1
|
Yang K, Zhang P, Ding X, Yu G, Liu J, Yang Y, Fang J, Liu Q, Zhang L, Li J, Wu F. Integrating bioinformatics and metabolomics to identify potential biomarkers of hypertensive nephropathy. Sci Rep 2025; 15:7437. [PMID: 40032896 PMCID: PMC11876634 DOI: 10.1038/s41598-025-89601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Hypertensive nephropathy (HN), caused by long-term poorly controlled hypertension, is the second common cause of end-stage renal disease after diabetes mellitus, but the pathogenesis of HN is unclear. The purpose of this study was to identify the biological pathways involved in the progression of HN and bile acid (BA)-related biomarkers, and to analyze the role of bile acids in HN. Download gene microarray data from Gene Expression Omnibus. Differentially expressed genes (DEGs) associated with HN were identified, and then DEGs were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. A protein-protein interaction (PPI) network was established using DEGs to identify BA-related hub genes in combination with bile acid identical targets. An animal model of early hypertensive nephropathy was established using SHR and the concentrations of 39 bile acids were measured quantitatively in the renal cortex to screen for significantly different concentrations and to analyze the correlation between bile acid concentrations and blood pressure. A total of 398 DEGs were screened. The results of enrichment analysis identified multiple biological pathways associated with hypertension, nephropathy and bile acids. Combining PPI network and bile acid-related targets, three BA-related hub genes (APOE, ALB, SERPINA1) were identified. Quantitative analysis of bile acids revealed significant differences in the concentrations of seven bile acids (DCA, CDCA, UDCA, UCA, CA, TDCA, TCDCA). The concentrations of these bile acids showed a positive correlation with blood pressure values in SHR, with CA, DCA and TDCA showing a stronger correlation and specificity with blood pressure in SHR. Three BA-related hub genes (APOE, ALB, SERPINA1) may be involved in the early stages of HN. The concentrations of multiple bile acids were significantly elevated in the early stages of HN, with CA, DCA and TDCA being more correlated and specific with blood pressure and having higher diagnostic value. These BA-related hub genes and BAs may be involved in disease progression in the early stages of HN.
Collapse
Affiliation(s)
- Kezhen Yang
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Pingna Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiaofeng Ding
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gong Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jipeng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qingguo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lu Zhang
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Jianhua Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Fangchao Wu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
2
|
Xu L, Li D, Song Z, Liu J, Zhou Y, Yang J, Wen P. The association between monocyte to high-density lipoprotein cholesterol ratio and chronic kidney disease in a Chinese adult population: a cross-sectional study. Ren Fail 2024; 46:2331614. [PMID: 38522954 PMCID: PMC10962299 DOI: 10.1080/0886022x.2024.2331614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Monocyte to high-density lipoprotein cholesterol ratio (MHR) was confirmed as a novel inflammatory marker and strongly associated with the risk of several diseases. This study aimed to investigate the relationship between MHR and chronic kidney disease (CKD) in a Chinese adult population. METHODS In this cross-sectional study, 232,775 community-dwelling adults in Binhai who completed health checkups in 2021 were enrolled. Participants were categorized based on the MHR quartiles. Clinical characteristics of participants across different groups were compared using one-way ANOVA, Kruskal-Wallis h-test, and Chi-squared test as appropriate. Univariate and multivariable logistic regression analyses were taken to assess the relationship between MHR and the presence of CKD, as well as its association with low estimated glomerular filtration rate (eGFR) and proteinuria. Subgroup analyses were further executed to confirm the reliability of this relationship. RESULTS A total of 21,014 (9.0%) individuals were diagnosed with CKD. Characteristic indicators including waist circumference, body mass index (BMI), blood pressure (BP), serum uric acid (SUA), triglyceride, and fasting blood glucose (FBG) showed a gradual increase with higher MHR quartiles, whereas parameters such as age, total cholesterol, high-density lipoprotein cholesterol (HDL-C), and eGFR decreased (p < .001). In the multivariable logistic regression analysis, we observed independent associations between MHR (per 1 SD increase) and CKD, as well as low eGFR and proteinuria, with odds ratio (ORs) and 95% confidence intervals (95%CIs) of 1.206 (1.186-1.225), 1.289 (1.260-1.319), and 1.150 (1.129-1.171), respectively (p < .001). Similar conclusions were confirmed in subgroup analysis stratified by gender, age, BMI, central obesity, hypertension, and diabetes mellitus, after justification for confounding factors. CONCLUSION Elevated MHR level was independently associated with the presence of CKD, suggesting that it might serve as a useful clinical tool for risk stratification, offering valuable insights to inform preventive and therapeutic approaches for clinicians in their routine medical practice.
Collapse
Affiliation(s)
- Lingling Xu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongling Li
- Department of Nephrology, People’s Hospital of Binhai County, Yancheng, Jiangsu, China
| | - Zongwei Song
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Liu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Zhou
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Wen
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Li S, Qin J, Zhao Y, Wang J, Huang S, Yu X. Tubular insulin-induced gene 1 deficiency promotes NAD + consumption and exacerbates kidney fibrosis. EMBO Mol Med 2024; 16:1675-1703. [PMID: 38806641 PMCID: PMC11251182 DOI: 10.1038/s44321-024-00081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Profibrotic proximal tubules (PT) were identified as a unique phenotype of proximal tubule cells (PTCs) in renal fibrosis by single-cell RNA sequencing (scRNA-seq). Controlling the process of renal fibrosis requires understanding how to manage the S1 subset's branch to the S3 subset rather than to the profibrotic PT subset. Insulin-induced gene 1 (Insig1) is one of the branch-dependent genes involved in controlling this process, although its role in renal fibrosis is unknown. Here, we discovered that tubular Insig1 deficiency, rather than fibroblast Insig1 deficiency, plays a detrimental role in the pathogenesis of renal fibrosis in vivo and in vitro. Overexpression of Insig1 profoundly inhibited renal fibrosis. Mechanistically, Insig1 deletion in PTCs boosted SREBP1 nuclear localization, increasing Aldh1a1 transcriptional activity, causing excessive NAD+ consumption and ER enlargement, as well as accelerating renal fibrosis. We also identified nicardipine as a selective inhibitor of Aldh1a1, which could restore NAD+ and maintain ER homeostasis, as well as improve renal fibrosis. Together, our findings support tubular Insig1 as a new therapeutic target for chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Shumin Li
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Jun Qin
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
- Department of Pediatrics, Yancheng City No.1 People's Hospital, 224005, Yancheng, China
| | - Yingying Zhao
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Jiali Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
| | - Songming Huang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China.
| | - Xiaowen Yu
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China.
| |
Collapse
|
4
|
Zheng L, Zhang R, Chen X, Luo Y, Du W, Zhu Y, Ruan YC, Xu J, Wang J, Qin L. Chronic kidney disease: a contraindication for using biodegradable magnesium or its alloys as potential orthopedic implants? Biomed Mater 2024; 19:045023. [PMID: 38815612 DOI: 10.1088/1748-605x/ad5241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Magnesium (Mg) has gained widespread recognition as a potential revolutionary orthopedic biomaterial. However, whether the biodegradation of the Mg-based orthopedic implants would pose a risk to patients with chronic kidney disease (CKD) remains undetermined as the kidney is a key organ regulating mineral homeostasis. A rat CKD model was established by a 5/6 subtotal nephrectomy approach, followed by intramedullary implantation of three types of pins: stainless steel, high pure Mg with high corrosion resistance, and the Mg-Sr-Zn alloy with a fast degradation rate. The long-term biosafety of the biodegradable Mg or its alloys as orthopedic implants were systematically evaluated. During an experimental period of 12 weeks, the implantation did not result in a substantial rise of Mg ion concentration in serum or major organs such as hearts, livers, spleens, lungs, or kidneys. No pathological changes were observed in organs using various histological techniques. No significantly increased iNOS-positive cells or apoptotic cells in these organs were identified. The biodegradable Mg or its alloys as orthopedic implants did not pose an extra health risk to CKD rats at long-term follow-up, suggesting that these biodegradable orthopedic devices might be suitable for most target populations, including patients with CKD.
Collapse
Affiliation(s)
- Lizhen Zheng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China, People's Republic of China
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Ri Zhang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Xin Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Ying Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wanting Du
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Jiali Wang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
- Hong Kong-Shenzhen Innovation and Technology Institute (Futian), The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| |
Collapse
|
5
|
Sun J, Zhang X, Wang S, Chen D, Shu J, Chong N, Wang Q, Xu Y. Dapagliflozin improves podocytes injury in diabetic nephropathy via regulating cholesterol balance through KLF5 targeting the ABCA1 signalling pathway. Diabetol Metab Syndr 2024; 16:38. [PMID: 38326870 PMCID: PMC10851504 DOI: 10.1186/s13098-024-01271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Diabetic nephropathy (DN), one of the more prevalent microvascular complications in patients diagnosed with diabetes mellitus, is attributed as the main cause of end-stage renal disease (ESRD). Lipotoxicity in podocytes caused by hyperglycemia has been recognised as a significant pathology change, resulting in the deterioration of the glomerular filtration barrier. Research has demonstrated how dapagliflozin, a kind of SGLT2i, exhibits a multifaceted and powerful protective effect in DN, entirely independent of the hypoglycemic effect, with the specific mechanism verified. In this present study, we found that dapagliflozin has the potential to alleviate apoptosis and restore cytoskeleton triggered by high glucose (HG) in vivo and in vitro. We also discovered that dapagliflozin could mitigate podocyte cholesterol accumulation by restoring the expression of ABCA1, which is the key pathway for cholesterol outflows. This research also mechanistically demonstrates that the protective effect of dapagliflozin can be mediated by KLF-5, which is the upstream transcription factor of ABCA1. Taken together, our data suggest that dapagliflozin offers significant potential in alleviating podocyte injury and cholesterol accumulation triggered by high glucose. In terms of the mechanism, we herein reveal that dapagliflozin could accelerate cholesterol efflux by restoring the expression of ABCA1, which is directly regulated by KLF-5.
Collapse
Affiliation(s)
- Jingshu Sun
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong, China
| | - Xinyu Zhang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Simeng Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Dandan Chen
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jianqiang Shu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Nannan Chong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qinglian Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Ying Xu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Chao Y, Li N, Xiong S, Zhang G, Gao S, Dong X. Lipidomics based on liquid chromatography-high resolution mass spectrometry reveals the protective role of peroxisome proliferator-activated receptor alpha on kidney stone formation in mice treated with glyoxylate. J Sep Sci 2023; 46:e2300452. [PMID: 37880903 DOI: 10.1002/jssc.202300452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/27/2023]
Abstract
Few studies have examined the relationship between lipid metabolism and kidney stone formation, particularly the role of key lipid regulatory factors in kidney stone formation. We evaluated the effect of the lipid regulatory factor-peroxisome proliferator-activated receptor alpha on the formation of renal stones in mice by injecting them with glyoxylate followed by treatment with either a peroxisome proliferator-activated receptor alpha agonist fenofibrate or an antagonist GW6471 (GW). Liquid chromatography coupled with trapped ion mobility spectrometry-quadrupole-time-of-flight mass spectrometry-based lipidomics was used to determine the lipid profile in the mouse kidneys. Histological and biochemical analyses showed that the mice injected with glyoxylate exhibited crystal precipitation and renal dysfunction. Crystallization decreased significantly in the fenofibrate group, whereas it increased significantly in the GW group. A total of 184 lipids, including fatty acyls, glycerolipids, glycerophospholipids, and sphingolipids differed significantly between the mice in the model and control groups. Peroxisome proliferator-activated receptor alpha activity negatively correlated with glyoxylate-induced kidney stone formation in mice, which may be related to improved fatty acid oxidation, maintenance of ceramide/complex sphingolipids cycle balance, and alleviation of disorder in phospholipid metabolism.
Collapse
Affiliation(s)
- Yufan Chao
- School of Medicine, Shanghai University, Shanghai, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Shili Xiong
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Clinical Research Center, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Claudio P, Gabriella M. Nephrotic syndrome: pathophysiology and consequences. J Nephrol 2023; 36:2179-2190. [PMID: 37466816 DOI: 10.1007/s40620-023-01697-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
In patients with kidney disease, nephrotic syndrome can lead to several complications including progressive kidney dysfunction. Proteinuria may lead to the formation of cellular or fibrous crescents with reciprocal development of rapidly progressive glomerulonephritis or focal glomerulosclerosis. Proteinuria may also cause overload and dysfunction of tubular epithelial cells, eventually resulting in tubular atrophy and interstitial fibrosis. Hypoalbuminemia is usually associated with increased risk of mortality and kidney dysfunction. Dyslipidemia may increase the risk of atherosclerotic complications, cause podocyte dysfunction and contribute to vascular thrombosis. Urinary loss of anticoagulants and overproduction of coagulation factors may facilitate a hypercoagulable state. Edema, hypogammaglobulinemia, loss of complement factors, and immunosuppressive therapy can favor infection. Treatment of these complications may reduce their impact on the severity of NS. Nephrotic syndrome is a kidney disorder that can worsen the quality of life and increase the risk of kidney disease progression.
Collapse
Affiliation(s)
| | - Moroni Gabriella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Nephrology and Dialysis Division, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| |
Collapse
|
8
|
Chen JS, Xie PF, Feng H. The role of exercise in improving hyperlipidemia-renal injuries induced by a high-fat diet: a literature review. PeerJ 2023; 11:e15435. [PMID: 37283893 PMCID: PMC10239619 DOI: 10.7717/peerj.15435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
A diet that is high in sugar and fat is a precursor to various chronic diseases, especially hyperlipidemia. Patients with hyperlipidemia have increased levels of plasma free fatty acids and an ectopic accumulation of lipids. The kidney is one of the main organs affected by this disease and, recently, there have been more studies conducted on renal injury caused by hyperlipidemia. The main pathological mechanism is closely related to renal lipotoxicity. However, in different kidney cells, the reaction mechanism varies due to the different affinities of the lipid receptors. At present, it is believed that in addition to lipotoxicity, hyperlipidemia induced-renal injury is also closely related to oxidative stress, endoplasmic reticulum stress, and inflammatory reactions, which are the result of multiple factors. Exercise plays an important role in the prevention of various chronic diseases and recently emerging researches indicated its positive effects to renal injury caused by hyperlipidemia. However, there are few studies summarizing the effects of exercise on this disease and the specific mechanisms need to be further explored. This article summarizes the mechanisms of hyperlipidemia induced-renal injury at the cellular level and discusses the ways in which exercise may regulate it. The results provide theoretical support and novel approaches for identifying the intervention target to treat hyperlipidemia induced-renal injury.
Collapse
Affiliation(s)
- Jun Shunzi Chen
- Institute of Exercise and Health, Tianjin University of Sport, Tianjin, Tianjin, China
- Institute of Physical Education, Guiyang University, Guiyang, Guizhou, China
| | - Peng Fei Xie
- Guizhou Institute of Sports Science, Guiyang, Guizhou, China
| | - Hong Feng
- Institute of Exercise and Health, Tianjin University of Sport, Tianjin, Tianjin, China
| |
Collapse
|
9
|
Liu S, Lu Z, Fu Z, Li H, Gui C, Deng Y. Clinicopathological Characteristics and Outcomes of Immunoglobulin A Nephropathy with Different Types of Dyslipidemia: A Retrospective Single-Center Study. Kidney Blood Press Res 2023; 48:186-193. [PMID: 37062274 PMCID: PMC10108400 DOI: 10.1159/000529822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/08/2023] [Indexed: 04/18/2023] Open
Abstract
INTRODUCTION Immunoglobulin A nephropathy (IgAN) is one of the most common glomerulonephritic diseases in the world. Several lines of evidence have suggested that dyslipidemia is related to the disease progression and prognosis of IgAN. However, the study is scarce on the clinicopathological characteristics and outcomes of IgAN with dyslipidemia. METHODS This study retrospectively analyzed 234 patients with biopsy-proven idiopathic IgAN at the Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, between January 2015 and June 2021. The participants were divided into dyslipidemia (n = 119) and non-dyslipidemia (n = 115), and the dyslipidemia group was also divided into the following 4 groups: hypertriglyceridemia group, hypercholesterolemia group, mixed hyperlipidemia group, and low high-density lipoprotein cholesterol group. The estimated glomerular filtration rate (eGFR) was estimated by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. RESULTS The prevalence of dyslipidemia in IgAN patients in our center was 50.9% (119/234). The patients with dyslipidemia presented with higher systolic blood pressure (BP), diastolic BP, serum creatinine, uric acid, hemoglobin, proteinuria, and eGFR (p < 0.05). Proportions of males, hypertension, and chronic kidney disease stage 2∼5 were also higher in the dyslipidemia group (p < 0.05). Similarly, the pathological characteristics performed were worse in the dyslipidemia group. Most dyslipidemia patients had a higher percentage of mesangial hypercellularity (M1) and tubular atrophy/interstitial fibrosis (T1∼2) in the Oxford Classification's scoring system (p < 0.05). Multivariate logistic regression analysis revealed that male gender (odds ratio [OR] = 2.397, 95% confidence interval [CI]: 1.051-5.469, p = 0.038) and proteinuria (OR = 1.000, 95% CI: 1.000-1.001, p = 0.035) were possible risk factors for dyslipidemia. A total of 13 patients (13.8%) in the dyslipidemia group had an endpoint event, of which 6 patients (6.4%) had a ≥50% decrease in eGFR from baseline and 7 patients (7.4%) reached the end-stage renal disease stage. Kaplan-Meier survival curve analysis showed that patients in the dyslipidemia group had a worse outcome than those in the non-dyslipidemia group (log-rank test, p = 0.048). CONCLUSIONS IgAN patients with dyslipidemia presented more severe clinicopathological characteristics. Male gender and proteinuria are significantly associated with the occurrence of dyslipidemia in IgAN patients. Patients in the dyslipidemia group had a worse prognosis than those in the non-dyslipidemia group, which may be essential for the disease management of IgAN and help identify the high-risk patients.
Collapse
Affiliation(s)
- Sidi Liu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
| | - Zhenzhen Lu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhike Fu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huijie Li
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuying Gui
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueyi Deng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Rasmussen MQ, Tindbæk G, Nielsen MM, Merrild C, Steiniche T, Pedersen JS, Moestrup SK, Degn SE, Madsen M. Epigenetic Silencing of LRP2 Is Associated with Dedifferentiation and Poor Survival in Multiple Solid Tumor Types. Cancers (Basel) 2023; 15:cancers15061830. [PMID: 36980716 PMCID: PMC10046670 DOI: 10.3390/cancers15061830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
More than 80% of human cancers originate in epithelial tissues. Loss of epithelial cell characteristics are hallmarks of tumor development. Receptor-mediated endocytosis is a key function of absorptive epithelial cells with importance for cellular and organismal homeostasis. LRP2 (megalin) is the largest known endocytic membrane receptor and is essential for endocytosis of various ligands in specialized epithelia, including the proximal tubules of the kidney, the thyroid gland, and breast glandular epithelium. However, the role and regulation of LRP2 in cancers that arise from these tissues has not been delineated. Here, we examined the expression of LRP2 across 33 cancer types in The Cancer Genome Atlas. As expected, the highest levels of LRP2 were found in cancer types that arise from LRP2-expressing absorptive epithelial cells. However, in a subset of tumors from these cancer types, we observed epigenetic silencing of LRP2. LRP2 expression showed a strong inverse correlation to methylation of a specific CpG site (cg02361027) in the first intron of the LRP2 gene. Interestingly, low expression of LRP2 was associated with poor patient outcome in clear cell renal cell carcinoma, papillary renal cell carcinoma, mesothelioma, papillary thyroid carcinoma, and invasive breast carcinoma. Furthermore, loss of LRP2 expression was associated with dedifferentiated histological and molecular subtypes of these cancers. These observations now motivate further studies on the functional role of LRP2 in tumors of epithelial origin and the potential use of LRP2 as a cancer biomarker.
Collapse
Affiliation(s)
| | - Gitte Tindbæk
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Clinical Biochemistry, Horsens Regional Hospital, 8700 Horsens, Denmark
| | - Morten Muhlig Nielsen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Camilla Merrild
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jakob Skou Pedersen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Bioinformatics Research Center (BiRC), Aarhus University, 8000 Aarhus, Denmark
| | - Søren K Moestrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Cancer and Inflammation Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Søren E Degn
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Mette Madsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
11
|
Megalin and Vitamin D Metabolism—Implications in Non-Renal Tissues and Kidney Disease. Nutrients 2022; 14:nu14183690. [PMID: 36145066 PMCID: PMC9506339 DOI: 10.3390/nu14183690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Megalin is an endocytic receptor abundantly expressed in proximal tubular epithelial cells and other calciotropic extrarenal cells expressing vitamin D metabolizing enzymes, such as bone and parathyroid cells. The receptor functions in the uptake of the vitamin D-binding protein (DBP) complexed to 25 hydroxyvitamin D3 (25(OH)D3), facilitating the intracellular conversion of precursor 25(OH)D3 to the active 1,25 dihydroxyvitamin D3 (1,25(OH)2D3). The significance of renal megalin-mediated reabsorption of 25(OH)D3 and 1,25(OH)2D3 has been well established experimentally, and other studies have demonstrated relevant roles of extrarenal megalin in regulating vitamin D homeostasis in mammary cells, fat, muscle, bone, and mesenchymal stem cells. Parathyroid gland megalin may regulate calcium signaling, suggesting intriguing possibilities for megalin-mediated cross-talk between calcium and vitamin D regulation in the parathyroid; however, parathyroid megalin functionality has not been assessed in the context of vitamin D. Within various models of chronic kidney disease (CKD), megalin expression appears to be downregulated; however, contradictory results have been observed between human and rodent models. This review aims to provide an overview of the current knowledge of megalin function in the context of vitamin D metabolism, with an emphasis on extrarenal megalin, an area that clearly requires further investigation.
Collapse
|
12
|
Elsakka EGE, Mokhtar MM, Hegazy M, Ismail A, Doghish AS. Megalin, a multi-ligand endocytic receptor, and its participation in renal function and diseases: A review. Life Sci 2022; 308:120923. [PMID: 36049529 DOI: 10.1016/j.lfs.2022.120923] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
The endocytosis mechanism is a complicated system that is essential for cell signaling and survival. Megalin, a membrane-associated endocytic receptor, and its related proteins such as cubilin, the neonatal Fc receptor for IgG, and NaPi-IIa are important in receptors-mediated endocytosis. Physiologically, megalin uptakes plasma vitamins and proteins from primary urine, preventing their loss. It also facilitates tubular retrieval of solutes and endogenous components that may be involved in modulation and recovery from kidney injuries. Moreover, megalin is responsible for endocytosis of xenobiotics and drugs in renal tubules, increasing their half-life and/or their toxicity. Fluctuations in megalin expression and/or functionality due to changes in its regulatory mechanisms are associated with some sort of kidney injury. Also, it's an important component of several pathological conditions, including diabetic nephropathy and Dent disease. Thus, exploring the fundamental role of megalin in the kidney might help in the protection and/or treatment of multiple kidney-related diseases. Hence, this review aimed to explore the physiological roles of megalin in the kidney and their implications for kidney-related injuries.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
13
|
Li MT, Liu LL, Zhou Q, Huang LX, Shi YX, Hou JB, Lu HT, Yu B, Chen W, Guo ZY. Phyllanthus Niruri L. Exerts Protective Effects Against the Calcium Oxalate-Induced Renal Injury via Ellgic Acid. Front Pharmacol 2022; 13:891788. [PMID: 36034880 PMCID: PMC9400657 DOI: 10.3389/fphar.2022.891788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Urolithiasis or kidney stones is a common and frequently occurring renal disease; calcium oxalate (CaOx) crystals are responsible for 80% of urolithiasis cases. Phyllanthus niruri L. (PN) has been used to treat urolithiasis. This study aimed to determine the potential protective effects and molecular mechanism of PN on calcium oxalate-induced renal injury.Methods: Microarray data sets were generated from the calcium oxalate-induced renal injury model of HK-2 cells and potential disease-related targets were identified. Network pharmacology was employed to identify drug-related targets of PN and construct the active ingredient-target network. Finally, the putative therapeutic targets and active ingredients of PN were verified in vitro and in vivo.Results: A total of 20 active ingredients in PN, 2,428 drug-related targets, and 127 disease-related targets were identified. According to network pharmacology analysis, HMGCS1, SQLE, and SCD were identified as predicted therapeutic target and ellagic acid (EA) was identified as the active ingredient by molecular docking analysis. The increased expression of SQLE, SCD, and HMGCS1 due to calcium oxalate-induced renal injury in HK-2 cells was found to be significantly inhibited by EA. Immunohistochemical in mice also showed that the levels of SQLE, SCD, and HMGCS1 were remarkably restored after EA treatment.Conclusion: EA is the active ingredient in PN responsible for its protective effects against CaOx-induced renal injury. SQLE, SCD, and HMGCS1 are putative therapeutic targets of EA.
Collapse
Affiliation(s)
- Mao-Ting Li
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lu-Lu Liu
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi Zhou
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lin-Xi Huang
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu-Xuan Shi
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie-Bin Hou
- Department of Nephrology, the Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hong-Tao Lu
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University, Shanghai, China
| | - Wei Chen
- Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Wei Chen, ; Zhi-Yong Guo,
| | - Zhi-Yong Guo
- Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Wei Chen, ; Zhi-Yong Guo,
| |
Collapse
|
14
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
15
|
Molitoris BA, Sandoval RM, Yadav SPS, Wagner MC. Albumin Uptake and Processing by the Proximal Tubule: Physiologic, Pathologic and Therapeutic Implications. Physiol Rev 2022; 102:1625-1667. [PMID: 35378997 PMCID: PMC9255719 DOI: 10.1152/physrev.00014.2021] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.
Collapse
Affiliation(s)
- Bruce A. Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Dept.of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ruben M. Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shiv Pratap S. Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Mark C. Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
16
|
Kozyraki R, Verroust P, Cases O. Cubilin, the intrinsic factor-vitamin B12 receptor. VITAMINS AND HORMONES 2022; 119:65-119. [PMID: 35337634 DOI: 10.1016/bs.vh.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cubilin (CUBN), the intrinsic factor-vitamin B12 receptor is a large endocytic protein involved in various physiological functions: vitamin B12 uptake in the gut; reabsorption of albumin and maturation of vitamin D in the kidney; nutrient delivery during embryonic development. Cubilin is an atypical receptor, peripherally associated to the plasma membrane. The transmembrane proteins amnionless (AMN) and Lrp2/Megalin are the currently known molecular partners contributing to plasma membrane transport and internalization of Cubilin. The role of Cubilin/Amn complex in the handling of vitamin B12 in health and disease has extensively been studied and so is the role of the Cubilin-Lrp2 tandem in renal pathophysiology. Accumulating evidence strongly supports a role of Cubilin in some developmental defects including impaired closure of the neural tube. Are these defects primarily caused by the dysfunction of a specific Cubilin ligand or are they secondary to impaired vitamin B12 or protein uptake? We will present the established Cubilin functions, discuss the developmental data and provide an overview of the emerging implications of Cubilin in the field of cardiovascular disease and cancer pathogenesis.
Collapse
Affiliation(s)
- Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France.
| | - Pierre Verroust
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| |
Collapse
|
17
|
Yan Q, Zhao Z, Liu D, Li J, Pan S, Duan J, Dong J, Liu Z. Integrated analysis of potential gene crosstalk between non-alcoholic fatty liver disease and diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1032814. [PMID: 36387855 PMCID: PMC9642911 DOI: 10.3389/fendo.2022.1032814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Growing evidence indicates that non-alcoholic fatty liver disease (NAFLD) is related to the occurrence and development of diabetic nephropathy (DN). This bioinformatics study aimed to explore optimal crosstalk genes and related pathways between NAFLD and DN. METHODS Gene expression profiles were downloaded from Gene Expression Omnibus. CIBERSORT algorithm was employed to analyze the similarity of infiltrating immunocytes between the two diseases. Protein-protein interaction (PPI) co-expression network and functional enrichment analysis were conducted based on the identification of common differentially expressed genes (DEGs). Least absolute shrinkage and selection operator (LASSO) regression and Boruta algorithm were implemented to initially screen crosstalk genes. Machine learning models, including support vector machine, random forest model, and generalized linear model, were utilized to further identify the optimal crosstalk genes between DN and NAFLD. An integrated network containing crosstalk genes, transcription factors, and associated pathways was developed. RESULTS Four gene expression datasets, including GSE66676 and GSE48452 for NAFLD and GSE30122 and GSE1009 for DN, were involved in this study. There were 80 common DEGs between the two diseases in total. The PPI network built with the 80 common genes included 77 nodes and 83 edges. Ten optimal crosstalk genes were selected by LASSO regression and Boruta algorithm, including CD36, WIPI1, CBX7, FCN1, SLC35D2, CP, ZDHHC3, PTPN3, LPL, and SPP1. Among these genes, LPL and SPP1 were the most significant according to NAFLD-transcription factor network. Five hundred twenty-nine nodes and 1,113 edges comprised the PPI network of activated pathway-gene. In addition, 14 common pathways of these two diseases were recognized using Gene Ontology (GO) analysis; among them, regulation of the lipid metabolic process is closely related to both two diseases. CONCLUSIONS This study offers hints that NAFLD and DN have a common pathogenesis, and LPL and SPP1 are the most relevant crosstalk genes. Based on the common pathways and optimal crosstalk genes, our proposal carried out further research to disclose the etiology and pathology between the two diseases.
Collapse
Affiliation(s)
- Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jia Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jiayu Duan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Jiayu Duan, ; Jiancheng Dong, ; Zhangsuo Liu,
| | - Jiancheng Dong
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiayu Duan, ; Jiancheng Dong, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Jiayu Duan, ; Jiancheng Dong, ; Zhangsuo Liu,
| |
Collapse
|
18
|
Vecka M, Dušejovská M, Staňková B, Rychlík I, Žák A. A Matched Case-Control Study of Noncholesterol Sterols and Fatty Acids in Chronic Hemodialysis Patients. Metabolites 2021; 11:774. [PMID: 34822432 PMCID: PMC8618803 DOI: 10.3390/metabo11110774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Dyslipidemia is common among patients on hemodialysis, but its etiology is not fully understood. Although changes in cholesterol homeostasis and fatty acid metabolism play an important role during dialysis, the interaction of these metabolic pathways has yet to be studied in sufficient detail. In this study, we enrolled 26 patients on maintenance hemodialysis treatment (high-volume hemodiafiltration, HV HDF) without statin therapy (17 men/9 women) and an age/gender-matched group of 26 individuals without signs of nephropathy. The HV-HDF group exhibited more frequent signs of cardiovascular disease, disturbed saccharide metabolism, and altered lipoprotein profiles, manifesting in lower HDL-C, and raised concentrations of IDL-C and apoB-48 (all p < 0.01). HV-HDF patients had higher levels of campesterol (p < 0.01) and β-sitosterol (p = 0.06), both surrogate markers of cholesterol absorption and unchanged lathosterol concentrations. Fatty acid (FA) profiles were changed mostly in cholesteryl esters, with a higher content of saturated and n-3 polyunsaturated fatty acids (PUFA) in the HV-HDF group. However, n-6 PUFA in cholesteryl esters were less abundant (p < 0.001) in the HV-HDF group. Hemodialysis during end-stage kidney disease induces changes associated with higher absorption of cholesterol and disturbed lipoprotein metabolism. Changes in fatty acid metabolism reflect the combined effect of renal insufficiency and its comorbidities, mostly insulin resistance.
Collapse
Affiliation(s)
- Marek Vecka
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague, Czech Republic; (M.D.); (B.S.); (A.Ž.)
- Institute of Clinical Chemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Na Bojišti 3, 121 08 Prague, Czech Republic
| | - Magdalena Dušejovská
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague, Czech Republic; (M.D.); (B.S.); (A.Ž.)
| | - Barbora Staňková
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague, Czech Republic; (M.D.); (B.S.); (A.Ž.)
| | - Ivan Rychlík
- Department of Internal Medicine, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Šrobárova 50, 100 34 Prague, Czech Republic;
| | - Aleš Žák
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague, Czech Republic; (M.D.); (B.S.); (A.Ž.)
| |
Collapse
|
19
|
Zhang Y, Wen P, Luo J, Ding H, Cao H, He W, Zen K, Zhou Y, Yang J, Jiang L. Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis. Cell Death Dis 2021; 12:847. [PMID: 34518519 PMCID: PMC8437958 DOI: 10.1038/s41419-021-04134-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/15/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Proximal tubular epithelial cells (TECs) demand high energy and rely on mitochondrial oxidative phosphorylation as the main energy source. However, this is disturbed in renal fibrosis. Acetylation is an important post-translational modification for mitochondrial metabolism. The mitochondrial protein NAD+-dependent deacetylase sirtuin 3 (SIRT3) regulates mitochondrial metabolic function. Therefore, we aimed to identify the changes in the acetylome in tubules from fibrotic kidneys and determine their association with mitochondria. We found that decreased SIRT3 expression was accompanied by increased acetylation in mitochondria that have separated from TECs during the early phase of renal fibrosis. Sirt3 knockout mice were susceptible to hyper-acetylated mitochondrial proteins and to severe renal fibrosis. The activation of SIRT3 by honokiol ameliorated acetylation and prevented renal fibrosis. Analysis of the acetylome in separated tubules using LC-MS/MS showed that most kidney proteins were hyper-acetylated after unilateral ureteral obstruction. The increased acetylated proteins with 26.76% were mitochondrial proteins which were mapped to a broad range of mitochondrial pathways including fatty acid β-oxidation, the tricarboxylic acid cycle (TCA cycle), and oxidative phosphorylation. Pyruvate dehydrogenase E1α (PDHE1α), which is the primary link between glycolysis and the TCA cycle, was hyper-acetylated at lysine 385 in TECs after TGF-β1 stimulation and was regulated by SIRT3. Our findings showed that mitochondrial proteins involved in regulating energy metabolism were acetylated and targeted by SIRT3 in TECs. The deacetylation of PDHE1α by SIRT3 at lysine 385 plays a key role in metabolic reprogramming associated with renal fibrosis.
Collapse
Affiliation(s)
- Yu Zhang
- Center for Kidney Disease, The second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Ping Wen
- Center for Kidney Disease, The second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Jing Luo
- Center for Kidney Disease, The second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Hao Ding
- Center for Kidney Disease, The second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Hongdi Cao
- Center for Kidney Disease, The second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Weichun He
- Center for Kidney Disease, The second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Advanced Institute of Life Sciences, Nanjing, Jiangsu, 210093, China
| | - Yang Zhou
- Center for Kidney Disease, The second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210003, China.
| | - Junwei Yang
- Center for Kidney Disease, The second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210003, China.
| | - Lei Jiang
- Center for Kidney Disease, The second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210003, China.
| |
Collapse
|
20
|
Kung VL, Sandhu R, Haas M, Huang E. Chronic active T cell–mediated rejection is variably responsive to immunosuppressive therapy. Kidney Int 2021; 100:391-400. [DOI: 10.1016/j.kint.2021.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
|
21
|
Sharma I, Liao Y, Zheng X, Kanwar YS. New Pandemic: Obesity and Associated Nephropathy. Front Med (Lausanne) 2021; 8:673556. [PMID: 34268323 PMCID: PMC8275856 DOI: 10.3389/fmed.2021.673556] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Incidence of obesity related renal disorders have increased 10-folds in recent years. One of the consequences of obesity is an increased glomerular filtration rate (GFR) that leads to the enlargement of the renal glomerulus, i.e., glomerulomegaly. This heightened hyper-filtration in the setting of type 2 diabetes irreparably damages the kidney and leads to progression of end stage renal disease (ESRD). The patients suffering from type 2 diabetes have progressive proteinuria, and eventually one third of them develop chronic kidney disease (CKD) and ESRD. For ameliorating the progression of CKD, inhibitors of renin angiotensin aldosterone system (RAAS) seemed to be effective, but on a short-term basis only. Long term and stable treatment strategies like weight loss via restricted or hypo-caloric diet or bariatric surgery have yielded better promising results in terms of amelioration of proteinuria and maintenance of normal GFR. Body mass index (BMI) is considered as a traditional marker for the onset of obesity, but apparently, it is not a reliable indicator, and thus there is a need for more precise evaluation of regional fat distribution and amount of muscle mass. With respect to the pathogenesis, recent investigations have suggested perturbation in fatty acid and cholesterol metabolism as the critical mediators in ectopic renal lipid accumulation associated with inflammation, increased generation of ROS, RAAS activation and consequential tubulo-interstitial injury. This review summarizes the renewed approaches for the obesity assessment and evaluation of the pathogenesis of CKD, altered renal hemodynamics and potential therapeutic targets.
Collapse
Affiliation(s)
- Isha Sharma
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States
| | - Yingjun Liao
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States.,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Zheng
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States.,Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
22
|
Wang Q, Zhao B, Zhang J, Sun J, Wang S, Zhang X, Xu Y, Wang R. Faster lipid β-oxidation rate by acetyl-CoA carboxylase 2 inhibition alleviates high-glucose-induced insulin resistance via SIRT1/PGC-1α in human podocytes. J Biochem Mol Toxicol 2021; 35:e22797. [PMID: 33957017 DOI: 10.1002/jbt.22797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Diabetic nephropathy (DN) is becoming a research hotspot in recent years because the prevalence is high and the prognosis is poor. Lipid accumulation in podocytes induced by hyperglycemia has been shown to be a driving mechanism underlying the development of DN. However, the mechanism of lipotoxicity remains unclear. Increasing evidence shows that acetyl-CoA carboxylase 2 (ACC2) plays a crucial role in the metabolism of fatty acid, but its effect in podocyte injury of DN is still unclear. In this study, we investigated whether ACC2 could be a therapeutic target of lipid deposition induced by hyperglycemia in the human podocytes. Our results showed that high glucose (HG) triggered significant lipid deposition with a reduced β-oxidation rate. It also contributed to the downregulation of phosphorylated ACC2 (p-ACC2), which is an inactive form of ACC2. Knockdown of ACC2 by sh-RNA reduced lipid deposition induced by HG. Additionally, ACC2-shRNA restored the expression of glucose transporter 4 (GLUT4) on the cell surface, which was downregulated in HG and normalized in the insulin signaling pathway. We verified that ACC2-shRNA alleviated cell injury, apoptosis, and restored the cytoskeleton disturbed by HG. Mechanistically, SIRT1/PGC-1α is close related to the insulin metabolism pathway. ACC2-shRNA could restore the expression of SIRT1/PGC-1α, which was downregulated in HG. Rescue experiment revealed that inhibition of SIRT1 by EX-527 counteracted the effect of ACC2-shRNA. Taken together, our data suggest that podocyte injury mediated by HG-induced insulin resistance and lipotoxicity could be alleviated by ACC2 inhibition via SIRT1/PGC-1α.
Collapse
Affiliation(s)
- Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Zhao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jie Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jingshu Sun
- Department of Nephrology, Weifang people's hospital, Weifang, Shandong, China
| | - Simeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
23
|
The Cross-Link between Ferroptosis and Kidney Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6654887. [PMID: 34007403 PMCID: PMC8110383 DOI: 10.1155/2021/6654887] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
Acute and chronic kidney injuries result from structural dysfunction and metabolic disorders of the kidney in various etiologies, which significantly affect human survival and social wealth. Nephropathies are often accompanied by various forms of cell death and complex microenvironments. In recent decades, the study of kidney diseases and the traditional forms of cell death have improved. Nontraditional forms of cell death, represented by ferroptosis and necroptosis, have been discovered in the field of kidney diseases, which have reshuffled the role of traditional cell death in nephropathies. Although interactions between ferroptosis and acute kidney injury (AKI) have been continuously explored, studies on ferroptosis and chronic kidney disease (CKD) remain limited. Here, we have reviewed the therapeutic significance of ferroptosis in AKI and anticipated the curative potential of ferroptosis for CKD in the hope of providing insights into ferroptosis and CKD.
Collapse
|
24
|
Liu X, Ducasa GM, Mallela SK, Kim JJ, Molina J, Mitrofanova A, Wilbon SS, Ge M, Fontanella A, Pedigo C, Santos JV, Nelson RG, Drexler Y, Contreras G, Al-Ali H, Merscher S, Fornoni A. Sterol-O-acyltransferase-1 has a role in kidney disease associated with diabetes and Alport syndrome. Kidney Int 2020; 98:1275-1285. [PMID: 32739420 DOI: 10.1016/j.kint.2020.06.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022]
Abstract
Defective cholesterol metabolism primarily linked to reduced ATP-binding cassette transporter A1 (ABCA1) expression is closely associated with the pathogenesis and progression of kidney diseases, including diabetic kidney disease and Alport Syndrome. However, whether the accumulation of free or esterified cholesterol contributes to progression in kidney disease remains unclear. Here, we demonstrate that inhibition of sterol-O-acyltransferase-1 (SOAT1), the enzyme at the endoplasmic reticulum that converts free cholesterol to cholesterol esters, which are then stored in lipid droplets, effectively reduced cholesterol ester and lipid droplet formation in human podocytes. Furthermore, we found that inhibition of SOAT1 in podocytes reduced lipotoxicity-mediated podocyte injury in diabetic kidney disease and Alport Syndrome in association with increased ABCA1 expression and ABCA1-mediated cholesterol efflux. In vivo, Soat1 deficient mice did not develop albuminuria or mesangial expansion at 10-12 months of age. However, Soat1 deficiency/inhibition in experimental models of diabetic kidney disease and Alport Syndrome reduced cholesterol ester content in kidney cortices and protected from disease progression. Thus, targeting SOAT1-mediated cholesterol metabolism may represent a new therapeutic strategy to treat kidney disease in patients with diabetic kidney disease and Alport Syndrome, like that suggested for Alzheimer's disease and cancer treatments.
Collapse
Affiliation(s)
- Xiaochen Liu
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Gloria Michelle Ducasa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shamroop Kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sydney Symone Wilbon
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Antonio Fontanella
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Christopher Pedigo
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Javier Varona Santos
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Robert G Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Gabriel Contreras
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hassan Al-Ali
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
25
|
Packer M. Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance. Circulation 2020; 141:2095-2105. [DOI: 10.1161/circulationaha.119.045561] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors reduce the risk of serious heart failure and adverse renal events, but the mechanisms that underlie this benefit are not understood. Treatment with SGLT2 inhibitors is distinguished by 2 intriguing features: ketogenesis and erythrocytosis. Both reflect the induction of a fasting-like and hypoxia-like transcriptional paradigm that is capable of restoring and maintaining cellular homeostasis and survival. In the face of perceived nutrient and oxygen deprivation, cells activate low-energy sensors, which include sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia inducible factors (HIFs; especially HIF-2α); these enzymes and transcription factors are master regulators of hundreds of genes and proteins that maintain cellular homeostasis. The activation of SIRT1 (through its effects to promote gluconeogenesis and fatty acid oxidation) drives ketogenesis, and working in concert with AMPK, it can directly inhibit inflammasome activation and maintain mitochondrial capacity and stability. HIFs act to promote oxygen delivery (by stimulating erythropoietin and erythrocytosis) and decrease oxygen consumption. The activation of SIRT1, AMPK, and HIF-2α enhances autophagy, a lysosome-dependent degradative pathway that removes dangerous constituents, particularly damaged mitochondria and peroxisomes, which are major sources of oxidative stress and triggers of cellular dysfunction and death. SIRT1 and AMPK also act on sodium transport mechanisms to reduce intracellular sodium concentrations. It is interesting that type 2 diabetes mellitus, obesity, chronic heart failure, and chronic kidney failure are characterized by the accumulation of intracellular glucose and lipid intermediates that are perceived by cells as indicators of energy overabundance. The cells respond by downregulating SIRT1, AMPK, and HIF-2α, thus leading to an impairment of autophagic flux and acceleration of cardiomyopathy and nephropathy. SGLT2 inhibitors reverse this maladaptive signaling by triggering a state of fasting and hypoxia mimicry, which includes activation of SIRT1, AMPK, and HIF-2α, enhanced autophagic flux, reduced cellular stress, decreased sodium influx into cells, and restoration of mitochondrial homeostasis. This mechanistic framework clarifies the findings of large-scale randomized trials and the close association of ketogenesis and erythrocytosis with the cardioprotective and renoprotective benefits of these drugs.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
26
|
Cao H, Luo J, Zhang Y, Mao X, Wen P, Ding H, Xu J, Sun Q, He W, Dai C, Zen K, Zhou Y, Yang J, Jiang L. Tuberous sclerosis 1 (Tsc1) mediated mTORC1 activation promotes glycolysis in tubular epithelial cells in kidney fibrosis. Kidney Int 2020; 98:686-698. [PMID: 32739207 DOI: 10.1016/j.kint.2020.03.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
Abstract
Energy reprogramming to glycolysis is closely associated with the development of chronic kidney disease. As an important negative regulatory factor of the mammalian target of rapamycin complex 1 (mTORC1) signal, tuberous sclerosis complex 1 (Tsc1) is also a key regulatory point of glycolysis. Here, we investigated whether Tsc1 could mediate the progression of kidney interstitial fibrosis by regulating glycolysis in proximal tubular epithelial cells. We induced mTORC1 signal activation in tubular epithelial cells in kidneys with fibrosis via unilateral ureteral occlusion. This resulted in increased tubular epithelial cell proliferation and glycolytic enzyme upregulation. Prior incubation with rapamycin inhibited mTORC1 activation and abolished the enhanced glycolysis and tubular epithelial cell proliferation. Furthermore, knockdown of Tsc1 expression promoted glycolysis in the rat kidney epithelial cell line NRK-52E. Specific deletion of Tsc1 in the proximal tubules of mice resulted in enlarged kidneys characterized by a high proportion of proliferative tubular epithelial cells, dilated tubules with cyst formation, and a large area of interstitial fibrosis in conjunction with elevated glycolysis. Treatment of the mice with the glycolysis inhibitor 2-deoxyglucose notably ameliorated tubular epithelial cell proliferation, cystogenesis, and kidney fibrosis. Thus, our findings suggest that Tsc1-associated mTORC1 signaling mediates the progression of kidney interstitial fibrosis by regulating glycolysis in proximal tubular epithelial cells.
Collapse
Affiliation(s)
- Hongdi Cao
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Luo
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Zhang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Mao
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Wen
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Ding
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Xu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Sun
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Advanced Institute of Life Sciences, Nanjing, Jiangsu, China
| | - Yang Zhou
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Junwei Yang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Lei Jiang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
27
|
Jang HS, Noh MR, Kim J, Padanilam BJ. Defective Mitochondrial Fatty Acid Oxidation and Lipotoxicity in Kidney Diseases. Front Med (Lausanne) 2020; 7:65. [PMID: 32226789 PMCID: PMC7080698 DOI: 10.3389/fmed.2020.00065] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
The kidney is a highly metabolic organ and uses high levels of ATP to maintain electrolyte and acid-base homeostasis and reabsorb nutrients. Energy depletion is a critical factor in development and progression of various kidney diseases including acute kidney injury (AKI), chronic kidney disease (CKD), and diabetic and glomerular nephropathy. Mitochondrial fatty acid β-oxidation (FAO) serves as the preferred source of ATP in the kidney and its dysfunction results in ATP depletion and lipotoxicity to elicit tubular injury and inflammation and subsequent fibrosis progression. This review explores the current state of knowledge on the role of mitochondrial FAO dysfunction in the pathophysiology of kidney diseases including AKI and CKD and prospective views on developing therapeutic interventions based on mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mi Ra Noh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Anatomy, Jeju National University School of Medicine, Jeju, South Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, South Korea
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
28
|
Hu G, Xu L, Ma Y, Kohzuki M, Ito O. Chronic exercise provides renal-protective effects with upregulation of fatty acid oxidation in the kidney of high fructose-fed rats. Am J Physiol Renal Physiol 2020; 318:F826-F834. [DOI: 10.1152/ajprenal.00444.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Excessive fructose intake causes metabolic syndrome and lipid accumulation in the kidney and leads to renal dysfunction and damage. Exercise (Ex) improves lipids regulation, but the mechanisms are unclarified in the kidney. In the present study, male Sprague-Dawley rats were allocated to groups fed with control or high-fructose (HFr) diet. Part of rats in each group underwent aerobic treadmill Ex for 12 wk. Drug treatment was performed as the fenofibrate gavage during the last 4 wk on HFr diet-fed rats. Renal function, histological changes, and expression of regulators involved in fatty acid (FA) metabolism were assessed. In CON diet-fed groups, Ex did not affect renal function or histology and significantly increased renal expression of FA β-oxidation regulators including acyl-CoA dehydrogenases (CADs), acyl-CoA oxidase, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ coactivator (PGC)-1α and lipogenic factors including acetyl-CoA carboxylase (ACCα), FA synthase (FAS), and sterol regulatory element-binding protein 1c. HFr caused albuminuria, lipid accumulation, and renal pathohistological changes, which were attenuated by Ex but not by fenofibrate. HFr decreased renal expression of medium- and short-chain CADs and PPAR-α and increased renal expression of ACCα, FAS, and sterol regulatory element-binding protein 1c. Ex increased expression of CADs, carnitine palmitoyltransferase type I, acyl-CoA oxidase, PPAR-α, and PGC-1α and decreased renal expression of ACCα and FAS in HFr diet-fed rats. The Ex-induced FA metabolism alteration was similar to that in the fenofibrate-treated group. In conclusion, the present study indicates that Ex enhanced renal FA metabolism, which might protect the kidney in lipid dysregulation diseases.
Collapse
Affiliation(s)
- Gaizun Hu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Lusi Xu
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yixuan Ma
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Kohzuki
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Osamu Ito
- Division of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University Faculty of Medicine, Sendai, Japan
| |
Collapse
|
29
|
Ma J, Karnovsky A, Afshinnia F, Wigginton J, Rader DJ, Natarajan L, Sharma K, Porter AC, Rahman M, He J, Hamm L, Shafi T, Gipson D, Gadegbeku C, Feldman H, Michailidis G, Pennathur S. Differential network enrichment analysis reveals novel lipid pathways in chronic kidney disease. Bioinformatics 2019; 35:3441-3452. [PMID: 30887029 PMCID: PMC6748777 DOI: 10.1093/bioinformatics/btz114] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
MOTIVATION Functional enrichment testing methods can reduce data comprising hundreds of altered biomolecules to smaller sets of altered biological 'concepts' that help generate testable hypotheses. This study leveraged differential network enrichment analysis methodology to identify and validate lipid subnetworks that potentially differentiate chronic kidney disease (CKD) by severity or progression. RESULTS We built a partial correlation interaction network, identified highly connected network components, applied network-based gene-set analysis to identify differentially enriched subnetworks, and compared the subnetworks in patients with early-stage versus late-stage CKD. We identified two subnetworks 'triacylglycerols' and 'cardiolipins-phosphatidylethanolamines (CL-PE)' characterized by lower connectivity, and a higher abundance of longer polyunsaturated triacylglycerols in patients with severe CKD (stage ≥4) from the Clinical Phenotyping Resource and Biobank Core. These finding were replicated in an independent cohort, the Chronic Renal Insufficiency Cohort. Using an innovative method for elucidating biological alterations in lipid networks, we demonstrated alterations in triacylglycerols and cardiolipins-phosphatidylethanolamines that precede the clinical outcome of end-stage kidney disease by several years. AVAILABILITY AND IMPLEMENTATION A complete list of NetGSA results in HTML format can be found at http://metscape.ncibi.org/netgsa/12345-022118/cric_cprobe/022118/results_cric_cprobe/main.html. The DNEA is freely available at https://github.com/wiggie/DNEA. Java wrapper leveraging the cytoscape.js framework is available at http://js.cytoscape.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jing Ma
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alla Karnovsky
- Department of Computational Medicine & Bioinformatics, Ann Arbor, MI, USA
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, MI, USA
| | - Farsad Afshinnia
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Janis Wigginton
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, MI, USA
| | - Daniel J Rader
- Department of Medicine, Translational-Clinical Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Loki Natarajan
- Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA
| | - Kumar Sharma
- Department of Internal Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Anna C Porter
- Department of Internal Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahboob Rahman
- Department of Internal Medicine, Case-Western Reserve University, Cleveland, OH, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Lee Hamm
- School of Medicine, Division of Nephrology and Hypertension, Tulane University, New Orleans, LA, USA
| | - Tariq Shafi
- Department of Internal Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Debbie Gipson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Crystal Gadegbeku
- Department of Internal Medicine, Temple University, Philadelphia, PA, USA
| | - Harold Feldman
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - George Michailidis
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, MI, USA
- Department of Statistics and the Informatics Institute, University of Florida, Gainesville, FL, USA
| | - Subramaniam Pennathur
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Dietary DHA/EPA supplementation ameliorates diabetic nephropathy by protecting from distal tubular cell damage. Cell Tissue Res 2019; 378:301-317. [PMID: 31256287 DOI: 10.1007/s00441-019-03058-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
Abstract
The aim was to explore the influence of experimental diabetes mellitus type 1 (DM1) and potential protective/deleterious effects of different dietary n-6/n-3 PUFA ratios on renal phospholipid composition and pathological changes caused by DM1. Male Wistar rats were injected with 55 mg/kg streptozotocin or citrate buffer (control group). Control (C) and diabetic groups (STZ) were fed with n-6/n-3 ratio of ≈ 7, STZ + N6 with n-6/n-3 ratio ≈ 60 and STZ + DHA with n-6/n-3 ratio of ≈ 1 containing 16% EPA and 19% DHA. Tissues were harvested 30 days after DM1 induction. Blood and kidneys were collected and analysed for phospholipid fatty acid composition, pathohystological changes, ectopic lipid accumulation and expression of VEGF, NF-kB and special AT-rich sequence-binding protein-1 (SATB1). Pathological changes were studied also by using transmission electron microscopy, after immunostaining for VEGF. Substantial changes in renal phospholipid fatty acid composition resulted from DM1 and dietary PUFA manipulation. Extensive vacuolization of distal tubular cells (DTCs) was found in DM1, but it was attenuated in the STZ + DHA group, in which the highest renal NF-kB expression was observed. The ectopic lipid accumulation was observed in proximal tubular cells (PTCs) of all diabetic animals, but it was worsened in the STZ + N6 group. In DM1, we found disturbance of VEGF-transporting vesicular PTCs system, which was substantially worsened in STZ + DHA and STZ + N6. Results have shown that the early phase of DN is characterized with extent damage and vacuolization of DTCs, which could be attenuated by DHA/EPA supplementation. We concluded that dietary fatty acid composition can strongly influence the outcomes of DN.
Collapse
|
31
|
Lipid Metabolism Disorder and Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:525-541. [PMID: 31399983 DOI: 10.1007/978-981-13-8871-2_26] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the lipid nephrotoxicity hypothesis was proposed in 1982, increasing evidence has supported the hypothesis that lipid abnormalities contributed to the progression of glomerulosclerosis. In this chapter, we will discuss the general promises of the original hypothesis, focusing especially on the role of lipids and metabolic inflammation accompanying CKD in renal fibrosis and potential new strategies of prevention.
Collapse
|
32
|
Renal miR-148b is associated with megalin down-regulation in IgA nephropathy. Biosci Rep 2018; 38:BSR20181578. [PMID: 30355654 PMCID: PMC6239259 DOI: 10.1042/bsr20181578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/06/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Megalin is essential for proximal tubule reabsorption of filtered proteins, hormones, and vitamins, and its dysfunction has been reported in IgA nephropathy (IgAN). miR-148b has been shown to regulate renal megalin expression in vitro and in animal models of kidney disease. We examined a potential role of miR-148b and other miRNAs in regulating megalin expression in IgAN by analyzing the association between megalin and miR-148b, miR-21, miR-146a, and miR-192 expression. Quantitative PCR (qPCR) analysis identified a marked increase in renal levels of several miRNAs, including miR-148b, miR-21, miR-146a, and a significant decrease in megalin mRNA levels in IgAN patients when compared with normal controls. By multiple linear regression analysis, however, only renal miR-148b was independently associated with megalin mRNA levels in IgAN. Proximal tubule megalin expression was further evaluated by immunofluorescence labeling of biopsies from the patients. The megalin expression was significantly lower in patients with highest levels of renal miR-148b compared with patients with lowest levels. To examine the direct effects of the miRNAs on megalin and other membrane proteins expression, proximal tubule LLC-PK1 cells were transfected with miR-148b, miR-21, miR-146a, or miR-192 mimics. Transfection with miR-148b mimic, but not the other three miRNA mimics inhibited endogenous megalin mRNA expression. No significant effect of any of the four miRNA mimics was observed on cubilin or aquaporin 1 (AQP1) mRNA expression. The findings suggest that miR-148b negatively regulates megalin expression in IgAN, which may affect renal uptake and metabolism of essential substances.
Collapse
|
33
|
Wang Z, Huang W, Li H, Tang L, Sun H, Liu Q, Zhang L. Synergistic action of inflammation and lipid dysmetabolism on kidney damage in rats. Ren Fail 2018; 40:175-182. [PMID: 29569980 PMCID: PMC6014339 DOI: 10.1080/0886022x.2018.1450763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/05/2017] [Accepted: 03/06/2018] [Indexed: 01/18/2023] Open
Abstract
In kidney disease, inflammation and lipid dysmetabolism are often associated together, however, the effect and mechanism of inflammatory mediators and lipid dysmetabolism on kidney damage is still unclear. In this study, Wistar rats were randomized into four groups: normal diet + saline (Group N), high-fat diet (HF)+ saline (Group HF), normal diet + adriamycin (Group ADR), HF + adriamycin (Group ADR + HF). After 10 weeks of feeding, rats in each group were randomly sacrificed. We found that the protein content of urine in ADR and ADR + HF groups were significantly higher than that of group N and HF while the serum levels of total protein and albumin in the ADR and ADR + HF groups decreased correspondingly. The serum levels of triglyceride, total cholesterol and low-density lipoprotein in the HF, ADR and ADR + HF groups increased. In the treatment groups, mesangial proliferation, matrix accumulation, tubular vacuolization, inflammatory cell infiltration and fat deposition were detected. These pathological changes were the most serious in the ADR + HF group. The expression of tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) were increased in each treatment group, especially in the ADR + HF group. Our results suggested that the inflammatory factors and abnormal lipid levels can activate the inflammatory response in kidney of the Wistar rats, and lead to a series of pathological changes in renal tissue, and inflammatory factors and lipid dysmetabolism can aggravate damage in the kidney.
Collapse
Affiliation(s)
| | - Wenhan Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Li
- Yan’an Hospital Affiliated to Kunming Medical University, Yunnan, China
| | - Lin Tang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Zhang
- Department of Nephrology, The Second Affiliated Hospital and Center of Lipid Research of Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Kozyraki R, Cases O. Cubilin, the Intrinsic Factor-Vitamin B12 Receptor in Development and Disease. Curr Med Chem 2018; 27:3123-3150. [PMID: 30295181 DOI: 10.2174/0929867325666181008143945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/11/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Gp280/Intrinsic factor-vitamin B12 receptor/Cubilin (CUBN) is a large endocytic receptor serving multiple functions in vitamin B12 homeostasis, renal reabsorption of protein or toxic substances including albumin, vitamin D-binding protein or cadmium. Cubilin is a peripheral membrane protein consisting of 8 Epidermal Growth Factor (EGF)-like repeats and 27 CUB (defined as Complement C1r/C1s, Uegf, BMP1) domains. This structurally unique protein interacts with at least two molecular partners, Amnionless (AMN) and Lrp2/Megalin. AMN is involved in appropriate plasma membrane transport of Cubilin whereas Lrp2 is essential for efficient internalization of Cubilin and its ligands. Observations gleaned from animal models with Cubn deficiency or human diseases demonstrate the importance of this protein. In this review addressed to basic research and medical scientists, we summarize currently available data on Cubilin and its implication in renal and intestinal biology. We also discuss the role of Cubilin as a modulator of Fgf8 signaling during embryonic development and propose that the Cubilin-Fgf8 interaction may be relevant in human pathology, including in cancer progression, heart or neural tube defects. We finally provide experimental elements suggesting that some aspects of Cubilin physiology might be relevant in drug design.
Collapse
Affiliation(s)
- Renata Kozyraki
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris-Diderot University, Paris, France
| | - Olivier Cases
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris-Diderot University, Paris, France
| |
Collapse
|
35
|
Gewin LS. Renal fibrosis: Primacy of the proximal tubule. Matrix Biol 2018; 68-69:248-262. [PMID: 29425694 PMCID: PMC6015527 DOI: 10.1016/j.matbio.2018.02.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 12/20/2022]
Abstract
Tubulointerstitial fibrosis (TIF) is the hallmark of chronic kidney disease and best predictor of renal survival. Many different cell types contribute to TIF progression including tubular epithelial cells, myofibroblasts, endothelia, and inflammatory cells. Previously, most of the attention has centered on myofibroblasts given their central importance in extracellular matrix production. However, emerging data focuses on how the response of the proximal tubule, a specialized epithelial segment vulnerable to injury, plays a central role in TIF progression. Several proximal tubular responses such as de-differentiation, cell cycle changes, autophagy, and metabolic changes may be adaptive initially, but can lead to maladaptive responses that promote TIF both through autocrine and paracrine effects. This review discusses the current paradigm of TIF progression and the increasingly important role of the proximal tubule in promoting TIF both in tubulointerstitial and glomerular injuries. A better understanding and appreciation of the role of the proximal tubule in TIF has important implications for therapeutic strategies to halt chronic kidney disease progression.
Collapse
Affiliation(s)
- Leslie S Gewin
- The Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
36
|
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models (mainly genetically modified mouse models). Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored.
Collapse
Affiliation(s)
- Yin-Wu Bao
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Yuan Yuan
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Jiang-Hua Chen
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China.
| | - Wei-Qiang Lin
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| |
Collapse
|
37
|
Afshinnia F, Rajendiran TM, Soni T, Byun J, Wernisch S, Sas KM, Hawkins J, Bellovich K, Gipson D, Michailidis G, Pennathur S. Impaired β-Oxidation and Altered Complex Lipid Fatty Acid Partitioning with Advancing CKD. J Am Soc Nephrol 2018; 29:295-306. [PMID: 29021384 PMCID: PMC5748913 DOI: 10.1681/asn.2017030350] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
Studies of lipids in CKD, including ESRD, have been limited to measures of conventional lipid profiles. We aimed to systematically identify 17 different lipid classes and associate the abundance thereof with alterations in acylcarnitines, a metric of β-oxidation, across stages of CKD. From the Clinical Phenotyping Resource and Biobank Core (CPROBE) cohort of 1235 adults, we selected a panel of 214 participants: 36 with stage 1 or 2 CKD, 99 with stage 3 CKD, 61 with stage 4 CKD, and 18 with stage 5 CKD. Among participants, 110 were men (51.4%), 64 were black (29.9%), and 150 were white (70.1%), and the mean (SD) age was 60 (16) years old. We measured plasma lipids and acylcarnitines using liquid chromatography-mass spectrometry. Overall, we identified 330 different lipids across 17 different classes. Compared with earlier stages, stage 5 CKD associated with a higher abundance of saturated C16-C20 free fatty acids (FFAs) and long polyunsaturated complex lipids. Long-chain-to-intermediate-chain acylcarnitine ratio, a marker of efficiency of β-oxidation, exhibited a graded decrease from stage 2 to 5 CKD (P<0.001). Additionally, multiple linear regression revealed that the long-chain-to-intermediate-chain acylcarnitine ratio inversely associated with polyunsaturated long complex lipid subclasses and the C16-C20 FFAs but directly associated with short complex lipids with fewer double bonds. We conclude that increased abundance of saturated C16-C20 FFAs coupled with impaired β-oxidation of FFAs and inverse partitioning into complex lipids may be mechanisms underpinning lipid metabolism changes that typify advancing CKD.
Collapse
Affiliation(s)
| | - Thekkelnaycke M Rajendiran
- Bioinformatics and Molecular Phenotyping, Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan
- Pathology
| | - Tanu Soni
- Bioinformatics and Molecular Phenotyping, Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | - Keith Bellovich
- Division of Nephrology, St. Clair Nephrology Research, Detroit, Michigan; and
| | | | - George Michailidis
- Bioinformatics and Molecular Phenotyping, Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan
- Department of Statistics, University of Florida, Gainesville, Florida
| | - Subramaniam Pennathur
- Departments of Internal Medicine-Nephrology,
- Bioinformatics and Molecular Phenotyping, Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan
- Molecular and Integrative Physiology and
| |
Collapse
|
38
|
Jensen D, Kierulf-Lassen C, Kristensen MLV, Nørregaard R, Weyer K, Nielsen R, Christensen EI, Birn H. Megalin dependent urinary cystatin C excretion in ischemic kidney injury in rats. PLoS One 2017; 12:e0178796. [PMID: 28575050 PMCID: PMC5456377 DOI: 10.1371/journal.pone.0178796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022] Open
Abstract
Background Cystatin C, a marker of kidney injury, is freely filtered in the glomeruli and reabsorbed by the proximal tubules. Megalin and cubilin are endocytic receptors essential for reabsorption of most filtered proteins. This study examines the role of these receptors for the uptake and excretion of cystatin C and explores the effect of renal ischemia/reperfusion injury on renal cystatin C uptake and excretion in a rat model. Methods Binding of cystatin C to megalin and cubilin was analyzed by surface plasmon resonance analysis. ELISA and/or immunoblotting and immunohistochemistry were used to study the urinary excretion and tubular uptake of endogenous cystatin C in mice. Furthermore, renal uptake and urinary excretion of cystatin C was investigated in rats exposed to ischemia/reperfusion injury. Results A high affinity binding of cystatin C to megalin and cubilin was identified. Megalin deficient mice revealed an increased urinary excretion of cystatin C associated with defective uptake by endocytosis. In rats exposed to ischemia/reperfusion injury urinary cystatin C excretion was increased and associated with a focal decrease in proximal tubule endocytosis with no apparent change in megalin expression. Conclusions Megalin is essential for the normal tubular recovery of endogenous cystatin C. The increase in urinary cystatin C excretion after ischemia/reperfusion injury is associated with decreased tubular uptake but not with reduced megalin expression.
Collapse
Affiliation(s)
- Danny Jensen
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- * E-mail:
| | | | | | - Rikke Nørregaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
| | | | - Henrik Birn
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
39
|
Mika A, Sledzinski T. Alterations of specific lipid groups in serum of obese humans: a review. Obes Rev 2017; 18:247-272. [PMID: 27899022 DOI: 10.1111/obr.12475] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/16/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022]
Abstract
Obesity is a major contributor to the dysfunction of liver, cardiac, pulmonary, endocrine and reproductive system, as well as a component of metabolic syndrome. Although development of obesity-related disorders is associated with lipid abnormalities, most previous studies dealing with the problem in question were limited to routinely determined parameters, such as serum concentrations of triacylglycerols, total cholesterol, low-density and high-density lipoprotein cholesterol. Many authors postulated to extend the scope of analysed lipid compounds and to study obesity-related alterations in other, previously non-examined groups of lipids. Comprehensive quantitative, structural and functional analysis of specific lipid groups may result in identification of new obesity-related alterations. The review summarizes available evidence of obesity-related alterations in various groups of lipids and their impact on health status of obese subjects. Further, the role of diet and endogenous lipid synthesis in the development of serum lipid alterations is discussed, along with potential application of various lipid compounds as risk markers for obesity-related comorbidities.
Collapse
Affiliation(s)
- A Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - T Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
40
|
Nielsen R, Christensen EI, Birn H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int 2017; 89:58-67. [PMID: 26759048 DOI: 10.1016/j.kint.2015.11.007] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/19/2023]
Abstract
Proximal tubule protein uptake is mediated by 2 receptors, megalin and cubilin. These receptors rescue a variety of filtered ligands, including biomarkers, essential vitamins, and hormones. Receptor gene knockout animal models have identified important functions of the receptors and have established their essential role in modulating urinary protein excretion. Rare genetic syndromes associated with dysfunction of these receptors have been identified and characterized, providing additional information on the importance of these receptors in humans. Using various disease models in combination with receptor gene knockout, the implications of receptor dysfunction in acute and chronic kidney injury have been explored and have pointed to potential new roles of these receptors. Based on data from animal models, this paper will review current knowledge on proximal tubule endocytic receptor function and regulation, and their role in renal development, protein reabsorption, albumin uptake, and normal renal physiology. These findings have implications for the pathophysiology and diagnosis of proteinuric renal diseases. We will examine the limitations of the different models and compare the findings to phenotypic observations in inherited human disorders associated with receptor dysfunction. Furthermore, evidence from receptor knockout mouse models as well as human observations suggesting a role of protein receptors for renal disease will be discussed in light of conditions such as chronic kidney disease, diabetes, and hypertension.
Collapse
Affiliation(s)
- Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
41
|
Muroya Y, Ito O. Effect of clofibrate on fatty acid metabolism in the kidney of puromycin-induced nephrotic rats. Clin Exp Nephrol 2016; 20:862-870. [PMID: 26949064 DOI: 10.1007/s10157-016-1253-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/24/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Proteinuria plays an essential role in the progression of tubulointerstitial damage, which causes end-stage renal disease. An increased load of fatty acids bound to albumin reabsorbed into proximal tubular epithelial cells (PTECs) contributes to tubulointerstitial damage. Fibrates, agonists of peroxisome proliferator-activated receptor α (PPARα), have renoprotective effects against proteinuria whereas the effects of these compounds on fatty acid metabolism in the kidney are still unknown. Therefore, the present study examined whether the renoprotective effects of clofibrate were associated with improvement of fatty acid metabolism in puromycin aminonucleoside (PAN)-induced nephrotic rats. METHODS Rats were allocated to the control, PAN or clofibrate-treated PAN group. Biochemical parameters, renal injury and changes in fatty acid metabolism were studied on day14. RESULTS PAN increased proteinuria, lipid accumulation in PTECs, excretions of N-acetyl-β-D-glucosaminidase (NAG) and 8-hydroxydeoxyguanosine (8OHdG) and the area of caspase 3-positive tubular cells. It decreased renal expressions of medium-chain acyl-CoA dehydrogenase (MCAD), cytochrome P450 (CYP)4A, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and estrogen-related receptor α (ERRα) without change of the expression of PPARα. Clofibrate reduced proteinuria, lipid accumulation, NAG excretion and the area of caspase 3-positive tubular cells. However, albumin excretion was not reduced and 8OHdG excretion was increased. Clofibrate minimized changes in MCAD, CYP4A, PGC-1α and ERRα expressions with increased PPARα, very long-chain acyl-CoA dehydrogenase (VLCAD) and long-chain acyl-CoA dehydrogenase (LCAD) expressions. CONCLUSION Clofibrate is protective against renal lipotoxicity in PAN nephrosis. This study indicates that clofibrate has renoprotective effects through maintaining fatty acid metabolism in the kidney of PAN-induced nephrotic rats.
Collapse
Affiliation(s)
- Yoshikazu Muroya
- Department of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University School of Medicine, 1-12-1 Fukumuro, Miyagino-ku, Sendai, 983-8512, Japan.
| | - Osamu Ito
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
42
|
Yang KK, Sui Y, Zhou HR, Shen J, Tan N, Huang YM, Li SS, Pan YH, Zhang XX, Zhao HL. Cross-talk between AMP-activated protein kinase and renin-angiotensin system in uninephrectomised rats. J Renin Angiotensin Aldosterone Syst 2016; 17:17/4/1470320316673231. [PMID: 27798124 PMCID: PMC5843864 DOI: 10.1177/1470320316673231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/10/2016] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The renal renin-angiotensin system (RAS) and the ultrasensitive energy sensor AMP-activated protein kinase (AMPK) have been implicated in normal and aberrant states of the kidney, but interaction between the RAS and AMPK remains unknown. METHODS Ninety-six rats were stratified into four groups: sham, uninephrectomised, uninephrectomised rats treated with the angiotensin-converting enzyme inhibitor lisinopril or the angiotensin receptor blocker losartan. Histopathological examination at 9 months post-operation and biochemical measurements at 3, 6 and 9 months were performed for changes in renal structure and function. The expression of AMPK and angiotensin II at 9 months was detected by immunofluorescence microscopy and western blot. RESULTS Compared with sham rats, uninephrectomised rats demonstrated progressive glomerulosclerosis, tubular atrophy with cast formation and chronic inflammatory infiltration, in parallel to elevated serum urea, creatinine, urine total protein to creatinine ratio and reduced serum albumin. Overexpression of angiotensin II coexisted with a 85.6% reduction of phosphorylated to total AMPK ratio in the remnant kidney of uninephrectomised rats. RAS blockade by the angiotensin-converting enzyme inhibitor or angiotensin receptor blocker substantially normalised AMPK expression, morphological and functional changes of the remnant kidney. CONCLUSIONS Uninephrectomy-induced RAS activation and AMPK inhibition in the remnant kidney could be substantially corrected by RAS blockade, suggesting a cross-talk between AMPK and RAS components in uninephrectomised rats.
Collapse
Affiliation(s)
- Ke-Ke Yang
- Center for Diabetic Systems Medicine, Guilin Medical University, China.,Department of Laboratory, The Second Affiliated Hospital of Nantong University, China
| | - Yi Sui
- Center for Diabetic Systems Medicine, Guilin Medical University, China
| | - Hui-Rong Zhou
- Center for Diabetic Systems Medicine, Guilin Medical University, China.,Department of Surgical Pathology, Shenzhen Hospital of Southern Medical University, China
| | - Jian Shen
- Center for Diabetic Systems Medicine, Guilin Medical University, China
| | - Ning Tan
- Central Laboratory of Core Facilities, Guilin Medical University, China
| | - Yan-Mei Huang
- Center for Diabetic Systems Medicine, Guilin Medical University, China
| | - Sha-Sha Li
- Center for Diabetic Systems Medicine, Guilin Medical University, China
| | - Yan-Hong Pan
- Center for Diabetic Systems Medicine, Guilin Medical University, China
| | - Xiao-Xi Zhang
- Center for Diabetic Systems Medicine, Guilin Medical University, China
| | - Hai-Lu Zhao
- Center for Diabetic Systems Medicine, Guilin Medical University, China
| |
Collapse
|
43
|
Mustafa M, Wang TN, Chen X, Gao B, Krepinsky JC. SREBP inhibition ameliorates renal injury after unilateral ureteral obstruction. Am J Physiol Renal Physiol 2016; 311:F614-25. [DOI: 10.1152/ajprenal.00140.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022] Open
Abstract
Tubulointerstitial fibrosis is a major feature associated with declining kidney function in chronic kidney disease of diverse etiology. No effective means as yet exists to prevent the progression of fibrosis. We have shown that the transcription factor sterol-regulatory element-binding protein 1 (SREBP-1) is an important mediator of the profibrotic response to transforming growth factor-β (TGF-β) and angiotensin II, both key cytokines in the fibrotic process. Here, we examined the role of SREBP in renal interstitial fibrosis in the unilateral ureteral obstruction (UUO) model. The two isoforms of SREBP (-1 and -2) were activated by 3 days after UUO, with SREBP-1 showing a more sustained activation to 21 days. We then examined whether SREBP1/2 inhibition with the small-molecule inhibitor fatostatin could attenuate fibrosis after 14 days of UUO. SREBP activation was confirmed to be inhibited by fatostatin. Treatment decreased interstitial fibrosis, TGF-β signaling, and upregulation of α-smooth muscle actin (SMA), a marker of fibroblast activation. Fatostatin also attenuated inflammatory cell infiltrate and apoptosis. Associated with this, fatostatin preserved proximal tubular mass. The significant increase in atubular glomeruli observed after UUO, known to correlate with irreversible renal functional decline, was also decreased by treatment. In cultured primary fibroblasts, TGF-β1 induced the activation of SREBP-1 and -2. Fatostatin blocked TGF-β1-induced α-SMA and matrix protein upregulation. The inhibition of SREBP is thus a potential novel therapeutic target in the treatment of fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Maria Mustafa
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| | - Tony N. Wang
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| | - Xing Chen
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| | - Joan C. Krepinsky
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| |
Collapse
|
44
|
Roza NAV, Possignolo LF, Palanch AC, Gontijo JAR. Effect of long-term high-fat diet intake on peripheral insulin sensibility, blood pressure, and renal function in female rats. Food Nutr Res 2016; 60:28536. [PMID: 26880072 PMCID: PMC4754019 DOI: 10.3402/fnr.v60.28536] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 01/16/2016] [Accepted: 01/16/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND This study determines whether 8-week high-fat diet (HFD) consumption alters insulin sensitivity, kidney function, and blood pressure (BP) in female rats when compared with standard rodent diet (ND) intake in gender- and age-matched rats. METHODS The present study investigates, in female Wistar HanUnib rats, the effect of long-term high-fat fed group (HFD) compared with standard chow on BP by an indirect tail-cuff method using an electrosphygmomanometer, insulin and glucose function, and kidney function by creatinine and lithium clearances. RESULTS The current study shows glucose tolerance impairment, as demonstrated by increased fasting blood glucose (ND: 78±2.8 vs. HFD: 87±3.8 mg/dL) associated with reduced insulin secretion (ND: 0.58±0.07 vs. HFD: 0.40±0.03 ng/mL) in 8-week female HFD-treated rats. The incremental area under the curve (AUC, ND: 1,4558.0±536.0 vs. HFD: 1,6507.8±661.9), homeostasis model assessment of insulin resistance (HOMA-IR) index, and the first-order rate constant for the disappearance of glucose (Kitt) were significantly enhanced in 8-week HFD-treated rats compared with age-matched ND group (respectively, P=0.03, P=0.002, and P<0.0001). The current study also shows a significantly higher systolic BP measured in 5 and 8 weeks posttreatment in HFD (5-week HFD-treated: 155.25±10.54 mmHg and 8-week HFD-treated: 165±5.8 mmHg) (P=0.0001), when compared to BP values in 5-week ND, 137±4.24 mmHg and 8-week ND, 131.75±5.8 mmHg age-matched group. Otherwise, the glomerular filtration rate and renal sodium handling evaluated by FENa, FEPNa and FEPPNa, were unchanged in both groups. CONCLUSION We may conclude that 8-week female HFD-fed rats compared with ND group stimulate harmful effects, such as BP rise and peripheral glucose intolerance. The increased BP occurs through insulin resistance and supposedly decreased vasodilatation response without any change on renal function.
Collapse
Affiliation(s)
- Noemi A V Roza
- Laboratório de Metabolismo Hidrossalino, Núcleo de Medicina e Cirurgia Experimental, Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Luiz F Possignolo
- Laboratório de Metabolismo Hidrossalino, Núcleo de Medicina e Cirurgia Experimental, Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Adrianne C Palanch
- Laboratório de Metabolismo Hidrossalino, Núcleo de Medicina e Cirurgia Experimental, Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - José A R Gontijo
- Laboratório de Metabolismo Hidrossalino, Núcleo de Medicina e Cirurgia Experimental, Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil;
| |
Collapse
|
45
|
Qiao PF, Yao L, Zhang XC, Li GD, Wu DQ. Heat shock pretreatment improves stem cell repair following ischemia-reperfusion injury via autophagy. World J Gastroenterol 2015; 21:12822-12834. [PMID: 26668506 PMCID: PMC4671037 DOI: 10.3748/wjg.v21.i45.12822] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/02/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether heat shock pretreatment (HSP) improves mesenchymal stem cell (MSC) repair via autophagy following hepatic ischemia-reperfusion injury (HIRI).
METHODS: Apoptosis of MSCs was induced by 250 mM hydrogen peroxide (H2O2) for 6 h. HSP was carried out using a 42 °C water bath for 1, 2 or 3 h. Apoptosis of MSCs was analyzed by flow cytometry, and Western blot was used to detect Bcl-2, Bax and cytochrome C expression. Autophagy of MSCs was analyzed by flow cytometry and transmission electron microscopy, and the expression of beclin I and LC3-II was detected by Western blot. MSCs were labeled in vivo with the fluorescent dye, CM-Dil, and subsequently transplanted into the portal veins of rats that had undergone HIRI. Liver levels of proliferating cell nuclear antigen (PCNA) were quantified by fluorescent microscopy. Serum aminotransferase activity and the extent of HIRI were also assessed at each time point.
RESULTS: HSP for 2 h reduced apoptosis of MSCs induced by H2O2 as seen by a decrease in apoptotic rate, a decrease in Bax and cytochrome C expression and an increase in Bcl-2 expression (P < 0.001). In addition, HSP for 2 h induced autophagy of MSCs exposed to H2O2 as shown by an increase in acidic vesicular organelle-positive cells, beclin 1 and LC3-II expression, and autophagosome formation (P < 0.05). Treatment with 3-methyladenine attenuated HSP-induced autophagy and abolished the protective effects of HSP on the apoptosis of MSCs. Rapamycin failed to have additional effects on either autophagy or apoptosis compared with HSP alone. The phosphorylation of p38MAPK was significantly elevated and the phosphorylation of mTOR was downregulated in heat shock pretreated MSCs. Treatment with the p38MAPK inhibitor, SB203580, reduced HSP-induced autophagy in MSCs. In vivo studies showed that the transplantation of HSP-MSCs resulted in lower serum aminotransferase levels, lower Suzuki scores, improved histopathology and an increase in PCNA-positive cells (P < 0.05).
CONCLUSION: HSP effectively induces autophagy following exposure to H2O2via the p38MAPK/mTOR pathway, which leads to enhanced MSC survival and improved MSC repair following HIRI in rats.
Collapse
|
46
|
Xu YF, Ruan SW, Lin JM, Zhang Z. Yishen Jiangzhuo Granules affect tubulointerstitial fibrosis via a mitochondrion-mediated apoptotic pathway. Chin J Integr Med 2015; 21:928-937. [PMID: 25956968 DOI: 10.1007/s11655-015-2078-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the effect of Yishen Jiangzhuo Granules, YSJZG) on mitochondrial injury and regeneration and renal tubular epithelial cell apoptosis in chronic renal failure (CRF) rats and explore its mechanism from molecular pathology, gene, protein levels, and relative pathway. METHODS The CRF rat model was established using 5/6 nephrectomy. Sixty rats were randomly divided into six groups: sham-operation group, model (CRF) group, Niaoduqing Granules-treated group [5 g/(kg.day)], low-, moderate-, and high-dose [L-YSJZG, M-YSJZG, H-YSJZG at 3, 6, and 9 g/(kg day)] YSJZG-treated group (n=10 each). The levels of serum creatinine (Scr), blood urea nitrogen (BUN), and 24-h urine protein were assessed after 10 weeks of treatment. The tubulointerstitial injury and collagen deposition were evaluated using periodic acid-schiff stain and Masson staining. Renal tubular epithelial cell apoptosis was assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, mitochondrial injury was observed using an electron microscope, and superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) levels were assessed using chromometry. Transforming growth factor-β1 (TGF-β1) expression was assessed using immunohistochemistry. The expressions of Bax, Bcl-2, peroxisome proliferator-activated receptor γ coactivator- 1α (PGC-1α), mitochondrial transcription factor A (Tfam), mitogen-activated protein kinases (MAPK) phosphorylation were evaluated by Western blot. RESULTS YSJZG decreased the 24-h urine protein, BUN, Scr, remnant kidney weight-to-body weight ratio, renal tubular injury, deposition of collagen, and the apoptosis of renal tubular epithelial cells in a dose-dependent manner. YSJZG dose-dependently restored the number and structure of mitochondria and the expression of Tfam and PCG-1α, up-regulated the expression of Bcl-2, and inhibited the expression of Bax. YSJZG also dose-dependently inhibited TGF-β1 expression, increased SOD and GSH activity, decreased the MDA level, and inhibited p38MAPK and pERK1/2 phosphorylation (all P<0.01). CONCLUSION YSJZG improved the renal function in rats with CRF and inhibited the progression of tubulointerstitial fibrosis by dose-dependently alleviating mitochondrial injury, restoring the expression of Tfam and PCG-1α, and inhibiting renal tubular epithelial cell apoptosis through inhibiting activation of reactive oxygen species-MAPK signaling.
Collapse
Affiliation(s)
- Yan-fang Xu
- Department of Nephrology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Shi-wei Ruan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
- People Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China
| | - Jiu-mao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Zheng Zhang
- People Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China
| |
Collapse
|
47
|
Abstract
Normal HDL activity confers cardiovascular and overall protection by mediating reverse cholesterol transport and through its potent anti-inflammatory, antioxidant, and antithrombotic functions. Serum lipid profile, as well as various aspects of HDL metabolism, structure, and function can be profoundly altered in patients with nephrotic range proteinuria or chronic kidney disease (CKD). These abnormalities can, in turn, contribute to the progression of cardiovascular complications and various other comorbidities, such as foam cell formation, atherosclerosis, and/or glomerulosclerosis, in affected patients. The presence and severity of proteinuria and renal insufficiency, as well as dietary and drug regimens, pre-existing genetic disorders of lipid metabolism, and renal replacement therapies (including haemodialysis, peritoneal dialysis, and renal transplantation) determine the natural history of lipid disorders in patients with kidney disease. Despite the adverse effects associated with dysregulated reverse cholesterol transport and advances in our understanding of the underlying mechanisms, safe and effective therapeutic interventions are currently lacking. This Review provides an overview of HDL metabolism under normal conditions, and discusses the features, mechanisms, and consequences of HDL abnormalities in patients with nephrotic syndrome or advanced CKD.
Collapse
|
48
|
Ma HB, Wang R, Yu KZ, Yu C. Dynamic changes of early-stage aortic lipid deposition in chronic renal failure rats and effects of decorin gene therapy. Exp Ther Med 2015; 9:591-597. [PMID: 25574240 PMCID: PMC4280988 DOI: 10.3892/etm.2014.2106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 09/22/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to clarify the association between lipid metabolism and the atherosclerosis in early-stage chronic renal failure at the molecular level and to explore the efficacy of decorin on chronic renal failure. Sprague Dawley rats receiving 5/6 nephrectomy and Sham surgery were divided into control and experimental groups. Sprague Dawley rats receiving 5/6 nephrectomy were divided into control and experimental groups, and the experimental group was further subdivided into rats receiving treatment with fibroblasts (FBs) transfected either with empty vector and with a decorin (DCN) gene. The dynamic levels of triglyceride (TG), total cholesterol (T-Ch) and total phospholipid (T-PL) were detected on the 10th, 30th and 60th days. The body weight, blood lipid levels, renal function and renal tissue were observed after four weeks, and transforming growth factor-βl and protein expression was detected by immunohistochemistry. In total, 4 weeks after treatment, the DCN expression in the renal tissue of rats treated with DCN-transfected FBs was significantly increased compared to that in the control rats. The results showed that the levels of the three lipids in the aortic arches were slightly elevated on the 10th day compared with those in the control group, and the TG level was significantly increased on the 30th day. The levels of T-Ch, TG and T-PL in the aortic arches were significantly elevated on the 60th day. The TG and T-Ch levels in the plasma and aortic tissues of Sprague Dawley rats receiving 5/6 nephrectomy without any treatment and after receiving treatment with FBs transfected with empty vector were significantly increased compared with those in the control group. The increased T-Ch and decreased T-PL levels in the erythrocyte membrane increased the rigidity of the erythrocyte and decreased erythrocyte deformability. In conclusion, highly expressed DCN mitigated renal fibrosis and thus delayed renal failure as well as mitigating the abnormal lipid metabolism of the chronic renal failure.
Collapse
Affiliation(s)
- Hong-Bo Ma
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ke-Zhou Yu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Che Yu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
49
|
Tsun JGS, Yung S, Chau MKM, Shiu SWM, Chan TM, Tan KCB. Cellular cholesterol transport proteins in diabetic nephropathy. PLoS One 2014; 9:e105787. [PMID: 25181357 PMCID: PMC4152117 DOI: 10.1371/journal.pone.0105787] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022] Open
Abstract
Background Lipid accumulation has been shown to accelerate renal injury, and the intracellular accumulation of lipids may be caused by alterations in synthesis as well as lipid uptake and efflux. We have investigated the role of cellular cholesterol transport proteins including adenosine triphosphate binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B type I (SR-BI) in diabetic nephropathy. Methods Protein expression and the ability to mediate cholesterol efflux of ABCA1, ABCG1 and SR-BI was determined in human renal mesangial cells and proximal tubular epithelial cells cultured under normal or high glucose conditions. Renal expression of these cholesterol transporters was examined in a murine model of streptozotocin-induced type 1 diabetes. Results ABCA1, ABCG1 and SR-BI were expressed in both human renal mesangial cells and proximal tubular epithelial cells, and mediated cholesterol efflux to apolipoprotein AI and HDL. In vitro, hyperglycemia reduced the expression and the ability to mediate cholesterol efflux of all three cholesterol transporters (p<0.05). In vivo studies showed that intra-renal accumulation of lipids was increased in diabetic mice, particularly in mice with nephropathy. This was associated with a significant reduction in the expression of ABCA1, ABCG1 and SR-BI in the kidneys. These changes were already seen in diabetic mice without nephropathy and preceded the development of nephropathy. Diabetic mice with nephropathy had the lowest level of these cholesterol transporters. Conclusion Inducing diabetes with streptozotocin significantly reduced renal expression of ABCA1, ABCG1 and SR-BI. Defects in cholesterol export pathway in renal cells could therefore promote cholesterol accumulation and might contribute to the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Joseph G. S. Tsun
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Susan Yung
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Mel K. M. Chau
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Sammy W. M. Shiu
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Tak Mao Chan
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Kathryn C. B. Tan
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
50
|
Microalbuminuria: target for renoprotective therapy PRO. Kidney Int 2014; 86:40-9. [DOI: 10.1038/ki.2013.490] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/23/2022]
|