1
|
Ferdaus MZ, Terker AS, Koumangoye RB, Al-Qusairi L, Welling PA, Delpire E. Deletion of KS-WNK1 promotes NCC activation by increasing WNK1/4 abundance. Am J Physiol Renal Physiol 2024; 327:F373-F385. [PMID: 38961847 PMCID: PMC11460338 DOI: 10.1152/ajprenal.00101.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Dietary potassium deficiency causes stimulation of sodium reabsorption leading to an increased risk in blood pressure elevation. The distal convoluted tubule (DCT) is the main rheostat linking plasma K+ levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by inwardly rectifying K+ channels (Kir4.1/5.1); decrease in intracellular Cl-; activation of WNK4 and interaction and phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK); binding of calcium-binding protein 39 (cab39) adaptor protein to SPAK, leading to its trafficking to the apical membrane; and SPAK binding, phosphorylation, and activation of NCC. As kidney-specific with-no-lysine kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and long WNK1 (L-WNK1) and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice were not hyperkalemic. Although wild-type mice under low-dietary K+ conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in KS-WNK1, did not change under the low-K+ diet. Thus, in the absence of KS-WNK1, the transporter lost its sensitivity to low plasma K+. We also show that under low K+ conditions, in the absence of KS-WNK1, there was no formation of WNK bodies. These bodies were observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.NEW & NOTEWORTHY In this paper, we show that KS-WNK1 is a critical component of the distal convoluted tubule (DCT) K+ switch pathway. Its deletion results in an inability of the DCT to sense changes in plasma potassium. Absence of KS-WNK1 leads to abnormally high levels of WNK4 and L-WNK1 in the DCT, resulting in increased Na-Cl phosphorylation and function. Our data are consistent with KS-WNK1 targeting WNK4 and L-WNK1 to degradation.
Collapse
Affiliation(s)
- Mohammed Z Ferdaus
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Andrew S Terker
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Rainelli B Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Lama Al-Qusairi
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Paul A Welling
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Pavlov TS, Palygin O, Isaeva E, Levchenko V, Khedr S, Blass G, Ilatovskaya DV, Cowley AW, Staruschenko A. NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease. FASEB J 2020; 34:13396-13408. [PMID: 32799394 DOI: 10.1096/fj.202000966rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
NADPH oxidase 4 (NOX4) is the most abundant NOX isoform in the kidney; however, its importance for renal function has only recently emerged. The NOX4-dependent pathway regulates many factors essential for proper sodium handling in the distal nephron. However, the functional significance of this pathway in the control of sodium reabsorption during the initiation of chronic kidney disease is not established. The goal of this study was to test Nox4-dependent ENaC regulation in two models: SS hypertension and STZ-induced type 1 diabetes. First, we showed that genetic ablation of Nox4 in Dahl salt-sensitive (SS) rat attenuated a high-salt (HS)-induced increase in epithelial Na+ channel (ENaC) activity in the cortical collecting duct. We also found that H2 O2 upregulated ENaC activity, and H2 O2 production was reduced in both the renal cortex and medulla in SSNox4-/- rats fed an HS diet. Second, in the streptozotocin model of hyperglycemia-induced renal injury ENaC activity in hyperglycemic animals was elevated in SS but not SSNox4-/- rats. NaCl cotransporter (NCC) expression was increased compared to healthy controls, while expression values between SS and SSNox4-/- groups were similar. These data emphasize a critical contribution of the NOX4-mediated pathway in maladaptive upregulation of ENaC-mediated sodium reabsorption in the distal nephron in the conditions of HS- and hyperglycemia-induced kidney injury.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, MI, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gregory Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| |
Collapse
|
3
|
Abstract
The protein disulfide isomerase (PDI) gene family is a protein family classically characterized by endoplasmic reticulum (ER) localization and isomerase and redox activity. ERp57, a prominent multifunctional member of the PDI family, is detected at various levels in multiple cellular localizations outside of the ER. ERp57 has been functionally linked to a host of physiological processes and numerous studies have demonstrated altered expression and aberrant functionality of ERp57 in association with diverse pathological states. Here, we summarize available knowledge of ERp57's functions in subcellular compartments and the roles of dysregulated ERp57 in various diseases toward an emphasis on the potential utility of therapeutic development of ERp57.
Collapse
Affiliation(s)
- Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Ronghan Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
4
|
Kilaparty SP, Agarwal R, Singh P, Kannan K, Ali N. Endoplasmic reticulum stress-induced apoptosis accompanies enhanced expression of multiple inositol polyphosphate phosphatase 1 (Minpp1): a possible role for Minpp1 in cellular stress response. Cell Stress Chaperones 2016; 21:593-608. [PMID: 27038811 PMCID: PMC4907990 DOI: 10.1007/s12192-016-0684-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/22/2023] Open
Abstract
Inositol polyphosphates represent a group of differentially phosphorylated inositol metabolites, many of which are implicated to regulate diverse cellular processes such as calcium mobilization, vesicular trafficking, differentiation, apoptosis, etc. The metabolic network of these compounds is complex and tightly regulated by various kinases and phosphatases present predominantly in the cytosol. Multiple inositol polyphosphate phosphatase 1 (Minpp1) is the only known endoplasmic reticulum (ER) luminal enzyme that hydrolyzes various inositol polyphosphates in vitro as well as in vivo conditions. However, access of the Minpp1 to cytosolic substrates has not yet been demonstrated clearly and hence its physiological function. In this study, we examined a potential role for Minpp1 in ER stress-induced apoptosis. We generated a custom antibody and characterized its specificity to study the expression of Minpp1 protein in multiple mammalian cells under experimentally induced cellular stress conditions. Our results demonstrate a significant increase in the expression of Minpp1 in response to a variety of cellular stress conditions. The protein expression was corroborated with the expression of its mRNA and enzymatic activity. Further, in an attempt to link the role of Minpp1 to apoptotic stress, we studied the effect of Minpp1 expression on apoptosis following silencing of the Minpp1 gene by its specific siRNA. Our results suggest an attenuation of apoptotic parameters following knockdown of Minpp1. Thus, in addition to its known role in inositol polyphosphate metabolism, we have identified a novel role for Minpp1 as a stress-responsive protein. In summary, our results provide, for the first time, a probable link between ER stress-induced apoptosis and Minpp1 expression.
Collapse
Affiliation(s)
- Surya P Kilaparty
- Department of Biology, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA
| | - Rakhee Agarwal
- Department of Biology, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA
- Alexion Pharmaceuticals, Inc., Cheshire, CT, 06410, USA
| | - Pooja Singh
- Department of Biology, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA
| | - Krishnaswamy Kannan
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Nawab Ali
- Department of Biology, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA.
| |
Collapse
|
5
|
Modulation of H+,K+-ATPase activity by the molecular chaperone ERp57 highly expressed in gastric parietal cells. FEBS Lett 2013; 587:3898-905. [DOI: 10.1016/j.febslet.2013.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/18/2013] [Indexed: 11/22/2022]
|
6
|
ERp57/GRP58: a protein with multiple functions. Cell Mol Biol Lett 2011; 16:539-63. [PMID: 21837552 PMCID: PMC6275603 DOI: 10.2478/s11658-011-0022-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/03/2011] [Indexed: 11/22/2022] Open
Abstract
The protein ERp57/GRP58 is a stress-responsive protein and a component of the protein disulfide isomerase family. Its functions in the endoplasmic reticulum are well known, concerning mainly the proper folding and quality control of glycoproteins, and participation in the assembly of the major histocompatibility complex class 1. However, ERp57 is present in many other subcellular locations, where it is involved in a variety of functions, primarily suggested by its participation in complexes with other proteins and even with DNA. While in some instances these roles need to be confirmed by further studies, a great number of observations support the participation of ERp57 in signal transduction from the cell surface, in regulatory processes taking place in the nucleus, and in multimeric protein complexes involved in DNA repair.
Collapse
|
7
|
Huber-Ruano I, Pinilla-Macua I, Torres G, Casado FJ, Pastor-Anglada M. Link between high-affinity adenosine concentrative nucleoside transporter-2 (CNT2) and energy metabolism in intestinal and liver parenchymal cells. J Cell Physiol 2010; 225:620-30. [PMID: 20506327 DOI: 10.1002/jcp.22254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Concentrative nucleoside transporter 2 (CNT2) is a high-affinity adenosine transporter that may play physiological roles beyond nucleoside salvage. Previous reports relate CNT2 function to modulation of purinergic signaling and energy metabolism in intestinal and liver parenchymal cells (Duflot et al., 2004, Mol Cell Biol 24:2710-2719; Aymerich et al., 2006, J Cell Sci 119:1612-1621). In the present study, to further examine the link between CNT2 and energy metabolism, CNT2 protein partners were identified using the bacterial two-hybrid and GST pull-down approaches. The N-terminal segment of CNT2 was used as bait, since proteins lacking this domain display impaired plasma membrane insertion and intracellular retention. Glucose-regulated protein 58 (GRP58) was identified as a potential rCNT2 partner in pull-down experiments. Two-hybrid screening performed against a liver human cDNA library led to the identification of aldolase B as another hCNT2 partner. Aldolase B-RFP and endogenous GRP58 separately co-localized with CNT2 in HeLa cells transfected with YFPrCNT2. CNT2 interaction with GRP58 was validated using co-immunoprecipitation experiments. In HeLa cells, fluorescence resonance energy transfer (FRET) efficiency increased upon fructose addition, consistent with a transient interaction between aldolase B and the transporter. The physiological basis for in vivo interactions was derived from experiments in which GRP58 was inhibited or overexpressed and aldolase B activity stimulated towards glycolysis. GRP58 appeared to be a negative effector of CNT2 function, whereas aldolase B flux modulated CNT2 activity via a mechanism involving acquisition of higher affinity for its substrates. These findings support the theory that CNT2 plays roles other than salvage and establishes links with energy metabolism.
Collapse
Affiliation(s)
- Isabel Huber-Ruano
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona and CIBER EHD, Barcelona, Spain
| | | | | | | | | |
Collapse
|
8
|
Coe H, Jung J, Groenendyk J, Prins D, Michalak M. ERp57 modulates STAT3 signaling from the lumen of the endoplasmic reticulum. J Biol Chem 2009; 285:6725-38. [PMID: 20022947 DOI: 10.1074/jbc.m109.054015] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERp57 is an endoplasmic reticulum (ER) resident thiol disulfide oxidoreductase. Using the gene trap technique, we created a ERp57-deficient mouse model. Targeted deletion of the Pdia3 gene, which encodes ERp57, in mice is embryonic lethal at embryonic day (E) 13.5. Beta-galactosidase reporter gene analysis revealed that ERp57 is expressed early on during blastocyst formation with the highest expression in the inner cell mass. In early stages of mouse embryonic development (E11.5) there is a relatively low level of expression of ERp57. As the embryos developed, ERp57 became highly expressed in both the brain and the lungs (E15.5 and E18.5). The absence of ERp57 has no impact on ER morphology; expression of ER-associated chaperones and folding enzymes, ER stress, or apoptosis. ERp57 has been reported to interact with STAT3 (signal transducer and activator of transcription)-DNA complexes. We show here that STAT3-dependent signaling is increased in the absence of ERp57 and this can be rescued by expression of ER-targeted ERp57 but not by cytoplasmic-targeted protein, indicating that ERp57 affects STAT3 signaling from the lumen of the ER. ERp57 effects on STAT3 signaling are enhanced by ER luminal complex formation between ERp57 and calreticulin. In conclusion, we show that ERp57 deficiency in mouse is embryonic lethal at E13.5 and ERp57-dependent modulation of STAT3 signaling may contribute to this phenotype.
Collapse
Affiliation(s)
- Helen Coe
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
9
|
Chichiarelli S, Gaucci E, Ferraro A, Grillo C, Altieri F, Cocchiola R, Arcangeli V, Turano C, Eufemi M. Role of ERp57 in the signaling and transcriptional activity of STAT3 in a melanoma cell line. Arch Biochem Biophys 2009; 494:178-83. [PMID: 19995546 DOI: 10.1016/j.abb.2009.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 11/15/2022]
Abstract
Chromatin immunoprecipitation in M14 melanoma cells showed that the protein ERp57 (endoplasmic reticulum protein 57) binds to DNA in the proximity of STAT3 in a subset of STAT3-regulated genes. In the same cells, IL-6 induced a significant increase of the expression of one of these genes, i.e. CRP. Upon depletion of ERp57 by RNA interference, the phosphorylation of STAT3 on tyrosine 705 was decreased, and the IL-6-induced activation of CRP expression was completely suppressed. In vitro experiments showed that ERp57 is also required for the binding of STAT3 to its consensus sequence on DNA. Thus ERp57, previously shown to associate with STAT3 in the cytosol and in the nuclear STAT3-containing enhanceosome, is a necessary cofactor for the regulation of at least a subset of STAT3-dependent genes, probably intervening both at the site of STAT3 phosphorylation and at the nuclear level.
Collapse
Affiliation(s)
- Silvia Chichiarelli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche, Università 'La Sapienza', Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cicchillitti L, Di Michele M, Urbani A, Ferlini C, Donat MB, Scambia G, Rotilio D. Comparative proteomic analysis of paclitaxel sensitive A2780 epithelial ovarian cancer cell line and its resistant counterpart A2780TC1 by 2D-DIGE: the role of ERp57. J Proteome Res 2009; 8:1902-12. [PMID: 19714814 DOI: 10.1021/pr800856b] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Epithelial ovarian cancer is the leading cause of gynecological cancer mortality. Despite good response to surgery and initial chemotherapy, chemoresistance occurrence represents a major obstacle to a successful therapy. To better understand biological mechanisms at the basis of paclitaxel resistance, a comparative proteomic approach based on DIGE coupled with mass spectrometry (MALDI-TOF and LC-MS/MS) was applied to the human epithelial ovarian cancer cell lines A2780 and its paclitaxel resistant counterpart A2780TC1. Most of the differentially expressed proteins between the two cell lines belong to the class of stress response (29%), metabolism (21%), and cell cycle and apoptosis (17%). We focused on proteins which were most strongly modulated by paclitaxel resistance and in particular on the disulphide isomerase ERp57, which may represent a chemoresistance biomarker. ERp57 was found to interact with class III beta-tubulin (TUBB3), involved in paclitaxel resistance in ovarian and other cancers. Moreover, we demonstrated a novel localization of this protein in cytoskeleton and described that ERp57/TUBB3 interaction occurs also in the nuclear compartment and in association with a multimeric complex formed by nucleolin, nucleophosmin, hnRNPK, and mortalin. Our data suggest that ERp57 plays an important role in chemoresistance mechanisms in ovarian cancer by modulating the attachment of microtubules to chromosomes following paclitaxel treatment through its interaction with TUBB3.
Collapse
Affiliation(s)
- Lucia Cicchillitti
- Department of Oncology, "RE ARTU" Laboratory of Analytical Techniques and Proteomics, "John Paul II" Center for High Technology Research and Education in Biomedical Sciences, Catholic University, Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
There is an array of tests available to measure gastric motility. Some tests measure end points, such as gastric emptying, that result from several different functions, whereas other tests are more specific and test only a single parameter, such as contractility. This article reviews the tests most commonly available in practice and research to evaluate in vivo the gastric functions of emptying, accommodation, contractility, and myoelectrical activity. The rationale for testing, the relative strengths and weaknesses of each test, and technical details are summarized. We also briefly indicate the applications and validations of the tests for use in experimental animal studies.
Collapse
Affiliation(s)
- Lawrence A Szarka
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Charlton 8-110, 200 First St. S.W., Rochester, MN 55905, USA
| | | |
Collapse
|
12
|
Hsu YJ, Yang SS, Chu NF, Sytwu HK, Cheng CJ, Lin SH. Heterozygous mutations of the sodium chloride cotransporter in Chinese children: prevalence and association with blood pressure. Nephrol Dial Transplant 2008; 24:1170-5. [DOI: 10.1093/ndt/gfn619] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
13
|
Kumar KG, Byerley LO, Volaufova J, Drucker DJ, Churchill GA, Li R, York B, Zuberi A, Richards BKS. Genetic variation in Glp1r expression influences the rate of gastric emptying in mice. Am J Physiol Regul Integr Comp Physiol 2007; 294:R362-71. [PMID: 18077508 DOI: 10.1152/ajpregu.00640.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We demonstrated previously that food intake traits map to a quantitative trait locus (QTL) on proximal chromosome 17, which encompasses Glp1r (glucagon-like peptide 1 receptor), encoding an important modulator of gastric emptying. We then confirmed this QTL in a B6.CAST-17 congenic strain that consumed 27% more carbohydrate and 17% more total calories, yet similar fat calories, per body weight compared with the recipient C57BL/6J. The congenic strain also consumed greater food volume. The current aims were to 1) identify genetic linkage for total food volume in F(2) mice, 2) perform gene expression profiling in stomach of B6.CAST-17 congenic mice using oligonucleotide arrays, 3) test for allelic imbalance in Glp1r expression, 4) evaluate gastric emptying rate in parental and congenic mice, and 5) investigate a possible effect of genetic variation in Glp1r on gastric emptying. A genome scan revealed a single QTL for total food volume (Tfv1) (log of the odds ratio = 7.6), which was confirmed in B6.CAST-17 congenic mice. Glp1r exhibited allelic imbalance in stomach, which correlated with accelerated gastric emptying in parental CAST and congenic B6.CAST-17 mice. Moreover, congenic mice displayed an impaired gastric emptying response to exendin-(9-39). These results suggest that genetic variation in Glp1r contributes to the strain differences in gastric emptying rate.
Collapse
Affiliation(s)
- K Ganesh Kumar
- Division of Experimental Obesity, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Choi KM, Zhu J, Stoltz GJ, Vernino S, Camilleri M, Szurszewski JH, Gibbons SJ, Farrugia G. Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1039-45. [PMID: 17884976 DOI: 10.1152/ajpgi.00317.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Animal studies on diabetic gastroparesis are limited by inability to follow gastric emptying changes in the same mouse. The study aim was to validate a nonlethal gastric emptying method in nonobese diabetic (NOD) LtJ mice, a model of type 1 diabetes, and study sequential changes with age and early diabetic status. The reliability and responsiveness of a [(13)C]octanoic acid breath test in NOD LtJ mice was tested, and the test was used to measure solid gastric emptying in NOD LtJ mice and nonobese diabetes resistant (NOR) LtJ mice. The (13)C breath test produced results similar to postmortem recovery of a meal. Bethanechol accelerated gastric emptying [control: 92 +/- 9 min; bethanechol: 53 +/- 3 min, mean half emptying time (T(1/2)) +/- SE], and atropine slowed gastric emptying (control: 92 +/- 9 min; atropine: 184 +/- 31 min, mean T(1/2) +/- SE). Normal gastric emptying (T(1/2)) in nondiabetic NOD LtJ mice (8-12 wk) was 91 +/- 2 min. Aging had differing effects on gastric emptying in NOD LtJ and NOR LtJ mice. Onset of diabetes was accompanied by accelerated gastric emptying during weeks 1-2 of diabetes. Gastric emptying returned to normal by weeks 3-5 with no delay. The [(13)C]octanoic acid breath test accurately measures gastric emptying in NOD LtJ mice, is useful to study the time course of changes in gastric emptying in diabetic NOD LtJ mice, and is able to detect acceleration in gastric emptying early in diabetes. Opposing changes in gastric emptying between NOD LtJ and NOR LtJ mice suggest that NOR LtJ mice are not good controls for the study of gastric emptying in NOD LtJ mice.
Collapse
Affiliation(s)
- Kyoung Moo Choi
- Enteric NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Andrews CN, Bharucha AE, Camilleri M, Low PA, Seide B, Burton D, Baxter K, Zinsmeister AR. Nitrergic contribution to gastric relaxation induced by glucagon-like peptide-1 (GLP-1) in healthy adults. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1359-65. [PMID: 17290009 DOI: 10.1152/ajpgi.00403.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The incretin glucagon-like peptide-1 (GLP-1), which is used to treat diabetes mellitus, delays gastric emptying by inhibiting vagal activity. GLP-1 also increases fasting and postprandial gastric volume in humans. On the basis of animal studies, we hypothesized that nitric oxide mediates the effects of GLP-1 on gastric volumes. To assess the effects of nitrergic blockade on GLP-1-induced gastric accommodation in humans, in this double-blind study, 31 healthy volunteers were randomized to placebo (i.e., saline), GLP-1, or the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine acetate (L-NMMA; 4 mg.kg(-1) x h(-1)) alone or with GLP-1. Thereafter, 16 additional subjects were randomized to GLP-1 alone or together with a higher dose of L-NMMA (10 mg/kg bolus plus 8 mg.kg(-1).h(-1) infusion). Gastric volumes (fasting pre- and postdrug, postprandial postdrug) were measured by (99m)Tc-single-photon-emission computed tomography imaging. GLP-1 increased (P = 0.04) fasting gastric volume by 83 +/- 16 ml (vs. 17 +/- 11 ml for placebo) and augmented (P < or = 0.01) postprandial accommodation by 688 +/- 165 ml (vs. 542 +/- 29 ml for placebo). L-NMMA (low dose) alone did not affect fasting or postprandial gastric volume. L-NMMA (low dose) did not attenuate the effect of GLP-1 on gastric volumes. In contrast, L-NMMA (high dose) did not affect fasting volume but blunted GLP-1-mediated postprandial accommodation (postprandial change = 494 +/- 37 ml, P < or = 0.01 vs. GLP-1 alone). These data are consistent with the hypothesis that nitric oxide partly mediates the effects of GLP-1 on postprandial but not fasting gastric volumes in humans.
Collapse
Affiliation(s)
- Christopher N Andrews
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chichiarelli S, Ferraro A, Altieri F, Eufemi M, Coppari S, Grillo C, Arcangeli V, Turano C. The stress protein ERp57/GRP58 binds specific DNA sequences in HeLa cells. J Cell Physiol 2007; 210:343-51. [PMID: 17061245 DOI: 10.1002/jcp.20824] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The protein ERp57/GRP58 is a member of the protein disulfide isomerase family and is also a glucose-regulated protein, which, together with the other GRPs, is induced by a variety of cellular stress conditions. ERp57/GRP58 is mainly located in the endoplasmic reticulum (ER), but has also been found in the cytoplasm and in the nucleus, where it can bind DNA. In order to identify a possible correlation between the stress-response and the nuclear location of ERp57/GRP58, its binding sites on DNA in HeLa cells have been searched by chromatin immunoprecipitation and cloning of the immunoprecipitated DNA fragments. Following sequencing of the cloned fragments, 10 DNA sequences have been securely identified as in vivo targets of ERp57/GRP58. Nine of them are present in the non-coding regions of identified genes, and seven of these in introns. The features of some of these DNA sequences, that is, DNase hypersensitivity, proximity of MAR regions, and homology to the non-coding regions of orthologue genes of mouse or rat, are compatible with a gene expression regulatory function. Considering the nature of the genes concerned, two of which code for DNA repair proteins, we would suggest that at least part of the mechanism of action of ERp57/GRP58 takes place through the regulation of these, and possibly other still unidentified, stress-response genes.
Collapse
Affiliation(s)
- Silvia Chichiarelli
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche, Università 'La Sapienza', Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Goetze O, Steingoetter A, Menne D, van der Voort IR, Kwiatek MA, Boesiger P, Weishaupt D, Thumshirn M, Fried M, Schwizer W. The effect of macronutrients on gastric volume responses and gastric emptying in humans: A magnetic resonance imaging study. Am J Physiol Gastrointest Liver Physiol 2007; 292:G11-7. [PMID: 16935851 DOI: 10.1152/ajpgi.00498.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of macronutrients on gastric volume changes, emptying, and gastrointestinal symptoms are incompletely understood. Three liquid meals of 500 ml (fat emulsion, 375 kcal; protein solution, 375 kcal; glucose solution, 400 kcal) were infused into the stomach of 12 healthy volunteers on three occasions. Studies were performed in seated body position using an open-configuration magnetic resonance imaging (MRI) system. MRI imaging sequences, assessing stomach and meal volumes, were performed prior to and at times t = 0, 3, 6, 9, 12, 15, 25, 35, 45, 60, 75, and 90 min after meal administration. Areas under the curve for the early emptying phase (0-15 and 0-45 min) were calculated, and characteristics of the volume curves were analyzed by a gastric emptying model. Gastrointestinal symptoms were assessed by a self-report scale. Initial (t = 0 min) and early postprandial gastric volumes were highest for glucose because of lower initial emptying. However, in the early emptying phase the characteristics of the volume curves for stomach and meal were uniform for all macronutrients. Perceptions of fullness and satiety were linearly associated with postprandial gastric volumes, but not with macronutrient composition. Isovolumic macronutrient meals modulate gastric volume response by initial meal emptying patterns. Macronutrient specific accommodation responses, as shown in barostat studies, are not reflected as gastric volume responses under noninvasive conditions.
Collapse
Affiliation(s)
- Oliver Goetze
- Division of Gastroenterology, Department of Internal Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Grillo C, D'Ambrosio C, Scaloni A, Maceroni M, Merluzzi S, Turano C, Altieri F. Cooperative activity of Ref-1/APE and ERp57 in reductive activation of transcription factors. Free Radic Biol Med 2006; 41:1113-23. [PMID: 16962936 DOI: 10.1016/j.freeradbiomed.2006.06.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/01/2006] [Accepted: 06/24/2006] [Indexed: 11/27/2022]
Abstract
ERp57, a protein disulfide isomerase localized mainly in the endoplasmic reticulum, has also been found in lesser amounts in the cytosol and nucleus, where its function is still not characterized. We report here that ERp57 displays affinity for Ref-1, a protein involved in DNA repair as well as in the reduction and activation of transcription factors. Immunoprecipitation experiments showed that Ref-1 and ERp57 also interact in vivo in at least three types of cultured human cells, namely HepG2, M14, and Raji. Oxidative stress increased the amount of nuclear Ref-1 associated with ERp57. Moreover, ERp57 reduced by the thioredoxin-reductase/thioredoxin system stimulated the binding of AP-1 to its consensus sequence on DNA, and HeLa cells stably transfected and overexpressing ERp57 were protected against hydrogen peroxide-induced cell killing. Accordingly, ERp57 appears to cooperate with Ref-1 in the regulation of gene expression mediated by redox-sensitive transcription factors and in the adaptive response of the cell to oxidative insult.
Collapse
Affiliation(s)
- Caterina Grillo
- Department of Biochemical Sciences A. Rossi Fanelli, University La Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Cai H, Cebotaru V, Wang YH, Zhang XM, Cebotaru L, Guggino SE, Guggino WB. WNK4 kinase regulates surface expression of the human sodium chloride cotransporter in mammalian cells. Kidney Int 2006; 69:2162-70. [PMID: 16688122 DOI: 10.1038/sj.ki.5000333] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pseudohypoaldosteronism type II (PHA II) is caused by mutations of two members of WNK ((with no lysine (k)) kinase family. WNK4 wild type (WT) has been shown to inhibit the activity and surface expression of sodium chloride cotransporter (NCC) when expressed in Xenopus oocytes. Here, we have studied NCC protein processing in mammalian cells in the presence or absence of WNK4 WT and its mutants, E562K and R1185C, by surface biotinylation, Western blot, co-immunoprecipitation (Co-IP) and immunostaining. WNK4 WT significantly reduced NCC surface expression in Cos-7 cells (58.9+/-6.8% vs 100% in control, P<0.001, n=6), whereas its mutant E562K has no significant effect on NCC surface expression (92.9+/-5.3% vs 100%, P=NS, n=6). Another mutant R1185C still partially reduces surface expression of NCC (76.2+/-11.8% vs 100%, P<0.05, n=6). The reduction of NCC surface expression by WNK4 WT (62.9+/-3.3% of control group) is not altered by WT dynamin ((61.8+/-3.7% (P=NS)) or its mutant K44A ((65.4+/-14.1% (P=NS)). A Co-IP study showed that both WNK4 WT and WNK4 E562K interact with NCC. Furthermore, a proton pump inhibitor, bafilomycin A1, partially reverses the inhibitory effect of WNK4 WT on NCC expression. Our data suggest that WNK4 WT significantly inhibits NCC surface expression, which is not owing to an increase in clathrin-mediated endocytosis of NCC, but likely results from enhanced degradation of NCC through a lysosomal pathway.
Collapse
Affiliation(s)
- H Cai
- Division of Nephrology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Chelikani PK, Haver AC, Reidelberger RD. Intravenous infusion of glucagon-like peptide-1 potently inhibits food intake, sham feeding, and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1695-706. [PMID: 15718384 DOI: 10.1152/ajpregu.00870.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon-like peptide-1(7-36)-amide (GLP-1) is postulated to act as a hormonal signal from gut to brain to inhibit food intake and gastric emptying. A mixed-nutrient meal produces a 2 to 3-h increase in plasma GLP-1. We determined the effects of intravenous infusions of GLP-1 on food intake, sham feeding, and gastric emptying in rats to assess whether GLP-1 inhibits food intake, in part, by slowing gastric emptying. A 3-h intravenous infusion of GLP-1 (0.5-170 pmol.kg(-1).min(-1)) at dark onset dose-dependently inhibited food intake in rats that were normally fed with a potency (mean effective dose) and efficacy (maximal % inhibition) of 23 pmol.kg(-1).min(-1) and 82%, respectively. Similar total doses of GLP-1 administered over a 15-min period were less potent and effective. In gastric emptying experiments, GLP-1 (1.7-50 pmol.kg(-1).min(-1)) dose-dependently inhibited gastric emptying of saline and ingested chow with potencies of 18 and 6 pmol.kg(-1).min(-1) and maximal inhibitions of 74 and 83%, respectively. In sham-feeding experiments, GLP-1 (5-50 pmol.kg(-1).min(-1)) dose-dependently reduced 15% aqueous sucrose intake in a similar manner when gastric cannulas were closed (real feeding) and open (sham feeding). These results demonstrate that intravenous infusions of GLP-1 dose-dependently inhibit food intake, sham feeding, and gastric emptying with a similar potency and efficacy. Thus GLP-1 may inhibit food intake in part by reducing gastric emptying, yet can also inhibit food intake independently of its action to reduce gastric emptying. It remains to be determined whether intravenous doses of GLP-1 that reproduce postprandial increases in plasma GLP-1 are sufficient to inhibit food intake and gastric emptying.
Collapse
Affiliation(s)
- Prasanth K Chelikani
- Department of Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | | | | |
Collapse
|
21
|
Qian CN, Knol J, Igarashi P, Lin F, Zylstra U, Teh BT, Williams BO. Cystic Renal Neoplasia Following Conditional Inactivation of Apc in Mouse Renal Tubular Epithelium. J Biol Chem 2005; 280:3938-45. [PMID: 15550389 DOI: 10.1074/jbc.m410697200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Alterations in Wnt/beta-catenin signaling have been linked to abnormal kidney development and tumorigenesis. To gain more insights into the effects of these alterations, we created mice carrying a conditional deletion of the Apc tumor suppressor gene specifically in the renal epithelium. As expected, the loss of Apc leads to increased levels of beta-catenin protein in renal epithelium. Most of these mice die shortly after birth, and multiple kidney cysts were found upon histological examination. Only rarely did these animals survive to adulthood. Analysis of these adults revealed severely cystic kidneys associated with the presence of renal adenomas. Our results confirm an important role for proper regulation of Wnt/beta-catenin signaling in renal development and provide evidence that dysregulation of the pathway can initiate tumorigenesis in the kidney.
Collapse
Affiliation(s)
- Chao-Nan Qian
- Laboratories of Cancer Genetics and Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, Michigan 49508, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
de Jong JC, Willems PHGM, Goossens M, Vandewalle A, van den Heuvel LPWJ, Knoers NVAM, Bindels RJM. Effects of chemical chaperones on partially retarded NaCl cotransporter mutants associated with Gitelman's syndrome in a mouse cortical collecting duct cell line. Nephrol Dial Transplant 2004; 19:1069-76. [PMID: 15102966 DOI: 10.1093/ndt/gfg474] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Epithelial cells lining the distal convoluted tubule express the thiazide-sensitive Na-Cl cotransporter (NCC) that is responsible for the reabsorption of 5-10% of the filtered load of Na(+) and Cl(-). Mutations in NCC cause the autosomal recessive renal disorder Gitelman's syndrome (GS). GS mutations give rise to mutant transporters that are either fully (class I) or partially (class II) retarded. Recent evidence indicates that class II mutations do not alter the intrinsic transport activity of NCC. These findings suggest that in GS caused by class II NCC mutations, pharmacological chaperones may be useful in treatment. METHODS Initial attempts using 4-phenylbutyrate and glycerol to increase Na(+) uptake in Xenopus laevis oocytes expressing the class II mutant L215P were unsuccessful. To study the effect of the chaperones in a more physiological setting, we next expressed hNCC in the polarized epithelial cell line of distal tubular origin, mpkCCD. RESULTS mpkCCD cells readily expressed the class II mutant R955Q, but not the class I mutant G741R. Wild-type hNCC was predominantly present in the approximately 120-1403 kD complex glycosylated form. In contrast, the R955Q mutant was predominantly present in a lower molecular weight form of approximately 100 kD. Pretreatment of R955Q expressing cells with 4-phenylbutyrate (5 mM, 16 h), but not thapsigargin (1 microM, 90 min), dimethyl sulfoxide (1%, 16 h) or glycerol (4%, 16 h), increased the expression of the complex glycosylated form and in parallel the number of hNCC positive cells. CONCLUSIONS Taken together, the data indicate that 4-phenylbutyrate is a promising candidate for rescuing partially retarded but otherwise functional class II GS mutants.
Collapse
Affiliation(s)
- Joke C de Jong
- Department of Physiology, University Medical Centre Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Sarnelli G, Sifrim D, Janssens J, Tack J. Influence of sildenafil on gastric sensorimotor function in humans. Am J Physiol Gastrointest Liver Physiol 2004; 287:G988-92. [PMID: 15475488 DOI: 10.1152/ajpgi.00419.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
After a meal, the proximal stomach relaxes probably through the activation of nitrergic neurons in the gastric wall. Nitric oxide-induced smooth muscle relaxation involves activation of soluble guanylate cyclase, with cGMP production, which is then degradated by phosphodiesterase-5 (PDE-5). The aim of this study was to investigate the effect of sildenafil, a selective PDE-5 inhibitor, on fasting and postprandial proximal gastric volume and on gastric emptying rates in humans. A gastric barostat was used to study gastric compliance and perception to isobaric distension in healthy subjects before and after placebo (n = 13) or sildenafil, 50 mg (n = 15). In 10 healthy subjects, two gastric barostat studies were performed in randomized order to study the effect of placebo or sildenafil on postprandial gastric relaxation. Similarly, solid and liquid gastric emptying rates were studied in 12 healthy subjects. Sildenafil significantly increased fasting intragastric volume (141 +/- 15 vs. 163 +/- 15 ml, P < 0.05) and volumes of first perception. Sildenafil induced a higher and prolonged gastric relaxation either at 30 min (357 +/- 38 vs. 253 +/- 42 ml, P < 0.05) or 60 min (348 +/- 49 vs. 247 +/- 38 ml, P < 0.05) after the meal. Sildenafil did not alter solid half-emptying time but significantly delayed liquid emptying (43 +/- 4 vs. 56 +/- 4 min, P < 0.01). In conclusion, sildenafil significantly increases postprandial gastric volume and slows liquid emptying rate, confirming that meal-induced accommodation in humans involves the activation of a nitrergic pathway. The effect of sildenafil on gastric fundus suggests a therapeutic potential for phosphodiesterase inhibitors in patients with impaired gastric accommodation.
Collapse
Affiliation(s)
- Giovanni Sarnelli
- Department of Internal Medicine, Division of Gastroenterology, University Hospital Gasthuisberg, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
24
|
Eufemi M, Coppari S, Altieri F, Grillo C, Ferraro A, Turano C. ERp57 is present in STAT3–DNA complexes. Biochem Biophys Res Commun 2004; 323:1306-12. [PMID: 15451439 DOI: 10.1016/j.bbrc.2004.09.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Indexed: 01/20/2023]
Abstract
STAT3 has been found constitutively activated in M14 melanoma cell line, as previously found in other melanoma cells. Using EMSA, DNA affinity experiments, and chromatin immunoprecipitation, STAT3 was found in M14 to bind the alpha2-macroglobulin gene enhancer in association with the protein disulfide isomerase isoform ERp57. The two proteins have also been found to be associated when bound to the SIE sequence in HepG2 cells stimulated by IL-6. In both cases an anti-ERp57 antibody hinders the binding of STAT3 to its consensus sequence on DNA, indicating that ERp57 is a necessary component of the DNA-bound STAT3 complex. Considering the functional association of the two proteins, the overexpression of ERp57 observed in a variety of transformed cells might be relevant to the oncogenic properties of STAT3.
Collapse
Affiliation(s)
- Margherita Eufemi
- Department of Biochemical Sciences A. Rossi Fanelli, CNR Institute of Molecular Biology and Pathology, University La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Castillo EJ, Delgado-Aros S, Camilleri M, Burton D, Stephens D, O'Connor-Semmes R, Walker A, Shachoy-Clark A, Zinsmeister AR. Effect of oral CCK-1 agonist GI181771X on fasting and postprandial gastric functions in healthy volunteers. Am J Physiol Gastrointest Liver Physiol 2004; 287:G363-9. [PMID: 15246968 DOI: 10.1152/ajpgi.00074.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CCK influences satiation and gastric and gallbladder emptying. GI181771X is a novel oral CCK-1 agonist; its effects on gastric emptying of solids, accommodation, and postprandial symptoms are unclear. Effects of four dose levels of the oral CCK-1 agonist GI181771X and placebo on gastric functions and postprandial symptoms were compared in 61 healthy men and women in a randomized, gender-stratified, double-blind, double-dummy placebo-controlled, parallel group study. Effects of 0.1, 0.5, and 1.5 mg of oral solution and a 5.0-mg tablet of GI181771X on gastric emptying of solids by scintigraphy, gastric volume by (99m)Tc-single photon emission computed tomographic imaging, maximum tolerated volume of Ensure, and postprandial nausea, bloating, fullness, and pain were studied. On each of 3 study days, participants received their randomly assigned treatment. Adverse effects and safety were monitored. There were overall group effects of GI181771X on gastric emptying (P < 0.01) and fasting and postprandial volumes (P = 0.036 and 0.015, respectively). The 1.5-mg oral solution of GI181771X significantly delayed gastric emptying of solids (P < 0.01) and increased fasting (P = 0.035) gastric volumes without altering postprandial (P = 0.056) gastric volumes or postprandial symptoms relative to placebo. The effect of the 5.0-mg tablet on gastric emptying of solids did not reach significance (P = 0.052). Pharmacokinetic profiles showed the highest area under the curve over 4 h for the 1.5-mg solution and a similar area under the curve for the 0.5-mg solution and 5-mg tablet. Adverse effects were predominantly gastrointestinal and occurred in a minority of participants. GI181771X delays gastric emptying of solids and exhibits an acceptable safety profile in healthy participants. CCK-1 receptors can be modulated to increase fasting gastric volume.
Collapse
|
26
|
D'Alessio DA, Vahl TP. Glucagon-like peptide 1: evolution of an incretin into a treatment for diabetes. Am J Physiol Endocrinol Metab 2004; 286:E882-90. [PMID: 15140755 DOI: 10.1152/ajpendo.00014.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) is a product of proglucagon that is secreted by specialized intestinal endocrine cells after meals. GLP-1 is insulinotropic and plays a role in the incretin effect, the augmented insulin response observed when glucose is absorbed through the gut. GLP-1 also appears to regulate a number of processes that reduce fluctuations in blood glucose, such as gastric emptying, glucagon secretion, food intake, and possibly glucose production and glucose uptake. These effects, in addition to the stimulation of insulin secretion, suggest a broad role for GLP-1 as a mediator of postprandial glucose homeostasis. Consistent with this role, the most prominent effect of experimental blockade of GLP-1 signaling is an increase in blood glucose. Recent data also suggest that GLP-1 is involved in the regulation of beta-cell mass. Whereas other insulinotropic gastrointestinal hormones are relatively ineffective in stimulating insulin secretion in persons with type 2 diabetes, GLP-1 retains this action and is very effective in lowering blood glucose levels in these patients. There are currently a number of products in development that utilize the GLP-1-signaling system as a mechanism for the treatment of diabetes. These compounds, GLP-1 receptor agonists and agents that retard the metabolism of native GLP-1, have shown promising results in clinical trials. The application of GLP-1 to clinical use fulfills a long-standing interest in adapting endogenous insulinotropic hormones to the treatment of diabetes.
Collapse
Affiliation(s)
- David A D'Alessio
- University of Cincinnati, Division of Endocrinology, ML 0547, Cincinnati, OH 45267, USA.
| | | |
Collapse
|
27
|
González-Núñez D, Morales-Ruiz M, Leivas A, Hebert SC, Poch E. In vitro characterization of aldosterone and cAMP effects in mouse distal convoluted tubule cells. Am J Physiol Renal Physiol 2004; 286:F936-44. [PMID: 15075189 DOI: 10.1152/ajprenal.00070.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The distal nephron plays a capital role in the fine regulation of sodium reabsorption. Compared with the cortical collecting duct, much less information is available on the hormonal regulation of sodium transporter genes in the distal convoluted tubule (DCT), where the thiazide-sensitive Na+-Cl-cotransporter (NCC) is the major entry pathway for Na+. The purpose of this study was to characterize the in vitro effects of aldosterone (Aldo; 1 μM) and cAMP (8-BrcAMP; 0.5 mM) on mouse DCT (mDCT) by using an immortalized mDCT cell line. Western blot analysis and semiquantitative RT-PCR were performed to analyze the expression of genes involved in sodium transport. The mDCTcell line expressed the 11β-hydroxysteroid dehydrogenase type 2 gene and both the mineralocorticoid and glucocorticoid receptor genes, suggesting Aldo responsiveness. In this sense, we found that mDCT cells expressed the amiloride-sensitive Na+channel (ENaC) and responded to Aldo by upregulating the α-subunit protein. Similarly, α1Na+-K+-ATPase protein was upregulated by Aldo and 8-BrcAMP. In addition, the Aldo intermediate gene sgk1 mRNA was increased in response to both Aldo and 8-BrcAMP, and the transcription factor HNF–3α mRNA was induced by 8-BrcAMP. With respect to NCC regulation, although Aldo induced NCC protein levels in mice in vivo, neither Aldo nor 8-BrcAMP significantly induced the NCC mRNA or protein levels in mDCT cells. These results suggest that in mDCT, Aldo and cAMP modulate some downstream mediators and effectors in vitro but do not influence the expression of NCC in this cell model.
Collapse
Affiliation(s)
- Daniel González-Núñez
- Servicio de Nefrología, and Labrotorio de Hormonología, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic, Universidad de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
28
|
de Jong JC, Willems PHGM, van den Heuvel LPWJ, Knoers NVAM, Bindels RJM. Functional Expression of the Human Thiazide-Sensitive NaCl Cotransporter in Madin-Darby Canine Kidney Cells. J Am Soc Nephrol 2003; 14:2428-35. [PMID: 14514720 DOI: 10.1097/01.asn.0000089832.52063.f5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT. The thiazide-sensitive Na+-Cl−cotransporter (NCC), which is expressed on the apical membrane of epithelial cells lining the distal convoluted tubule, is responsible for the reabsorption of 5% to 10% of filtered Na+and Cl−. To date, functional studies on the structural and regulatory requirements for localized trafficking and ion-transporting activity of NCC have been hampered by lack of a suitable cell system expressing this cotransporter. Reported here is the functional expression of human NCC (hNCC) in a polarized mammalian cell of renal origin—that is, the high-resistance Madin-Darby canine kidney (MDCK) cell. Western blot testing revealed that the cells predominantly expressed the complex glycosylated (approximately 140 kD) form of hNCC. hNCC was present primarily in the apical part of the cell. The functionality of hNCC was demonstrated by the gain of thiazide-sensitive Na+uptake and transepithelial transport activity. Na+uptake was significantly increased after short-term (15 min) treatment with forskolin, whereas cyclic guanosine monophosphate, wortmannin, phorbol 12-myriatate 13-acetate, and staurosporine were without effect. This indicates that hNCC activity is regulated through cyclic adenosine monophosphate, rather than via cyclic guanosine monophosphate, phospho-inositide 3-kinases or protein kinase C. Aldosterone did not alter Na+uptake in the short term (15 min) but significantly increased the transport activity in the long term (16 h). The latter effect of aldosterone was due to an effect on the cytomegalovirus promoter/enhancer driving the expression of hNCC. hNCC-MDCK cells are a good model for the study of the regulation of apical trafficking and ion-transporting activity of hNCC. E-mail r.bindels@ncmls.kun.nl
Collapse
Affiliation(s)
- Joke C de Jong
- Department of Physiology, University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Gross P. Gitelman syndrome: when will it turn into Gitelman disease? Pediatr Nephrol 2003; 18:613-6. [PMID: 12728368 DOI: 10.1007/s00467-003-1171-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 03/25/2003] [Indexed: 12/28/2022]
|
30
|
Turano C, Coppari S, Altieri F, Ferraro A. Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol 2002; 193:154-63. [PMID: 12384992 DOI: 10.1002/jcp.10172] [Citation(s) in RCA: 399] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein disulfide isomerases (PDIs) constitute a family of structurally related enzymes which catalyze disulfide bonds formation, reduction, or isomerization of newly synthesized proteins in the lumen of the endoplasmic reticulum (ER). They act also as chaperones, and are, therefore, part of a quality-control system for the correct folding of the proteins in the same subcellular compartment. While their functions in the ER have been thoroughly studied, much less is known about their roles in non-ER locations, where, however, they have been shown to be involved in important biological processes. At least three proteins of this family from higher vertebrates have been found in unusual locations (i.e., the cell surface, the extracellular space, the cytosol, and the nucleus), reached through an export mechanism which has not yet been understood. In some cases their function in the non-ER location is clearly related to their redox properties, but in most cases their mechanism of action has still to be disclosed, although their propensity to associate with other proteins or even with DNA might be the main factor responsible for their activities.
Collapse
Affiliation(s)
- Carlo Turano
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'Alessandro Rossi-Fanelli' and Centro di Biologia Molecolare del CNR, Università 'La Sapienza', Rome, Italy.
| | | | | | | |
Collapse
|
31
|
De Jong JC, Van Der Vliet WA, Van Den Heuvel LPWJ, Willems PHGM, Knoers NVAM, Bindels RJM. Functional expression of mutations in the human NaCl cotransporter: evidence for impaired routing mechanisms in Gitelman's syndrome. J Am Soc Nephrol 2002; 13:1442-8. [PMID: 12039972 DOI: 10.1097/01.asn.0000017904.77985.03] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gitelman's syndrome is an autosomal recessive renal tubular disorder characterized by hypokalemic metabolic alkalosis, hypomagnesemia, and hypocalciuria. This disorder results from mutations in the thiazide-sensitive NaCl cotransporter (NCC). To elucidate the functional implications of mutations associated with this disorder, metolazone-sensitive (22)Na(+) uptake, subcellular localization, and glycosidase-sensitive glycosylation of human NCC (hNCC) were determined in Xenopus laevis oocytes expressing FLAG-tagged wild-type or mutant hNCC. Injection of 10 ng of FLAG-tagged hNCC cRNA resulted in metolazone-sensitive (22)Na(+) uptake of 3.4 +/- 0.2 nmol Na(+)/oocyte per 2 h. Immunocytochemical analysis revealed sharp immunopositive staining at the plasma membrane. In agreement with this finding, a broad endoglycosidase H-insensitive band of 130 to 140 kD was present in Western blots of total membranes. The plasma membrane localization of this complex-glycosylated protein was confirmed by immunoblotting of purified plasma membranes. The mutants could be divided into two distinct classes. Class I mutants (G439S, T649R, and G741R) exhibited no significant metolazone-sensitive (22)Na(+) uptake. Immunopositive staining was present in a diffuse band just below the plasma membrane. This endoplasmic reticulum and/or pre-Golgi complex localization was further suggested by the complete absence of the endoglycosidase H-insensitive band. Class II mutants (L215P, F536L, R955Q, G980R, and C985Y) demonstrated significant metolazone-sensitive (22)Na(+) uptake, although uptake was significantly lower than that obtained with wild-type hNCC. The latter mutants could be detected at and below the oocyte plasma membrane, and immunoblotting revealed the characteristic complex-glycosylated bands. In conclusion, this study substantiates NCC processing defects as the underlying pathogenic mechanism in Gitelman's syndrome.
Collapse
Affiliation(s)
- Joke C De Jong
- Department of Cell Physiology, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|