1
|
Wang L, Cui CY, Lee CT, Bodogai M, Yang N, Shi C, Irfanoglu MO, Occean JR, Afrin S, Sarker N, McDevitt RA, Lehrmann E, Abbas S, Banskota N, Fan J, De S, Rapp P, Biragyn A, Benjamini D, Maragkakis M, Sen P. Spatial transcriptomics of the aging mouse brain reveals origins of inflammation in the white matter. Nat Commun 2025; 16:3231. [PMID: 40185750 PMCID: PMC11971433 DOI: 10.1038/s41467-025-58466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
To systematically understand age-induced molecular changes, we performed spatial transcriptomics of young, middle-aged, and old mouse brains and identified seven transcriptionally distinct regions. All regions exhibited age-associated upregulation of inflammatory mRNAs and downregulation of mRNAs related to synaptic function. Notably, aging white matter fiber tracts showed the most prominent changes with pronounced effects in females. The inflammatory signatures indicated major ongoing events: microglia activation, astrogliosis, complement activation, and myeloid cell infiltration. Immunofluorescence and quantitative MRI analyses confirmed physical interaction of activated microglia with fiber tracts and concomitant reduction of myelin in old mice. In silico analyses identified potential transcription factors influencing these changes. Our study provides a resourceful dataset of spatially resolved transcriptomic features in the naturally aging murine brain encompassing three age groups and both sexes. The results link previous disjointed findings and provide a comprehensive overview of brain aging identifying fiber tracts as a focal point of inflammation.
Collapse
Affiliation(s)
- Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Christopher T Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Monica Bodogai
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Mustafa O Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| | - James R Occean
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Sadia Afrin
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Nishat Sarker
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ross A McDevitt
- Comparative Medicine Section, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Elin Lehrmann
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Shahroze Abbas
- Center for Alzheimer's and Related Dementia, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Nirad Banskota
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Peter Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Dan Benjamini
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
2
|
Abdel-Tawwab M, Omar AA, Khalil RH, Selema TAMA, Elsamanooudy SI, El-Saftawy HAM, Sabry EA, Fawzy RM, Abdel-Razek N. Influences of thermal stress on the growth biometrics, stress indicators, oxidative stress biomarkers, and histopathological alterations in European seabass, Dicentrarchus labrax, juveniles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:70. [PMID: 40111646 PMCID: PMC11926022 DOI: 10.1007/s10695-025-01470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
This study examined how European seabass, Dicentrarchus labrax, juveniles are affected by heat stress in several ways, including growth biometrics, stress indicators, oxidative stress biomarkers, and histopathological changes. Our research aims to gain a better understanding of the impact of thermal stress on these parameters. Hence, European seabass juveniles (30-32 g) were exposed to temperatures of 20 °C, 23 °C, 26 °C, 29 °C, and 31 °C using a 28-day bioassay. It was noted that the fish showed better performance indices at 23 °C and 26 °C. However, fish reared at 20 °C showed intermediate growth, while the fish reared at 31 °C displayed poor performance with low survival rates. As the water temperature increased from 20 to 31 °C, the levels of glucose, cortisol, aspartate aminotransferase, and alanine aminotransferase in the fish blood also increased, suggesting that the fish were under stress. Furthermore, activities of superoxide dismutase (SOD) and catalase (CAT), as well as levels of malondialdehyde, increased significantly (P < 0.05) with the rise in the rearing temperature, particularly at 31 °C. This suggested that European seabass juveniles experienced oxidative stress. Additionally, the mRNA expression of SOD and CAT genes was upregulated at 31 °C compared to those reared at 23-26 °C. This high upregulation of both genes led to an increase in the secretion of SOD and CAT. Juveniles of European seabass raised in 31 °C for 28 days showed significant damage in the histological structure of their kidney, liver, and gills. In addition to fusion and blood congestion of secondary lamellae, the fish in this treatment (31 °C) displayed edema, epithelial lifting, and blood congestion of the gill epithelium. After 28 days, fish cultivated at 31 °C had sinusoid dilatation, hyperemia, and nuclear hypertrophy in their liver tissues. Furthermore, hyperemia, tubular necrosis, and severe glomerular congestion were observed in fish raised in water temperatures as high as 31 °C for 28 days. This study recommends farming European seabass at 23 °C and 26 °C, which were the optimum temperatures. By global warming due to climatic changes, water temperature may reach up to 31 °C or more, which will cause adverse effects on fish performance and increase the oxidative stress.
Collapse
Affiliation(s)
- Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt.
| | - Amira A Omar
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Riad H Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Talal A M Abo Selema
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Salma I Elsamanooudy
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Hend A M El-Saftawy
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Agricultural Research Center, Sakha Aquaculture Research Unit, Kafrelsheikh, Egypt
| | - Eman A Sabry
- Department of Fish Production and Aquaculture Systems, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| | - Reham M Fawzy
- Department of Fish Nutrition and Feed Technology, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| | - Nashwa Abdel-Razek
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| |
Collapse
|
3
|
Wu J, Zhou Z, Huang Y, Deng X, Zheng S, He S, Huang G, Hu B, Shi M, Liao W, Huang N. Radiofrequency ablation: mechanisms and clinical applications. MedComm (Beijing) 2024; 5:e746. [PMID: 39359691 PMCID: PMC11445673 DOI: 10.1002/mco2.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Radiofrequency ablation (RFA), a form of thermal ablation, employs localized heat to induce protein denaturation in tissue cells, resulting in cell death. It has emerged as a viable treatment option for patients who are ineligible for surgery in various diseases, particularly liver cancer and other tumor-related conditions. In addition to directly eliminating tumor cells, RFA also induces alterations in the infiltrating cells within the tumor microenvironment (TME), which can significantly impact treatment outcomes. Moreover, incomplete RFA (iRFA) may lead to tumor recurrence and metastasis. The current challenge is to enhance the efficacy of RFA by elucidating its underlying mechanisms. This review discusses the clinical applications of RFA in treating various diseases and the mechanisms that contribute to the survival and invasion of tumor cells following iRFA, including the roles of heat shock proteins, hypoxia, and autophagy. Additionally, we analyze the changes occurring in infiltrating cells within the TME after iRFA. Finally, we provide a comprehensive summary of clinical trials involving RFA in conjunction with other treatment modalities in the field of cancer therapy, aiming to offer novel insights and references for improving the effectiveness of RFA.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuanwen Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xinyue Deng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siting Zheng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shangwen He
- Department of Respiratory and Critical Care MedicineChronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Genjie Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghui Hu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Shi
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Na Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
4
|
Singh MK, Shin Y, Ju S, Han S, Choe W, Yoon KS, Kim SS, Kang I. Heat Shock Response and Heat Shock Proteins: Current Understanding and Future Opportunities in Human Diseases. Int J Mol Sci 2024; 25:4209. [PMID: 38673794 PMCID: PMC11050489 DOI: 10.3390/ijms25084209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The heat shock response is an evolutionarily conserved mechanism that protects cells or organisms from the harmful effects of various stressors such as heat, chemicals toxins, UV radiation, and oxidizing agents. The heat shock response triggers the expression of a specific set of genes and proteins known as heat shock genes/proteins or molecular chaperones, including HSP100, HSP90, HSP70, HSP60, and small HSPs. Heat shock proteins (HSPs) play a crucial role in thermotolerance and aiding in protecting cells from harmful insults of stressors. HSPs are involved in essential cellular functions such as protein folding, eliminating misfolded proteins, apoptosis, and modulating cell signaling. The stress response to various environmental insults has been extensively studied in organisms from prokaryotes to higher organisms. The responses of organisms to various environmental stressors rely on the intensity and threshold of the stress stimuli, which vary among organisms and cellular contexts. Studies on heat shock proteins have primarily focused on HSP70, HSP90, HSP60, small HSPs, and ubiquitin, along with their applications in human biology. The current review highlighted a comprehensive mechanism of heat shock response and explores the function of heat shock proteins in stress management, as well as their potential as therapeutic agents and diagnostic markers for various diseases.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Omidi A, Nazifi S, Rasekh M, Zare N. Heat-shock proteins, oxidative stress, and antioxidants in one-humped camels. Trop Anim Health Prod 2023; 56:29. [PMID: 38158433 DOI: 10.1007/s11250-023-03876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
One-humped camels (Camelus dromedarius) exhibit remarkable adaptability to harsh desert environments through various physiological adaptations. This study aimed to assess variations and reference values of Heat-shock proteins (HSPs), physiological parameters, mineral concentrations, total antioxidant capacity (TAC), and malondialdehyde (MDA) in 90 healthy female one-humped camels from Zabol's outskirts in Iran. The objective was to understand how these camels adapt to heat stress. Blood samples were collected from camels located at five geographical regions and analyzed using standard kits and methods. Reference intervals for heat-shock protein 30 (HSP30), heat-shock protein 40 (HSP40), heat-shock protein 70 (HSP70), and heat-shock protein 90 (HSP90) were determined using the reference value advisor (RVA). The study found significant differences among different regions for HSPs (P < 0.05), MDA (P = 0.021), and TAC (P = 0.042) levels, indicating variations in adaptation mechanisms. However, no notable differences were observed for other measured parameters between these regions. There were no significant differences observed in the evaluated parameters between the age categories of > 36 months and < 36 months. The positive correlation between HSPs and MDA levels (ranging from 0.754 to 0.884) suggests that the synthesis of HSPs is triggered as a response to oxidative stress caused by an imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant defenses. This oxidative stress, in turn, is a consequence of thermal stress. Additionally, the study reveals a negative association between TAC and HSP levels (ranging from - 0.660 to - 0.820), emphasizing the role of antioxidants in mitigating heat stress. The findings of this research offer compelling support for the critical role that HSPs play in protecting cells from heat-induced damage. Additionally, the presence of higher levels of HSPs in regions with more severe climate conditions serves as evidence of camels' adaptation to heat stress. These findings emphasize the substantial impact of environmental factors on HSP production and further reinforce the crucial role of HSPs in bolstering the resilience of camels. Further research is needed to explore HSP expression and mechanisms to effectively manage and enhance camel resilience in extreme temperatures.
Collapse
Affiliation(s)
- Arash Omidi
- Department of Animal Health Management, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Rasekh
- Department of Clinical Sciences, School of Veterinary Medicine, Zabol University, Zabol, Iran
| | - Nima Zare
- School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Khieokhajonkhet A, Phoprakot M, Aeksiri N, Kaneko G, Phromkunthong W. Effects of thermal stress responses in goldfish (Carassius auratus): growth performance, total carotenoids and coloration, hematology, liver histology, and critical thermal maximum. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1391-1407. [PMID: 37987934 DOI: 10.1007/s10695-023-01263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
The present study aimed to investigate the effect of thermal stress on growth, feed utilization, coloration, hematology, liver histology, and critical thermal maximum (CTmax) in goldfish (Carassius auratus) cultured at three different acclimation temperatures including 27 °C, 30 °C, and 34 °C for 10 weeks. Goldfish were assigned randomly to tanks with a quadruplicate setup, accommodating 20 fish per tank. The result showed that fish acclimated to different temperatures did not significantly differ in weight gain (WG) and specific growth rate (SGR). However, increasing temperature significantly decreased feed efficiency ratio (FER), protein efficiency ratio (PER), and protein productive value (PPV), but significantly increased feed conversion ratio (FCR) (P < 0.05). The coloration parameters significantly decreased by high temperature in the trunk region with increasing temperature (L* and a* at week 5; L*, a*, and b* at week 10; P < 0.05). Total carotenoid contents in serum, fin, muscle, and skin also significantly decreased with increasing temperature (P < 0.05). Total protein, albumin, and globulin levels exhibited a notable decrease, while the albumin: globulin ratio showed a slight insignificant increase, with increasing temperature. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total cholesterol, and triglycerides significantly increased with increasing temperature (P < 0.05). While, high-density lipoprotein cholesterol (HDL-c) decreased linearly (P < 0.05). Glucose and cortisol levels linearly increased with increasing temperature, the highest levels being observed in the 34 °C group. Liver histology showed swollen hepatocytes, nuclei displacement, and infiltration of inflammation in fish cultured at 34 °C. Goldfish acclimated to 34 °C displayed a higher CTmax of 43.83 °C compared to other groups. The present study showed that temperature should be kept below 34 °C for goldfish culture to prevent high FCR, fading coloration, and liver damages.
Collapse
Affiliation(s)
- Anurak Khieokhajonkhet
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, 99 M. 1, T. Thapo, A. Muang, Phitsanulok, 65000, Thailand.
| | - Marisa Phoprakot
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, 99 M. 1, T. Thapo, A. Muang, Phitsanulok, 65000, Thailand
| | - Niran Aeksiri
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, 99 M. 1, T. Thapo, A. Muang, Phitsanulok, 65000, Thailand
| | - Gen Kaneko
- College of Natural and Applied Science, University of Houston-Victoria, 3007 N. Ben Wilson, Victoria, TX, 77901, USA
| | - Wutiporn Phromkunthong
- Kidchakan Supamattaya Aquatic Animal Health Research Center, Department of Aquatic Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla, 90112, Thailand
| |
Collapse
|
7
|
Arbeev KG, Bagley O, Yashkin AP, Duan H, Akushevich I, Ukraintseva SV, Yashin AI. Understanding Alzheimer's disease in the context of aging: Findings from applications of stochastic process models to the Health and Retirement Study. Mech Ageing Dev 2023; 211:111791. [PMID: 36796730 PMCID: PMC10085865 DOI: 10.1016/j.mad.2023.111791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
There is growing literature on applications of biodemographic models, including stochastic process models (SPM), to studying regularities of age dynamics of biological variables in relation to aging and disease development. Alzheimer's disease (AD) is especially good candidate for SPM applications because age is a major risk factor for this heterogeneous complex trait. However, such applications are largely lacking. This paper starts filling this gap and applies SPM to data on onset of AD and longitudinal trajectories of body mass index (BMI) constructed from the Health and Retirement Study surveys and Medicare-linked data. We found that APOE e4 carriers are less robust to deviations of trajectories of BMI from the optimal levels compared to non-carriers. We also observed age-related decline in adaptive response (resilience) related to deviations of BMI from optimal levels as well as APOE- and age-dependence in other components related to variability of BMI around the mean allostatic values and accumulation of allostatic load. SPM applications thus allow revealing novel connections between age, genetic factors and longitudinal trajectories of risk factors in the context of AD and aging creating new opportunities for understanding AD development, forecasting trends in AD incidence and prevalence in populations, and studying disparities in those.
Collapse
Affiliation(s)
- Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA.
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Arseniy P Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Hongzhe Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Svetlana V Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| |
Collapse
|
8
|
Jung J, Uejio CK, Adeyeye TE, Kintziger KW, Duclos C, Reid K, Jordan M, Spector JT, Insaf TZ. Using social security number to identify sub-populations vulnerable to the health impacts from extreme heat in Florida, U.S. ENVIRONMENTAL RESEARCH 2021; 202:111738. [PMID: 34331925 DOI: 10.1016/j.envres.2021.111738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Some socioeconomically vulnerable groups may experience disproportionately higher risk of extreme heat illness than other groups, but no study has utilized the presence/absence of a social security number (SSN) as a proxy for vulnerable sub-populations. METHODS This study focused on the warm season from 2008 to 2012 in Florida, U.S. With a total number of 8,256,171 individual level health outcomes, we devised separate case-crossover models for five heat-sensitive health outcomes (cardiovascular disease, dehydration, heat-related illness, renal disease, and respiratory disease), type of health care visit (emergency department (ED) and hospitalization), and patients reporting/not reporting an SSN. Each stratified model also considered potential effect modification by sex, age, or race/ethnicity. RESULTS Mean temperature raised the odds of five heat-sensitive health outcomes with the highest odds ratios (ORs) for heat-related illness. Sex significantly modified heat exposure effects for dehydration ED visits (Males: 1.145, 95 % CI: 1.137-1.153; Females: 1.110, 95 % CI: 1.103-1.117) and hospitalization (Males: 1.116, 95 % CI: 1.110-1.121; Females: 1.100, 95 % CI: 1.095-1.105). Patients not reporting an SSN between 25 and 44 years (1.264, 95 % CI: 1.192-1.340) exhibited significantly higher dehydration ED ORs than those reporting an SSN (1.146, 95 % CI: 1.136-1.157). We also observed significantly higher ORs for cardiovascular disease hospitalization from the no SSN group (SSN: 1.089, 95 % CI: 1.088-1.090; no SSN: 1.100, 95 % CI: 1.091-1.110). CONCLUSIONS This paper partially supports the idea that individuals without an SSN could experience higher risks of dehydration (for those 25-45 years), renal disease, and cardiovascular disease than those with an SSN.
Collapse
Affiliation(s)
- Jihoon Jung
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | | | - Temilayo E Adeyeye
- Bureau of Environmental and Occupational Epidemiology, New York State Department of Health, Albany, NY, USA; School of Public Health, University at Albany, Rensselaer, NY, USA
| | | | - Chris Duclos
- Florida Department of Health, Tallahassee, FL, USA
| | - Keshia Reid
- Florida Department of Health, Tallahassee, FL, USA
| | | | - June T Spector
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Tabassum Z Insaf
- Bureau of Environmental and Occupational Epidemiology, New York State Department of Health, Albany, NY, USA; School of Public Health, University at Albany, Rensselaer, NY, USA
| |
Collapse
|
9
|
Srisapoome P, Ju-Ngam T, Wongpanya R. Characterization, Stress Response and Functional Analyses of Giant River Prawn ( Macrobrachium rosenbergii) Glucose-Regulated Protein 78 (Mr-grp78) under Temperature Stress and during Aeromonas hydrophila Infection. Animals (Basel) 2021; 11:ani11103004. [PMID: 34680024 PMCID: PMC8532774 DOI: 10.3390/ani11103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glucose-regulated protein 78 (grp78) is classified as a member of the Hsp70 subfamily. This protein functions as a key factor in signal transduction associated with the unfolded protein response (UPR) in the endoplasmic reticulum (ER) during cellular stress and protects against cell damage caused by toxic chemicals, oxidative stress, Ca2+ depletion, programmed cell death and various infectious conditions. To investigate this crucial mechanism in giant river prawn (Macrobrachium rosenbergii), we analyzed the biological function of prawn grp78 at the molecular level in this study. The regulation of this gene was intensively analyzed under normal bacterial infection and heat/cold-shock inductions. A functional analysis of this gene under heat and infectious stress conditions was performed by gene knockdown. The information obtained in the current study clearly indicates the crucially significant roles of grp78 in the cellular stress responses of the target experimental animal under various stress conditions. Abstract The endoplasmic reticulum (ER) is an organelle important for several functions of cellular physiology. This study identified the giant river prawn’s glucose-regulated protein 78 (Mr-grp78), which is important for ER stress mechanisms. Nucleotide and amino acid analyses of Mr-grp78, as compared with other species, revealed the highest similarity scores with the grp78 genes of crustaceans. An expression analysis by quantitative RT-PCR indicated that Mr-grp78 was expressed in all tissues and presented its highest expression in the ovary (57.64 ± 2.39-fold), followed by the gills (42.25 ± 1.12), hindgut (37.15 ± 2.47), thoracic ganglia (28.55 ± 2.45) and hemocytes (28.45 ± 2.26). Expression analysis of Mr-grp78 mRNA levels under Aeromonas hydrophila induction and heat/cold-shock exposure was conducted in the gills, hepatopancreas and hemocytes. The expression levels of Mr-grp78 in these tissues were highly upregulated 12 h after bacterial infection. In contrast, under heat- and cold-shock conditions, the expression of Mr-grp78 was significantly suppressed in the gills at 24–96 h and in the hepatopancreas at 12 h (p < 0.05). A functional analysis via Mr-grp78 gene knockdown showed that Mr-grp78 transcription in the gills, hepatopancreas and muscle strongly decreased from 6 to 96 h. Furthermore, the silencing of this gene effectively increased the sensitivity of the tested prawns to heat- and pathogenic-bacterium-induced stress. The results of this study clearly demonstrate the significant functional roles of Mr-grp78 in response to both temperature and pathogen treatments.
Collapse
Affiliation(s)
- Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2579-2924
| | - Tanya Ju-Ngam
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
10
|
Malyar RM, Naseri E, Li H, Ali I, Farid RA, Liu D, Maroof K, Nasim M, Banuree SAH, Huang K, Waldron KJ, Chen X. Hepatoprotective Effects of Selenium-Enriched Probiotics Supplementation on Heat-Stressed Wistar Rat Through Anti-Inflammatory and Antioxidant Effects. Biol Trace Elem Res 2021; 199:3445-3456. [PMID: 33161525 DOI: 10.1007/s12011-020-02475-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to elucidate the effects of selenium-enriched probiotics on the liver of heat-stressed Wistar rats. Ten-week-old male rats were assigned to four groups: control (Con); high temperature (HT); high temperature plus probiotics (HT + P: 1011 CFU/mL Lactobacillus acidophilus and 109 CFU/mL Saccharomyces cerevisiae); or high temperature plus selenium-enriched probiotics (HT + SeP: 0.3 mg/kg Se, 1011 CFU/mL L. acidophilus and 109 CFU/mL S. cerevisiae). The HT, HT + P, and HT + SeP groups were maintained at higher ambient temperature (40-42 °C), while the control group was kept at room temperature (25 °C). After 42 days of thermal exposure, blood and liver tissues were collected and analyzed for morphological and molecular markers of liver physiology. The body weight of rats in the HT group decreased but liver weight and live index were increased. Histological examination showed dilation of liver sinusoids and congestion of interstitial veins in HT group. Moreover, the histomorphology of the liver in HT + P and HT + SeP groups was restored, and the serum AST, ALT, ALP, LDH, and hepatic MDA level decreased significantly, but the serum total protein level and the liver SOD, T-AOC, and GSH-PX activities were increased significantly relative to the HT group. In addition, the mRNA level of Gpx1, SOD1, Nrf2, and Bcl-2 was significantly increased, while the expression level of Bax, IL-6, TNF-α, COX-2, NF-κB, α-SMA, TGFβ1, Collagen I, HSP70, and HSP90 was significantly decreased in liver tissues after SeP supplementation. We concluded that SeP can protect Wistar rats from oxidative stress, inflammation, apoptosis, and liver fibrosis induced by heat stress.
Collapse
Affiliation(s)
- Rahmani Mohammad Malyar
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, Nanjing Agricultural University, Nanjing, 210095, China
- Faculty of Veterinary Science, Nangarhar University, Jalalabad, Nangarhar Province, Afghanistan
| | - Emal Naseri
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ilyas Ali
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rawan Ahmad Farid
- Faculty of Veterinary Science, Nangarhar University, Jalalabad, Nangarhar Province, Afghanistan
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, Nanjing Agricultural University, Nanjing, 210095, China
| | - Khushdil Maroof
- Faculty of Veterinary Science, Nangarhar University, Jalalabad, Nangarhar Province, Afghanistan
| | - Maazullah Nasim
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kevin J Waldron
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Ju-Ngam T, McMillan N, Yoshimizu M, Kasai H, Wongpanya R, Srisapoome P. Functional and Stress Response Analysis of Heat Shock Proteins 40 and 90 of Giant River Prawn ( Macrobrachium rosenbergii) under Temperature and Pathogenic Bacterial Exposure Stimuli. Biomolecules 2021; 11:biom11071034. [PMID: 34356657 PMCID: PMC8301959 DOI: 10.3390/biom11071034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
The aims of this research were to perform molecular characterization and biofunctional analyses of giant river prawn Hsp40 and Hsp90 genes (Mr-hsp40 and Mr-hsp90) under various stress conditions. Comparisons of the nucleotide and amino acid sequences of Mr-hsp40 and Mr-hsp90 with those of other species showed the highest similarity scores with crustaceans. Under normal conditions, expression analysis using quantitative real-time RT-PCR (qRT-PCR) indicated that Mr-hsp40 was highly expressed in the gills and testis, and Mr-hsp90 expression was observed in all tissues, with the highest expression in the ovary. The expression patterns of Mr-hsp40 and Mr-hsp90 transcripts under Aeromonas hydrophila challenge and heat-cold shock conditions were examined in gills, the hepatopancreas and hemocytes, at 0, 3, 6, 12, 24, 48 and 96 h by qRT-PCR. Under bacterial challenge, Mr-hsp40 displayed variable expression patterns in all tissues examined during the tested periods. In contrast, upregulated expression of Mr-hsp90 was quickly observed from 3 to 12 h in the gills and hepatopancreas, whereas obviously significant upregulation of Mr-hsp90 was observed in hemocytes at 12-96 h. Under temperature shock conditions, upregulation of Mr-hsp40 expression was detected in all tested tissues, while Mr-hsp90 expression was quickly upregulated at 3-48 h in all tissues in response to 35 °C conditions, and conditions of 35 and 25 °C stimulated its expression in gills and the hepatopancreas at 12 and 48 h, respectively. Silencing analyses of these two genes were successfully conducted under normal, high-temperature (35 °C) and A. hydrophila infection conditions. Overall, knockdown of Mr-hsp40 and Mr-hsp90 effectively induced more rapid and higher mortality than in the PBS control and GFP induction groups in temperature and infectious treatments. Evidence from this study clearly demonstrated the significant functional roles of Mr-hsp40 and Mr-hsp90, which are crucially involved in cellular stress responses to both temperature and pathogenic bacterial stimuli.
Collapse
Affiliation(s)
- Tanya Ju-Ngam
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Nichanun McMillan
- Laboratory of Aquaculture Genetics, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| | - Mamoru Yoshimizu
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan; (M.Y.); (H.K.)
| | - Hisae Kasai
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan; (M.Y.); (H.K.)
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2579-2924; Fax: +66-2561-3984
| |
Collapse
|
12
|
Kim K, Jung J, Schollaert C, Spector JT. A Comparative Assessment of Cooling Center Preparedness across Twenty-Five U.S. Cities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4801. [PMID: 33946281 PMCID: PMC8125005 DOI: 10.3390/ijerph18094801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/14/2023]
Abstract
Cooling centers have played a significant role in reducing the risks of adverse health impacts of extreme heat exposure. However, there have been no comparative studies investigating cooling center preparedness in terms of population coverage, location efficiency, and population coverage disparities among different subpopulation groups. Using a catchment area method with a 0.8 km walking distance, we compared three aspects of cooling center preparedness across twenty-five cities in the U.S. We first calculated the percentage of the population covered by a single cooling center for each city. Then, the extracted values were separately compared to the city's heat indexes, latitudes, and spatial patterns of cooling centers. Finally, we investigated population coverage disparities among multiple demographics (age, race/ethnicity) and socioeconomic (insurance, poverty) subpopulation groups by comparing the percentage of population coverage between selected subpopulation groups and reference subpopulation groups. Our results showed that cooler cities, higher latitude cities, and cities with dispersed cooling centers tend to be more prepared than warmer cities, lower latitude cities, and cities with clustered cooling centers across the U.S. Moreover, older people (≥65) had 9% lower population coverage than younger people (≤64). Our results suggest that the placement of future cooling centers should consider both the location of other nearby cooling centers and the spatial distribution of subpopulations to maximize population coverage and reduce access disparities among several subpopulations.
Collapse
Affiliation(s)
- Kyusik Kim
- Department of Geography, Florida State University, Tallahassee, FL 32306, USA;
| | - Jihoon Jung
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; (C.S.); (J.T.S.)
| | - Claire Schollaert
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; (C.S.); (J.T.S.)
| | - June T. Spector
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; (C.S.); (J.T.S.)
| |
Collapse
|
13
|
The aging proteostasis decline: From nematode to human. Exp Cell Res 2021; 399:112474. [PMID: 33434530 PMCID: PMC7868887 DOI: 10.1016/j.yexcr.2021.112474] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 02/08/2023]
Abstract
The aging proteostasis decline manifests in a failure of aging cells and organisms to properly respond to proteotoxic challenges. This proteostasis collapse has long been considered a hallmark of aging in nematodes, and has recently been shown to occur also in human cells upon entry to senescence, opening the way to exploring the phenomenon in the broader context of human aging. Cellular senescence is part of the normal human physiology of aging, with senescent cell accumulation as a prominent feature of aged tissues. Being highly resistant to cell death, senescent cells, as they accumulate, become pro-inflammatory and promote disease. Here we discuss the causes of human senescence proteostasis decline, in view of the current literature on nematodes, on the one hand, and senescence, on the other hand. We review two major aspects of the phenomenon: (1) the decline in transcriptional activation of stress-response pathways, and (2) impairments in proteasome function. We further outline potential underlying mechanisms of transcriptional proteostasis decline, focusing on reduced chromatin dynamics and compromised nuclear integrity. Finally, we discuss potential strategies for reinforcing proteostasis as a means to improve organismal health and address the relationship to senolytics.
Collapse
|
14
|
Abstract
Protein homeostasis (proteostasis), the balance between protein synthesis, folding, and degradation, is thought to deteriorate with age, and the prevalence of protein misfolding diseases (e.g., Alzheimer’s, Parkinson’s, etc.) with human aging is increased. However, while in worms this phenomenon has been well established, in humans, it remained unclear. Here, we show that proteostasis is declined in human cellular aging, termed cellular senescence. We found that while stress sensing is enhanced in senescent cells, and their response at the level of protein synthesis is intact, they fail to properly activate multiple programs required for stress adaptation at the level of gene transcription. Our findings support the notion that proteostasis decline may have major implications on human aging. Proteostasis collapse, the diminished ability to maintain protein homeostasis, has been established as a hallmark of nematode aging. However, whether proteostasis collapse occurs in humans has remained unclear. Here, we demonstrate that proteostasis decline is intrinsic to human senescence. Using transcriptome-wide characterization of gene expression, splicing, and translation, we found a significant deterioration in the transcriptional activation of the heat shock response in stressed senescent cells. Furthermore, phosphorylated HSF1 nuclear localization and distribution were impaired in senescence. Interestingly, alternative splicing regulation was also dampened. Surprisingly, we found a decoupling between different unfolded protein response (UPR) branches in stressed senescent cells. While young cells initiated UPR-related translational and transcriptional regulatory responses, senescent cells showed enhanced translational regulation and endoplasmic reticulum (ER) stress sensing; however, they were unable to trigger UPR-related transcriptional responses. This was accompanied by diminished ATF6 nuclear localization in stressed senescent cells. Finally, we found that proteasome function was impaired following heat stress in senescent cells, and did not recover upon return to normal temperature. Together, our data unraveled a deterioration in the ability to mount dynamic stress transcriptional programs upon human senescence with broad implications on proteostasis control and connected proteostasis decline to human aging.
Collapse
|
15
|
McCormick JJ, King KE, Côté MD, Meade RD, Akerman AP, Kenny GP. Impaired autophagy following ex vivo heating at physiologically relevant temperatures in peripheral blood mononuclear cells from elderly adults. J Therm Biol 2020; 95:102790. [PMID: 33454031 DOI: 10.1016/j.jtherbio.2020.102790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 10/25/2022]
Abstract
With the increasing threat of climate change and the accompanying rise in the frequency and severity of extreme heat events, there are growing health concerns for heat-vulnerable elderly adults. Elderly adults are at increased risk of developing heat-related injuries, in part due to age-related declines in thermoregulatory and cellular function. Regarding the latter, the process of autophagy is activated as a cellular protective mechanism to counter heat-induced stress, but the extent that heat stress activates autophagy in elderly adults is not known. Further, the interplay between autophagy, the heat shock response (HSR), the acute inflammatory response, and apoptosis remains poorly understood in elderly adults. Therefore, the purpose of this study was to examine changes in autophagy, the HSR, inflammation, and apoptosis following increasing levels of ex vivo heat stress representative of physiologically relevant increases in body core temperatures (37-41 °C). Whole blood from 20 elderly adults (72 ± 4 years; 14 men, 6 women) was heated (via water immersion) to temperatures representative of normal resting conditions (normothermia; 37 °C), in addition to moderate and severe heat stress conditions (39, and 41 °C, respectively) for 90 min. Peripheral blood mononuclear cells (PBMC) were isolated and protein markers of autophagy, the HSR, acute inflammation, and apoptosis were examined. No significant increases in markers of autophagy or the HSR were observed following any temperature condition. However, an increase in acute inflammation was observed above baseline following moderate heat stress (39 °C), with further increases in inflammation and apoptosis observed during severe heat stress (41 °C). Our findings indicate that PBMCs from elderly adults do not exhibit increases in autophagy or the HSR following severe heat stress, potentially contributing to the elevated risk of cellular dysfunction seen in elderly adults during heat stress.
Collapse
Affiliation(s)
- James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Melissa D Côté
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
16
|
Screening of genes coupled to heat response in Mongolian and Dorper sheep breeds. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Guihur A, Rebeaud ME, Fauvet B, Tiwari S, Weiss YG, Goloubinoff P. Moderate Fever Cycles as a Potential Mechanism to Protect the Respiratory System in COVID-19 Patients. Front Med (Lausanne) 2020; 7:564170. [PMID: 33043037 PMCID: PMC7517715 DOI: 10.3389/fmed.2020.564170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Mortality in COVID-19 patients predominantly results from an acute respiratory distress syndrome (ARDS), in which lungs alveolar cells undergo programmed cell death. Mortality in a sepsis-induced ARDS rat model is reduced by adenovirus over-expression of the HSP70 chaperone. A natural rise of body temperature during mild fever can naturally accumulate high cellular levels of HSP70 that can arrest apoptosis and protect alveolar lung cells from inflammatory damages. However, beyond 1-2 h of fever, no HSP70 is being further produced and a decreased in body temperature required to the restore cell's ability to produce more HSP70 in a subsequent fever cycle. We suggest that antipyretics may be beneficial in COVID-19 patients subsequent to several hours of mild (<38.8°C) advantageous fever, allowing lung cells to accumulate protective HSP70 against damages from the inflammatory response to the virus SARS-CoV-2. With age, the ability to develop fever and accumulate HSP70 decreases. This could be ameliorated, when advisable to do so, by thermotherapies and/or physical training.
Collapse
Affiliation(s)
- Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mathieu E. Rebeaud
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Satyam Tiwari
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Yoram G. Weiss
- Department of Anesthesiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Trivedi R, Jurivich DA. A molecular perspective on age-dependent changes to the heat shock axis. Exp Gerontol 2020; 137:110969. [PMID: 32407864 DOI: 10.1016/j.exger.2020.110969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
Abstract
Aging is a complex process associated with progressive damage that leads to cellular dysfunction often accompanied by frailty and age-related diseases. Coping with all types of physiologic stress declines with age. While representing a primordial, cross-species response in poikilo- and homeotherms, the age-dependent perturbation of the stress response is more complex than previously thought. This short review examines how age influences the stress axis at multiple levels that involve both activating and attenuating pathways.
Collapse
Affiliation(s)
- Rachana Trivedi
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, USA.
| | - Donald A Jurivich
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, USA.
| |
Collapse
|
19
|
Sinha A, Lutter R, Xu B, Dekker T, Dierdorp B, Sterk PJ, Frey U, Eckert ED. Loss of adaptive capacity in asthmatic patients revealed by biomarker fluctuation dynamics after rhinovirus challenge. eLife 2019; 8:47969. [PMID: 31687927 PMCID: PMC6877087 DOI: 10.7554/elife.47969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Asthma is a dynamic disease, in which lung mechanical and inflammatory processes interact in a complex manner, often resulting in exaggerated physiological, in particular, inflammatory responses to exogenous triggers. We hypothesize that this may be explained by respiratory disease-related systems instability and loss of adaptability to changing environmental conditions, manifested in highly fluctuating biomarkers and symptoms. Using time series of inflammatory (eosinophils, neutrophils, FeNO), clinical and lung function biomarkers (PEF, FVC,FEV1), we estimated this loss of adaptive capacity (AC) during an experimental rhinovirus infection in 24 healthy and asthmatic human volunteers. Loss of AC was estimated by comparing similarities between pre- and post-challenge time series. Unlike healthy participants, the asthmatic’s post-viral-challenge state resembled more other rhinovirus-infected asthmatics than their own pre-viral-challenge state (hypergeometric-test: p=0.029). This reveals loss of AC and supports the concept that in asthma, biological processes underlying inflammatory and physiological responses are unstable, contributing to loss of control.
Collapse
Affiliation(s)
- Anirban Sinha
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Biomedical Engineering and University Children's Hospital, University of Basel, Basel, Switzerland
| | - René Lutter
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Binbin Xu
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Tamara Dekker
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Barbara Dierdorp
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Urs Frey
- Department of Biomedical Engineering and University Children's Hospital, University of Basel, Basel, Switzerland
| | - Edgar Delgado Eckert
- Department of Biomedical Engineering and University Children's Hospital, University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Malig BJ, Wu XM, Guirguis K, Gershunov A, Basu R. Associations between ambient temperature and hepatobiliary and renal hospitalizations in California, 1999 to 2009. ENVIRONMENTAL RESEARCH 2019; 177:108566. [PMID: 31323396 DOI: 10.1016/j.envres.2019.108566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND High ambient temperature has been linked to a number of types of morbidity, such as cardiovascular disease and dehydration. Fewer studies have explored specifically the relationship between ambient temperature and liver, kidney, and urinary system morbidity despite known biological impacts of extreme high temperatures on those systems. OBJECTIVE We assessed the relationship between temperature and hospitalizations related to selected renal system (urinary stones, urinary tract infections, septicemia, chronic kidney disease, and a composite of selected kidney diseases) and hepatobiliary (biliary tract disease, other liver diseases [e.g. cirrhosis], non-diabetic pancreatic disorders) ailments. METHODS We compiled data on daily hospitalization counts for hepatobiliary and renal system diseases in California for 1999 through 2009, and matched it with meteorological data. Relationships between temperature and admissions during the warm season (May-October) were assessed at the climate zone-level cumulative over 14 days following exposure using distributed lag non-linear models, with adjustment for time trends and relative humidity, then combined using random-effects meta-regression to create statewide estimates. RESULTS Higher mean temperatures in the warm season were associated with significant increases in renal admissions for urinary tract infection [% change per 10 °F: 7.3, 95% CI: 5.6, 9.1], septicemia [% increase: 2.9; 95% CI: 1.5, 4.3], urinary stones [% increase: 15.2; 95% CI: 10.3, 20.4], and composite kidney disease. Additionally, increased temperatures were linked to increased admissions for biliary tract disease, but lower risk of other liver diseases. Some differences in association by race/ethnicity and regional meteorology were observed. CONCLUSIONS Exposure to higher temperatures was associated with increased risk of multiple renal system hospitalization types, with additional links to specific hepatobiliary morbidities observed.
Collapse
Affiliation(s)
- Brian J Malig
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA.
| | - Xiangmei May Wu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kristen Guirguis
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Alexander Gershunov
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| |
Collapse
|
21
|
Samad HA, Konyak YY, Latheef SK, Kumar A, Khan IA, Verma V, Chouhan VS, Verma MR, Maurya VP, Kumar P, Sarkar M, Singh G. Alpha lipoic acid supplementation ameliorates the wrath of simulated tropical heat and humidity stress in male Murrah buffaloes. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:1331-1346. [PMID: 31280374 DOI: 10.1007/s00484-019-01750-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
A supplement which ameliorates temperature-humidity menace in food producing livestock is a prerequisite to develop climate smart agricultural packages. A study was conducted to investigate the heat stress ameliorative efficacy of alpha lipoic acid (ALA) in male Murrah water buffaloes (Bubalus bubalis). Eighteen animals (293.61 ± 4.66Kg Bwt) were randomly allocated into three groups (n = 6); NHSC (non-heat-stressed control), HS (heat-stressed) and HSLA (heat-stressed-supplemented with ALA@32 mg/kg Bwt orally) based on the temperature humidity index (THI) and ALA supplementation. HS and HSLA were exposed to simulated heat challenge in a climatically controlled chamber (40 °C) for 21 consecutive days, 6 h daily. Physiological responses viz. Respiration rate (RR), Pulse rate (PR) and Rectal temperature (RT) were recorded daily before and after heat exposure. Blood samples were collected at the end of heat exposure on days 1, 6, 11, 16, and 21 and on day 28 (7th day post exposure which is considered as recovery) for peripheral blood mononuclear cells (PBMCs) separation, followed by RNA and Protein extraction for Real time quantitative PCR and Western blot analysis respectively, of heat shock proteins (HSPs). Two-way repeated measure ANOVA was performed between groups at different experimental periods. RR (post exposure) in HS and HSLA was significantly higher (P < 0.05) than NHSC from day 1 onwards but HSLA varied significantly from the HS 8th day onwards. Post exposure RT and PR in both HS and HSLA varied (P < 0.05) from NHSC throughout the study; but between HS and HSLA, RT significantly varied on initial 2 days and last 6 days (from days 16 to 21). HSP70 mRNA expression significantly up regulated in high THI groups with respect to the low THI group throughout the experimental period. During chronic stress (days 16 and 21) HSP70 significantly (P < 0.05) increased in HS but not in HSLA (P > 0.05) with respect to NHSC. ALA supplementation up-regulates and sustains (P < 0.05) the expression of HSP90 in HSLA in comparison to the HS and NHSC. HSP105 expression was significantly up-regulated (P < 0.05) in HS on days 16 and 21 (during long-term exposure) but only on day 21 (P < 0.05) in HSLA. HSP70, HSP90, and HSP105 protein expression dynamics were akin to the mRNA transcript data between the study groups. In conclusion, supplementing ALA ameliorates the deleterious effect of heat stress as reflected by improved physiological and cellular responses. ALA supplementation improved cellular antioxidant status and sustained otherwise easily decaying heat shock responses which concertedly hasten the baton change from a limited window of thermo tolerance to long run acclimatization.
Collapse
Affiliation(s)
- H A Samad
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Y Y Konyak
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - S K Latheef
- Division of Pathology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - A Kumar
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - I A Khan
- Dolphin PG Institue of Biomedical & Natural Science, Dehradun, Uttarakhand, India
| | - V Verma
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - V S Chouhan
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - M R Verma
- Division of Livestock economics and statistics, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - V P Maurya
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Puneet Kumar
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - M Sarkar
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - G Singh
- Division of Physiology & Climatology, ICAR-IndianVeterinary Research Institute, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
22
|
Jiang Z, Wan Y, Li P, Xue Y, Cui W, Chen Q, Chen J, Wang F, Mao D. Effect of Curcumin Supplement in Summer Diet on Blood Metabolites, Antioxidant Status, Immune Response, and Testicular Gene Expression in Hu Sheep. Animals (Basel) 2019; 9:E720. [PMID: 31554289 PMCID: PMC6826745 DOI: 10.3390/ani9100720] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
In summer, the high temperature affects animal growth and reproductive performance. Curcumin is a flavonoid with anti-oxidant and anti-inflammatory effects. To evaluate the effects of dietary curcumin supplement on the blood biochemical parameters and testicular gene expressions in Hu sheep in summer, a total of 144 male Hu sheep aged four months were randomly divided into three groups (Con, Cur1, and Cur2, n = 48). Sheep in Con, Cur1, and Cur2 groups were fed a basal diet supplement with 0, 450, and 900 mg (per sheep) curcumin daily, respectively. Sheep were fed for 35 days, including a pre-feed for seven days. The results showed that the supplement with 450 mg and 900 mg curcumin increased serum free fatty acid (NEFA) and glutathione peroxidase (GPX), as well as IgA and IgM. The supplement with 450 mg curcumin increased the IgG level, while the supplement with 900 mg curcumin had a lower IgG level than the supplement with 450 mg curcumin (p < 0.05). Dietary curcumin supplement increased testicular organ index, serum testosterone level, and testicular star mRNA expression (p < 0.05). Furthermore, dietary curcumin supplement linearly inhibited testicular apoptosis with increased testicular bcl-2 mRNA expression and decreased caspase-3 mRNA expression (p < 0.05). In conclusion, dietary curcumin supplement can promote lipid metabolism, antioxidant capacity, and immune response, as well as testicular development, in Hu sheep, which provides evidence of application of curcumin in sheep production.
Collapse
Affiliation(s)
- Zhiyang Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yongjie Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Peng Li
- Qidong Ruipeng Animal Husbandry Co., Ltd, Nantong 226227, Jiangsu, China.
| | - Yang Xue
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Wenwen Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Qi Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jianqin Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Feng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
23
|
Khafaga AF, Noreldin AE, Taha AE. The adaptogenic anti-ageing potential of resveratrol against heat stress-mediated liver injury in aged rats: Role of HSP70 and NF-kB signalling. J Therm Biol 2019; 83:8-21. [PMID: 31331528 DOI: 10.1016/j.jtherbio.2019.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/13/2019] [Accepted: 04/20/2019] [Indexed: 12/17/2022]
Abstract
Heat stress (HS) is a major international problem which has attracted a considerable attention due to its oxidative tissue effects and high morbidity and mortality rates, especially among elderly people. Discovering an effective antioxidant is pivotal for overcoming HS-induced injury. Therefore, the aim of this study was to estimate the hepatic protective effects of orally supplemented resveratrol (RES) against HS-mediated liver injury in young and old male Wistar albino rats. Compared to control rats, RES administered orally at a dose of 20 mg/kg BW for 21 successive days efficiently ameliorated HS-induced oxidative damage by significantly increasing (P ≤ 0.05) the level of reduced glutathione and glutathione peroxidase, and decreasing the levels of malondialdehyde and TNF-α in hepatic tissue of both young and aged rats. However, level of NF-κB was downregulated significantly in aged rats rather than young rats. Moreover, RES significantly decreased (P ≤ 0.05) the serum levels of aspartate transaminase and alkaline phosphatase in both ages of rats compared to their corresponding HS-stressed rats. Furthermore, RES upregulated the immunohistochemical expression of caspase 3 and heat shock protein 70 in young and aged rats, however it was more pronounced in young one. In addition, RES administration moderately normalized (P ≤ 0.0001) the harmful effects of HS on the hepatic architecture of both young and aged rats. In conclusion, this study reveals for the first time that RES exerts promising hepato-ameliorative effects against HS-induced oxidative stress in the young and aged rats via its antioxidant, anti-inflammatory, and anti-apoptotic effect, as well as via its inhibitory effect against the NF-κB signalling in a cellular system.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22516, Egypt.
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt.
| |
Collapse
|
24
|
Tivari S, Lu H, Dasgupta T, De Lorenzo MS, Wieder R. Reawakening of dormant estrogen-dependent human breast cancer cells by bone marrow stroma secretory senescence. Cell Commun Signal 2018; 16:48. [PMID: 30119678 PMCID: PMC6098600 DOI: 10.1186/s12964-018-0259-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/09/2018] [Indexed: 12/16/2022] Open
Abstract
Background Dormant estrogen receptor positive (ER+) breast cancer micrometastases in the bone marrow survive adjuvant chemotherapy and recur stochastically for more than 20 years. We hypothesized that inflammatory cytokines produced by stromal injury can re-awaken dormant breast cancer cells. Methods We used an established in vitro dormancy model of Michigan Cancer Foundation-7 (MCF-7) breast cancer cells incubated at clonogenic density on fibronectin-coated plates to determine the effects of inflammatory cytokines on reactivation of dormant ER+ breast cancer cells. We measured induction of a mesenchymal phenotype, motility and the capacity to re-enter dormancy. We induced secretory senescence in murine stromal monolayers by oxidation, hypoxia and estrogen deprivation with hydrogen peroxide (H2O2), carbonyl-cyanide m-chlorophenylhydrazzone (CCCP) and Fulvestrant (ICI 182780), respectively, and determined the effects on growth of co-cultivated breast cancer cells. Results Exogenous recombinant human (rh) interleukin (IL)-6, IL-8 or transforming growth factor β1 (TGFβ1) induced regrowth of dormant MCF-7 cells on fibronectin-coated plates. Dormant cells had decreased expression of E-cadherin and estrogen receptor α (ERα) and increased expression of N-cadherin and SNAI2 (SLUG). Cytokine or TGFβ1 treatment of dormant clones induced formation of growing clones, a mesenchymal appearance, increased motility and an impaired capacity to re-enter dormancy. Stromal injury induced secretion of IL-6, IL-8, upregulated tumor necrosis factor alpha (TNFα), activated TGFβ and stimulated the growth of co-cultivated MCF-7 cells. MCF-7 cells induced secretion of IL-6 and IL-8 by stroma in co-culture. Conclusions Dormant ER+ breast cancer cells have activated epithelial mesenchymal transition (EMT) gene expression programs and downregulated ERα but maintain a dormant epithelial phenotype. Stromal inflammation reactivates these cells, induces growth and a mesenchymal phenotype. Reactivated, growing cells have an impaired ability to re-enter dormancy. In turn, breast cancer cells co-cultured with stroma induce secretion of IL-6 and IL-8 by the stroma, creating a positive feedback loop.
Collapse
Affiliation(s)
- Samir Tivari
- Department of Medicine, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, 205 South Orange Avenue, Cancer Center H1216, Newark, NJ, 07103, USA
| | - Haiyan Lu
- Department of Medicine, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, 205 South Orange Avenue, Cancer Center H1216, Newark, NJ, 07103, USA
| | - Tanya Dasgupta
- Department of Medicine, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, 205 South Orange Avenue, Cancer Center H1216, Newark, NJ, 07103, USA
| | - Mariana S De Lorenzo
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ, USA
| | - Robert Wieder
- Department of Medicine, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, 205 South Orange Avenue, Cancer Center H1216, Newark, NJ, 07103, USA.
| |
Collapse
|
25
|
Chen XJ, Tang ZZ, Zhu GG, Cheng Q, Zhang WK, Li HM, Fu W, Lu QP. JNK signaling is required for the MIP‑1α‑associated regulation of Kupffer cells in the heat stroke response. Mol Med Rep 2017; 16:2389-2396. [PMID: 28677732 PMCID: PMC5547986 DOI: 10.3892/mmr.2017.6922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/06/2017] [Indexed: 11/23/2022] Open
Abstract
Severe heat stroke (HS) consists of extreme hyperthermia with thermoregulatory failure, leading to high morbidity and mortality. Liver injury is a complication of HS that is associated with inflammatory responses and Kupffer cells (KCs), which are resident macrophages in the liver that serve as a major source of inflammatory cytokines; however, the association and the underlying mechanisms of KC functions in HS-induced endotoxemia and inflammation require an improved understanding. The important chemokine macrophage inflammatory protein-1α (MIP-1α) increases inflammatory responses and the secretion of inflammatory molecules from KCs, including tumor necrosis factor-α, interleukin (IL)-1β and IL-6. In addition, the activation of c-Jun N-terminal kinase (JNK) signaling is responsible for the development of liver inflammation. Therefore, HS animal and cell models were constructed in order to investigate the pathways involved in the HS-induced dysfunction of KCs. The results of the present study suggest that JNK may be involved in the MIP-1α-associated pathogenesis of KCs in HS injury.
Collapse
Affiliation(s)
- Xiao-Juan Chen
- Department of Emergency, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Zhong-Zhi Tang
- Department of Emergency, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Guo-Guo Zhu
- Department of Emergency, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Qing Cheng
- Department of Emergency, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Wen-Kai Zhang
- Department of Emergency, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Hui-Min Li
- Department of Emergency, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Wei Fu
- Department of Emergency, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Qi-Ping Lu
- Department of General Surgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
26
|
Abstract
Abundant evidence shows that the genome is not as static as once thought and that gene expression can be reversibly modulated by the environment. In some cases, these changes can be transmitted to the next generation even if the environment has reverted. Such transgenerational epigenetic inheritance requires that information be stored in the germline in response to exogenous stressors. One of the most elusive questions in the field of epigenetic inheritance is the identity of such inherited factor(s). Answering this question would allow us to understand how the environment can shape human populations for multiple generations and may help to explain the rapid rise in obesity and neurodegenerative diseases in modern society. It will also provide clues on how we might be able to reprogramme the epigenome to prevent transmission of detrimental phenotypes and identify individuals who might be at increased risk of disease. In this article, we aim to review recent developments in this field, focusing on research conducted mostly in the nematode Caenorhabditis elegans and mice, that link environmental modulators with the transgenerational inheritance of phenotypes that affect protein-folding homoeostasis and ageing.
Collapse
|
27
|
Mitotic Dysfunction Associated with Aging Hallmarks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:153-188. [DOI: 10.1007/978-3-319-57127-0_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Stroo E, Koopman M, Nollen EAA, Mata-Cabana A. Cellular Regulation of Amyloid Formation in Aging and Disease. Front Neurosci 2017; 11:64. [PMID: 28261044 PMCID: PMC5306383 DOI: 10.3389/fnins.2017.00064] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/30/2017] [Indexed: 12/24/2022] Open
Abstract
As the population is aging, the incidence of age-related neurodegenerative diseases, such as Alzheimer and Parkinson disease, is growing. The pathology of neurodegenerative diseases is characterized by the presence of protein aggregates of disease specific proteins in the brain of patients. Under certain conditions these disease proteins can undergo structural rearrangements resulting in misfolded proteins that can lead to the formation of aggregates with a fibrillar amyloid-like structure. Cells have different mechanisms to deal with this protein aggregation, where the molecular chaperone machinery constitutes the first line of defense against misfolded proteins. Proteins that cannot be refolded are subjected to degradation and compartmentalization processes. Amyloid formation has traditionally been described as responsible for the proteotoxicity associated with different neurodegenerative disorders. Several mechanisms have been suggested to explain such toxicity, including the sequestration of key proteins and the overload of the protein quality control system. Here, we review different aspects of the involvement of amyloid-forming proteins in disease, mechanisms of toxicity, structural features, and biological functions of amyloids, as well as the cellular mechanisms that modulate and regulate protein aggregation, including the presence of enhancers and suppressors of aggregation, and how aging impacts the functioning of these mechanisms, with special attention to the molecular chaperones.
Collapse
Affiliation(s)
- Esther Stroo
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Mandy Koopman
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Ellen A A Nollen
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Alejandro Mata-Cabana
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| |
Collapse
|
29
|
Kam JH, Jeffery G. To unite or divide: mitochondrial dynamics in the murine outer retina that preceded age related photoreceptor loss. Oncotarget 2016; 6:26690-701. [PMID: 26393878 PMCID: PMC4694945 DOI: 10.18632/oncotarget.5614] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/27/2015] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial function declines with age and is associated with age-related disorders and cell death. In the retina this is critical as photoreceptor energy demands are the greatest in the body and aged cell loss large (~30%). But mitochondria can fuse or divide to accommodate changing demands. We explore ageing mitochondrial dynamics in young (1 month) and old (12 months) mouse retina, investigating changes in mitochondrial fission (Fis1) and fusion (Opa1) proteins, cytochrome C oxidase (COX III), which reflects mitochondrial metabolic status, and heat shock protein 60 (Hsp60) that is a mitochondrial chaperon for protein folding.Western blots showed each protein declined with age. However, within this, immunostaining revealed increases of around 50% in Fis1 and Opa1 in photoreceptor inner segments (IS). Electron microscope analysis revealed mitochondrial fragmentation with age and marked changes in morphology in IS, consistent with elevated dynamics. COX III declined by approximately 30% in IS, but Hsp60 reductions were around 80% in the outer plexiform layer.Our results are consistent with declining mitochondrial metabolism. But also with increased photoreceptor mitochondrial dynamics that differ from other retinal regions, perhaps reflecting attempts to maintain function. These changes are the platform for age related photoreceptor loss initiated after 12 months.
Collapse
Affiliation(s)
- Jaimie Hoh Kam
- Institute of Ophthalmology, University College London, London, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
30
|
Yashin AI, Arbeev KG, Wu D, Arbeeva L, Kulminski A, Kulminskaya I, Akushevich I, Ukraintseva SV. How Genes Modulate Patterns of Aging-Related Changes on the Way to 100: Biodemographic Models and Methods in Genetic Analyses of Longitudinal Data. NORTH AMERICAN ACTUARIAL JOURNAL : NAAJ 2016; 20:201-232. [PMID: 27773987 PMCID: PMC5070546 DOI: 10.1080/10920277.2016.1178588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVE To clarify mechanisms of genetic regulation of human aging and longevity traits, a number of genome-wide association studies (GWAS) of these traits have been performed. However, the results of these analyses did not meet expectations of the researchers. Most detected genetic associations have not reached a genome-wide level of statistical significance, and suffered from the lack of replication in the studies of independent populations. The reasons for slow progress in this research area include low efficiency of statistical methods used in data analyses, genetic heterogeneity of aging and longevity related traits, possibility of pleiotropic (e.g., age dependent) effects of genetic variants on such traits, underestimation of the effects of (i) mortality selection in genetically heterogeneous cohorts, (ii) external factors and differences in genetic backgrounds of individuals in the populations under study, the weakness of conceptual biological framework that does not fully account for above mentioned factors. One more limitation of conducted studies is that they did not fully realize the potential of longitudinal data that allow for evaluating how genetic influences on life span are mediated by physiological variables and other biomarkers during the life course. The objective of this paper is to address these issues. DATA AND METHODS We performed GWAS of human life span using different subsets of data from the original Framingham Heart Study cohort corresponding to different quality control (QC) procedures and used one subset of selected genetic variants for further analyses. We used simulation study to show that approach to combining data improves the quality of GWAS. We used FHS longitudinal data to compare average age trajectories of physiological variables in carriers and non-carriers of selected genetic variants. We used stochastic process model of human mortality and aging to investigate genetic influence on hidden biomarkers of aging and on dynamic interaction between aging and longevity. We investigated properties of genes related to selected variants and their roles in signaling and metabolic pathways. RESULTS We showed that the use of different QC procedures results in different sets of genetic variants associated with life span. We selected 24 genetic variants negatively associated with life span. We showed that the joint analyses of genetic data at the time of bio-specimen collection and follow up data substantially improved significance of associations of selected 24 SNPs with life span. We also showed that aging related changes in physiological variables and in hidden biomarkers of aging differ for the groups of carriers and non-carriers of selected variants. CONCLUSIONS . The results of these analyses demonstrated benefits of using biodemographic models and methods in genetic association studies of these traits. Our findings showed that the absence of a large number of genetic variants with deleterious effects may make substantial contribution to exceptional longevity. These effects are dynamically mediated by a number of physiological variables and hidden biomarkers of aging. The results of these research demonstrated benefits of using integrative statistical models of mortality risks in genetic studies of human aging and longevity.
Collapse
Affiliation(s)
- Anatoliy I. Yashin
- Professor, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A102E, Durham, NC 27705, USA. Tel.: (+1) 919-668-2713; Fax: (+1) 919-684-3861
| | - Konstantin G. Arbeev
- Sr. Research Scientist, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A102F, Durham, NC 27705, USA. Tel.: (+1) 919-668-2707; Fax: (+1) 919-684-3861
| | - Deqing Wu
- Sr. Research Scientist, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A104, Durham, NC 27705, USA. Tel.: (+1) 919-684-6126; Fax: (+1) 919-684-3861
| | - Liubov Arbeeva
- Statistician, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A102G, Durham, NC 27705, USA. Tel.: (+1) 919-613-0715; Fax: (+1) 919-684-3861
| | - Alexander Kulminski
- Sr. Research Scientist, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A106, Durham, NC 27705, USA. Tel.: (+1) 919-684-4962; Fax: (+1) 919-684-3861
| | - Irina Kulminskaya
- Research Scientist, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A102D, Durham, NC 27705, USA. Tel.: (+1) 919-681-8232; Fax: (+1) 919-684-3861
| | - Igor Akushevich
- Sr. Research Scientist, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A107, Durham, NC 27705, USA. Tel.: (+1) 919-668-2715; Fax: (+1) 919-684-3861
| | - Svetlana V. Ukraintseva
- Sr. Research Scientist, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A105, Durham, NC 27705, USA. Tel.: (+1) 919-668-2712; Fax: (+1) 919-684-3861
| |
Collapse
|
31
|
Cui Y, Hao Y, Li J, Bao W, Li G, Gao Y, Gu X. Chronic Heat Stress Induces Immune Response, Oxidative Stress Response, and Apoptosis of Finishing Pig Liver: A Proteomic Approach. Int J Mol Sci 2016; 17:E393. [PMID: 27187351 PMCID: PMC4881434 DOI: 10.3390/ijms17050393] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/26/2016] [Accepted: 03/07/2016] [Indexed: 01/16/2023] Open
Abstract
Heat stress (HS) negatively affects human health, animal welfare, and livestock production. We analyzed the hepatic proteomes of finishing pigs subjected to chronic heat stress (HS), thermal neutral (TN), and restricted feed intake conditions, identifying differences between direct and indirect (via reduced feed intake) HS. Twenty-four castrated male pigs were randomly allocated to three treatments for three weeks: (1) thermal neutral (TN) (22 °C) with ad libitum feeding; (2) chronic HS (30 °C) with ad libitum feeding; and (3) TN, pair-fed to HS intake (PF). Hepatic proteome analysis was conducted using two-dimensional gel electrophoresis and mass spectrometry. Both HS and PF significantly reduced liver weight (p < 0.05). Forty-five hepatic proteins were differentially abundant when comparing HS with TN (37), PF with TN (29), and HS with PF (16). These proteins are involved in heat shock response and immune defense, oxidative stress response, cellular apoptosis, metabolism, signal transduction, and cytoskeleton. We also observed increased abundance of proteins and enzymes associated with heat shock response and immune defense, reduced the redox state, enhanced multiple antioxidant abilities, and increased apoptosis in HS liver. Heat-load, independent of reduced feed intake, induced an innate immune response, while food restriction caused stress and cellular apoptosis. Our results provide novel insights into the effects of chronic HS on liver.
Collapse
Affiliation(s)
- Yanjun Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Yue Hao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Jielei Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Weiguang Bao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | - Gan Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Yanli Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Xianhong Gu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
32
|
Novelle MG, Davis A, Price NL, Ali A, Fürer-Galvan S, Zhang Y, Becker K, Bernier M, de Cabo R. Caloric restriction induces heat shock response and inhibits B16F10 cell tumorigenesis both in vitro and in vivo. Aging (Albany NY) 2016; 7:233-40. [PMID: 25948793 PMCID: PMC4429088 DOI: 10.18632/aging.100732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Caloric restriction (CR) without malnutrition is one of the most consistent strategies for increasing mean and maximal lifespan and delaying the onset of age-associated diseases. Stress resistance is a common trait of many long-lived mutants and life-extending interventions, including CR. Indeed, better protection against heat shock and other genotoxic insults have helped explain the pro-survival properties of CR. In this study, both in vitro and in vivo responses to heat shock were investigated using two different models of CR. Murine B16F10 melanoma cells treated with serum from CR-fed rats showed lower proliferation, increased tolerance to heat shock and enhanced HSP-70 expression, compared to serum from ad libitum-fed animals. Similar effects were observed in B16F10 cells implanted subcutaneously in male C57BL/6 mice subjected to CR. Microarray analysis identified a number of genes and pathways whose expression profile were similar in both models. These results suggest that the use of an in vitro model could be a good alternative to study the mechanisms by which CR exerts its anti-tumorigenic effects.
Collapse
Affiliation(s)
- Marta G Novelle
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Ashley Davis
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ahmed Ali
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Stefanie Fürer-Galvan
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
33
|
Arbeev KG, Cohen AA, Arbeeva LS, Milot E, Stallard E, Kulminski AM, Akushevich I, Ukraintseva SV, Christensen K, Yashin AI. Optimal Versus Realized Trajectories of Physiological Dysregulation in Aging and Their Relation to Sex-Specific Mortality Risk. Front Public Health 2016; 4:3. [PMID: 26835445 PMCID: PMC4725219 DOI: 10.3389/fpubh.2016.00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
While longitudinal changes in biomarker levels and their impact on health have been characterized for individual markers, little is known about how overall marker profiles may change during aging and affect mortality risk. We implemented the recently developed measure of physiological dysregulation based on the statistical distance of biomarker profiles in the framework of the stochastic process model of aging, using data on blood pressure, heart rate, cholesterol, glucose, hematocrit, body mass index, and mortality in the Framingham original cohort. This allowed us to evaluate how physiological dysregulation is related to different aging-related characteristics such as decline in stress resistance and adaptive capacity (which typically are not observed in the data and thus can be analyzed only indirectly), and, ultimately, to estimate how such dynamic relationships increase mortality risk with age. We found that physiological dysregulation increases with age; that increased dysregulation is associated with increased mortality, and increasingly so with age; and that, in most but not all cases, there is a decreasing ability to return quickly to baseline physiological state with age. We also revealed substantial sex differences in these processes, with women becoming dysregulated more quickly but with men showing a much greater sensitivity to dysregulation in terms of mortality risk.
Collapse
Affiliation(s)
- Konstantin G. Arbeev
- Biodemography of Aging Research Unit (BARU), Social Science Research Institute, Duke University, Durham, NC, USA
| | - Alan A. Cohen
- Groupe de Recherche PRIMUS, Department of Family Medicine, CHUS-Fleurimont, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Liubov S. Arbeeva
- Biodemography of Aging Research Unit (BARU), Social Science Research Institute, Duke University, Durham, NC, USA
| | - Emmanuel Milot
- Groupe de Recherche PRIMUS, Department of Family Medicine, CHUS-Fleurimont, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Stallard
- Biodemography of Aging Research Unit (BARU), Social Science Research Institute, Duke University, Durham, NC, USA
| | - Alexander M. Kulminski
- Biodemography of Aging Research Unit (BARU), Social Science Research Institute, Duke University, Durham, NC, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit (BARU), Social Science Research Institute, Duke University, Durham, NC, USA
| | - Svetlana V. Ukraintseva
- Biodemography of Aging Research Unit (BARU), Social Science Research Institute, Duke University, Durham, NC, USA
| | - Kaare Christensen
- The Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit (BARU), Social Science Research Institute, Duke University, Durham, NC, USA
| |
Collapse
|
34
|
Akbarzadeh A, Leder EH. Acclimation of killifish to thermal extremes of hot spring: Transcription of gonadal and liver heat shock genes. Comp Biochem Physiol A Mol Integr Physiol 2016; 191:89-97. [DOI: 10.1016/j.cbpa.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 11/26/2022]
|
35
|
Sudden infant death syndrome: no significant expression of heat-shock proteins (HSP27, HSP70). Forensic Sci Med Pathol 2015; 12:33-9. [DOI: 10.1007/s12024-015-9730-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 12/28/2022]
|
36
|
Yamamoto T, Todani M, Oda Y, Kaneko T, Kaneda K, Fujita M, Miyauchi T, Tsuruta R. Predictive Factors for Hospitalization of Patients with Heat Illness in Yamaguchi, Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11770-80. [PMID: 26393633 PMCID: PMC4586706 DOI: 10.3390/ijerph120911770] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/01/2015] [Accepted: 09/11/2015] [Indexed: 11/24/2022]
Abstract
The objective of the study was to investigate the predictive factors for the hospitalization of patients who presented with mild to moderate heat illness at an emergency department. We conducted a retrospective survey of hospitals with an emergency department in Yamaguchi Prefecture, Japan. The survey questionnaire entries included patient age, sex, use of an ambulance, vital signs, blood examination conducted at the emergency department, the length of hospitalization, and outcome. We analyzed the predictive factors for hospitalization in patients with heat illness. A total of 127 patients were analyzed. Of these, 49 (37%) were admitted, with 59% discharged on the day following admission. In univariate analysis, the following inpatient characteristics were predictive for hospitalization: old age, low Glasgow Coma Scale score, elevated body temperature, increased serum C-reactive protein, and increased blood urea nitrogen. In logistic regression multivariate analysis, the following were predictive factors for hospitalization: age of ≥ 65 years (odds ratio (OR) 4.91; 95% confidence interval (CI) 1.42–17.00), body temperature (OR 1.97; 95% CI 1.14–3.41), Glasgow Coma Scale (OR 0.40; 95% CI 0.16–0.98), and creatinine (OR 2.92; 95% CI 1.23–6.94). The results suggest that the elderly with hyperthermia, disturbance of consciousness, and elevated serum creatinine have an increased risk for hospitalization with heat illness.
Collapse
Affiliation(s)
- Takahiro Yamamoto
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Masaki Todani
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Yasutaka Oda
- Department of Acute and General Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Tadashi Kaneko
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Kotaro Kaneda
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Motoki Fujita
- Department of Acute and General Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Takashi Miyauchi
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Ryosuke Tsuruta
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
- Department of Acute and General Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| |
Collapse
|
37
|
The effects of acute and chronic administration of phosphatidylserine on cell proliferation and survival in the dentate gyrus of adult and middle-aged rats. Brain Res 2015; 1609:72-81. [DOI: 10.1016/j.brainres.2015.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 11/19/2022]
|
38
|
Wang F, Li Y, Cao Y, Li C. Zinc might prevent heat-induced hepatic injury by activating the Nrf2-antioxidant in mice. Biol Trace Elem Res 2015; 165:86-95. [PMID: 25586622 DOI: 10.1007/s12011-015-0228-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Zinc (Zn) is generally known to be an essential trace element with growth-promoting and antioxidant activities. The present study was performed to clarify the role of Zn in the livers of heat-treated mice. Eight-week-old male mice were divided into control (Con), heat treatment (HT) and heat treatment plus zinc groups (HT + Zn) and were fed diets containing 60, 60, or 300 mg/kg Zn (zinc sulfate), respectively. After 30 days of feeding on their respective diets, the control group was maintained at a controlled temperature (25 °C), whereas the HT and HT + Zn groups were exposed to an elevated ambient temperature (40-42 °C) for 2 h each day. After heat exposure for seven consecutive days, sera and liver tissues were collected. The mice in the HT group exhibited reduced liver weights and lower hepatosomatic indices. Histological findings revealed that the hepatocytes of the HT group were subjected to serious damage and exhibited irregular arrangements and nuclear pyknosis. Moreover, in the HT group, the hepatic malondialdehyde levels were significantly increased, while the serum alkaline phosphatase levels, hepatic copper/zinc-superoxide dismutase (CuZn-SOD) and glutathione peroxidase activities were significantly reduced compared to those of the control group. However, in the HT + Zn group, the histomorphology of the liver was restored, the serum aspartate aminotransferase (AST) level was significantly decreased, and the hepatic CuZn-SOD activity was significantly increased compared to the HT group. Furthermore, expressions of the hepatic Nrf2 protein and Nrf2, Keap1, and NQO1 genes in the HT + Zn group were not only higher than the HT group but also higher than the control group. Zn might alleviate heat-induced hepatic injury as revealed by restored histomorphology and AST level. Our results further suggest that Zn might exert its protective effects via the activation of the Nrf2-antioxidant pathway.
Collapse
Affiliation(s)
- F Wang
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | | | | | | |
Collapse
|
39
|
Arbeev KG, Akushevich I, Kulminski AM, Ukraintseva SV, Yashin AI. Biodemographic Analyses of Longitudinal Data on Aging, Health, and Longevity: Recent Advances and Future Perspectives. ADVANCES IN GERIATRICS 2015; 2014:957073. [PMID: 25590047 PMCID: PMC4290867 DOI: 10.1155/2014/957073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biodemography became one of the most innovative and fastest growing areas in demography. This progress is fueled by the growing variability and amount of relevant data available for analyses as well as by methodological developments allowing for addressing new research questions using new approaches that can better utilize the potential of these data. In this review paper, we summarize recent methodological advances in biodemography and their diverse practical applications. Three major topics are covered: (1) computational approaches to reconstruction of age patterns of incidence of geriatric diseases and other characteristics such as recovery rates at the population level using Medicare claims data; (2) methodological advances in genetic and genomic biodemography and applications to research on genetic determinants of longevity and health; and (3) biodemographic models for joint analyses of time-to-event data and longitudinal measurements of biomarkers collected in longitudinal studies on aging. We discuss how such data and methodology can be used in a comprehensive prediction model for joint analyses of incomplete datasets that take into account the wide spectrum of factors affecting health and mortality transitions including genetic factors and hidden mechanisms of aging-related changes in physiological variables in their dynamic connection with health and survival.
Collapse
Affiliation(s)
- Konstantin G Arbeev
- Center for Population Health and Aging, Duke University, Erwin Mill Building, 2024 W. Main Street, P.O. Box 90420, Durham, NC 27705, USA
| | - Igor Akushevich
- Center for Population Health and Aging, Duke University, Erwin Mill Building, 2024 W. Main Street, P.O. Box 90420, Durham, NC 27705, USA
| | - Alexander M Kulminski
- Center for Population Health and Aging, Duke University, Erwin Mill Building, 2024 W. Main Street, P.O. Box 90420, Durham, NC 27705, USA
| | - Svetlana V Ukraintseva
- Center for Population Health and Aging, Duke University, Erwin Mill Building, 2024 W. Main Street, P.O. Box 90420, Durham, NC 27705, USA
| | - Anatoliy I Yashin
- Center for Population Health and Aging, Duke University, Erwin Mill Building, 2024 W. Main Street, P.O. Box 90420, Durham, NC 27705, USA
| |
Collapse
|
40
|
Arbeev KG, Akushevich I, Kulminski AM, Ukraintseva SV, Yashin AI. Joint Analyses of Longitudinal and Time-to-Event Data in Research on Aging: Implications for Predicting Health and Survival. Front Public Health 2014; 2:228. [PMID: 25414844 PMCID: PMC4222133 DOI: 10.3389/fpubh.2014.00228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/24/2014] [Indexed: 12/23/2022] Open
Abstract
Longitudinal data on aging, health, and longevity provide a wealth of information to investigate different aspects of the processes of aging and development of diseases leading to death. Statistical methods aimed at analyses of time-to-event data jointly with longitudinal measurements became known as the "joint models" (JM). An important point to consider in analyses of such data in the context of studies on aging, health, and longevity is how to incorporate knowledge and theories about mechanisms and regularities of aging-related changes that accumulate in the research field into respective analytic approaches. In the absence of specific observations of longitudinal dynamics of relevant biomarkers manifesting such mechanisms and regularities, traditional approaches have a rather limited utility to estimate respective parameters that can be meaningfully interpreted from the biological point of view. A conceptual analytic framework for these purposes, the stochastic process model of aging (SPM), has been recently developed in the biodemographic literature. It incorporates available knowledge about mechanisms of aging-related changes, which may be hidden in the individual longitudinal trajectories of physiological variables and this allows for analyzing their indirect impact on risks of diseases and death. Despite, essentially, serving similar purposes, JM and SPM developed in parallel in different disciplines with very limited cross-referencing. Although there were several publications separately reviewing these two approaches, there were no publications presenting both these approaches in some detail. Here, we overview both approaches jointly and provide some new modifications of SPM. We discuss the use of stochastic processes to capture biological variation and heterogeneity in longitudinal patterns and important and promising (but still largely underused) applications of JM and SPM to predictions of individual and population mortality and health-related outcomes.
Collapse
Affiliation(s)
| | - Igor Akushevich
- Center for Population Health and Aging, Duke University, Durham, NC, USA
| | | | | | - Anatoliy I. Yashin
- Center for Population Health and Aging, Duke University, Durham, NC, USA
| |
Collapse
|
41
|
p16(INK4A) mediates age-related changes in mesenchymal stem cells derived from human dental pulp through the DNA damage and stress response. Mech Ageing Dev 2014; 141-142:46-55. [PMID: 25304494 DOI: 10.1016/j.mad.2014.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 09/21/2014] [Accepted: 09/26/2014] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells derived from human dental pulp (DP-MSCs) are characterized by self-renewal and multi-lineage differentiation, which play important roles in regenerative medicine. Autologous transfers, as non-immunogenic, constitute the safest approach in cellular transplantations. However, their use may be limited by age-related changes. In the study, we compared DP-MSCs isolated from human in five age groups: 5-12 y, 12-20 y, 20-35 y, 35-50 y, and >50 y. We tested the effect of age on proliferation, differentiation, senescence-associated β-galactosidase (SA-β-gal), cell cycle and programmed cell death. DP-MSCs showed characteristics of senescence as a function of age. Meanwhile, the expression of p16(INK4A) and γ-H2A.X significantly increased with age, whereas heat shock protein 60 (HSP60) was decreased in the senescent DP-MSCs. Reactive oxygen species (ROS) staining showed the number of ROS-stained cells and the DCFH fluorescent level were higher in the aged group. Further we examined the senescence of DP-MSCs after modulating p16(INK4A) signaling. The results indicated the dysfunction of DP-MSCs was reversed by p16(INK4A) siRNA. In summary, our study indicated p16(INK4A) pathway may play a critical role in DP-MSCs age-related changes and the DNA damage response (DDR) and stress response may be the main mediators of DP-MSCs senescence induced by excessive activation of p16(INK4A) signaling.
Collapse
|
42
|
Ecophysiology of native and alien-invasive clams in an ocean warming context. Comp Biochem Physiol A Mol Integr Physiol 2014; 175:28-37. [DOI: 10.1016/j.cbpa.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 02/02/2023]
|
43
|
Neueder A, Achilli F, Moussaoui S, Bates GP. Novel isoforms of heat shock transcription factor 1, HSF1γα and HSF1γβ, regulate chaperone protein gene transcription. J Biol Chem 2014; 289:19894-906. [PMID: 24855652 PMCID: PMC4106310 DOI: 10.1074/jbc.m114.570739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The heat shock response, resulting in the production of heat shock proteins or molecular chaperones, is triggered by elevated temperature and a variety of other stressors. Its master regulator is heat shock transcription factor 1 (HSF1). Heat shock factors generally exist in multiple isoforms. The two known isoforms of HSF1 differ in the inclusion (HSF1α) or exclusion (HSF1β) of exon 11. Although there are some data concerning the differential expression patterns and transcriptional activities of HSF2 isoforms during development, little is known about the distinct properties of the HSF1 isoforms. Here we present evidence for two novel HSF1 isoforms termed HSF1γα and HSF1γβ, and we show that the HSF1 isoform ratio differentially regulates heat shock protein gene transcription. Hsf1γ isoforms are expressed in various mouse tissues and are translated into protein. Furthermore, after heat shock, HSF1γ isoforms are exported from the nucleus more rapidly or degraded more quickly than HSF1α or HSF1β. We also show that each individual HSF1 isoform is sufficient to induce the heat shock response and that expression of combinations of HSF1 isoforms, in particular HSF1α and HSF1β, results in a synergistic enhancement of the transcriptional response. In addition, HSF1γ isoforms potentially suppress the synergistic effect of HSF1α and HSF1β co-expression. Collectively, our observations suggest that the expression of HSF1 isoforms in a specific ratio provides an additional layer in the regulation of heat shock protein gene transcription.
Collapse
Affiliation(s)
- Andreas Neueder
- From the Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom and
| | - Francesca Achilli
- From the Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom and
| | - Saliha Moussaoui
- Neuroscience Discovery, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Gillian P Bates
- From the Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom and
| |
Collapse
|
44
|
Carnemolla A, Labbadia JP, Lazell H, Neueder A, Moussaoui S, Bates GP. Contesting the dogma of an age-related heat shock response impairment: implications for cardiac-specific age-related disorders. Hum Mol Genet 2014; 23:3641-56. [PMID: 24556212 PMCID: PMC4065144 DOI: 10.1093/hmg/ddu073] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ageing is associated with the reduced performance of physiological processes and has been proposed as a major risk factor for disease. An age-related decline in stress response pathways has been widely documented in lower organisms. In particular, the heat shock response (HSR) becomes severely compromised with age in Caenorhabditis elegans. However, a comprehensive analysis of the consequences of ageing on the HSR in higher organisms has not been documented. We used both HS and inhibition of HSP90 to induce the HSR in wild-type mice at 3 and 22 months of age to investigate the extent to which different brain regions, and peripheral tissues can sustain HSF1 activity and HS protein (HSP) expression with age. Using chromatin immunoprecipitation, quantitative reverse transcription polymerase chain reaction, western blotting and enzyme linked immunosorbent assay (ELISA), we were unable to detect a difference in the level or kinetics of HSP expression between young and old mice in all brain regions. In contrast, we did observe an age-related reduction in chaperone levels and HSR-related proteins in the heart. This could result in a decrease in the protein folding capacity of old hearts with implications for age-related cardiac disorders.
Collapse
Affiliation(s)
- Alisia Carnemolla
- Department Medical and Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hosptial, Great Maze Pond, London SE1 9RT, UK
| | - John P Labbadia
- Department Medical and Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hosptial, Great Maze Pond, London SE1 9RT, UK
| | - Hayley Lazell
- Department Medical and Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hosptial, Great Maze Pond, London SE1 9RT, UK
| | - Andreas Neueder
- Department Medical and Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hosptial, Great Maze Pond, London SE1 9RT, UK
| | - Saliha Moussaoui
- Novartis Institute for Biomedical Research, Neuroscience Discovery, Basel CH-4002, Switzerland
| | - Gillian P Bates
- Department Medical and Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hosptial, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
45
|
Correlation between heat shock protein 32 and chronic heat-induced liver injury in developing mice. J Therm Biol 2013. [DOI: 10.1016/j.jtherbio.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Chaves DFS, Carvalho PC, Lima DB, Nicastro H, Lorenzeti FM, Siqueira-Filho M, Hirabara SM, Alves PHM, Moresco JJ, Yates JR, Lancha AH. Comparative proteomic analysis of the aging soleus and extensor digitorum longus rat muscles using TMT labeling and mass spectrometry. J Proteome Res 2013; 12:4532-46. [PMID: 24001182 PMCID: PMC3845496 DOI: 10.1021/pr400644x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism and leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. In brief, we employed tandem mass tags to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples, of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related and involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently, and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers and, most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence, zero β-globin, and prolargin.
Collapse
Affiliation(s)
- Daniela F S Chaves
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo , Av. Prof. Mello Moraes, 65, 05508-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bloomer SA, Kregel KC, Brown KE. Heat stress stimulates hepcidin mRNA expression and C/EBPα protein expression in aged rodent liver. Arch Gerontol Geriatr 2013; 58:145-52. [PMID: 23993269 DOI: 10.1016/j.archger.2013.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/08/2013] [Accepted: 07/30/2013] [Indexed: 02/08/2023]
Abstract
Elevations in hepatic iron content occur with aging and physiological stressors, which may promote oxidative injury to the liver. Since dysregulation of the iron regulatory hormone, hepcidin, can cause iron accumulation, our goal was to characterize the regulation of hepcidin in young (6 mo) and old (24 mo) Fischer 344 rats exposed to environmental heat stress. Liver and blood samples were taken in the control condition and after heating. Hepcidin expression did not differ between young and old rats in the control condition, despite higher levels of hepatic iron and IL-6 mRNA in the latter. Following heat stress, pSTAT3 increased in both groups, but C/EBPα and hepcidin mRNA increased only in old rats. Despite this, serum iron decreased in both age groups 2 h after heat stress, suggesting hepcidin-independent hypoferremia in the young rats. The differential regulation of hepcidin between young and old rats after hyperthermia may be due to the enhanced expression of C/EBPα protein in old rats. These data support the concept of "inflammaging" and suggest that repeated exposures to stressors may contribute to the development of anemia in older individuals.
Collapse
Affiliation(s)
- Steven A Bloomer
- Division of Science and Engineering, Penn State Abington College, Abington, PA, United States; Department of Health and Human Physiology, The University of Iowa, Iowa City, IA 52242, United States.
| | | | | |
Collapse
|
48
|
Smith S, Bernatchez L, Beheregaray LB. RNA-seq analysis reveals extensive transcriptional plasticity to temperature stress in a freshwater fish species. BMC Genomics 2013; 14:375. [PMID: 23738713 PMCID: PMC3680095 DOI: 10.1186/1471-2164-14-375] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/27/2013] [Indexed: 11/21/2022] Open
Abstract
Background Identifying genes of adaptive significance in a changing environment is a major focus of ecological genomics. Such efforts were restricted, until recently, to researchers studying a small group of model organisms or closely related taxa. With the advent of next generation sequencing (NGS), genomes and transcriptomes of virtually any species are now available for studies of adaptive evolution. We experimentally manipulated temperature conditions for two groups of crimson spotted rainbowfish (Melanotaenia duboulayi) and measured differences in RNA transcription between them. This non-migratory species is found across a latitudinal thermal gradient in eastern Australia and is predicted to be negatively impacted by ongoing environmental and climatic change. Results Using next generation RNA-seq technologies on an Illumina HiSeq2000 platform, we assembled a de novo transcriptome and tested for differential expression across the treatment groups. Quality of the assembly was high with a N50 length of 1856 bases. Of the 107,749 assembled contigs, we identified 4251 that were differentially expressed according to a consensus of four different mapping and significance testing approaches. Once duplicate isoforms were removed, we were able to annotate 614 up-regulated transfrags and 349 that showed reduced expression in the higher temperature group. Conclusions Annotated blast matches reveal that differentially expressed genes correspond to critical metabolic pathways previously shown to be important for temperature tolerance in other fish species. Our results indicate that rainbowfish exhibit predictable plastic regulatory responses to temperature stress and the genes we identified provide excellent candidates for further investigations of population adaptation to increasing temperatures.
Collapse
Affiliation(s)
- Steve Smith
- Molecular Ecology Laboratory, School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | | | | |
Collapse
|
49
|
Madeira D, Narciso L, Cabral HN, Diniz MS, Vinagre C. Thermal tolerance of the crab Pachygrapsus marmoratus: intraspecific differences at a physiological (CTMax) and molecular level (Hsp70). Cell Stress Chaperones 2012; 17:707-16. [PMID: 22619030 PMCID: PMC3468680 DOI: 10.1007/s12192-012-0345-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022] Open
Abstract
Temperature is one of the most important variables influencing organisms, especially in the intertidal zone. This work aimed to test physiological and molecular intraspecific differences in thermal tolerance of the crab Pachygrapsus marmoratus (Fabricius, 1787). The comparisons made focused on sex, size, and habitat (estuary and coast) differences. The physiological parameter was upper thermal limit, tested via the critical thermal maximum (CTMax) and the molecular parameter was total heat shock protein 70 (Hsp70 and Hsp70 plus Hsc70) production, quantified via an enzyme-linked imunosorbent assay. Results showed that CTMax values and Hsp70 production are higher in females probably due to different microhabitat use and potentially due to different hormonal regulation in males and females. Among females, non-reproducing ones showed a higher CTMax value, but no differences were found in Hsp70, even though reproducing females showed higher variability in Hsp70 amounts. As reproduction takes up a lot of energy, its allocation for other activities, including stress responses, is lower. Juveniles also showed higher CTMax and Hsp70 expression because they occur in greater shore heights and ageing leads to alterations in protein synthesis. Comparing estuarine and coastal crabs, no differences were found in CTMax but coastal crabs produce more Hsp70 than estuarine crabs because they occur in drier and hotter areas than estuarine ones, which occur in moister environments. This work shows the importance of addressing intraspecific differences in the stress response at different organizational levels. This study shows that these differences are key factors in stress research, climate research, and environmental monitoring.
Collapse
Affiliation(s)
- D Madeira
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
50
|
Yoshihisa Y, Hassan MA, Furusawa Y, Tabuchi Y, Kondo T, Shimizu T. Alkannin, HSP70 inducer, protects against UVB-induced apoptosis in human keratinocytes. PLoS One 2012; 7:e47903. [PMID: 23110127 PMCID: PMC3478268 DOI: 10.1371/journal.pone.0047903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/17/2012] [Indexed: 12/05/2022] Open
Abstract
Alkannin is an active constituent from the root extract of Alkanna tinctoria of the Boraginaceae family and it may have utility as a heat shock protein 70 (HSP70) inducer in living organisms. Here, the effects of alkannin-induced HSP70 on ultraviolet (UV) B (40 mJ/cm2)-induced apoptosis were investigated in human keratinocyte HaCaT cells. Pretreatment of cells with alkannin (1 µM) caused significant inhibition of UVB-induced apoptosis and caspase-3 cleavage. On the other hand, the addition of KNK437 (HSP70 inhibitor) reversed the action of alkannin increasing UVB-induced apoptosis in a dose-dependent manner. In addition, differences in gene expression associated with the suppression of UVB-induced apoptosis in the presence of alkannin were investigated using Gene Chip assay. Our results indicate that alkannin suppresses UVB-induced apoptosis through the induction of HSP70 in human keratinocytes, and therefore, we suggest the usefulness of using alkannin as an antiaging agent.
Collapse
Affiliation(s)
- Yoko Yoshihisa
- Department of Dermatology, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mariame Ali Hassan
- Department of Radiological Sciences, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yukihiro Furusawa
- Department of Radiological Sciences, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- * E-mail:
| |
Collapse
|