in the future.
Collapse
Affiliation(s)
- Martijn van den Broek
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Bart Smeets
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Jitske Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Amalia Children's Hospital, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Agarwal S, Sudhini YR, Reiser J, Altintas MM. From Infancy to Fancy: A Glimpse into the Evolutionary Journey of Podocytes in Culture. KIDNEY360 2020; 2:385-397. [PMID: 35373019 PMCID: PMC8740988 DOI: 10.34067/kid.0006492020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 02/04/2023]
Abstract
Podocytes are critical components of the filtration barrier and responsible for maintaining healthy kidney function. An assault on podocytes is generally associated with progression of chronic glomerular diseases. Therefore, podocyte pathophysiology is a favorite research subject for nephrologists. Despite this, podocyte research has lagged because of the unavailability of techniques for culturing such specialized cells ex vivo in quantities that are adequate for mechanistic studies. In recent years, this problem was circumvented by the efforts of researchers, who successfully developed several in vitro podocyte cell culture model systems that paved the way for incredible discoveries in the field of nephrology. This review sets us on a journey that provides a comprehensive insight into the groundbreaking breakthroughs and novel technologic advances made in the field of podocyte cell culture so far, beginning from its inception, evolution, and progression. In this study, we also describe in detail the pros and cons of different models that are being used to culture podocytes. Our extensive and exhaustive deliberation on the status of podocyte cell culture will facilitate researchers to choose wisely an appropriate model for their own research to avoid potential pitfalls in the future.
Collapse
|
22
|
Satyam A, Tsokos MG, Tresback JS, Zeugolis DI, Tsokos GC. Cell derived extracellular matrix-rich biomimetic substrate supports podocyte proliferation, differentiation and maintenance of native phenotype. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1908752. [PMID: 33692659 PMCID: PMC7939063 DOI: 10.1002/adfm.201908752] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Indexed: 06/12/2023]
Abstract
Current technologies and available scaffold materials do not support long-term cell viability, differentiation and maintenance of podocytes, the ultra-specialized kidney resident cells that are responsible for the filtration of the blood. We developed a new platform which imitates the native kidney microenvironment by decellularizing fibroblasts grown on surfaces with macromolecular crowding. Human immortalized podocytes cultured on this platform displayed superior viability and metabolic activity up to 28 days compared to podocytes cultured on tissue culture plastic surfaces. The new platform displayed a softer surface and an abundance of growth factors and associated molecules. More importantly it enabled podocytes to display molecules responsible for their structure and function and a superior development of intercellular connections/interdigitations, consistent with maturation. The new platform can be used to study podocyte biology, test drug toxicity and determine whether sera from patients with podocytopathies are involved in the expression of glomerular pathology.
Collapse
Affiliation(s)
- Abhigyan Satyam
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, United States
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, United States
| | - Jason S Tresback
- Center for Nanoscale Systems, Laboratory for Integrated Science and Engineering, Harvard University, Cambridge, MA, 02138, United States
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CURAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, United States
| |
Collapse
|
23
|
Martinez-Arroyo O, Ortega A, Perez-Hernandez J, Chaves FJ, Redon J, Cortes R. The Rab-Rabphilin system in injured human podocytes stressed by glucose overload and angiotensin II. Am J Physiol Renal Physiol 2020; 319:F178-F191. [PMID: 32567349 PMCID: PMC7473899 DOI: 10.1152/ajprenal.00077.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kidney injury in hypertension and diabetes entails, among in other structures, damage in a key cell of the glomerular filtration barrier, the podocyte. Podocytes are polarized and highly differentiated cells in which vesicular transport, partly driven by Rab GTPases, is a relevant process. The aim of the present study was to analyze Rab GTPases of the Rab-Rabphilin system in human immortalized podocytes and the impact of high glucose and angiotensin II. Furthermore, alterations of the system in urine cell pellets from patients with hypertension and diabetes were studied. Apoptosis was analyzed in podocytes, and mRNA level quantification, Western blot analysis, and immunofluorescence were developed to quantify podocyte-specific molecules and Rab-Rabphilin components (Rab3A, Rab27A, and Rabphilin3A). Quantitative RT-PCR was performed on urinary cell pellet from patients. The results showed that differentiated cells had reduced protein levels of the Rab-rabphillin system compared with undifferentiated cells. After glucose overload and angiotensin II treatment, apoptosis was increased and podocyte-specific proteins were reduced. Rab3A and Rab27A protein levels were increased under glucose overload, and Rabphilin3A decreased. Furthermore, this system exhibited higher levels under stress conditions in a manner of angiotensin II dose and time treatment. Immunofluorescence imaging indicated different expression patterns of podocyte markers and Rab27A under treatments. Finally, Rab3A and Rab27A were increased in patient urine pellets and showed a direct relationship with albuminuria. Collectively, these results suggest that the Rab-Rabphilin system could be involved in the alterations observed in injured podocytes and that a mechanism may be activated to reduce damage through the vesicular transport enhancement directed by this system.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Javier Perez-Hernandez
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Felipe J Chaves
- Genomics and Diabetes Unit, INCLIVA Biomedical Research Institute, Valencia, Spain.,CIBER of Diabetes and Associated Metabolic Diseases, Institute of Health Carlos III, Minister of Health, Barcelona, Spain
| | - Josep Redon
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain.,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain.,CIBER of Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Minister of Health, Madrid, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
24
|
Oyama T, Yaoita E, Yoshida Y, Ikarashi A, Fujinaka H. Distinct differences between cultured podocytes and parietal epithelial cells of the Bowman's capsule. Cell Tissue Res 2020; 380:581-591. [PMID: 31989254 DOI: 10.1007/s00441-020-03170-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/09/2020] [Indexed: 11/24/2022]
Abstract
Phenotypic changes in culture hamper the identification and characterization of cultured podocytes and parietal epithelial cells of the Bowman's capsule (PECs). We have recently established culture conditions that restore podocytes to their differentiated phenotypes. We compared podocytes and PECs cultured under the same conditions to determine the unique characteristics of the two cell types. Performing this comparison under the same conditions accentuated these differences. Podocytes behaved like non-epithelial cells by extending cell processes even at confluence. By contrast, PECs behaved like typical epithelial cells by maintaining a polygonal appearance. Other differences were identified using immunostaining and RT-PCR; podocytes expressed high levels of podocyte-specific markers while PECs expressed high levels of PEC-specific markers. However, while podocytes expressed low levels of PEC markers, PECs expressed low levels of podocyte markers. Therefore, the identification of podocytes and PECs in culture requires the evaluation of respective cell markers and the expression of markers for other cell types.
Collapse
Affiliation(s)
- Tomizo Oyama
- Department of Structural Pathology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Eishin Yaoita
- Department of Structural Pathology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan.
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Ayako Ikarashi
- Division of Instrumental Analysis, Center for Coordination of Research Facilities, Institute for Research Promotion, Niigata University, Niigata, Japan
| | - Hidehiko Fujinaka
- Department of Clinical Research, Niigata National Hospital, Kashiwazaki, Japan
| |
Collapse
|
25
|
Nephrotic syndrome in a dish: recent developments in modeling in vitro. Pediatr Nephrol 2020; 35:1363-1372. [PMID: 30820702 PMCID: PMC7316697 DOI: 10.1007/s00467-019-4203-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
Abstract
Nephrotic syndrome is a heterogeneous disease, and one of the most frequent glomerular disorders among children. Depending on the etiology, it may result in end-stage renal disease and the need for renal replacement therapy. A dysfunctional glomerular filtration barrier, comprising of endothelial cells, the glomerular basement membrane and podocytes, characterizes nephrotic syndrome. Podocytes are often the primary target cells in the pathogenesis, in which not only the podocyte function but also their crosstalk with other glomerular cell types can be disturbed due to a myriad of factors. The pathophysiology of nephrotic syndrome is highly complex and studying molecular mechanisms in vitro requires state-of-the-art cell-based models resembling the in vivo situation and preferably a fully functional glomerular filtration barrier. Current advances in stem cell biology and microfluidic platforms have heralded a new era of three-dimensional (3D) cultures that might have the potential to recapitulate the glomerular filtration barrier in vitro. Here, we highlight the molecular basis of nephrotic syndrome and discuss requirements to accurately study nephrotic syndrome in vitro, including an overview of specific podocyte markers, cutting-edge stem cell organoids, and the implementation of microfluidic platforms. The development of (patho) physiologically relevant glomerular models will accelerate the identification of molecular targets involved in nephrotic syndrome and may be the harbinger of a new era of therapeutic avenues.
Collapse
|
26
|
Abstract
Kidney organoids are regarded as important tools with which to study the development of the normal and diseased human kidney. Since the first reports of human pluripotent stem cell-derived kidney organoids 5 years ago, kidney organoids have been successfully used to model glomerular and tubular diseases. In parallel, advances in single-cell RNA sequencing have led to identification of a variety of cell types in the organoids, and have shown these to be similar to, but more immature than, human kidney cells in vivo. Protocols for the in vitro expansion of stem cell-derived nephron progenitor cells (NPCs), as well as those for the selective induction of specific lineages, especially glomerular podocytes, have also been reported. Although most current organoids are based on the induction of NPCs, an induction protocol for ureteric buds (collecting duct precursors) has also been developed, and approaches to generate more complex kidney structures may soon be possible. Maturation of organoids is a major challenge, and more detailed analysis of the developing kidney at a single cell level is needed. Eventually, organotypic kidney structures equipped with nephrons, collecting ducts, ureters, stroma and vascular flow are required to generate transplantable kidneys; such attempts are in progress.
Collapse
|
27
|
Yoshimura Y, Nishinakamura R. Podocyte development, disease, and stem cell research. Kidney Int 2019; 96:1077-1082. [PMID: 31420196 DOI: 10.1016/j.kint.2019.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/04/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
Abstract
The glomerular podocyte is one of the major targets of kidney research. Recent establishment of kidney organoids from pluripotent stem cells has enabled the detailed analysis of human podocytes in both development and disease. The podocytes in organoids express slit diaphragm-related genes and proteins and exhibit characteristic morphology, especially upon experimental transplantation. Organoid technology is now used to reproduce hereditary podocyte diseases, and selective podocyte induction methods have also been reported. Moreover, single-cell RNA-sequencing of human fetal and adult kidneys has revealed the detailed molecular features of this cell lineage, as well as serving as references for kidney organoids in which podocytes are still immature. Here, we discuss the recent progress and limitations of podocyte research from the viewpoint of developmental biology and kidney organoids.
Collapse
Affiliation(s)
- Yasuhiro Yoshimura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan; Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
28
|
Qian T, Hernday SE, Bao X, Olson WR, Panzer SE, Shusta EV, Palecek SP. Directed Differentiation of Human Pluripotent Stem Cells to Podocytes under Defined Conditions. Sci Rep 2019; 9:2765. [PMID: 30808965 PMCID: PMC6391455 DOI: 10.1038/s41598-019-39504-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/10/2018] [Indexed: 01/20/2023] Open
Abstract
A major cause of chronic kidney disease (CKD) is glomerular disease, which can be attributed to a spectrum of podocyte disorders. Podocytes are non-proliferative, terminally differentiated cells. Thus, the limited supply of primary podocytes impedes CKD research. Differentiation of human pluripotent stem cells (hPSCs) into podocytes has the potential to produce podocytes for disease modeling, drug screening, and cell therapies. In the podocyte differentiation process described here, hPSCs are first induced to primitive streak-like cells by activating canonical Wnt signaling. Next, these cells progress to mesoderm precursors, proliferative nephron progenitors, and eventually become mature podocytes by culturing in a serum-free medium. Podocytes generated via this protocol adopt podocyte morphology, express canonical podocyte markers, and exhibit podocyte phenotypes, including albumin uptake and TGF-β1 triggered cell death. This study provides a simple, defined strategy to generate podocytes for in vitro modeling of podocyte development and disease or for cell therapies.
Collapse
Affiliation(s)
- Tongcheng Qian
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Shaenah E Hernday
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Xiaoping Bao
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - William R Olson
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Sarah E Panzer
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric V Shusta
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA.
| | - Sean P Palecek
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
29
|
Yoshimura Y, Taguchi A, Tanigawa S, Yatsuda J, Kamba T, Takahashi S, Kurihara H, Mukoyama M, Nishinakamura R. Manipulation of Nephron-Patterning Signals Enables Selective Induction of Podocytes from Human Pluripotent Stem Cells. J Am Soc Nephrol 2019; 30:304-321. [PMID: 30635375 DOI: 10.1681/asn.2018070747] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/03/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Previous research has elucidated the signals required to induce nephron progenitor cells (NPCs) from pluripotent stem cells (PSCs), enabling the generation of kidney organoids. However, selectively controlling differentiation of NPCs to podocytes has been a challenge. METHODS We investigated the effects of various growth factors in cultured mouse embryonic NPCs during three distinct steps of nephron patterning: from NPC to pretubular aggregate, from the latter to epithelial renal vesicle (RV), and from RV to podocyte. We then applied the findings to human PSC-derived NPCs to establish a method for selective induction of human podocytes. RESULTS Mouse NPC differentiation experiments revealed that phase-specific manipulation of Wnt and Tgf-β signaling is critical for podocyte differentiation. First, optimal timing and intensity of Wnt signaling were essential for mesenchymal-to-epithelial transition and podocyte differentiation. Then, inhibition of Tgf-β signaling supported domination of the RV proximal domain. Inhibition of Tgf-β signaling in the third phase enriched the podocyte fraction by suppressing development of other nephron lineages. The resultant protocol enabled successful induction of human podocytes from PSCs with >90% purity. The induced podocytes exhibited global gene expression signatures comparable to those of adult human podocytes, had podocyte morphologic features (including foot process-like and slit diaphragm-like structures), and showed functional responsiveness to drug-induced injury. CONCLUSIONS Elucidation of signals that induce podocytes during the nephron-patterning process enabled us to establish a highly efficient method for selective induction of human podocytes from PSCs. These PSC-derived podocytes show molecular, morphologic, and functional characteristics of podocytes, and offer a new resource for disease modeling and nephrotoxicity testing.
Collapse
Affiliation(s)
- Yasuhiro Yoshimura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and.,Departments of Nephrology and
| | - Atsuhiro Taguchi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and .,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Shunsuke Tanigawa
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Junji Yatsuda
- Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomomi Kamba
- Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; and
| | - Hidetake Kurihara
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| |
Collapse
|
30
|
Rauch C, Feifel E, Kern G, Murphy C, Meier F, Parson W, Beilmann M, Jennings P, Gstraunthaler G, Wilmes A. Differentiation of human iPSCs into functional podocytes. PLoS One 2018; 13:e0203869. [PMID: 30222766 PMCID: PMC6141081 DOI: 10.1371/journal.pone.0203869] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
Podocytes play a critical role in glomerular barrier function, both in health and disease. However, in vivo terminally differentiated podocytes are difficult to be maintained in in vitro culture. Induced pluripotent stem cells (iPSCs) offer the unique possibility for directed differentiation into mature podocytes. The current differentiation protocol to generate iPSC-derived podocyte-like cells provides a robust and reproducible method to obtain podocyte-like cells after 10 days that can be employed in in vitro research and biomedical engineering. Previous published protocols were improved by testing varying differentiation media, growth factors, seeding densities, and time course conditions. Modifications were made to optimize and simplify the one-step differentiation procedure. In contrast to earlier protocols, adherent cells for differentiation were used, the use of fetal bovine serum (FBS) was reduced to a minimum, and thus ß-mercaptoethanol could be omitted. The plating densities of iPSC stocks as well as the seeding densities for differentiation cultures turned out to be a crucial parameter for differentiation results. Conditionally immortalized human podocytes served as reference controls. iPSC-derived podocyte-like cells showed a typical podocyte-specific morphology and distinct expression of podocyte markers synaptopodin, podocin, nephrin and WT-1 after 10 days of differentiation as assessed by immunofluorescence staining or Western blot analysis. qPCR results showed a downregulation of pluripotency markers Oct4 and Sox-2 and a 9-fold upregulation of the podocyte marker synaptopodin during the time course of differentiation. Cultured podocytes exhibited endocytotic uptake of albumin. In toxicological assays, matured podocytes clearly responded to doxorubicin (Adriamycin™) with morphological alterations and a reduction in cell viability after 48 h of incubation.
Collapse
Affiliation(s)
- Caroline Rauch
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria
| | - Elisabeth Feifel
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria
| | - Georg Kern
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria
| | - Cormac Murphy
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Florian Meier
- Boehringer Ingelheim Pharma GmbH & Co. KG, Nonclinical Drug Safety Germany, Biberach an der Riss, Germany
| | - Walther Parson
- Institute of Legal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Mario Beilmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Nonclinical Drug Safety Germany, Biberach an der Riss, Germany
| | - Paul Jennings
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria.,Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Anja Wilmes
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria.,Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Tanigawa S, Islam M, Sharmin S, Naganuma H, Yoshimura Y, Haque F, Era T, Nakazato H, Nakanishi K, Sakuma T, Yamamoto T, Kurihara H, Taguchi A, Nishinakamura R. Organoids from Nephrotic Disease-Derived iPSCs Identify Impaired NEPHRIN Localization and Slit Diaphragm Formation in Kidney Podocytes. Stem Cell Reports 2018; 11:727-740. [PMID: 30174315 PMCID: PMC6135868 DOI: 10.1016/j.stemcr.2018.08.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
Mutations in the NPHS1 gene, which encodes NEPHRIN, cause congenital nephrotic syndrome, resulting from impaired slit diaphragm (SD) formation in glomerular podocytes. However, methods for SD reconstitution have been unavailable, thereby limiting studies in the field. In the present study, we established human induced pluripotent stem cells (iPSCs) from a patient with an NPHS1 missense mutation, and reproduced the SD formation process using iPSC-derived kidney organoids. The mutant NEPHRIN failed to become localized on the cell surface for pre-SD domain formation in the induced podocytes. Upon transplantation, the mutant podocytes developed foot processes, but exhibited impaired SD formation. Genetic correction of the single amino acid mutation restored NEPHRIN localization and phosphorylation, colocalization of other SD-associated proteins, and SD formation. Thus, these kidney organoids from patient-derived iPSCs identified SD abnormalities in the podocytes at the initial phase of congenital nephrotic disease. iPSCs are established from a patient with a missense NPHS1 mutation The induced podocytes exhibit impaired NEPHRIN localization The slit diaphragm is lacking in the mutant podocytes Genetic correction of the point mutation restores the phenotypes
Collapse
Affiliation(s)
- Shunsuke Tanigawa
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mazharul Islam
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Sazia Sharmin
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hidekazu Naganuma
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan; Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuhiro Yoshimura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fahim Haque
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hitoshi Nakazato
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Hidetake Kurihara
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Atsuhiro Taguchi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
32
|
Schroeter CB, Koehler S, Kann M, Schermer B, Benzing T, Brinkkoetter PT, Rinschen MM. Protein half-life determines expression of proteostatic networks in podocyte differentiation. FASEB J 2018; 32:4696-4713. [PMID: 29694247 DOI: 10.1096/fj.201701307r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Podocytes are highly specialized, epithelial, postmitotic cells, which maintain the renal filtration barrier. When adapting to considerable metabolic and mechanical stress, podocytes need to accurately maintain their proteome. Immortalized podocyte cell lines are a widely used model for studying podocyte biology in health and disease in vitro. In this study, we performed a comprehensive proteomic analysis of the cultured human podocyte proteome in both proliferative and differentiated conditions at a depth of >7000 proteins. Similar to mouse podocytes, human podocyte differentiation involved a shift in proteostasis: undifferentiated podocytes have high expression of proteasomal proteins, whereas differentiated podocytes have high expression of lysosomal proteins. Additional analyses with pulsed stable-isotope labeling by amino acids in cell culture and protein degradation assays determined protein dynamics and half-lives. These studies unraveled a globally increased stability of proteins in differentiated podocytes. Mitochondrial, cytoskeletal, and membrane proteins were stabilized, particularly in differentiated podocytes. Importantly, protein half-lives strongly contributed to protein abundance in each state. These data suggest that regulation of protein turnover of particular cellular functions determines podocyte differentiation, a paradigm involving mitophagy and, potentially, of importance in conditions of increased podocyte stress and damage.-Schroeter, C. B., Koehler, S., Kann, M., Schermer, B., Benzing, T., Brinkkoetter, P. T., Rinschen, M. M. Protein half-life determines expression of proteostatic networks in podocyte differentiation.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sybille Koehler
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Martin Kann
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (SybaCol), Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (SybaCol), Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (SybaCol), Cologne, Germany
| |
Collapse
|
33
|
Wiedenmann T, Dietrich N, Fleming T, Altamura S, Deelman LE, Henning RH, Muckenthaler MU, Nawroth PP, Hammes HP, Wagner AH, Hecker M. Modulation of glutathione peroxidase activity by age-dependent carbonylation in glomeruli of diabetic mice. J Diabetes Complications 2018; 32:130-138. [PMID: 29223856 DOI: 10.1016/j.jdiacomp.2017.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/09/2017] [Accepted: 11/18/2017] [Indexed: 12/29/2022]
Abstract
AIMS Low levels of reactive oxygen species and resulting oxidative protein modifications may play a beneficial role in cellular function under stress conditions. Here we studied the influence of age-dependent protein carbonylation on expression and activity of the anti-oxidative selenoenzyme glutathione peroxidase (GPx) in insulin-deficient Ins2Akita mice and type 2 diabetic obese db/db mice in context of diabetic nephropathy. METHODS Protein carbonylation, GPx expression and activity were examined in kidney tissue and lysates by common histological and protein biochemical methods. RESULTS In kidneys of Ins2Akita mice, carbonylated proteins, GPx-1 and GPx-4 expression were mainly detected in podocytes and mesangial cells. GPx activity was increased in kidney cortex homogenates of these mice. Remarkably, young animals did not show a concomitant increase in GPx expression but enhanced GPx carbonylation. No carbonylation-dependent modification of GPx activity was detected in db/db mice. In cultured podocytes hyperglycemia induced an increase in GPx expression but had no effect on activity or carbonylation. In kidney tissue sections of type 1 or type 2 diabetes patients, GPx-1 and GPx-4 expression but not overall protein carbonylation was significantly decreased. CONCLUSIONS These results indicate the existence of a threshold for beneficial carbonylation-dependent redox signaling during the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Tanja Wiedenmann
- Department of Cardiovascular Physiology, Heidelberg University, Germany
| | | | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University, Germany
| | - Leo E Deelman
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Rob H Henning
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Germany; German Center for Diabetes Research (DZD); Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany
| | | | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Germany.
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Germany
| |
Collapse
|
34
|
Yaoita E, Yoshida Y, Nameta M, Takimoto H, Fujinaka H. Induction of interdigitating cell processes in podocyte culture. Kidney Int 2018; 93:519-524. [DOI: 10.1016/j.kint.2017.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/13/2017] [Accepted: 06/22/2017] [Indexed: 10/18/2022]
|
35
|
Yang SH, Choi JW, Huh D, Jo HA, Kim S, Lim CS, Lee JC, Kim HC, Kwon HM, Jeong CW, Kwak C, Joo KW, Kim YS, Kim DK. Roles of fluid shear stress and retinoic acid in the differentiation of primary cultured human podocytes. Exp Cell Res 2017; 354:48-56. [PMID: 28320523 DOI: 10.1016/j.yexcr.2017.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Due to the distinct features that distinguish immortalized podocyte cell lines from their in vivo counterparts, primary cultured human podocytes might be a superior cell model for glomerular disease studies. However, the podocyte de-differentiation that occurs in culture remains an unresolved problem. Here, we present a method to differentiate primary cultured podocytes using retinoic acid (RA) and fluid shear stress (FSS), which mimic the in vivo environment of the glomerulus. RA treatment induced changes in the cell shape of podocytes from a cobblestone-like morphology to an arborized configuration with enhanced mobility. Moreover, the expression of synaptopodin and zonula occludens (ZO)-1 in RA-treated podocytes increased along with Krüppel-like factor 15 (KLF15) expression. Confocal microscopy revealed that RA increased the expression of cytoplasmic synaptopodin, which adopted a filamentous arrangement, and junctional ZO-1 expression, which showed a zipper-like pattern. To elucidate the effect of FSS in addition to RA, the podocytes were cultured in microfluidic devices and assigned to the static, static+RA, FSS, and FSS+RA groups. The FSS+RA group showed increased synaptopodin and ZO-1 expression with prominent spikes on the cell-cell interface. Furthermore, interdigitating processes were only observed in the FSS+RA group. Consistent with these data, the mRNA expression levels of synaptopodin, podocin, WT-1 and ZO-1 were synergistically increased by FSS and RA treatment. Additionally, the heights of the cells were greater in the FSS and FSS+RA groups than in the static groups, suggesting a restoration of the 3D cellular shape. Meanwhile, the expression of KLF15 increased in the RA-treated cells regardless of fluidic condition. Taken together, FSS and RA may contribute through different but additive mechanisms to the differentiation of podocytes. These cells may serve as a useful tool for mechanistic studies and the application of regenerative medicine to the treatment of kidney diseases.
Collapse
Affiliation(s)
- Seung Hee Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jin Woo Choi
- Interdisciplinary Program in Bioengineering Major, Graduate School, Seoul National University, Seoul, Republic of Korea
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Hyung Ah Jo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Kidney Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jung Chan Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Engineering, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hee Chan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Engineering, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Kidney Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Generation of functional podocytes from human induced pluripotent stem cells. Stem Cell Res 2016; 17:130-9. [PMID: 27299470 PMCID: PMC5009184 DOI: 10.1016/j.scr.2016.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/05/2016] [Accepted: 06/02/2016] [Indexed: 02/08/2023] Open
Abstract
Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here, we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol, which induced their differentiation into intermediate mesoderm, then into nephron progenitors and, finally, into mature podocytes. After differentiation, cells expressed the main podocyte markers, such as synaptopodin, WT1, α-Actinin-4, P-cadherin and nephrin at the protein and mRNA level, and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall, these findings demonstrate the establishment of a robust protocol that, mimicking developmental stages, makes it possible to derive functional podocytes in vitro. Human iPSC differentiation into podocytes recapitulates kidney developmental stages. The differentiation protocol is reproducible and highly efficient. The generated podocytes reflect primary cell behaviour and are functional.
Collapse
|
37
|
Elvin J, Buvall L, Lindskog Jonsson A, Granqvist A, Lassén E, Bergwall L, Nyström J, Haraldsson B. Melanocortin 1 receptor agonist protects podocytes through catalase and RhoA activation. Am J Physiol Renal Physiol 2016; 310:F846-56. [PMID: 26887829 DOI: 10.1152/ajprenal.00231.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 02/15/2016] [Indexed: 11/22/2022] Open
Abstract
Drugs containing adrenocorticotropic hormone have been used as therapy for patients with nephrotic syndrome. We have previously shown that adrenocorticotropic hormone and a selective agonist for the melanocortin 1 receptor (MC1R) exert beneficial actions in experimental membranous nephropathy with reduced proteinuria, reduced oxidative stress, and improved glomerular morphology and function. Our hypothesis is that MC1R activation in podocytes elicits beneficial effects by promoting stress fibers and maintaining podocyte viability. To test the hypothesis, we cultured podocytes and used highly specific agonists for MC1R. Podocytes were subjected to the nephrotic-inducing agent puromycin aminonucleoside, and downstream effects of MC1R activation on podocyte survival, antioxidant defense, and cytoskeleton dynamics were studied. To increase the response and enhance intracellular signals, podocytes were transduced to overexpress MC1R. We showed that puromycin promotes MC1R expression in podocytes and that activation of MC1R promotes an increase of catalase activity and reduces oxidative stress, which results in the dephosphorylation of p190RhoGAP and formation of stress fibers through RhoA. In addition, MC1R agonists protect against apoptosis. Together, these mechanisms protect the podocyte against puromycin. Our findings strongly support the hypothesis that selective MC1R-activating agonists protect podocytes and may therefore be useful to treat patients with nephrotic syndromes commonly considered as podocytopathies.
Collapse
Affiliation(s)
- Johannes Elvin
- Department of Molecular and Clinical Medicine, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden;
| | - Lisa Buvall
- Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; and Department of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Annika Lindskog Jonsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Granqvist
- Department of Molecular and Clinical Medicine, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emelie Lassén
- Department of Molecular and Clinical Medicine, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lovisa Bergwall
- Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; and
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; and
| | - Börje Haraldsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
Keir LS, Firth R, May C, Ni L, Welsh GI, Saleem MA. Generating conditionally immortalised podocyte cell lines from wild-type mice. Nephron Clin Pract 2015; 129:128-36. [PMID: 25720381 DOI: 10.1159/000369816] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Understanding podocyte biology is key to deciphering the pathogenesis of numerous glomerular diseases. However, cultivation of primary podocytes results in dedifferentiation with loss of specialised architecture. Human conditionally immortalised podocytes partly overcome this problem, utilising a temperature-sensitive transgene. Conditionally immortalised murine podocytes exist, but are derived from the Immortomouse. METHODS Using retroviral temperature-sensitive SV40 transfection, we created a conditionally immortalised podocyte cell line from wild-type mice. RESULTS These cells develop characteristic mature podocyte morphology and robustly express slit diaphragm proteins. Functionally, these cells demonstrate comparable responses in motility and glucose uptake to human conditionally immortalised podocytes. CONCLUSION Podocyte-specific transgenic mice are extensively used to study glomerular disease and this technique could be used to make podocyte cell lines from any mouse, allowing study at the cellular level. This will help characterise these disease models and add to the laboratory resources used to study podocytopathies and glomerular disease.
Collapse
|
39
|
The Protective Effects of Curcumin on Obesity-Related Glomerulopathy Are Associated with Inhibition of Wnt/β-Catenin Signaling Activation in Podocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:827472. [PMID: 26539236 PMCID: PMC4619947 DOI: 10.1155/2015/827472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/14/2015] [Indexed: 11/17/2022]
Abstract
The present study investigated the effects of curcumin, one of the most important active ingredients of turmeric, on podocyte injury in vitro and obesity-related glomerulopathy (ORG) in vivo. Cellular experiments in vitro showed that curcumin significantly antagonized leptin-induced downregulation of the mRNA and protein expression of podocyte-associated molecules including nephrin, podocin, podoplanin, and podocalyxin. Animal experiments in vivo showed that curcumin significantly reduced the body weight, Lee's index, abdominal fat index, urinary protein excretion, and average glomerular diameter and significantly upregulated the mRNA and protein expressions of the above podocyte-associated molecules in ORG mice. Furthermore, the experiments in vitro and in vivo both displayed that curcumin could downregulate the mRNA and protein expressions of Wnt1, Wnt2b, Wnt6, and β-catenin and upregulate the phosphorylation level of β-catenin protein in podocytes and renal tissue. In conclusion, curcumin is able to alleviate the harmful reaction of leptin on podocytes and reduce the severity of ORG. The above protective effects are associated with the inhibition of Wnt/β-catenin signaling activation in podocytes.
Collapse
|
40
|
Kumar S, Tikoo K. Independent role of PP2A and mTORc1 in palmitate induced podocyte death. Biochimie 2015; 112:73-84. [DOI: 10.1016/j.biochi.2015.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
|
41
|
Saito K, Shiino T, Kurihara H, Harita Y, Hattori S, Ohta Y. Afadin regulates RhoA/Rho-associated protein kinase signaling to control formation of actin stress fibers in kidney podocytes. Cytoskeleton (Hoboken) 2015; 72:146-56. [PMID: 25712270 DOI: 10.1002/cm.21211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/19/2015] [Accepted: 02/20/2015] [Indexed: 11/05/2022]
Abstract
The function of kidney podocytes is closely associated with actin cytoskeleton. Rho family small GTPase RhoA promotes stress fiber assembly through Rho-associated protein kinase (ROCK)-dependent myosin II phosphorylation and plays an important role in maintenance of actin stress fibers of podocytes. However, little is known how stress fiber assembly is regulated in podocytes. Here, we found that afadin, an actin filament-binding protein, is required for RhoA/ROCK-dependent formation of actin stress fibers in rat podocyte C7 cells. We show that depletion of afadin in C7 cells induced loss of actin stress fibers. Conversely, forced expression of afadin increased the formation of actin stress fibers. Depletion of afadin inactivated RhoA and reduced the phosphorylation of myosin II. Moreover, the DIL domain of afadin appears to be responsible for actin stress fiber formation. Thus, afadin mediates RhoA/ROCK signaling and contributes to the formation of actin stress fibers in podocyte cells.
Collapse
Affiliation(s)
- Koji Saito
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Novel functional changes during podocyte differentiation: increase of oxidative resistance and H-ferritin expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:976394. [PMID: 25097723 PMCID: PMC4109136 DOI: 10.1155/2014/976394] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/16/2014] [Indexed: 01/17/2023]
Abstract
Podocytes are highly specialized, arborized epithelial cells covering the outer surface of the glomerular tuft in the kidney. Terminally differentiated podocytes are unable to go through cell division and hereby they are lacking a key property for regeneration after a toxic injury. Podocytes are long-lived cells but, to date, little is known about the mechanisms that support their stress resistance. Our aim was to investigate whether the well-known morphological changes during podocyte differentiation are accompanied by changes in oxidative resistance in a manner that could support their long-term survival. We used a conditionally immortalized human podocyte cell line to study the morphological and functional changes during differentiation. We followed the differentiation process for 14 days by time-lapse microscopy. During this period nondifferentiated podocytes gradually transformed into large, nonproliferating, frequently multinucleated cells, with enlarged nuclei and opened chromatin structure. We observed that differentiated podocytes were highly resistant to oxidants such as H2O2 and heme when applied separately or in combination, whereas undifferentiated cells were prone to such challenges. Elevated oxidative resistance of differentiated podocytes was associated with increased activities of antioxidant enzymes and H-ferritin expression. Immunohistochemical analysis of normal human kidney specimens revealed that podocytes highly express H-ferritin in vivo as well.
Collapse
|
43
|
Zennaro C, Mariotti M, Carraro M, Pasqualetti S, Corbelli A, Armelloni S, Li M, Ikehata M, Clai M, Artero M, Messa P, Boscutti G, Rastaldi MP. Podocyte developmental defects caused by adriamycin in zebrafish embryos and larvae: a novel model of glomerular damage. PLoS One 2014; 9:e98131. [PMID: 24845233 PMCID: PMC4028291 DOI: 10.1371/journal.pone.0098131] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022] Open
Abstract
The zebrafish pronephros is gaining popularity in the nephrology community, because embryos are easy to cultivate in multiwell plates, allowing large number of experiments to be conducted in an in vivo model. In a few days, glomeruli reach complete development, with a structure that is similar to that of the mammalian counterpart, showing a fenestrated endothelium and a basement membrane covered by the multiple ramifications of mature podocytes. As a further advantage, zebrafish embryos are permeable to low molecular compounds, and this explains their extensive use in drug efficacy and toxicity experiments. Here we show that low concentrations of adriamycin (i.e. 10 and 20 µM), when dissolved in the medium of zebrafish embryos at 9 hours post-fertilization and removed after 48 hours (57 hpf), alter the development of podocytes with subsequent functional impairment, demonstrated by onset of pericardial edema and reduction of expression of the podocyte proteins nephrin and wt1. Podocyte damage is morphologically confirmed by electron microscopy and functionally supported by increased clearance of microinjected 70 kDa fluorescent dextran. Importantly, besides pericardial edema and glomerular damage, which persist and worsen after adriamycin removal from the medium, larvae exposed to adriamycin 10 and 20 µM do not show any myocardiocyte alterations nor vascular changes. The only extra-renal effect is a transient delay of cartilage formation that rapidly recovers once adriamycin is removed. In summary, this low dose adriamycin model can be applied to analyze podocyte developmental defects, such as those observed in congenital nephrotic syndrome, and can be taken in consideration for pharmacological studies of severe early podocyte injury.
Collapse
Affiliation(s)
- Cristina Zennaro
- Department of Medical, Surgery and Health Sciences, Università degli Studi di Trieste, Trieste, Italy
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milano, Italy
- * E-mail:
| | - Massimo Mariotti
- Department of Biomedical, Surgical and Dental Sciences, University of Milano & IRCCS Orthopedic Institute, Milano, Italy
| | - Michele Carraro
- Department of Medical, Surgery and Health Sciences, Università degli Studi di Trieste, Trieste, Italy
| | | | - Alessandro Corbelli
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milano, Italy
- Department of Cardiovascular Research- Unit of Bio-imaging, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Silvia Armelloni
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milano, Italy
| | - Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milano, Italy
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milano, Italy
| | - Milan Clai
- Azienda Ospedaliero-Universitaria Ospedali Riuniti di Trieste, Trieste, Italy
| | - Mary Artero
- Azienda Ospedaliero-Universitaria Ospedali Riuniti di Trieste, Trieste, Italy
| | - Piergiorgio Messa
- Division of Nephrology, Dialysis, and Renal Transplant, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giuliano Boscutti
- Azienda Ospedaliero-Universitaria Ospedali Riuniti di Trieste, Trieste, Italy
| | - Maria Pia Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milano, Italy
| |
Collapse
|
44
|
Yaoita E, Yoshida Y, Nameta M, Zhang Y, Fujinaka H, Magdeldin S, Xu B, Yamamoto T. Heparin increasing podocyte-specific gene expressions. Nephrology (Carlton) 2014; 19:195-201. [DOI: 10.1111/nep.12207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Eishin Yaoita
- Department of Structural Pathology, Institute of Nephrology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Institute of Nephrology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Masaaki Nameta
- Cooperative Laboratory of Electron Microscopy; Niigata University; Niigata Japan
| | - Ying Zhang
- Department of Structural Pathology, Institute of Nephrology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Hidehiko Fujinaka
- Institute for Clinical Research; Niigata National Hospital; Niigata Japan
| | - Sameh Magdeldin
- Department of Structural Pathology, Institute of Nephrology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
- Department of Physiology, Faculty of Veterinary Medicine; Suez Canal University; Ismailia Egypt
| | - Bo Xu
- Department of Structural Pathology, Institute of Nephrology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Tadashi Yamamoto
- Department of Structural Pathology, Institute of Nephrology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| |
Collapse
|
45
|
Byron A, Randles MJ, Humphries JD, Mironov A, Hamidi H, Harris S, Mathieson PW, Saleem MA, Satchell SC, Zent R, Humphries MJ, Lennon R. Glomerular cell cross-talk influences composition and assembly of extracellular matrix. J Am Soc Nephrol 2014; 25:953-66. [PMID: 24436469 DOI: 10.1681/asn.2013070795] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The glomerular basement membrane (GBM) is a specialized extracellular matrix (ECM) compartment within the glomerulus that contains tissue-restricted isoforms of collagen IV and laminin. It is integral to the capillary wall and therefore, functionally linked to glomerular filtration. Although the composition of the GBM has been investigated with global and candidate-based approaches, the relative contributions of glomerular cell types to the production of ECM are not well understood. To characterize specific cellular contributions to the GBM, we used mass spectrometry-based proteomics to analyze ECM isolated from podocytes and glomerular endothelial cells in vitro. These analyses identified cell type-specific differences in ECM composition, indicating distinct contributions to glomerular ECM assembly. Coculture of podocytes and endothelial cells resulted in an altered composition and organization of ECM compared with monoculture ECMs, and electron microscopy revealed basement membrane-like ECM deposition between cocultured cells, suggesting the involvement of cell-cell cross-talk in the production of glomerular ECM. Notably, compared with monoculture ECM proteomes, the coculture ECM proteome better resembled a tissue-derived glomerular ECM dataset, indicating its relevance to GBM in vivo. Protein network analyses revealed a common core of 35 highly connected structural ECM proteins that may be important for glomerular ECM assembly. Overall, these findings show the complexity of the glomerular ECM and suggest that both ECM composition and organization are context-dependent.
Collapse
Affiliation(s)
- Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences and
| | - Michael J Randles
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences and Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Aleksandr Mironov
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences and
| | - Hellyeh Hamidi
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences and
| | - Shelley Harris
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Peter W Mathieson
- Academic Renal Unit, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom
| | - Moin A Saleem
- Academic Renal Unit, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom
| | - Simon C Satchell
- Academic Renal Unit, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom
| | - Roy Zent
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Medicine, Veterans Affairs Hospital, Nashville, Tennessee
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences and
| | - Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences and Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
46
|
Abstract
Acute kidney injury (AKI) is associated with high morbidity and mortality. Recent genetic fate mapping studies demonstrated that recovery from AKI occurs from intrinsic tubular cells. It is unresolved whether these intrinsic cells (so-called "scattered tubular cells") represent fixed progenitor cells or whether recovery involves any surviving tubular cell. Here, we show that the doxycycline-inducible parietal epithelial cell (PEC)-specific PEC-reverse-tetracycline transactivator (rtTA) transgenic mouse also efficiently labels the scattered tubular cell population. Proximal tubular cells labeled by the PEC-rtTA mouse coexpressed markers for scattered tubular cells (kidney injury molecule 1, annexin A3, src-suppressed C-kinase substrate, and CD44) and showed a higher proliferative index. The PEC-rtTA mouse labeled more tubular cells upon different tubular injuries but was independent of cellular proliferation as determined in physiological growth of the kidney. To resolve whether scattered tubular cells are fixed progenitors, cells were irreversibly labeled before ischemia reperfusion injury (genetic cell fate mapping). During recovery, the frequency of labeled tubular cells remained constant, arguing against a fixed progenitor population. In contrast, when genetic labeling was induced during ischemic injury and subsequent recovery, the number of labeled cells increased significantly, indicating that scattered tubular cells arise from any surviving tubular cell. In summary, scattered tubular cells do not represent a fixed progenitor population but rather a phenotype that can be adopted by almost any proximal tubular cell upon injury. Understanding and modulating these phenotypic changes using the PEC-rtTA mouse may lead to more specific therapies in AKI.
Collapse
|
47
|
Abstract
Amniotic fluid is in continuity with multiple developing organ systems, including the kidney. Committed, but still stem-like cells from these organs may thus appear in amniotic fluid. We report having established for the first time a stem-like cell population derived from human amniotic fluid and possessing characteristics of podocyte precursors. Using a method of triple positive selection we obtained a population of cells (hAKPC-P) that can be propagated in vitro for many passages without immortalization or genetic manipulation. Under specific culture conditions, these cells can be differentiated to mature podocytes. In this work we compared these cells with conditionally immortalized podocytes, the current gold standard for in vitro studies. After in vitro differentiation, both cell lines have similar expression of the major podocyte proteins, such as nephrin and type IV collagen, that are characteristic of mature functional podocytes. In addition, differentiated hAKPC-P respond to angiotensin II and the podocyte toxin, puromycin aminonucleoside, in a way typical of podocytes. In contrast to immortalized cells, hAKPC-P have a more nearly normal cell cycle regulation and a pronounced developmental pattern of specific protein expression, suggesting their suitability for studies of podocyte development for the first time in vitro. These novel progenitor cells appear to have several distinct advantages for studies of podocyte cell biology and potentially for translational therapies.
Collapse
|
48
|
Bi J, Chase SE, Pellenz CD, Kurihara H, Fanning AS, Krendel M. Myosin 1e is a component of the glomerular slit diaphragm complex that regulates actin reorganization during cell-cell contact formation in podocytes. Am J Physiol Renal Physiol 2013; 305:F532-44. [PMID: 23761676 DOI: 10.1152/ajprenal.00223.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerular visceral epithelial cells, also known as podocytes, are critical to both normal kidney function and the development of kidney disease. Podocyte actin cytoskeleton and their highly specialized cell-cell junctions (also called slit diaphragm complexes) play key roles in controlling glomerular filtration. Myosin 1e (myo1e) is an actin-based molecular motor that is expressed in renal glomeruli. Disruption of the Myo1e gene in mice and humans promotes podocyte injury and results in the loss of the integrity of the glomerular filtration barrier. Here, we have used biochemical and microscopic approaches to determine whether myo1e is associated with the slit diaphragm complexes in glomerular podocytes. Myo1e was consistently enriched in the slit diaphragm fraction during subcellular fractionation of renal glomeruli and colocalized with the slit diaphragm markers in mouse kidney. Live cell imaging studies showed that myo1e was recruited to the newly formed cell-cell junctions in cultured podocytes, where it colocalized with the actin filament cables aligned with the nascent contacts. Myo1e-null podocytes expressing FSGS-associated myo1e mutant (A159P) did not efficiently assemble actin cables along new cell-cell junctions. We have mapped domains in myo1e that were critical for its localization to cell-cell junctions and determined that the SH3 domain of myo1e tail interacts with ZO-1, a component of the slit diaphragm complex and tight junctions. These findings suggest that myo1e represents a component of the slit diaphragm complex and may contribute to regulating junctional integrity in kidney podocytes.
Collapse
Affiliation(s)
- J Bi
- Dept. of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210.
| | | | | | | | | | | |
Collapse
|
49
|
PodNet, a protein-protein interaction network of the podocyte. Kidney Int 2013; 84:104-15. [PMID: 23552858 DOI: 10.1038/ki.2013.64] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023]
Abstract
Interactions between proteins crucially determine cellular structure and function. Differential analysis of the interactome may help elucidate molecular mechanisms during disease development; however, this analysis necessitates mapping of expression data on protein-protein interaction networks. These networks do not exist for the podocyte; therefore, we built PodNet, a literature-based mouse podocyte network in Cytoscape format. Using database protein-protein interactions, we expanded PodNet to XPodNet with enhanced connectivity. In order to test the performance of XPodNet in differential interactome analysis, we examined podocyte developmental differentiation and the effect of cell culture. Transcriptomes of podocytes in 10 different states were mapped on XPodNet and analyzed with the Cytoscape plugin ExprEssence, based on the law of mass action. Interactions between slit diaphragm proteins are most significantly upregulated during podocyte development and most significantly downregulated in culture. On the other hand, our analysis revealed that interactions lost during podocyte differentiation are not regained in culture, suggesting a loss rather than a reversal of differentiation for podocytes in culture. Thus, we have developed PodNet as a valuable tool for differential interactome analysis in podocytes, and we have identified established and unexplored regulated interactions in developing and cultured podocytes.
Collapse
|
50
|
Harris JJ, McCarthy HJ, Ni L, Wherlock M, Kang H, Wetzels JF, Welsh GI, Saleem MA. Active proteases in nephrotic plasma lead to a podocin-dependent phosphorylation of VASP in podocytes via protease activated receptor-1. J Pathol 2013; 229:660-71. [PMID: 23436459 DOI: 10.1002/path.4149] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 10/23/2012] [Accepted: 11/16/2012] [Indexed: 01/07/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is associated with glomerular podocyte injury. Podocytes undergo dramatic changes in their actin structure, with little mechanistic insight to date into the human disease. Post-transplantation recurrence of FSGS is the archetypal form of the disease caused by unknown circulating plasma 'factors'. There is increasing indication that plasma protease activity could be central to this disease. Using clinical plasma exchange material, collected from patients in relapse and remission stages of disease, the effects of FSGS plasma on human conditionally immortalized podocytes (ciPods) were studied. We show that vasodilator stimulated phosphoprotein (VASP) is phosphorylated in response to relapse plasma from ten consecutively tested patients, and not in response to paired remission plasma or non-FSGS controls. The phosphorylation signal is absent in human podocytes carrying a pathological podocin mutation. To test for a plasma ligand, inhibition of proteases in relapse plasma leads to the loss of VASP phosphorylation. By the use of siRNA technology, we show that proteases in the plasma signal predominantly via protease activated receptor-1 (PAR1) to VASP. Mechanistically, FSGS plasma increases podocyte motility, which is dependent on VASP phosphorylation. These data suggest a specific biomarker for disease activity, as well as revealing a novel and highly specific receptor-mediated signalling pathway to the actin cytoskeleton.
Collapse
Affiliation(s)
- Jessica J Harris
- Academic Renal Unit, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | | | | | | | | | | | | | | |
Collapse
|