1
|
Saberi S, Rajizadeh MA, Khaksari M, Saber A, Akhbari M, Aminizadeh S, Rafie F. Various endurance training intensities improve GFR and Up-regulate AQP2/GSK3β in lithium-induced nephropathic rats. BMC Nephrol 2025; 26:60. [PMID: 39915719 PMCID: PMC11804038 DOI: 10.1186/s12882-025-03997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Lithium is extensively used for mood stabilization in bipolar disorder, but its long-term use can lead to nephrotoxicity, characterized by a reduction in glomerular filtration rate (GFR) and potential progression to end-stage renal disease (ESRD). Exercise has been shown to have protective effects on renal function, yet the impact of varying exercise intensities on lithium-induced nephropathy is not well understood. AIM This study aimed to investigate the effects of different intensities of endurance training on kidney function and inflammation in a rat model of lithium-induced nephropathy, focusing on the expression of aquaporin 2 (AQP2), glycogen synthase kinase 3-beta (GSK-3β), and SIRT1. METHODS Thirty-five male Wistar rats were divided into five groups: control, lithium-only, lithium with low-intensity exercise (LIT), lithium with medium-intensity exercise (MIT), and lithium with high-intensity exercise (HIT). The lithium-induced nephropathy model was established by administering lithium in food. Exercise groups underwent treadmill training at specified intensities for eight weeks. Fractional excretion of sodium (FENa) was measured, and GFR was evaluated by Cr clearance. ELISA and Western blotting assessed inflammatory markers (TNF-α, IL-10), SIRT1, GSK-3β, and AQP2 expressions in kidney tissues. RESULTS Lithium significantly reduced Cr clearance and increased FENa compared to controls. All exercise intensities improved Cr clearance and reduced FENa, with HIT showing the most significant improvement. Exercise at all intensities reduced TNF-α levels and increased IL-10 levels, with MIT and HIT significantly enhancing SIRT1 levels. Lithium reduced the expression of GSK-3β and AQP2, whereas exercise increased their expression across all intensities. CONCLUSION Endurance training, particularly at high intensity, significantly mitigates lithium-induced renal impairment by improving GFR, reducing inflammation, and enhancing the expression of renal protective proteins. These findings suggest that tailored exercise regimens could be beneficial for patients undergoing long-term lithium therapy to prevent renal damage. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Shadan Saberi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Azadeh Saber
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Akhbari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Soheil Aminizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, and Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Forouzan Rafie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medicine, Division of Geriatrics & Gerontology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Roholamini Z, Abbaspoor M, Aminizadeh S, Saberi S. Moderate-intensity training can ameliorate the process of cardiac apoptosis induced by lithium drug consumption in male Wistar rats. Toxicol Rep 2024; 13:101802. [PMID: 39582928 PMCID: PMC11582749 DOI: 10.1016/j.toxrep.2024.101802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Background and objective Lithium medication, given its significant role in the treatment or reduction of psychiatric disorders, may exert adverse effects on cardiac tissue. Therefore, this study aimed to investigate the effects of different exercise training intensities on the process of cardiac apoptosis and serum levels of cardiac troponin I (cTnI) resulting from lithium administration in male Wistar rats. Methodology In the present experimental study, 35 male Wistar rats were randomly divided into five groups (n=7); Control (CTL), Lithium (Li), High-Intensity training + lithium (HIT-Li), Moderate-Intensity training + lithium (MIT-Li), and Low-Intensity training + lithium (LIT-Li). Lithium drug (dose of 40 mmol/kg dry food weight) and exercise training (5 days per week) were administered for eight weeks. Serum levels of cTnI, mRNA expression of Bcl-2, Bax, and Caspase-3, and histopatholigical changes were assessed by using the ELISA method, Real-Time PCR, and H&E staining, respectively. Results The expression of the Bcl-2 gene was significantly increased in the LIT-Li group compared to the Li group (P = 0.003). Serum levels of cTnI were considereably higher in the Li group compared to the MIT-Li group (P = 0.0001). The expression of the Bax gene, in the LIT-Li, HIT-L, and Li groups, significantly increased compared to the MIT-Li group (P = 0.0001). Histopathological scores decreased in MIT-Li compared to Li group (P = 0.001). Conclusion It seems that among different exercise intensities, the greatest protective effect against lithium consumption can be observed with moderate exercise intensity, which may potentially modulate factors influencing cardiac apoptosis and reduce lithium toxicity in the cardiac tissue of rats.
Collapse
Affiliation(s)
- Zahrasadat Roholamini
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Abbaspoor
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Soheil Aminizadeh
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, and Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, and Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Mom R, Mocquet V, Auguin D, Réty S. Aquaporin Modulation by Cations, a Review. Curr Issues Mol Biol 2024; 46:7955-7975. [PMID: 39194687 DOI: 10.3390/cimb46080470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Aquaporins (AQPs) are transmembrane channels initially discovered for their role in water flux facilitation through biological membranes. Over the years, a much more complex and subtle picture of these channels appeared, highlighting many other solutes accommodated by AQPs and a dense regulatory network finely tuning cell membranes' water permeability. At the intersection between several transduction pathways (e.g., cell volume regulation, calcium signaling, potassium cycling, etc.), this wide and ancient protein family is considered an important therapeutic target for cancer treatment and many other pathophysiologies. However, a precise and isoform-specific modulation of these channels function is still challenging. Among the modulators of AQPs functions, cations have been shown to play a significant contribution, starting with mercury being historically associated with the inhibition of AQPs since their discovery. While the comprehension of AQPs modulation by cations has improved, a unifying molecular mechanism integrating all current knowledge is still lacking. In an effort to extract general trends, we reviewed all known modulations of AQPs by cations to capture a first glimpse of this regulatory network. We paid particular attention to the associated molecular mechanisms and pinpointed the residues involved in cation binding and in conformational changes tied up to the modulation of the channel function.
Collapse
Affiliation(s)
- Robin Mom
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Vincent Mocquet
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Daniel Auguin
- Laboratoire de Physiologie, Ecologie et Environnement (P2E), UPRES EA 1207/USC INRAE-1328, UFR Sciences et Techniques, Université d'Orléans, F-45067 Orléans, France
| | - Stéphane Réty
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| |
Collapse
|
4
|
Guo X, Kong Y, Kwon TH, Li C, Wang W. Autophagy and regulation of aquaporins in the kidneys. Kidney Res Clin Pract 2023; 42:676-685. [PMID: 37098672 DOI: 10.23876/j.krcp.22.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/20/2022] [Indexed: 04/27/2023] Open
Abstract
Aquaporins (AQPs) are water channel proteins that facilitate the transport of water molecules across cell membranes. To date, seven AQPs have been found to be expressed in mammal kidneys. The cellular localization and regulation of the transport properties of AQPs in the kidney have been widely investigated. Autophagy is known as a highly conserved lysosomal pathway, which degrades cytoplasmic components. Through basal autophagy, kidney cells maintain their functions and structure. As a part of the adaptive responses of the kidney, autophagy may be altered in response to stress conditions. Recent studies revealed that autophagic degradation of AQP2 in the kidney collecting ducts leads to impaired urine concentration in animal models with polyuria. Therefore, the modulation of autophagy could be a therapeutic approach to treat water balance disorders. However, as autophagy is either protective or deleterious, it is crucial to establish an optimal condition and therapeutic window where autophagy induction or inhibition could yield beneficial effects. Further studies are needed to understand both the regulation of autophagy and the interaction between AQPs and autophagy in the kidneys in renal diseases, including nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Xiangdong Guo
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chunling Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Nohomovich B, Tito E, Terrio M, Belardo M. The use of Tablo continuous veno-venous haemodialysis to rapidly remove lithium in a patient with severe lithium toxicity. BMJ Case Rep 2023; 16:e253467. [PMID: 37188487 PMCID: PMC10186455 DOI: 10.1136/bcr-2022-253467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
We report a case of severe, life-threatening lithium toxicity in a patient with bipolar I disorder who presented with altered mental status and acute renal failure. At admission, serum lithium level was well above toxic levels (>2 mEq/L). The signs and symptoms of lithium toxicity significantly improved after treatment with continuous veno-venous haemodialysis (CVVHD). The patient was discharged with no neurological or renal sequelae. Herein is the first case report using the Tablo CVVHD system to treat severe lithium toxicity.
Collapse
Affiliation(s)
- Brian Nohomovich
- Internal Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Emmanuel Tito
- Internal Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Michael Terrio
- Internal Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Matthew Belardo
- Internal Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| |
Collapse
|
6
|
Lu Z, Wang Y, Gao L, Lin L, Hu L, Mao J. Early onset of nephrogenic diabetes insipidus due to fabry disease in a child with GLA N215S mutation: Case report and literature review. Heliyon 2023; 9:e15993. [PMID: 37205992 PMCID: PMC10189486 DOI: 10.1016/j.heliyon.2023.e15993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Fabry disease (FD) is a rare X-linked lysosomal storage disorder. Renal involvement in FD is characterized by proteinuria and progressive renal decline. Reports on FD with nephrogenic diabetes insipidus as the initial manifestation are rare. In this paper, we report a pediatric case with an N215S variant. RESULTS A boy with an onset of polydipsia and polyuria at approximately 4 years of age was diagnosed with nephrogenic diabetes insipidus. Whole-exome sequencing showed a GLA N215S variation with no secondary cause of diabetes insipidus. No family history of polydipsia or polyuria was reported; however, the patient's maternal grandmother and her two younger brothers had hypertrophic cardiomyopathy. Both brothers required surgery due to severe cardiac involvement, and the youngest brother died of heart disease at the age of 50 years. The patient's polydipsia and polyuria worsened over the next 7 years. Serum sodium was normal, but the patient required high-dose potassium chloride to maintain normal serum potassium levels. His physical and intellectual development was normal, with no common complications of nephrogenic diabetes insipidus, such as anemia, malnutrition, vomiting, high fever, or convulsions. Dried blood spot testing showed α-galactosidase A (α-gal A) activity of 0.6 μmol/L/h and a Lyso-GL-3 level of 7.01 ng/ml. The patient developed mild proteinuria and mild myocardial hypertrophy. Renal biopsy showed myeloid bodies and zebra bodies. After more than 1 year of ERT, his urine specific gravity increased to 1.005-1.008, which was a new sign reflecting the efficacy of ERT, although urine output was maintained at 3-5 ml/kg/hour. We will continue to monitor the patient's renal tubular function and urine output. CONCLUSIONS Nephrogenic diabetes insipidus may be the initial manifestation in children with FD and/or N215S variation. In FD, the same mutation in a family may present a completely different phenotype.
Collapse
Affiliation(s)
- Zhihong Lu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Yan Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Langping Gao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Li Lin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
7
|
Tingskov SJ, D'Agostino M, Login FH, Tamma G, Nejsum LN, Nørregaard R. Tamoxifen Affects Aquaporin-3 Expression and Subcellular Localization in Rat and Human Renal Collecting Ducts. Cells 2023; 12:cells12081140. [PMID: 37190049 DOI: 10.3390/cells12081140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Sex hormones play an important role in the regulation of water homeostasis, and we have previously shown that tamoxifen (TAM), a selective estrogen receptor modulator (SERM), affects the regulation of aquaporin (AQP)-2. In this study, we investigated the effect of TAM on the expression and localization of AQP3 in collecting ducts using various animal, tissue, and cell models. The impact of TAM on AQP3 regulation was studied in rats subjected to 7 days of unilateral ureteral obstruction (UUO), with the rats fed a lithium-containing diet to induce nephrogenic diabetes insipidus (NDI), as well as in human precision-cut kidney slices (PCKS). Moreover, intracellular trafficking of AQP3 after TAM treatment was investigated in Madin-Darby Canine Kidney (MDCK) cells stably expressing AQP3. In all models, the expression of AQP3 was evaluated by Western blotting, immunohistochemistry and qPCR. TAM administration attenuated UUO-induced downregulation of AQP3 and affected the localization of AQP3 in both the UUO model and the lithium-induced NDI model. In parallel, TAM also affected the expression profile of other basolateral proteins, including AQP4 and Na/K-ATPase. In addition, TGF-β and TGF-β+TAM treatment affected the localization of AQP3 in stably transfected MDCK cells, and TAM partly attenuated the reduced AQP3 expression in TGF-β exposed human tissue slices. These findings suggest that TAM attenuates the downregulation of AQP3 in a UUO model and a lithium-induced NDI model and affects the intracellular localization in the collecting ducts.
Collapse
Affiliation(s)
| | - Mariagrazia D'Agostino
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Grazia Tamma
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
- Department of Renal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
8
|
Camostat mesilate, a serine protease inhibitor, exerts aquaretic effects and decreases urinary exosomal AQP2 levels. J Pharmacol Sci 2022; 150:204-210. [DOI: 10.1016/j.jphs.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
|
9
|
Mehta PM, Gimenez G, Walker RJ, Slatter TL. Reduction of lithium induced interstitial fibrosis on co-administration with amiloride. Sci Rep 2022; 12:14598. [PMID: 36028651 PMCID: PMC9418221 DOI: 10.1038/s41598-022-18825-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Long-term administration of lithium is associated with chronic interstitial fibrosis that is partially reduced with exposure to amiloride. We examined potential pathways of how amiloride may reduce interstitial fibrosis. Amiloride was administered to a rat model of lithium induced interstitial fibrosis over a long term (6 months), as well as for short terms of 14 and 28 days. Kidney cortical tissue was subjected to RNA sequencing and microRNA expression analysis. Gene expression changes of interest were confirmed using immunohistochemistry on kidney tissue. Pathways identified by RNA sequencing of kidney tissue were related to 'promoting inflammation' for lithium and 'reducing inflammation' for amiloride. Validation of candidate genes found amiloride reduced inflammatory components induced by lithium including NF-κB/p65Ser536 and activated pAKTSer473, and increased p53 mediated regulatory function through increased p21 in damaged tubular epithelial cells. Amiloride also reduced the amount of Notch1 positive PDGFrβ pericytes and infiltrating CD3 cells in the interstitium. Thus, amiloride attenuates a multitude of pro-inflammatory components induced by lithium. This suggests amiloride could be repurposed as a possible anti-inflammatory, anti-fibrotic agent to prevent or reduce the development of chronic interstitial fibrosis.
Collapse
Affiliation(s)
- Paulomi M Mehta
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Robert J Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
10
|
AQP2 trafficking in health and diseases: an updated overview. Int J Biochem Cell Biol 2022; 149:106261. [DOI: 10.1016/j.biocel.2022.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]
|
11
|
Safety and Efficacy of Combined Low-Dose Lithium and Low-Dose Aspirin: A Pharmacological and Behavioral Proof-of-Concept Study in Rats. Pharmaceutics 2021; 13:pharmaceutics13111827. [PMID: 34834241 PMCID: PMC8619680 DOI: 10.3390/pharmaceutics13111827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Despite established efficacy in bipolar disorder patients, lithium (Li) therapy has serious side effects, particularly chronic kidney disease. We examined the safety and behavioral effects of combined chronic low-dose aspirin plus low-dose Li in rats to explore the toxicity and therapeutic potential of this treatment. Rats were fed regular or Li-containing food (0.1% [low-dose, LLD-Li] or 0.2% [standard-dose, STD-Li]) for six weeks. Low-dose aspirin (1 mg/kg) was administered alone or together with Li. Renal function and gastric mucosal integrity were assessed. The effects of the combination treatment were evaluated in depression-like and anxiety-like behavioral models. Co-treatment with aspirin did not alter plasma Li levels. Chronic STD-Li treatment resulted in significant polyuria and polydipsia, elevated blood levels of creatinine and cystatin C, and increased levels of kidney nephrin and podocin—all suggestive of impaired renal function. Aspirin co-treatment significantly damped STD-Li-induced impairments in kidney parameters. There were no gastric ulcers or blood loss in any treatment group. Combined aspirin and LLD-Li resulted in a significant increase in sucrose consumption, and in the time spent in the open arms of an elevated plus-maze compared with the LLD-Li only group, suggestive of antidepressant-like and anxiolytic-like effects, respectively. Thus, we demonstrate that low-dose aspirin mitigated the typical renal side effects of STD-Li dose and enhanced the beneficial behavioral effects of LLD-Li therapy without aggravating its toxicity.
Collapse
|
12
|
Inoue M, Nakai K, Mitsuiki K. Triamterene in lithium-induced nephrogenic diabetes insipidus: a case report. CEN Case Rep 2021; 10:64-68. [PMID: 32772236 PMCID: PMC7829309 DOI: 10.1007/s13730-020-00517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022] Open
Abstract
Lithium-induced nephrogenic diabetes insipidus (NDI) is a rare and difficult-to-treat condition. We describe the case of an 81-year-old woman with bipolar treated with lithium and no previous history of diabetes insipidus. She was hospitalized due to disturbance of consciousness and was diagnosed with, hypercalcemia, hyperparathyroidism, and NDI. Parathyroidectomy was contraindicated and parathyroid hormone level was improved insufficiently after cinacalcet initiation, percutaneous ethanol injection therapy was performed for the enlarged parathyroid gland. After improvement in hypercalcemia and unsuccessful indapamide treatment, triamterene was administrated to control polyuria. Lithium is one of the indispensable maintenance treatment options for bipolar disorder, but it has the side effect of NDI. Lithium enters the collecting duct's principal cells mainly via the epithelial sodium channel (ENaC) located on their apical membranes, ENaC shows high selectivity for both sodium and lithium, is upregulated by aldosterone, and inhibited by triamterene. To our knowledge, this is the first publication on triamterene use in lithium-induced NDI patients.
Collapse
Affiliation(s)
- Megumi Inoue
- Division of Nephrology and Dialysis Center, Japanese Red Cross Fukuoka Hospital, 3-1-1 Ogusu, Minami-ku, Fukuoka, 815-8555, Japan
| | - Kentaro Nakai
- Division of Nephrology and Dialysis Center, Japanese Red Cross Fukuoka Hospital, 3-1-1 Ogusu, Minami-ku, Fukuoka, 815-8555, Japan
| | - Koji Mitsuiki
- Division of Nephrology and Dialysis Center, Japanese Red Cross Fukuoka Hospital, 3-1-1 Ogusu, Minami-ku, Fukuoka, 815-8555, Japan.
| |
Collapse
|
13
|
Abstract
The hormone arginine vasopressin (AVP) is a nonapeptide synthesized by hypothalamic magnocellular nuclei and secreted from the posterior pituitary into the bloodstream. It binds to AVP receptor 2 in the kidney to promote the insertion of aquaporin channels (AQP2) and antidiuretic responses. AVP secretion deficits produce central diabetes insipidus (CDI), while renal insensitivity to the antidiuretic effect of AVP causes nephrogenic diabetes insipidus (NDI). Hereditary and acquired forms of CDI and NDI generate hypotonic polyuria, polydipsia, hyperosmolality, and hypernatremia. The AVP mutant (Brattleboro) rat is the principal animal model of hereditary CDI, while neurohypophysectomy, pituitary stalk compression, hypophysectomy, and mediobasal hypothalamic lesions produce acquired CDI. In animals, hereditary NDI is mainly caused by mutations in AVP2R or AQP2 genes, while acquired NDI is most frequently induced by lithium. We report here on the determinants of the intake and excretion of water and mineral salts and on the different types of DI in humans. We then describe the hydromineral characteristics of these animal models and the responses observed after administration of hypertonic NaCl or when they are fed with low-sodium diets. Finally, we report on the effects of drugs such as AVP analogues and/or oxytocin, another neuropeptide that increases sodium excretion in animal models and humans with CDI, and sildenafil, a compound that increases the expression and function of AQP2 channels in animal models and humans with NDI.
Collapse
Affiliation(s)
- Javier Mahía
- Department of Psychobiology, and Mind, Brain and Behavior Research Center, University of Granada, Granada, Spain
| | - Antonio Bernal
- Department of Psychobiology, and Mind, Brain and Behavior Research Center, University of Granada, Granada, Spain
| |
Collapse
|
14
|
Monaghan TF, Miller CD, Agudelo CW, Rahman SN, Everaert K, Birder LA, Wein AJ, Weiss JP, Lazar JM. Cardiovascular risk independently predicts small functional bladder storage capacity. Int Urol Nephrol 2020; 53:35-39. [PMID: 32808119 DOI: 10.1007/s11255-020-02616-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE We aimed to determine the potential relationship between atherosclerotic cardiovascular disease (ASCVD) score, which equates to 10-year risk of atherosclerotic cardiovascular events, and functional bladder capacity (FBC) among men in the outpatient urology setting. METHODS We secondarily analyzed voiding diaries from men aged 40 to 79 years with nocturia. Patients with a history of cardiovascular disease or who had nocturnal polyuria were excluded. Patients were stratified by whether they met the high-risk ASCVD threshold (≥ 20%) following current cardiology consensus guidelines and assessed for the presence of small FBC (24-h maximum voided volume ≤ 200 ml). Logistic regression analyses were employed to explore associations between small FBC and ASCVD. RESULTS Eighty-four men (median ASCVD score 18.4 [IQR 12.8-26.9] %, age 66 [61-71] years, body mass index [BMI] 29.4 [26.4-32.7] kg/m2) were included, of whom 36 (42.9%) were high-risk and 48 (57.1%) fell below the high-risk threshold. High-risk patients were more likely to have small FBC (23 [63.9%] vs. 14 [29.2%], p = 0.002). ASCVD risk predicted small FBC on univariate analysis (p = 0.002). No such effect was observed with age (p = 0.116), BMI (p = 0.523), or benign prostatic obstruction (p = 0.180). The association between ASCVD risk and small FBC persisted on multivariate analysis after controlling for BMI and benign prostatic obstruction (p = 0.002). No significant predictors of small FBC were observed when age, a major determinant of ASCVD risk and independent correlate of small FBC, was substituted for ASCVD score (p = 0.108). CONCLUSIONS Small FBC is related to a higher predicted cardiovascular event rate in men with nocturia.
Collapse
Affiliation(s)
- Thomas F Monaghan
- Department of Urology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Box 79, Brooklyn, NY, 11203, USA.
| | - Connelly D Miller
- Department of Urology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Box 79, Brooklyn, NY, 11203, USA
| | - Christina W Agudelo
- Department of Urology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Box 79, Brooklyn, NY, 11203, USA
| | - Syed N Rahman
- Department of Urology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Box 79, Brooklyn, NY, 11203, USA
| | - Karel Everaert
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Lori A Birder
- Departments of Medicine and Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alan J Wein
- Division of Urology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey P Weiss
- Department of Urology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Box 79, Brooklyn, NY, 11203, USA
| | - Jason M Lazar
- Division of Cardiovascular Medicine, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
15
|
Ranganath LR, Milan AM, Hughes AT, Khedr M, Davison AS, Shweihdi E, Norman BP, Hughes JH, Bygott H, Luangrath E, Fitzgerald R, Psarelli EE, van Kan C, Laan D, Olsson B, Rudebeck M, Mankowitz L, Sireau N, Arnoux JB, Le Quan Sang KH, Jarvis JC, Genovese F, Braconi D, Santucci A, Zatkova A, Glasova H, Stančík R, Imrich R, Rhodes NP, Gallagher JA. Homogentisic acid is not only eliminated by glomerular filtration and tubular secretion but also produced in the kidney in alkaptonuria. J Inherit Metab Dis 2020; 43:737-747. [PMID: 31609457 DOI: 10.1002/jimd.12181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 01/05/2023]
Abstract
The clinical effects of alkaptonuria (AKU) are delayed and ageing influences disease progression. Morbidity of AKU is secondary to high circulating homogentisic acid (HGA) and ochronosis. It is not known whether HGA is produced by or processed in the kidney in AKU. Data from AKU patients from four studies were merged to form a single AKU group. A control group of non-AKU subjects was generated by merging data from two non-AKU studies. Data were used to derive renal clearance and fractional excretion (FE) ratios for creatinine, HGA, phenylalanine (PHE) and tyrosine (TYR) using standard calculations, for comparison between the AKU and the control groups. There were 225 AKU patients in the AKU group and 52 in the non-AKU control group. Circulating HGA increased with age (P < 0.001), and was significantly associated with decreased HGA clearance (CLHGA ) (P < 0.001) and FEHGA (P < 0.001). CLHGA and FEHGA were increased beyond the theoretical maximum renal plasma flow, confirming renal production and emphasising the greater contribution of net tubular secretion than glomerular filtration to renal elimination of HGA. The kidneys are crucial to elimination of HGA. Elimination of HGA is impaired with age resulting in worsening disease over time. The kidney is an important site for production of HGA. Tubular secretion of HGA contributes more to elimination of HGA in AKU than glomerular filtration.
Collapse
Affiliation(s)
- Lakshminarayan R Ranganath
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| | - Anna M Milan
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| | - Andrew T Hughes
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| | - Milad Khedr
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK
| | - Andrew S Davison
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| | - Ella Shweihdi
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK
| | - Brendan P Norman
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| | - Juliette H Hughes
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| | - Helen Bygott
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK
| | - Emily Luangrath
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK
| | - Richard Fitzgerald
- Clinical Pharmacology, Royal Liverpool University Hospital, Liverpool, UK
| | | | | | | | | | | | | | | | | | | | - Jonathan C Jarvis
- School of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | | | - Daniela Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Andrea Zatkova
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Helena Glasova
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Roman Stančík
- National Institute of Rheumatic Diseases, Piešťany, Slovakia
| | - Richard Imrich
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Nicholas P Rhodes
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| | - James A Gallagher
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
16
|
Sorting Nexin 27 Regulates the Lysosomal Degradation of Aquaporin-2 Protein in the Kidney Collecting Duct. Cells 2020; 9:cells9051208. [PMID: 32413996 PMCID: PMC7290579 DOI: 10.3390/cells9051208] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Sorting nexin 27 (SNX27), a PDZ (Postsynaptic density-95/Discs large/Zonula occludens 1) domain-containing protein, cooperates with a retromer complex, which regulates intracellular trafficking and the abundance of membrane proteins. Since the carboxyl terminus of aquaporin-2 (AQP2c) has a class I PDZ-interacting motif (X-T/S-X-Φ), the role of SNX27 in the regulation of AQP2 was studied. Co-immunoprecipitation assay of the rat kidney demonstrated an interaction of SNX27 with AQP2. Glutathione S-transferase (GST) pull-down assays revealed an interaction of the PDZ domain of SNX27 with AQP2c. Immunocytochemistry of HeLa cells co-transfected with FLAG-SNX27 and hemagglutinin (HA)-AQP2 also revealed co-localization throughout the cytoplasm. When the PDZ domain was deleted, punctate HA-AQP2 labeling was localized in the perinuclear region. The labeling was intensively overlaid by Lysotracker staining but not by GM130 labeling, a cis-Golgi marker. In rat kidneys and primary cultured inner medullary collecting duct cells, the subcellular redistribution of SNX27 was similar to AQP2 under 1-deamino-8-D-arginine vasopressin (dDAVP) stimulation/withdrawal. Cell surface biotinylation assay showed that dDAVP-induced AQP2 translocation to the apical plasma membrane was unaffected after SNX27 knockdown in mpkCCD cells. In contrast, the dDAVP-induced AQP2 protein abundance was significantly attenuated without changes in AQP2 mRNA expression. Moreover, the AQP2 protein abundance was markedly declined during the dDAVP withdrawal period after stimulation under SNX27 knockdown, which was inhibited by lysosome inhibitors. Autophagy was induced after SNX27 knockdown in mpkCCD cells. Lithium-induced nephrogenic diabetes insipidus in rats revealed a significant downregulation of SNX27 in the kidney inner medulla. Taken together, the PDZ domain-containing SNX27 interacts with AQP2 and depletion of SNX27 contributes to the autophagy-lysosomal degradation of AQP2.
Collapse
|
17
|
Du Y, Qian Y, Tang X, Guo Y, Chen S, Jiang M, Yang B, Cao W, Huang S, Zhang A, Jia Z, Zhang Y. Chloroquine attenuates lithium-induced NDI and proliferation of renal collecting duct cells. Am J Physiol Renal Physiol 2020; 318:F1199-F1209. [PMID: 32249612 DOI: 10.1152/ajprenal.00478.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lithium is widely used in psychiatry as the golden standard for more than 60 yr due to its effectiveness. However, its adverse effect has been limiting its long-term use in clinic. About 40% of patients taking lithium develop nephrogenic diabetes insipidus (NDI). Lithium can also induce proliferation of collecting duct cells, leading to microcyst formation in the kidney. Lithium was considered an autophagy inducer that might contribute to the therapeutic benefit of neuropsychiatric disorders. Thus, we hypothesized that autophagy may play a role in lithium-induced kidney nephrotoxicity. To address our hypothesis, we fed mice with a lithium-containing diet with chloroquine (CQ), an autophagy inhibitor, concurrently. Lithium-treated mice presented enhanced autophagy activity in the kidney cortex and medulla. CQ treatment significantly ameliorated lithium-induced polyuria, polydipsia, natriuresis, and kaliuresis accompanied with attenuated downregulation of aquaporin-2 and Na+-K+-2Cl- cotransporter protein. The protective effect of CQ on aquaporin-2 protein abundance was confirmed in cultured cortical collecting duct cells. In addition, we found that lithium-induced proliferation of collecting duct cells was also suppressed by CQ as detected by proliferating cell nuclear antigen staining. Moreover, both phosphorylated mammalian target of rapamycin and β-catenin expression, which have been reported to be increased by lithium and associated with cell proliferation, were reduced by CQ. Taken together, our study demonstrated that CQ protected against lithium-induced NDI and collecting duct cell proliferation possibly through inhibiting autophagy.
Collapse
Affiliation(s)
- Yang Du
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Qian
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaomei Tang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Guo
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mingzhu Jiang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Bingyu Yang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weidong Cao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Jobbagy S, Vitturi DA, Salvatore SR, Pires MF, Rowart P, Emlet DR, Ross M, Hahn S, St. Croix C, Wendell SG, Subramanya AR, Straub AC, Tan RJ, Schopfer FJ. Nrf2 activation protects against lithium-induced nephrogenic diabetes insipidus. JCI Insight 2020; 5:128578. [PMID: 31941842 PMCID: PMC7030822 DOI: 10.1172/jci.insight.128578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lithium (Li) is the mainstay pharmacotherapeutic mood stabilizer in bipolar disorder. Its efficacious use is complicated by acute and chronic renal side effects, including nephrogenic diabetes insipidus (NDI) and progression to chronic kidney disease (CKD). The nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway senses and coordinates cellular responses to oxidative and electrophilic stress. Here, we identify that graded genetic activation of Nrf2 protects against Li-induced NDI (Li-NDI) and volume wasting via an aquaporin 2-independent mechanism. Renal Nrf2 activity is differentially expressed on functional segments of the nephron, and its activation along the distal tubule and collecting duct directly modulates ion transporter expression, mimicking paradoxical effects of diuretics in mitigating Li-NDI. In addition, Nrf2 reduces cyclooxygenase expression and vasoactive prostaglandin biosynthesis. Pharmacologic activation of Nrf2 confers protective effects, confirming this pathway as a potentially novel druggable target for the prevention of acute and chronic renal sequelae of Li therapy.
Collapse
Affiliation(s)
| | - Dario A. Vitturi
- Department of Pharmacology and Chemical Biology
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | | | | | | | - David R. Emlet
- Center for Critical Care Nephrology, Department of Critical Care Medicine
| | | | - Scott Hahn
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | | | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology
- Health Sciences Metabolomics and Lipidomics Core, and
| | - Arohan R. Subramanya
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | - Roderick J. Tan
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
19
|
Tingskov SJ, Mutsaers HAM, Nørregaard R. Estrogen regulates aquaporin-2 expression in the kidney. VITAMINS AND HORMONES 2019; 112:243-264. [PMID: 32061343 DOI: 10.1016/bs.vh.2019.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Estrogens are primarily identified as sex hormones that, for a long time, have been known as important regulators of female reproductive physiology. However, our understanding of the role of estrogens has changed over the past years. It is now well accepted that estrogens are also involved in other physiological and pathological processes in both genders. This is due to the fact that estrogen can act both local as well as on a systemic level. Next to its role in reproductive physiology, there is accumulating evidence that estrogen influences multiple systems involved in water homeostasis. This chapter will delineate the regulatory effects of estrogen on the water channel aquaporin-2 (AQP2) found in the renal collecting duct. We will first provide an introduction to estrogen, the estrogen receptors and their role in renal physiology as well as describe the effect of selective estrogen receptor modulators (SERMs) on the kidney. Subsequently, we will focus on how estrogen and SERMs influence water balance and regulate AQP2 expression in principal cells of the collecting duct. Finally, we will describe how estrogen regulates AQP2 functionality in other organ systems.
Collapse
Affiliation(s)
| | | | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
20
|
Sung CC, Chen L, Limbutara K, Jung HJ, Gilmer GG, Yang CR, Lin SH, Khositseth S, Chou CL, Knepper MA. RNA-Seq and protein mass spectrometry in microdissected kidney tubules reveal signaling processes initiating lithium-induced nephrogenic diabetes insipidus. Kidney Int 2019; 96:363-377. [PMID: 31146973 PMCID: PMC6650374 DOI: 10.1016/j.kint.2019.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Lithium salts, used for treating bipolar disorder, frequently induce nephrogenic diabetes insipidus (NDI) thereby limiting therapeutic success. NDI is associated with loss of expression of the gene coding for the molecular water channel, aquaporin-2, in the renal collecting duct (CD). Here, we use systems biology methods in a well-established rat model of lithium-induced NDI to identify signaling pathways activated at the onset of polyuria. Using single-tubule RNA-Seq, full transcriptomes were determined in microdissected cortical collecting ducts (CCDs) of rats after 72 hours without or with initiation of lithium chloride administration. Transcriptome-wide changes in mRNA abundances were mapped to gene sets associated with curated canonical signaling pathways, showing evidence for activation of NF-κB signaling with induction of genes coding for multiple chemokines and most components of the Major Histocompatibility Complex Class I antigen-presenting complex. Administration of anti-inflammatory doses of dexamethasone to lithium chloride-treated rats countered the loss of aquaporin-2. RNA-Seq also confirmed prior evidence of a shift from quiescence into the cell cycle with arrest. Time course studies demonstrated an early (12 hour) increase in multiple immediate early response genes including several transcription factors. Protein mass spectrometry in microdissected CCDs provided corroborative evidence and identified decreased abundance of several anti-oxidant proteins. Thus, in the context of prior observations, our study can be best explained by a model in which lithium increases ERK activation leading to induction of NF-κB signaling and an inflammatory-like response that represses Aqp2 transcription.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kavee Limbutara
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabrielle G Gilmer
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sookkasem Khositseth
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Pediatrics, Faculty of Medicine, Thammasat University (Rangsit Campus), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
21
|
Jung HJ, Kwon TH. New insights into the transcriptional regulation of aquaporin-2 and the treatment of X-linked hereditary nephrogenic diabetes insipidus. Kidney Res Clin Pract 2019; 38:145-158. [PMID: 31189221 PMCID: PMC6577206 DOI: 10.23876/j.krcp.19.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
The kidney collecting duct (CD) is a tubular segment of the kidney where the osmolality and final flow rate of urine are established, enabling urine concentration and body water homeostasis. Water reabsorption in the CD depends on the action of arginine vasopressin (AVP) and a transepithelial osmotic gradient between the luminal fluid and surrounding interstitium. AVP induces transcellular water reabsorption across CD principal cells through associated signaling pathways after binding to arginine vasopressin receptor 2 (AVPR2). This signaling cascade regulates the water channel protein aquaporin-2 (AQP2). AQP2 is exclusively localized in kidney connecting tubules and CDs. Specifically, AVP stimulates the intracellular translocation of AQP2-containing vesicles to the apical plasma membrane, increasing the osmotic water permeability of CD cells. Moreover, AVP induces transcription of the Aqp2 gene, increasing AQP2 protein abundance. This review provides new insights into the transcriptional regulation of the Aqp2 gene in the kidney CD with an overview of AVP and AQP2. It summarizes current therapeutic approaches for X-linked nephrogenic diabetes insipidus caused by AVPR2 gene mutations.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
22
|
Bräsen JH, Mederacke YS, Schmitz J, Diahovets K, Khalifa A, Hartleben B, Person F, Wiech T, Steenbergen E, Großhennig A, Manns MP, Schmitt R, Mederacke I. Cholemic Nephropathy Causes Acute Kidney Injury and Is Accompanied by Loss of Aquaporin 2 in Collecting Ducts. Hepatology 2019; 69:2107-2119. [PMID: 30633816 DOI: 10.1002/hep.30499] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
Abstract
Impairment of renal function often occurs in patients with liver disease. Hepatorenal syndrome is a significant cause of acute kidney injury (AKI) in patients with cirrhosis (HRS-AKI, type 1). Causes of non-HRS-AKI include cholemic nephropathy (CN), a disease that is characterized by intratubular bile casts and tubular injury. As data on patients with CN are obtained primarily from case reports or autopsy studies, we aimed to investigate the frequency and clinical course of CN. We identified 149 patients who underwent kidney biopsy between 2000 and 2016 at the Department of Gastroenterology, Hepatology and Endocrinology at Hannover Medical School. Of these, 79 had a history of liver disease and deterioration of renal function. When applying recent European Association for the Study of the Liver criteria, 45 of 79 patients (57%) presented with AKI, whereas 34 patients (43%) had chronic kidney disease (CKD). Renal biopsy revealed the diagnosis of CN in 8 of 45 patients with AKI (17.8%), whereas none of the patients with CKD was diagnosed with CN. Univariate analysis identified serum bilirubin, alkaline phosphatase, and urinary bilirubin and urobilinogen as predictive factors for the diagnosis of CN. Histological analysis of AKI patients with normal bilirubin, elevated bilirubin, and the diagnosis of CN revealed loss of aquaporin 2 (AQP2) expression in collecting ducts in patients with elevated bilirubin and CN. Biopsy-related complications requiring medical intervention occurred in 4 of 79 patients (5.1%). Conclusion: CN is a common finding in patients with liver disease, AKI, and highly elevated bilirubin. Loss of AQP2 in AKI patients with elevated bilirubin and CN might be the result of toxic effects of cholestasis and in part be responsible for the impairment of renal function.
Collapse
Affiliation(s)
- Jan Hinrich Bräsen
- Institute of Pathology, Nephropathology Unit, Hannover Medical School, Hannover, Germany
| | - Young-Seon Mederacke
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jessica Schmitz
- Institute of Pathology, Nephropathology Unit, Hannover Medical School, Hannover, Germany
| | - Kateryna Diahovets
- Institute of Pathology, Nephropathology Unit, Hannover Medical School, Hannover, Germany
| | - Abedalrazag Khalifa
- Institute of Pathology, Nephropathology Unit, Hannover Medical School, Hannover, Germany
| | - Björn Hartleben
- Institute of Pathology, Nephropathology Unit, Hannover Medical School, Hannover, Germany
| | - Fermín Person
- Institute of Pathology and Nephropathology Section, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology and Nephropathology Section, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Eric Steenbergen
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anika Großhennig
- Institute for Biostatistics, Hannover Medical School, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Ingmar Mederacke
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Monaghan TF, Bliwise DL, Suss NR, Epstein MR, Wu ZD, Michelson KP, Agudelo CW, Robins DJ, Wagg A, Weiss JP. Overnight Urge Perception in Nocturia Is Independent of Depression, PTSD, or Anxiety in a Male Veterans Administration Population. J Clin Sleep Med 2019; 15:615-621. [PMID: 30952224 PMCID: PMC6457520 DOI: 10.5664/jcsm.7726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/27/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES The goal of this study was to compare the urge perception associated with nocturnal voiding at the time of voiding in individuals with and without depression, posttraumatic stress disorder (PTSD), or anxiety diagnoses to test the hypothesis that patients with such diagnoses are more likely to experience insomnia-driven convenience voiding during the sleep period. METHODS A database of voiding diaries with urge perception grades (UPGs) from 429 adult males seeking treatment for nocturia at a Veterans Affairs-based urology clinic was analyzed. The UPG categorizes perception for urinating from 0 (out of convenience) to 4 (desperate urge). Diaries completed by males age 18 years and older showing ≥ 2 nocturnal voids were included. Those included (n = 178) were divided into two cohorts based on the presence (n = 62) or absence (n = 116) of one or more previously established mental health diagnoses (depression, PTSD, or anxiety). The chi-square test was used to determine significance between groups. RESULTS Patients with a mental health diagnosis were more likely to report convenience voiding compared to those without depression, PTSD, or anxiety (14.5% versus 0.8%, P < .01). However, most voids in both groups were associated with the perception of urinary urgency. There were no differences in urinary volumes or hourly rates of urine production between the groups. CONCLUSIONS A relatively small subset of urology patients experience nocturnal voiding because they are awake for reasons other than the urge to void. Mental health factors had a substantial, albeit minimal, effect. Most nocturia reflects urgency to urinate rather than voiding by convenience.
Collapse
Affiliation(s)
- Thomas F. Monaghan
- Department of Urology, SUNY Downstate Medical Center, Brooklyn, New York
- Department of Urology, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York
| | - Donald L. Bliwise
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Nicholas R. Suss
- Department of Urology, SUNY Downstate Medical Center, Brooklyn, New York
- Department of Urology, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York
| | - Matthew R. Epstein
- Department of Urology, SUNY Downstate Medical Center, Brooklyn, New York
- Department of Urology, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York
| | - Zhan D. Wu
- Department of Urology, SUNY Downstate Medical Center, Brooklyn, New York
- Department of Urology, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York
| | - Kyle P. Michelson
- Department of Urology, SUNY Downstate Medical Center, Brooklyn, New York
- Department of Urology, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York
| | | | - Dennis J. Robins
- Department of Urology, SUNY Downstate Medical Center, Brooklyn, New York
- Department of Urology, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York
| | - Adrian Wagg
- Department of Geriatric Medicine, University of Alberta, Edmonton, Canada
| | - Jeffrey P. Weiss
- Department of Urology, SUNY Downstate Medical Center, Brooklyn, New York
- Department of Urology, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York
| |
Collapse
|
24
|
Abstract
Besides its efficiency, lithium has a narrow therapeutic index and can result in considerable toxicity. Among the potential side effects, two types of renal toxicity are observed: a decreased renal concentrating ability and a chronic renal failure. Lithium-induced polyuria is frequent, estimated to affect up to 40% of patients, and develops usually early. It may be irreversible, especially if the treatment has been prescribed for more than 15 years. A chronic renal failure is observed in patients treated for more than 10 to 20 years. Its prevalence is estimated at 12% after 19 years of treatment. Some patients (0.5%) may reach end stage renal disease. The major risk factor is the duration of exposure to lithium. Discussion about stopping or not lithium in case of renal failure needs multidisciplinary expertise and depends on psychiatric status and renal function.
Collapse
Affiliation(s)
- Aude Servais
- Service de néphrologie adulte, hôpital Necker, université Paris Descartes, 149, rue de Sèvres, 75015 Paris, France.
| |
Collapse
|
25
|
Abstract
Body fluid homeostasis is essential for normal life. In the maintenance of water balance, the most important factor and regulated process is the excretory function of the kidneys. The kidneys are capable to compensate not only the daily fluctuations of water intake but also the consequences of fluid loss (respiration, perspiration, sweating, hemorrhage). The final volume and osmolality of the excreted urine is set in the collecting duct via hormonal regulation. The hormone of water conservation is the vasopressin (AVP), and a large volume of urine is produced and excreted in the absence of AVP secretion or if AVP is ineffective in the kidneys. The aquaporin-2 water channel (AQP2) is expressed in the principal cells, and it plays an essential role in the reabsorption of water in the collecting ducts via type 2 vasopressin receptor (V2R)-mediated mechanism. If neural or hormonal regulation fails to operate the normal function of AVP-V2R-AQP2 system, it can result in various diseases such as diabetes insipidus (DI) or nephrogenic syndrome of inappropriate diuresis (NSIAD). The DI is characterized by excessive production of hyposmotic urine ("insipidus" means tasteless) due to the inability of the kidneys to concentrate urine. In this chapter, we focus and discuss the pathophysiology of nephrogenic DI (NDI) and the potential therapeutic interventions in the light of the current experimental data.
Collapse
Affiliation(s)
- András Balla
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary.
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
26
|
Zhang Y, Riquier-Brison A, Liu T, Huang Y, Carlson NG, Peti-Peterdi J, Kishore BK. Genetic Deletion of P2Y 2 Receptor Offers Long-Term (5 Months) Protection Against Lithium-Induced Polyuria, Natriuresis, Kaliuresis, and Collecting Duct Remodeling and Cell Proliferation. Front Physiol 2018; 9:1765. [PMID: 30618788 PMCID: PMC6304354 DOI: 10.3389/fphys.2018.01765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 11/15/2022] Open
Abstract
Chronic lithium administration for the treatment of bipolar disorder leads to nephrogenic diabetes insipidus (NDI), characterized by polyuria, natriuresis, kaliuresis, and collecting duct remodeling and cell proliferation among other features. Previously, using a 2-week lithium-induced NDI model, we reported that P2Y2 receptor (R) knockout mice are significantly resistant to polyuria, natriuresis, kaliuresis, and decrease in AQP2 protein abundance in the kidney relative to wild type mice. Here we show this protection is long-lasting, and is also associated with significant amelioration of lithium-induced collecting duct remodeling and cell proliferation. Age-matched wild type and knockout mice were fed regular (n = 5/genotype) or lithium-added (40 mmol/kg chow; n = 10/genotype) diet for 5 months and euthanized. Water intake, urine output and osmolality were monitored once in every month. Salt blocks were provided to mice on lithium-diet to prevent sodium loss. At the end of 5 months mice were euthanized and serum and kidney samples were analyzed. There was a steady increase in lithium-induced polyuria, natriuresis and kaliuresis in wild type mice over the 5-month period. Increases in these urinary parameters were very low in lithium-fed knockout mice, resulting in significantly widening differences between the wild type and knockout mice. Terminal AQP2 and NKCC2 protein abundances in the kidney were significantly higher in lithium-fed knockout vs. wild type mice. There were no significant differences in terminal serum lithium or sodium levels between the wild type and knockout mice. Confocal immunofluorescence microscopy revealed that lithium-induced marked remodeling of collecting duct with significantly increased proportion of [H+]-ATPase-positive intercalated cells and decreased proportion of AQP2-positive principal cells in the wild type, but not in knockout mice. Lithium-induced collecting duct cell proliferation (indicated by Ki67 labeling), was significantly lower in knockout vs. wild type mice. This is the first piece of evidence that purinergic signaling is potentially involved in lithium-induced collecting duct remodeling and cell proliferation. Our results demonstrate that genetic deletion of P2Y2-R protects against the key structural and functional alterations in Li-induced NDI, and underscore the potential utility of targeting this receptor for the treatment of NDI in bipolar patients on chronic lithium therapy.
Collapse
Affiliation(s)
- Yue Zhang
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Anne Riquier-Brison
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, United States
| | - Tao Liu
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - Yufeng Huang
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - Noel G. Carlson
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
| | - János Peti-Peterdi
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, United States
| | - Bellamkonda K. Kishore
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
- Department of Nutrition and Integrative Physiology, University of Utah Health, Salt Lake City, UT, United States
| |
Collapse
|
27
|
Li S, Qiu M, Kong Y, Zhao X, Choi HJ, Reich M, Bunkelman BH, Liu Q, Hu S, Han M, Xie H, Rosenberg AZ, Keitel V, Kwon TH, Levi M, Li C, Wang W. Bile Acid G Protein-Coupled Membrane Receptor TGR5 Modulates Aquaporin 2-Mediated Water Homeostasis. J Am Soc Nephrol 2018; 29:2658-2670. [PMID: 30305310 DOI: 10.1681/asn.2018030271] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The bile acid-activated receptors, including the membrane G protein-coupled receptor TGR5 and nuclear farnesoid X receptor (FXR), have roles in kidney diseases. In this study, we investigated the role of TGR5 in renal water handling and the underlying molecular mechanisms. METHODS We used tubule suspensions of inner medullary collecting duct (IMCD) cells from rat kidneys to investigate the effect of TGR5 signaling on aquaporin-2 (AQP2) expression, and examined the in vivo effects of TGR5 in mice with lithium-induced nephrogenic diabetes insipidus (NDI) and Tgr5 knockout (Tgr5 -/-) mice. RESULTS Activation of TGR5 by lithocholic acid (LCA), an endogenous TGR5 ligand, or INT-777, a synthetic TGR5-specific agonist, induced AQP2 expression and intracellular trafficking in rat IMCD cells via a cAMP-protein kinase A signaling pathway. In mice with NDI, dietary supplementation with LCA markedly decreased urine output and increased urine osmolality, which was associated with significantly upregulated AQP2 expression in the kidney inner medulla. Supplementation with endogenous FXR agonist had no effect. In primary IMCD suspensions from lithium-treated rats, treatment with INT-767 (FXR and TGR5 dual agonist) or INT-777, but not INT-747 (FXR agonist), increased AQP2 expression. Tgr5 -/- mice exhibited an attenuated ability to concentrate urine in response to dehydration, which was associated with decreased AQP2 expression in the kidney inner medulla. In lithium-treated Tgr5 -/- mice, LCA treatment failed to prevent reduction of AQP2 expression. CONCLUSIONS TGR5 stimulation increases renal AQP2 expression and improves impaired urinary concentration in lithium-induced NDI. TGR5 is thus involved in regulating water metabolism in the kidney.
Collapse
Affiliation(s)
- Suchun Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Miaojuan Qiu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hyo-Jung Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Maria Reich
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Qiaojuan Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengke Han
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haixia Xie
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Avi Z Rosenberg
- Department of Pathology and.,Division of Kidney Urologic Pathology, Johns Hopkins University, Baltimore, Maryland; and
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Düsseldorf, Germany
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China;
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China;
| |
Collapse
|
28
|
Tingskov SJ, Kwon TH, Frøkiær J, Nørregaard R. Tamoxifen Decreases Lithium-Induced Natriuresis in Rats With Nephrogenic Diabetes Insipidus. Front Physiol 2018; 9:903. [PMID: 30050465 PMCID: PMC6052323 DOI: 10.3389/fphys.2018.00903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Lithium is widely used in the treatment of bipolar affective disorders, but often causes nephrogenic diabetes insipidus (NDI), a condition characterized by a severe urinary concentrating defect. Lithium-induced NDI is associated with dysregulation of the amiloride-sensitive epithelial sodium channel (ENaC), which is essential for renal sodium reabsorption. Sex hormones have been shown to affect the expression of aquaporin-2 (AQP2) and sodium transporters. Therefore, we evaluated whether tamoxifen (TAM), a selective estrogen receptor modulator (SERM), would affect lithium-induced dysregulation of ENaC subunits and natriuresis. Rats were fed with lithium-containing food for 2 weeks to induce NDI and natriuresis. TAM was administered daily via gastric gavage after 1 week of lithium administration. Lithium treatment alone resulted in increased urinary sodium excretion and significant reduction of βENaC and γENaC at both RNA and protein levels. In addition, the plasma sodium level reduced after lithium treatment. Administration of TAM prevented increased urinary sodium excretion as well as attenuated the downregulation of βENaC and γENaC. Consistent with these findings, immunohistochemistry (IHC) showed stronger labeling of βENaC and γENaC subunits in the apical domain of the collecting duct cells in the cortical tissue of lithium-fed rats treated with TAM. Other major sodium transporters including NaPi-2, NKCC2, Na/K-ATPase, and NHE3, are believed not to have an effect on the increased urinary sodium excretion since their expression increased or was unchanged after treatment with lithium. In conclusion, the results demonstrated that TAM rescued the adverse effects of the lithium-induced increase in fractional excretion of sodium after the establishment of lithium-induced NDI.
Collapse
Affiliation(s)
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Tingskov SJ, Hu S, Frøkiær J, Kwon TH, Wang W, Nørregaard R. Tamoxifen attenuates development of lithium-induced nephrogenic diabetes insipidus in rats. Am J Physiol Renal Physiol 2018; 314:F1020-F1025. [PMID: 29357422 DOI: 10.1152/ajprenal.00604.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lithium is widely used in treatment of bipolar affective disorders but often causes nephrogenic diabetes insipidus (NDI), a disorder characterized by severe urinary-concentrating defects. Lithium-induced NDI is caused by lithium uptake by collecting duct principal cells and altered expression of aquaporin-2 (AQP2), which are essential for water reabsorption of tubular fluid in the collecting duct. Sex hormones have previously been shown to affect the regulation of AQP2, so we tested whether tamoxifen (TAM), a selective estrogen receptor modulator, would attenuate lithium-induced alterations on renal water homeostasis. Rats were treated for 14 days with lithium, and TAM treatment was initiated 1 wk after onset of lithium administration. Lithium treatment resulted in severe polyuria and reduced AQP2 expression, which were ameliorated by TAM. Consistent with this, TAM attenuated downregulation of AQP2 and increased phosphorylation of the cAMP-responsive element-binding protein, which induced AQP2 expression in freshly isolated inner-medullary collecting duct suspension prepared from lithium-treated rats. In conclusion, TAM attenuated polyuria dose dependently and impaired urine concentration and downregulation of AQP2 protein expression in rats with lithium-induced NDI. These findings suggest that TAM is likely to be a novel therapeutic option for lithium-induced NDI.
Collapse
Affiliation(s)
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangdong , China
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University , Daegu , Korea
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangdong , China
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| |
Collapse
|
30
|
Kalita-De Croft P, Bedford JJ, Leader JP, Walker RJ. Amiloride modifies the progression of lithium-induced renal interstitial fibrosis. Nephrology (Carlton) 2017; 23:20-30. [DOI: 10.1111/nep.12929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/07/2016] [Accepted: 09/25/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Priyakshi Kalita-De Croft
- Departments of Medicine; University of Otago; Dunedin New Zealand
- Departments of Physiology; University of Otago; Dunedin New Zealand
- Molecular Breast Pathology University of Queensland Centre for Clinical Research (UQCCR) Herston QLD; Australia
| | | | - John P Leader
- Departments of Medicine; University of Otago; Dunedin New Zealand
| | - Robert J Walker
- Departments of Medicine; University of Otago; Dunedin New Zealand
| |
Collapse
|
31
|
Ko B. The complexities of lithium. Physiol Rep 2017; 5:5/21/e13405. [PMID: 29138355 PMCID: PMC5688771 DOI: 10.14814/phy2.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This is a editorial focus written to highlight the findings by Yang et al in the article “The Soluble (Pro)Renin Receptor Does Not Influence Lithium‐Induced Diabetes Insipidus but Does Provoke Beiging of White Adipose Tissue in Mice.”
Collapse
Affiliation(s)
- Benjamin Ko
- Section of Nephrology; Department of Medicine; University of Chicago; Chicago Illinois
| |
Collapse
|
32
|
Yang KT, Wang F, Lu X, Peng K, Yang T, David Symons J. The soluble (Pro) renin receptor does not influence lithium-induced diabetes insipidus but does provoke beiging of white adipose tissue in mice. Physiol Rep 2017; 5:e13410. [PMID: 29138356 PMCID: PMC5688772 DOI: 10.14814/phy2.13410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022] Open
Abstract
Earlier we reported that the recombinant soluble (pro) renin receptor sPRR-His upregulates renal aquoporin-2 (AQP2) expression, and attenuates polyuria associated with nephrogenic diabetes insipidus (NDI) induced by vasopressin type 2 receptor (V2R) antagonism. Patients that receive lithium therapy develop polyuria associated NDI that might be secondary to downregulation of renal AQP2. We hypothesized that sPRR-His attenuates indices of NDI associated with lithium treatment. Eight-week-old male C57/BL6 mice consumed chow supplemented with LiCl (40 mmol/kg diets) for 14 days. For the last 7 days mice received either sPRR-His [30 μg/(kg day), i.v.; sPRR] or vehicle (Veh) via minipump. Control (Con) mice consumed standard chow for 14 days. Compared to Con mice, 14-d LiCl treatment elevated water intake and urine volume, and decreased urine osmolality, regardless of sPRR-His or Veh administration. These data indicate that sPRR-His treatment does not attenuate indices of NDI evoked by lithium. Unexpectedly, epididymal fat mass was lower, adipocyte UCP1 mRNA and protein expression were higher, and multilocular lipid morphology was enhanced, in LiCl-fed mice treated with sPRR-His versus vehicle. The beiging of white adipose tissue is a novel metabolic benefit of manipulating the sPRR in the context of lithium-induced NDI.
Collapse
Affiliation(s)
- Kevin T Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- College of Health, University of Utah, Salt Lake City, Utah
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Fei Wang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Research Service, Veterans Affairs Medical Center, Salt Lake City, Utah
- Institute of Hypertension, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Research Service, Veterans Affairs Medical Center, Salt Lake City, Utah
- Institute of Hypertension, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Kexin Peng
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Research Service, Veterans Affairs Medical Center, Salt Lake City, Utah
- Institute of Hypertension, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Research Service, Veterans Affairs Medical Center, Salt Lake City, Utah
- Institute of Hypertension, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - J David Symons
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- College of Health, University of Utah, Salt Lake City, Utah
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
33
|
Brandoni A, Torres AM. Renal Expression and Urinary Excretion of Na-K-2Cl Cotransporter in Obstructive Nephropathy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7171928. [PMID: 28164127 PMCID: PMC5259608 DOI: 10.1155/2017/7171928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/15/2016] [Accepted: 12/12/2016] [Indexed: 01/10/2023]
Abstract
Renal damage due to urinary tract obstruction accounts for up to 30% of acute kidney injury in paediatrics and adults. Bilateral ureteral obstruction (BUO) is associated with polyuria and reduced urinary concentrating capacity. We investigated the renal handling of water and electrolytes together with the renal expression and the urinary excretion of the Na-K-Cl cotransporter (NKCC2) after 1 (BUO-1), 2 (BUO-2), and 7 (BUO-7) days of release of BUO. Immunoblotting and immunohistochemical studies showed that NKCC2 expression was upregulated in apical membranes both from BUO-2 and from BUO-7 rats. The apical membrane expression, where NKCC2 is functional, may be sufficient to normalize water, potassium, sodium, and osmolytes tubular handling. NKCC2 abundance in homogenates and mRNA levels of NKCC2 was significantly decreased in almost all groups suggesting a decrease in the synthesis of the transporter. Urinary excretion of NKCC2 was increased in BUO-7 groups. These data suggest that the upregulation in the expression of NKCC2 in apical membranes during the postobstructive phase of BUO could contribute to improving the excretion of sodium and consequently also the excretion of potassium, osmolytes, and water. Moreover, the increase in urinary excretion of NKCC2 in BUO-7 group could be a potential additional biomarker of renal function recovery.
Collapse
Affiliation(s)
- Anabel Brandoni
- Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Santa Fe, Argentina
| | - Adriana M. Torres
- Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Santa Fe, Argentina
| |
Collapse
|
34
|
Renal Fibrosis mRNA Classifier: Validation in Experimental Lithium-Induced Interstitial Fibrosis in the Rat Kidney. PLoS One 2016; 11:e0168240. [PMID: 28002484 PMCID: PMC5176284 DOI: 10.1371/journal.pone.0168240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Accurate diagnosis of fibrosis is of paramount clinical importance. A human fibrosis classifier based on metzincins and related genes (MARGS) was described previously. In this investigation, expression changes of MARGS genes were explored and evaluated to examine whether the MARGS-based algorithm has any diagnostic value in a rat model of lithium nephropathy. Male Wistar rats (n = 12) were divided into 2 groups (n = 6). One group was given a diet containing lithium (40 mmol/kg food for 7 days, followed by 60mmol/kg food for the rest of the experimental period), while a control group (n = 6) was fed a normal diet. After six months, animals were sacrificed and the renal cortex and medulla of both kidneys removed for analysis. Gene expression changes were analysed using 24 GeneChip® Affymetrix Rat Exon 1.0 ST arrays. Statistically relevant genes (p-value<0.05, fold change>1.5, t-test) were further examined. Matrix metalloproteinase-2 (MMP2), CD44, and nephroblastoma overexpressed gene (NOV) were overexpressed in the medulla and cortex of lithium-fed rats compared to the control group. TGFβ2 was overrepresented in the cortex of lithium-fed animals 1.5-fold, and 1.3-fold in the medulla of the same animals. In Gene Set Enrichment Analysis (GSEA), both the medulla and cortex of lithium-fed animals showed an enrichment of the MARGS, TGFβ network, and extracellular matrix (ECM) gene sets, while the cortex expression signature was enriched in additional fibrosis-related-genes and the medulla was also enriched in immune response pathways. Importantly, the MARGS-based fibrosis classifier was able to classify all samples correctly. Immunohistochemistry and qPCR confirmed the up-regulation of NOV, CD44, and TGFβ2. The MARGS classifier represents a cross-organ and cross-species classifier of fibrotic conditions and may help to design a test to diagnose and to monitor fibrosis. The results also provide evidence for a common pathway in the pathogenesis of fibrosis.
Collapse
|
35
|
Jung HJ, Kwon TH. Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am J Physiol Renal Physiol 2016; 311:F1318-F1328. [PMID: 27760771 DOI: 10.1152/ajprenal.00485.2016] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 01/04/2023] Open
Abstract
The kidney collecting duct is an important renal tubular segment for regulation of body water homeostasis and urine concentration. Water reabsorption in the collecting duct principal cells is controlled by vasopressin, a peptide hormone that induces the osmotic water transport across the collecting duct epithelia through regulation of water channel proteins aquaporin-2 (AQP2) and aquaporin-3 (AQP3). In particular, vasopressin induces both intracellular translocation of AQP2-bearing vesicles to the apical plasma membrane and transcription of the Aqp2 gene to increase AQP2 protein abundance. The signaling pathways, including AQP2 phosphorylation, RhoA phosphorylation, intracellular calcium mobilization, and actin depolymerization, play a key role in the translocation of AQP2. This review summarizes recent data demonstrating the regulation of AQP2 as the underlying molecular mechanism for the homeostasis of water balance in the body.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
36
|
Cardoso de Castro LU, Ida KK, Otsuki DA, Sanches TR, Volpini RA, Borges EDS, Malbouisson LMS, Andrade L. Vasopressin analog terlipressin attenuates kidney injury in hemorrhagic shock. Trauma Surg Acute Care Open 2016; 1:e000039. [PMID: 29766070 PMCID: PMC5891712 DOI: 10.1136/tsaco-2016-000039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/30/2016] [Indexed: 01/04/2023] Open
Abstract
Background In hemorrhagic shock (HS), volume replacement with crystalloid solution can restore the hemodynamic status and decrease mortality. However, it can also lead to tissue edema and pulmonary congestion, as well as increasing vascular permeability. Here, we analyzed the effects that resuscitation with lactated Ringer's solution (LRS) or administration of the vasopressin analog terlipressin has on renal function in a porcine model of HS. Methods Using pressure-controlled bleeding, we induced pigs to HS, maintaining mean arterial pressure (MAP) at 40 mm Hg for 30 min. Animals were divided into 4 groups: sham (anesthesia only); shock-only (HS induction); shock+LRS (HS induction and subsequent resuscitation with LRS at 3 times the volume of blood removed); and shock+Terli (HS induction and subsequent bolus administration of 2 mg of terlipressin). Parameters were evaluated at baseline, then at 30, 60, and 120 min after treatment (T30, T60, and T120, respectively). Animals were euthanized at T60 or T120. Results Both treatments restored MAP to baseline values. At T30 and T60, creatinine clearance was highest in shock+LRS pigs, whereas it was highest in shock+Terli pigs at T120. Both treatments initially induced hyponatremia, although urinary excretion of all ions was higher in shock+LRS pigs at T30. Both treatments restored Na-K-2Cl cotransporter expression, whereas only terlipressin restored aquaporin 2 expression. Both treatments also prevented HS-induced acute tubular necrosis. Expression of the vasopressin receptors V1a and V2 was highest in shock-only pigs. At T120, V1a expression was lowest in shock+LRS pigs. Discussion Terlipressin might be useful for preventing HS-induced acute kidney injury.
Collapse
Affiliation(s)
| | - Keila Kazue Ida
- Anesthesiology Department, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Denise Aya Otsuki
- Anesthesiology Department, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Talita Rojas Sanches
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Rildo A Volpini
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Emilyn da Silva Borges
- Anesthesiology Department, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Lúcia Andrade
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
37
|
Aras Y, Erguven M, Aktas E, Yazihan N, Bilir A. Antagonist activity of the antipsychotic drug lithium chloride and the antileukemic drug imatinib mesylate during glioblastoma treatment in vitro. Neurol Res 2016; 38:766-74. [PMID: 27367429 DOI: 10.1080/01616412.2016.1203096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Glioblastoma (GBM), the most common primary tumour of the central nervous system, is characterised by a high malignancy and poor prognosis. The aims of this study were to investigate whether the combination of imatinib mesylate (IM) and lithium chloride (LiCl) exhibited a synergistic effect in treatment and to determine whether midkine (MK) affected the fate of this treatment in vitro. METHODS Monolayer and spheroid cultures of the T98G human GBM cell line were treated with an IM and LiCl combination for 72 h. The cell proliferation index, apoptotic index, cell cycle distribution, apoptotic and anti-apoptotic protein levels, and cAMP level as well as the cellular morphology and ultrastructure were evaluated. RESULTS All applications inhibited cell proliferation and induced apoptosis. The most substantial decreases in cell proliferation and the caspase-3, epidermal growth factor receptor (EGFR), platelet derived growth factor receptor-alpha (PDGFR-α), multidrug resistance protein-1 (MRP-1), aquaporin-4 (AQP-4) and cAMP levels were induced by the LiCl treatment, which exhibited more pronounced effects compared with the combination treatment. LiCl was less effective in decreasing the MK and B cell lymphoma-2 (Bcl-2) levels compared with the combination treatment. The most substantial decrease in the p170 levels was identified following the combination treatment, whereas IM induced the second greatest decrease. LiCl alone had no effect on the p170 levels. IM induced the most substantial decrease in the phospho-glycogen synthase kinase 3-beta (p-GSK-3β)/glycogen synthase kinase 3-beta (GSK-3β) ratio, and LiCl induced the second most substantial decrease. Both LiCl and the combination treatment induced G2 + M arrest, whereas IM induced G0 + G1 arrest after 72 h of exposure. An apoptotic appearance and autophagic vacuoles were commonly identified in the LiCl, combination and IM groups, respectively. CONCLUSIONS The combination of IM and LiCl exhibited an antagonist effect, and MK had a role at this antagonism.
Collapse
Affiliation(s)
- Yavuz Aras
- a İstanbul Faculty of Medicine, Departmentof Neurosurgery , İstanbul University , İstanbul , Turkey
| | - Mine Erguven
- b Faculty of Engineering and Vocational School of Health Sciences , İstanbul Aydın University , İstanbul , Turkey
| | - Esin Aktas
- c Department of Immunology , Prof. Dr. Aziz Sancar Institute of Experimental Medicine, İstanbul University , İstanbul , Turkey
| | - Nuray Yazihan
- d Faculty of Medicine, Department of Pathophysiology , Ankara University , Ankara , Turkey
| | - Ayhan Bilir
- e Emine-Bahaeddin Nakıboğlu Faculty of Medicine, Department of Histology and Embryology , Zirve University , Gaziantep , Turkey
| |
Collapse
|
38
|
Molecular mechanisms in lithium-associated renal disease: a systematic review. Int Urol Nephrol 2016; 48:1843-1853. [DOI: 10.1007/s11255-016-1352-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
|
39
|
Jung JW, Lee MS, Choi HJ, Jung S, Lee YJ, Hwang GS, Kwon TH. Mass spectrometric imaging of metabolites in kidney tissues from rats treated with furosemide. Am J Physiol Renal Physiol 2016; 310:F1317-27. [PMID: 26962105 DOI: 10.1152/ajprenal.00524.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/07/2016] [Indexed: 12/16/2022] Open
Abstract
In the kidney, metabolic processes are different among the cortex (COR), outer medulla (OM), and inner medulla (IM). Using matrix-assisted laser desorption/ionization (MALDI) and imaging mass spectrometry (IMS), we examined the change of metabolites in the COR, OM, and IM of the rat kidney after furosemide treatment compared with vehicle-treated controls. Osmotic minipumps were implanted in male Sprague-Dawley rats to deliver 12 mg·day(-1)·rat(-1) of furosemide. Vehicle-treated (n = 14) and furosemide-treated (furosemide rats, n = 15) rats in metabolic cages received a fixed amount of rat chow (15 g·220 g body wt(-1)·day(-1) for each rat) with free access to water intake for 6 days. At day 6, higher urine output (32 ± 4 vs. 9 ± 1 ml/day) and lower urine osmolality (546 ± 44 vs. 1,677 ± 104 mosmol/kgH2O) were observed in furosemide rats. Extracts of COR, OM, and IM were analyzed by ultraperformance liquid chromatography coupled with quadrupole time-of-flight (TOF) mass spectrometry, where multivariate analysis revealed significant differences between the two groups. Several metabolites, including acetylcarnitine, betaine, carnitine, choline, and glycerophosphorylcholine (GPC), were significantly changed. The changes of metabolites were further identified by MALDI-TOF/TOF and IMS. Their spatial distribution and relative quantitation in the kidneys were analyzed by IMS. Carnitine compounds were increased in COR and IM, whereas carnitine and acetylcarnitine were decreased in OM. Choline compounds were increased in COR and OM but decreased in IM from furosemide rats. Betaine and GPC were decreased in OM and IM. Taken together, MALDI-TOF/TOF and IMS successfully provide the spatial distribution and relative quantitation of metabolites in the kidney.
Collapse
Affiliation(s)
- Jin Woo Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Mi Suk Lee
- Department of Biochemistry and Cell Biology, Korea; and BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Hyo-Jung Choi
- Department of Biochemistry and Cell Biology, Korea; and
| | - Sunhee Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Yu-Jung Lee
- Department of Biochemistry and Cell Biology, Korea; and BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, Korea; and BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
40
|
Abstract
Aquaporins (AQPs) are a 13 member family (AQP0-12) of proteins that act as channels, through which water and, for some family members, glycerol, urea and other small solutes can be transported. Aquaporins are highly abundant in kidney epithelial cells where they play a critical role with respect to water balance. In this review we summarize the current knowledge with respect to the localization and function of AQPs within the kidney tubule, and their role in mammalian water homeostasis and the water balance disorders. Overviews of practical aspects with regard to differential diagnosis for some of these disorders, alongside treatment strategies are also discussed.
Collapse
Affiliation(s)
- Hanne B Moeller
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark
| | - Cecilia H Fuglsang
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark
| | - Robert A Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark.
| |
Collapse
|
41
|
The AQP-3 water channel is a pivotal modulator of glycerol-induced chloride channel activation in nasopharyngeal carcinoma cells. Int J Biochem Cell Biol 2016; 72:89-99. [PMID: 26794461 DOI: 10.1016/j.biocel.2016.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 11/22/2022]
Abstract
Aquaporin (AQP) and chloride channels are ubiquitous in virtually all living cells, playing pivotal roles in cell proliferation, migration and apoptosis. We previously reported that AQP-3 aquaglyceroporin and ClC-3 chloride channels could form complexes to regulate cell volume in nasopharyngeal carcinoma cells. In this study, the roles of AQP-3 in their hetero-complexes were further investigated. Glycerol entered the cells via AQP-3 and induced two different Cl(-) currents through cell swelling-dependent or -independent pathways. The swelling-dependent Cl(-) current was significantly inhibited by pretreatment with CuCl2 and AQP-3-siRNA. After siRNA-induced AQP-3 knock-down, the 140 mM glycerol isoosmotic solution swelled cells by 22% (45% in AQP-3-intact cells) and induced a smaller Cl(-) current; this current was smaller than that activated by 8% cell volume swelling, which induced by the 140 mM glycerol hyperosmotic solution in AQP-3-intact cells. This suggests that the interaction between AQP-3 and ClC-3 plays an important role in cell volume regulation and that AQP-3 may be a modulator that opens volume-regulated chloride channels. The swelling-independent Cl(-) current, which was activated by extracellular glycerol, was reduced by CuCl2 and AQP-3-siRNA pretreatment. Dialyzing glycerol into cells via the pipette directly induced the swelling-independent Cl(-) current; however this current was blocked by AQP-3 down-regulation, suggesting AQP-3 is essential for the opening of chloride channels. In conclusion, AQP-3 is the pathway for water, glycerol and other small solutes to enter cells, and it may be an essential modulator for the gating of chloride channels.
Collapse
|
42
|
Alsady M, Baumgarten R, Deen PMT, de Groot T. Lithium in the Kidney: Friend and Foe? J Am Soc Nephrol 2015; 27:1587-95. [PMID: 26577775 DOI: 10.1681/asn.2015080907] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Trace amounts of lithium are essential for our physical and mental health, and administration of lithium has improved the quality of life of millions of patients with bipolar disorder for >60 years. However, in a substantial number of patients with bipolar disorder, long-term lithium therapy comes at the cost of severe renal side effects, including nephrogenic diabetes insipidus and rarely, ESRD. Although the mechanisms underlying the lithium-induced renal pathologies are becoming clearer, several recent animal studies revealed that short-term administration of lower amounts of lithium prevents different forms of experimental AKI. In this review, we discuss the knowledge of the pathologic and therapeutic effects of lithium in the kidney. Furthermore, we discuss the underlying mechanisms of these seemingly paradoxical effects of lithium, in which fine-tuned regulation of glycogen synthase kinase type 3, a prime target for lithium, seems to be key. The new discoveries regarding the protective effect of lithium against AKI in rodents call for follow-up studies in humans and suggest that long-term therapy with low lithium concentrations could be beneficial in CKD.
Collapse
Affiliation(s)
- Mohammad Alsady
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | | | - Peter M T Deen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | - Theun de Groot
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| |
Collapse
|
43
|
Küper C, Beck FX, Neuhofer W. Dual effect of lithium on NFAT5 activity in kidney cells. Front Physiol 2015; 6:264. [PMID: 26441681 PMCID: PMC4585311 DOI: 10.3389/fphys.2015.00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/07/2015] [Indexed: 01/20/2023] Open
Abstract
Lithium salts are used widely for treatment of bipolar and other mental disorders. Lithium therapy is accompanied frequently by renal side effects, such as nephrogenic diabetes insipidus or chronic kidney disease (CKD), but the molecular mechanisms underlying these effects are still poorly understood. In the present study we examined the effect of lithium on the activity of the osmosensitive transcriptional activator nuclear factor of activated T cells 5 (NFAT5, also known as TonEBP), which plays a key role in renal cellular osmoprotection and urinary concentrating ability. Interestingly, we found different effects of lithium on NFAT5 activity, depending on medium osmolality and incubation time. When cells were exposed to lithium for a relative short period (24 h), NFAT5 activity was significantly increased, especially under isosmotic conditions, resulting in an enhanced expression of the NFAT5 target gene heat shock protein 70 (HSP70). Further analysis revealed that the increase of NFAT5 activity depended primarily on an enhanced activity of the c-terminal transactivation domain (TAD), while NFAT5 protein abundance was largely unaffected. Enhanced activity of the TAD is probably mediated by lithium-induced inhibitory phosphorylation of glycogen synthase kinase 3β (GSK-3β), which is in accordance with previous studies. When cells were exposed to lithium for a longer period (96 h), cellular NFAT5 activity and subsequently expression of HSP70 significantly decreased under hyperosmotic conditions, due to diminished NFAT5 protein abundance, also resulting from GSK-3β inhibition. Taken together, our results provide evidence that lithium has opposing effects on NFAT5 activity, depending on environmental osmolality and exposure duration. The potential impacts of these observations on the diverse effects of lithium on kidney function are discussed.
Collapse
Affiliation(s)
- Christoph Küper
- Department of Physiology, University of Munich Munich, Germany
| | | | - Wolfgang Neuhofer
- Medical Clinic V, University Hospital Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
44
|
Park EJ, Kwon TH. A Minireview on Vasopressin-regulated Aquaporin-2 in Kidney Collecting Duct Cells. Electrolyte Blood Press 2015; 13:1-6. [PMID: 26240594 PMCID: PMC4520882 DOI: 10.5049/ebp.2015.13.1.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/09/2015] [Indexed: 11/30/2022] Open
Abstract
The kidney collecting duct is an important renal tubular segment for the regulation of body water and salt homeostasis. Water reabsorption in the collecting duct cells is regulated by arginine vasopressin (AVP) via the vasopressin V2-receptor (V2R). AVP increases the osmotic water permeability of the collecting duct cells through aquaporin-2 (AQP2) and aquaporin-3 (AQP3). AVP induces the apical targeting of AQP2 and transcription of AQP2 gene in the kidney collecting duct principal cells. The signaling transduction pathways resulting in the AQP2 trafficking to the apical plasma membrane of the collecting duct principal cells, include AQP2 phosphorylation, RhoA phosphorylation, actin depolymerization and calcium mobilization, and the changes of AQP2 protein abundance in water balance disorders have been extensively studied. These studies elucidate the underlying cellular and molecular mechanisms of body water homeostasis and provide the basis for the treatment of body water balance disorders.
Collapse
Affiliation(s)
- Eui-Jung Park
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
45
|
Behl T, Kotwani A, Kaur I, Goel H. Mechanisms of prolonged lithium therapy-induced nephrogenic diabetes insipidus. Eur J Pharmacol 2015; 755:27-33. [DOI: 10.1016/j.ejphar.2015.02.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
|
46
|
The Authors Reply:. Kidney Int 2015; 87:862-3. [DOI: 10.1038/ki.2014.412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Weiner ID, Leader JP, Bedford JJ, Verlander JW, Ellis G, Kalita P, Vos F, de Jong S, Walker RJ. Effects of chronic lithium administration on renal acid excretion in humans and rats. Physiol Rep 2014; 2:2/12/e12242. [PMID: 25501430 PMCID: PMC4332220 DOI: 10.14814/phy2.12242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lithium therapy's most common side effects affecting the kidney are nephrogenic diabetes insipidus (NDI) and chronic kidney disease. Lithium may also induce a distal renal tubular acidosis. This study investigated the effect of chronic lithium exposure on renal acid–base homeostasis, with emphasis on ammonia and citrate excretion. We compared 11 individuals on long‐term lithium therapy with six healthy individuals. Under basal conditions, lithium‐treated individuals excreted significantly more urinary ammonia than did control subjects. Following an acute acid load, urinary ammonia excretion increased approximately twofold above basal rates in both lithium‐treated and control humans. There were no significant differences between lithium‐treated and control subjects in urinary pH or urinary citrate excretion. To elucidate possible mechanisms, rats were randomized to diets containing lithium or regular diet for 6 months. Similar to humans, basal ammonia excretion was significantly higher in lithium‐treated rats; in addition, urinary citrate excretion was also significantly greater. There were no differences in urinary pH. Expression of the critical ammonia transporter, Rhesus C Glycoprotein (Rhcg), was substantially greater in lithium‐treated rats than in control rats. We conclude that chronic lithium exposure increases renal ammonia excretion through mechanisms independent of urinary pH and likely to involve increased collecting duct ammonia secretion via the ammonia transporter, Rhcg. This study investigated the effect of chronic lithium exposure on renal acid–base homeostasis, with emphasis on ammonia and citrate excretion. Chronic lithium exposure increases renal ammonia excretion through mechanisms independent of urinary pH and likely to involve increased collecting duct ammonia secretion via the ammonia transporter, Rhcg.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, NF/SGVHS, Gainesville, Florida Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - John P Leader
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Jill W Verlander
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Gaye Ellis
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Priyakshi Kalita
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Frederiek Vos
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Sylvia de Jong
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Robert J Walker
- Department of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
48
|
Fenton RA, Murray F, Dominguez Rieg JA, Tang T, Levi M, Rieg T. Renal phosphate wasting in the absence of adenylyl cyclase 6. J Am Soc Nephrol 2014; 25:2822-34. [PMID: 24854272 PMCID: PMC4243352 DOI: 10.1681/asn.2013101102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/31/2014] [Indexed: 11/03/2022] Open
Abstract
Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23) enhance phosphate excretion by the proximal tubule of the kidney by retrieval of the sodium-dependent phosphate transporters (Npt2a and Npt2c) from the apical plasma membrane. PTH activates adenylyl cyclase (AC) through PTH 1 receptors and stimulates the cAMP/PKA signaling pathway. However, the precise role and isoform(s) of AC in phosphate homeostasis are not known. We report here that mice lacking AC6 (AC6(-/-)) have increased plasma PTH and FGF-23 levels compared with wild-type (WT) mice but comparable plasma phosphate concentrations. Acute activation of the calcium-sensing receptor or feeding a zero phosphate diet almost completely suppressed plasma PTH levels in both AC6(-/-) and WT mice, indicating a secondary cause for hyperparathyroidism. Pharmacologic blockade of FGF receptors resulted in a comparable increase in plasma phosphate between genotypes, whereas urinary phosphate remained significantly higher in AC6(-/-) mice. Compared with WT mice, AC6(-/-) mice had reduced renal Npt2a and Npt2c protein abundance, with approximately 80% of Npt2a residing in lysosomes. WT mice responded to exogenous PTH with redistribution of Npt2a from proximal tubule microvilli to intracellular compartments and lysosomes alongside a PTH-induced dose-response relationship for fractional phosphate excretion and urinary cAMP excretion. These responses were absent in AC6(-/-) mice. In conclusion, AC6 in the proximal tubule modulates cAMP formation, Npt2a trafficking, and urinary phosphate excretion, which are highlighted by renal phosphate wasting in AC6(-/-) mice.
Collapse
Affiliation(s)
- Robert A Fenton
- Interactions of Proteins in Epithelial Transport Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Fiona Murray
- Department of Medicine, University of California San Diego, La Jolla, California
| | | | - Tong Tang
- Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Moshe Levi
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Timo Rieg
- Department of Medicine, University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California; and
| |
Collapse
|
49
|
Paeng J, Chang JH, Lee SH, Nam BY, Kang HY, Kim S, Oh HJ, Park JT, Han SH, Yoo TH, Kang SW. Enhanced glycogen synthase kinase-3β activity mediates podocyte apoptosis under diabetic conditions. Apoptosis 2014; 19:1678-90. [DOI: 10.1007/s10495-014-1037-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Kortenoeven MLA, Fenton RA. Renal aquaporins and water balance disorders. Biochim Biophys Acta Gen Subj 2013; 1840:1533-49. [PMID: 24342488 DOI: 10.1016/j.bbagen.2013.12.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin. SCOPE OF REVIEW This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies. MAJOR CONCLUSIONS Dysfunctions of AQPs are involved in disorders associated with disturbed water homeostasis. Hyponatremia with increased AQP levels can be caused by diseases with low effective circulating blood volume, such as congestive heart failure, or osmoregulation disorders such as the syndrome of inappropriate secretion of antidiuretic hormone. Treatment consists of fluid restriction, demeclocycline and vasopressin type-2 receptor antagonists. Decreased AQP levels can lead to diabetes insipidus (DI), characterized by polyuria and polydipsia. In central DI, vasopressin production is impaired, while in gestational DI, levels of the vasopressin-degrading enzyme vasopressinase are abnormally increased. Treatment consists of the vasopressin analogue dDAVP. Nephrogenic DI is caused by the inability of the kidney to respond to vasopressin and can be congenital, but is most commonly acquired, usually due to lithium therapy. Treatment consists of sufficient fluid supply, low-solute diet and diuretics. GENERAL SIGNIFICANCE In recent years, our understanding of the underlying mechanisms of water balance disorders has increased enormously, which has opened up several possible new treatment strategies. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Marleen L A Kortenoeven
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark.
| |
Collapse
|