1
|
Ronan G, Bahcecioglu G, Yang J, Zorlutuna P. Cardiac tissue-resident vesicles differentially modulate anti-fibrotic phenotype by age and sex through synergistic miRNA effects. Biomaterials 2024; 311:122671. [PMID: 38941684 PMCID: PMC11344275 DOI: 10.1016/j.biomaterials.2024.122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Aging is a risk factor for cardiovascular disease, the leading cause of death worldwide. Cardiac fibrosis is a harmful result of repeated myocardial infarction that increases risk of morbidity and future injury. Interestingly, both rates and outcomes of cardiac fibrosis differ between young and aged individuals, as well as men and women. Here, for the first time, we identify and isolate matrix-bound extracellular vesicles from the left ventricles (LVs) of young or aged males and females in both human and murine models. These LV vesicles (LVVs) show differences in morphology and content between these four cohorts in both humans and mice. LVV effects on fibrosis were also investigated in vitro, and aged male LVVs were pro-fibrotic while other LVVs were anti-fibrotic. From these LVVs, we could identify therapeutic miRNAs to promote anti-fibrotic effects. Four miRNAs were identified and together, but not individually, demonstrated significant cardioprotective effects when transfected. This suggests that miRNA synergy can regulate cell response, not just individual miRNAs, and also indicates that biological agent-associated therapeutic effects may be recapitulated using non-immunologically active agents. Furthermore, that chronic changes in LVV miRNA content may be a major factor in sex- and age-dependent differences in clinical outcomes of cardiac fibrosis.
Collapse
Affiliation(s)
- George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
He TY, Zhou HY, Zhu MH, Zhang JL. COVID-19 acts like a stress test, uncovering the vulnerable part of the human body: a retrospective study of 1640 cases in China. Eur J Public Health 2024; 34:760-765. [PMID: 38607985 PMCID: PMC11293811 DOI: 10.1093/eurpub/ckae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection exhibits multi-organ damage with diverse complications, the correlation between age, gender, medical history and clinical manifestations of novel coronavirus disease 2019 (COVID-19) patients was investigated. METHODS 1640 patients who were infected with SARS-CoV-2 and hospitalized at the First Affiliated Hospital of Ningbo University from 22 December 2022 to 1 March 2023 were categorized and analysed. Normal distribution test and variance homogeneity test were performed. Based on the test results, one-way analysis of variance, Pearson's chi-squared test and logistic regression analysis were conducted in the study. RESULTS According to the ANOVA, there was a significant difference in the age distribution (P = .001) between different clinical presentations, while gender did not (P = .06). And regression analysis showed that age, hypertension, atherosclerosis and cancer were significant hazard factors for the development of predominant clinical manifestations in patients hospitalized with novel COVID-19. Additionally, infection with SARS-CoV-2 has the potential to exacerbate the burden on specific diseased or related organs. CONCLUSION The elderly who are infected with SARS-CoV-2 ought to be treated with emphasis not only on antiviral therapy but also on individualized treatment that takes their medical history and comorbidities into account.
Collapse
Affiliation(s)
- Tian-Yi He
- Health Science Center, Ningbo University, Ningbo, China
| | - Hong-Yu Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ming-Hui Zhu
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ji-Li Zhang
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Calabrese EJ, Nascarella M, Pressman P, Hayes AW, Dhawan G, Kapoor R, Calabrese V, Agathokleous E. Hormesis determines lifespan. Ageing Res Rev 2024; 94:102181. [PMID: 38182079 DOI: 10.1016/j.arr.2023.102181] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
This paper addresses how long lifespan can be extended via multiple interventions, such as dietary supplements [e.g., curcumin, resveratrol, sulforaphane, complex phytochemical mixtures (e.g., Moringa, Rhodiola)], pharmaceutical agents (e.g., metformin), caloric restriction, intermittent fasting, exercise and other activities. This evaluation was framed within the context of hormesis, a biphasic dose response with specific quantitative features describing the limits of biological/phenotypic plasticity for integrative biological endpoints (e.g., cell proliferation, memory, fecundity, growth, tissue repair, stem cell population expansion/differentiation, longevity). Evaluation of several hundred lifespan extending agents using yeast, nematode (Caenorhabditis elegans), multiple insect and other invertebrate and vertebrate models (e.g., fish, rodents), revealed they responded in a manner [average (mean/median) and maximum lifespans] consistent with the quantitative features [i.e., 30-60% greater at maximum (Hormesis Rule)] of the hormetic dose response. These lifespan extension features were independent of biological model, inducing agent, endpoints measured and mechanism. These findings indicate that hormesis describes the capacity to extend life via numerous agents and activities and that the magnitude of lifespan extension is modest, in the percentage, not fold, range. These findings have important implications for human aging, genetic diseases/environmental stresses and lifespan extension, as well as public health practices and long-term societal resource planning.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences; University of Massachusetts, Morrill I - Room N344, Amherst, MA 01003, USA.
| | - Marc Nascarella
- Mass College of Pharmacy and Health Sciences University; School of Arts and Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management; College of Public Health; University of South Florida, Tampa, FL, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China
| |
Collapse
|
4
|
Lee YH, Kuk MU, So MK, Song ES, Lee H, Ahn SK, Kwon HW, Park JT, Park SC. Targeting Mitochondrial Oxidative Stress as a Strategy to Treat Aging and Age-Related Diseases. Antioxidants (Basel) 2023; 12:antiox12040934. [PMID: 37107309 PMCID: PMC10136354 DOI: 10.3390/antiox12040934] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondria are one of the organelles undergoing rapid alteration during the senescence process. Senescent cells show an increase in mitochondrial size, which is attributed to the accumulation of defective mitochondria, which causes mitochondrial oxidative stress. Defective mitochondria are also targets of mitochondrial oxidative stress, and the vicious cycle between defective mitochondria and mitochondrial oxidative stress contributes to the onset and development of aging and age-related diseases. Based on the findings, strategies to reduce mitochondrial oxidative stress have been suggested for the effective treatment of aging and age-related diseases. In this article, we discuss mitochondrial alterations and the consequent increase in mitochondrial oxidative stress. Then, the causal role of mitochondrial oxidative stress on aging is investigated by examining how aging and age-related diseases are exacerbated by induced stress. Furthermore, we assess the importance of targeting mitochondrial oxidative stress for the regulation of aging and suggest different therapeutic strategies to reduce mitochondrial oxidative stress. Therefore, this review will not only shed light on a new perspective on the role of mitochondrial oxidative stress in aging but also provide effective therapeutic strategies for the treatment of aging and age-related diseases through the regulation of mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Moon Kyoung So
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Soon Kil Ahn
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Sang Chul Park
- The Future Life & Society Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
5
|
Lazzeroni D, Villatore A, Souryal G, Pili G, Peretto G. The Aging Heart: A Molecular and Clinical Challenge. Int J Mol Sci 2022; 23:16033. [PMID: 36555671 PMCID: PMC9783309 DOI: 10.3390/ijms232416033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is associated with an increasing burden of morbidity, especially for cardiovascular diseases (CVDs). General cardiovascular risk factors, ischemic heart diseases, heart failure, arrhythmias, and cardiomyopathies present a significant prevalence in older people, and are characterized by peculiar clinical manifestations that have distinct features compared with the same conditions in a younger population. Remarkably, the aging heart phenotype in both healthy individuals and patients with CVD reflects modifications at the cellular level. An improvement in the knowledge of the physiological and pathological molecular mechanisms underlying cardiac aging could improve clinical management of older patients and offer new therapeutic targets.
Collapse
Affiliation(s)
| | - Andrea Villatore
- School of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Department of Arrhythmology and Cardiac Electrophysiology, Ospedale San Raffaele, 20132 Milan, Italy
| | - Gaia Souryal
- School of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Gianluca Pili
- School of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Giovanni Peretto
- School of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Department of Arrhythmology and Cardiac Electrophysiology, Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
6
|
Lazzarini E, Lodrini AM, Arici M, Bolis S, Vagni S, Panella S, Rendon-Angel A, Saibene M, Metallo A, Torre T, Vassalli G, Ameri P, Altomare C, Rocchetti M, Barile L. Stress-induced premature senescence is associated with a prolonged QT interval and recapitulates features of cardiac aging. Theranostics 2022; 12:5237-5257. [PMID: 35836799 PMCID: PMC9274748 DOI: 10.7150/thno.70884] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/11/2022] [Indexed: 01/12/2023] Open
Abstract
Rationale: Aging in the heart is a gradual process, involving continuous changes in cardiovascular cells, including cardiomyocytes (CMs), namely cellular senescence. These changes finally lead to adverse organ remodeling and resulting in heart failure. This study exploits CMs from human induced pluripotent stem cells (iCMs) as a tool to model and characterize mechanisms involved in aging. Methods and Results: Human somatic cells were reprogrammed into human induced pluripotent stem cells and subsequently differentiated in iCMs. A senescent-like phenotype (SenCMs) was induced by short exposure (3 hours) to doxorubicin (Dox) at the sub-lethal concentration of 0.2 µM. Dox treatment induced expression of cyclin-dependent kinase inhibitors p21 and p16, and increased positivity to senescence-associated beta-galactosidase when compared to untreated iCMs. SenCMs showed increased oxidative stress, alteration in mitochondrial morphology and depolarized mitochondrial membrane potential, which resulted in decreased ATP production. Functionally, when compared to iCMs, SenCMs showed, prolonged multicellular QTc and single cell APD, with increased APD variability and delayed afterdepolarizations (DADs) incidence, two well-known arrhythmogenic indexes. These effects were largely ascribable to augmented late sodium current (INaL) and reduced delayed rectifier potassium current (Ikr). Moreover sarcoplasmic reticulum (SR) Ca2+ content was reduced because of downregulated SERCA2 and increased RyR2-mediated Ca2+ leak. Electrical and intracellular Ca2+ alterations were mostly justified by increased CaMKII activity in SenCMs. Finally, SenCMs phenotype was furtherly confirmed by analyzing physiological aging in CMs isolated from old mice in comparison to young ones. Conclusions: Overall, we showed that SenCMs recapitulate the phenotype of aged primary CMs in terms of senescence markers, electrical and Ca2+ handling properties and metabolic features. Thus, Dox-induced SenCMs can be considered a novel in vitro platform to study aging mechanisms and to envision cardiac specific anti-aging approach in humans.
Collapse
Affiliation(s)
- Edoardo Lazzarini
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Martina Arici
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Sara Bolis
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Sara Vagni
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Stefano Panella
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Azucena Rendon-Angel
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Melissa Saibene
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Alessia Metallo
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Tiziano Torre
- Department of Cardiac Surgery Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giuseppe Vassalli
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico, Genova, Italy.,Department of Internal Medicine, University of Genova, Genova, Italy
| | - Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy.,✉ Corresponding authors: Lucio Barile, PhD. Istituto Cardiocentro Ticino, Laboratories for Translational Research, EOC Via Chiesa 5, 6500 Bellinzona, Switzerland. +41 586667104 ; Marcella Rocchetti, PhD. University of Milano-Bicocca, Dept. of Biotechnology and Biosciences, P.za della Scienza 2, 20126 Milano, Italy. +39 0264483313
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.,✉ Corresponding authors: Lucio Barile, PhD. Istituto Cardiocentro Ticino, Laboratories for Translational Research, EOC Via Chiesa 5, 6500 Bellinzona, Switzerland. +41 586667104 ; Marcella Rocchetti, PhD. University of Milano-Bicocca, Dept. of Biotechnology and Biosciences, P.za della Scienza 2, 20126 Milano, Italy. +39 0264483313
| |
Collapse
|
7
|
Rajabi M, Vafaee MS, Hosseini L, Badalzadeh R. Pretreatment with Nicotinamide Mononucleotide Increases the Effect of Ischemic-Postconditioning on Cardioprotection and Mitochondrial Function Following ex vivo Myocardial Reperfusion Injury in Aged Rats. Clin Exp Pharmacol Physiol 2021; 49:474-482. [PMID: 34854121 DOI: 10.1111/1440-1681.13616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 11/29/2022]
Abstract
The present study aims to evaluate the combined effect of ischemic-postconditioning (IPostC) and nicotinamide mononucleotide (NMN) on cardioprotection and mitochondrial function in aged rats subjected to myocardial ischemia-reperfusion (IR) injury. Sixty aged Wistar rats were randomly divided into 5 groups (n=12), including sham, control, NMN, IPostC, and NMN+IPostC. Regional ischemia was induced by 30-min occlusion of the left anterior descending coronary artery (LAD) followed by 60-min reperfusion. IPostC was applied at the onset of reperfusion, by 6 cycles of 10-s reperfusion/ischemia. NMN (100 mg/kg) was intraperitoneally injected every other day for 28 days before IR. Myocardial hemodynamics and infarct size (IS) were measured, and the left ventricles samples were harvested to assess cardiac mitochondrial function. The results showed that all treatments reduced lactate dehydrogenase release compared to those of the control group. IPostC alone failed to reduce IS and myocardial function. However, NMN and combined therapy could significantly improve myocardial function and decrease the IS compared to the control animals. Moreover, the effects of combined therapy on the decrease of IS, mitochondrial reactive oxygen species (ROS), and improvement of mitochondrial membrane potential (MMP) were greater than those of alone treatments. These results demonstrated that cardioprotection by combined therapy with NMN+IPostC was superior to individual treatments, and pretreatment of aged rats with NMN was able to correct the failure of IPostC in protecting the hearts of aged rats against IR injury.
Collapse
Affiliation(s)
- Mojgan Rajabi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr S Vafaee
- Psychiatry Research Unit, Southern Denmark Region, Odense, Denmark.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Lee YH, Park JY, Lee H, Song ES, Kuk MU, Joo J, Oh S, Kwon HW, Park JT, Park SC. Targeting Mitochondrial Metabolism as a Strategy to Treat Senescence. Cells 2021; 10:cells10113003. [PMID: 34831224 PMCID: PMC8616445 DOI: 10.3390/cells10113003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are one of organelles that undergo significant changes associated with senescence. An increase in mitochondrial size is observed in senescent cells, and this increase is ascribed to the accumulation of dysfunctional mitochondria that generate excessive reactive oxygen species (ROS). Such dysfunctional mitochondria are prime targets for ROS-induced damage, which leads to the deterioration of oxidative phosphorylation and increased dependence on glycolysis as an energy source. Based on findings indicating that senescent cells exhibit mitochondrial metabolic alterations, a strategy to induce mitochondrial metabolic reprogramming has been proposed to treat aging and age-related diseases. In this review, we discuss senescence-related mitochondrial changes and consequent mitochondrial metabolic alterations. We assess the significance of mitochondrial metabolic reprogramming for senescence regulation and propose the appropriate control of mitochondrial metabolism to ameliorate senescence. Learning how to regulate mitochondrial metabolism will provide knowledge for the control of aging and age-related pathologies. Further research focusing on mitochondrial metabolic reprogramming will be an important guide for the development of anti-aging therapies, and will provide novel strategies for anti-aging interventions.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
| | - Ji Yun Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
| | - Junghyun Joo
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
| | - Sekyung Oh
- Department of Medical Sciences, Catholic Kwandong University College of Medicine, Incheon 22711, Korea;
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
- Correspondence: (H.W.K.); (J.T.P.); ; (S.C.P.); Tel.: +82-32-835-8090 (H.W.K.); +82-32-835-8841 (J.T.P.); +82-10-5495-9200 (S.C.P.)
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
- Correspondence: (H.W.K.); (J.T.P.); ; (S.C.P.); Tel.: +82-32-835-8090 (H.W.K.); +82-32-835-8841 (J.T.P.); +82-10-5495-9200 (S.C.P.)
| | - Sang Chul Park
- The Future Life & Society Research Center, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.W.K.); (J.T.P.); ; (S.C.P.); Tel.: +82-32-835-8090 (H.W.K.); +82-32-835-8841 (J.T.P.); +82-10-5495-9200 (S.C.P.)
| |
Collapse
|
9
|
Louzada RA, Padron AS, Marques-Neto SR, Maciel L, Werneck-de-Castro JP, Ferreira ACF, Nascimento JHM, Carvalho DP. 3,5-Diiodothyronine protects against cardiac ischaemia-reperfusion injury in male rats. Exp Physiol 2021; 106:2185-2197. [PMID: 34605090 DOI: 10.1113/ep089589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? 3,5-Diiodothyronine (3,5-T2) administration increases resting metabolic rate, prevents or treats liver steatosis in rodent models, and ameliorates insulin resistance: what are its effects on cardiac electrical and contractile properties and autonomic regulation? What is the main finding and its importance? Chronic 3,5-T2 administration has no adverse effects on cardiac function. Remarkably, 3,5-T2 improves the autonomous control of the rat heart and protects against ischaemia-reperfusion injury. ABSTRACT The use of 3,5,3'-triiodothyronine (T3) and thyroxine (T4) to treat metabolic diseases has been hindered by potential adverse effects on liver, lipid metabolism and cardiac electrical properties. It is recognized that 3,5-diiodothyronine (3,5-T2) administration increases resting metabolic rate, prevents or treats liver steatosis in rodent models and ameliorates insulin resistance, suggesting 3,5-T2 as a potential therapeutic tool. However, a comprehensive assessment of cardiac electrical and contractile properties has not been made so far. Three-month-old Wistar rats were daily administered vehicle, 3,5-T2 or 3,5-T2+T4 and no signs of atrial or ventricular arrhythmia were detected in non-anaesthetized rats during 90 days. Cardiac function was preserved as heart rate, left ventricle diameter and shortening fraction in 3,5-T2-treated rats compared to vehicle and 3,5-T2+T4 groups. Power spectral analysis indicated an amelioration of the heart rate variability only in 3,5-T2-treated rats. An increased baroreflex sensitivity at rest was observed in both 3,5-T2-treated groups. Finally, 3,5-T2 Langendorff-perfused hearts presented a significant recovery of left ventricular function and remarkably smaller infarction area after ischaemia-reperfusion injury. In conclusion, chronic 3,5-T2 administration ameliorates tonic cardiac autonomic control and confers cardioprotection against ischaemia-reperfusion injury in healthy male rats.
Collapse
Affiliation(s)
- Ruy Andrade Louzada
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Biologia do Exercício, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alvaro Souto Padron
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvio Rodrigues Marques-Neto
- Laboratório de Biologia do Exercício, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Ciências da Atividade Física, Niterói, RJ, Brazil.,Universidade Estácio de Sá (UNESA), Laboratório de Fisiologia do Exercício (LAFIEX), Curso de Educação Física, Rio de Janeiro, Brazil
| | - Leonardo Maciel
- Laboratório de Biologia do Exercício, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Pedro Werneck-de-Castro
- Laboratório de Biologia do Exercício, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Andrea Claudia Freitas Ferreira
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Hamilton Matheus Nascimento
- Laboratório de Eletrofisiologia Cardíaca Antonio Paes de Carvalho, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Pires Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Rizvi F, Preston CC, Emelyanova L, Yousufuddin M, Viqar M, Dakwar O, Ross GR, Faustino RS, Holmuhamedov EL, Jahangir A. Effects of Aging on Cardiac Oxidative Stress and Transcriptional Changes in Pathways of Reactive Oxygen Species Generation and Clearance. J Am Heart Assoc 2021; 10:e019948. [PMID: 34369184 PMCID: PMC8475058 DOI: 10.1161/jaha.120.019948] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/13/2021] [Indexed: 11/30/2022]
Abstract
Background Age-related heart diseases are significant contributors to increased morbidity and mortality. Emerging evidence indicates that mitochondria within cardiomyocytes contribute to age-related increased reactive oxygen species (ROS) generation that plays an essential role in aging-associated cardiac diseases. Methods and Results The present study investigated differences between ROS production in cardiomyocytes isolated from adult (6 months) and aged (24 months) Fischer 344 rats, and in cardiac tissue of adult (18-65 years) and elderly (>65 years) patients with preserved cardiac function. Superoxide dismutase inhibitable ferricytochrome c reduction assay (1.32±0.63 versus 0.76±0.31 nMol/mg per minute; P=0.001) superoxide and H2O2 production, measured as dichlorofluorescein diacetate fluorescence (1646±428 versus 699±329, P=0.04), were significantly higher in the aged versus adult cardiomyocytes. Similarity in age-related alteration between rats and humans was identified in mitochondrial-electron transport chain-complex-I-associated increased oxidative-stress by MitoSOX fluorescence (53.66±18.58 versus 22.81±12.60; P=0.03) and in 4-HNE adduct levels (187.54±54.8 versus 47.83±16.7 ng/mg protein, P=0.0063), indicative of increased peroxidation in the elderly. These differences correlated with changes in functional enrichment of genes regulating ROS homeostasis pathways in aged human and rat hearts. Functional merged collective network and pathway enrichment analysis revealed common genes prioritized in human and rat aging-associated networks that underlay enriched functional terms of mitochondrial complex I and common pathways in the aging human and rat heart. Conclusions Aging sensitizes mitochondrial and extramitochondrial mechanisms of ROS buildup within the heart. Network analysis of the transcriptome highlights the critical elements involved with aging-related ROS homeostasis pathways common in rat and human hearts as targets.
Collapse
Affiliation(s)
- Farhan Rizvi
- Center for Integrative Research on Cardiovascular Aging (CIRCA)Aurora Research InstituteMilwaukeeWI
| | - Claudia C. Preston
- Division of Cardiovascular DiseasesDepartment of MedicineMayo Clinic RochesterRochesterMN
- Genetics and Genomics GroupSanford ResearchSioux FallsSD
| | - Larisa Emelyanova
- Center for Integrative Research on Cardiovascular Aging (CIRCA)Aurora Research InstituteMilwaukeeWI
| | | | - Maria Viqar
- Division of Cardiovascular DiseasesDepartment of MedicineMayo Clinic RochesterRochesterMN
| | - Omar Dakwar
- Center for Advanced Atrial Fibrillation TherapiesAdvocate Aurora HealthMilwaukeeWI
| | - Gracious R. Ross
- Center for Integrative Research on Cardiovascular Aging (CIRCA)Aurora Research InstituteMilwaukeeWI
| | | | - Ekhson L. Holmuhamedov
- Center for Integrative Research on Cardiovascular Aging (CIRCA)Aurora Research InstituteMilwaukeeWI
| | - Arshad Jahangir
- Center for Integrative Research on Cardiovascular Aging (CIRCA)Aurora Research InstituteMilwaukeeWI
- Division of Cardiovascular DiseasesDepartment of MedicineMayo Clinic RochesterRochesterMN
- Center for Advanced Atrial Fibrillation TherapiesAdvocate Aurora HealthMilwaukeeWI
| |
Collapse
|
11
|
Alghamdi O, King N, Jones GL, Moens PDJ. Effect of ageing and hypertension on the expression and activity of PEPT2 in normal and hypertrophic hearts. Amino Acids 2021; 53:183-193. [PMID: 33404911 DOI: 10.1007/s00726-020-02936-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/19/2020] [Indexed: 12/15/2022]
Abstract
Some dipeptides have been implicated in myocardial protection, but little is known about their membrane transporter PEPT2. The aim of this study was to determine whether the expression and activity of the cardiac-type PEPT2 cotransporter could be affected by ageing and/or hypertension. Sarcolemmal vesicles (SV) were isolated from the hearts of all rat groups using a standard procedure to investigate the transport activity and protein abundance by fluorescence spectroscopy and Western blot, respectively. SLC15A2 "PEPT2" gene expression was relatively quantified by RT-qPCR. In the Wistar rat groups, the protein and gene expression of PEPT2 were upregulated with ageing. These changes were accompanied by corresponding increases in the competitive inhibition and the transport rate (Vmax) of β-Ala-Lys (AMCA) into SV isolated from middle-aged hearts. Although, the transport rate of β-Ala-Lys (AMCA) into SV isolated from old hearts was significantly the lowest compared to middle-aged and young adult hearts, the inhibition percentage of β-Ala-Lys (AMCA) transport by Gly-Gln was the highest. In the WKY and SHR rat groups, Y-SHR hypertrophied hearts showed an increase in PEPT2 gene expression accompanied by a significant decrease in protein expression and activity. With advanced age, however, M-SHR hypertrophied hearts revealed significantly lower gene expression, but higher protein expression and activity than Y-SHR hearts. These findings suggest that increased expression of PEPT2 cotransporter in all types of middle-aged hearts could be exploited to facilitate di-and tripeptide transport by PEPT2 in these hearts, which subsequently could result in improved myocardial protection in these populations.
Collapse
Affiliation(s)
- Othman Alghamdi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Nicola King
- Faculty of Health, School of Biomedical Sciences, University of Plymouth, Plymouth, PL4 8AA, UK.
| | - Graham L Jones
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| | - Pierre D J Moens
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
12
|
Ruiz-Meana M, Bou-Teen D, Ferdinandy P, Gyongyosi M, Pesce M, Perrino C, Schulz R, Sluijter JPG, Tocchetti CG, Thum T, Madonna R. Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovasc Res 2020; 116:1835-1849. [DOI: 10.1093/cvr/cvaa132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/25/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Advanced age is a major predisposing risk factor for the incidence of coronary syndromes and comorbid conditions which impact the heart response to cardioprotective interventions. Advanced age also significantly increases the risk of developing post-ischaemic adverse remodelling and heart failure after ischaemia/reperfusion (IR) injury. Some of the signalling pathways become defective or attenuated during ageing, whereas others with well-known detrimental consequences, such as glycoxidation or proinflammatory pathways, are exacerbated. The causative mechanisms responsible for all these changes are yet to be elucidated and are a matter of active research. Here, we review the current knowledge about the pathophysiology of cardiac ageing that eventually impacts on the increased susceptibility of cells to IR injury and can affect the efficiency of cardioprotective strategies.
Collapse
Affiliation(s)
- Marisol Ruiz-Meana
- Department of Cardiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red-CV, CIBER-CV, Madrid, Spain
| | - Diana Bou-Teen
- Department of Cardiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red-CV, CIBER-CV, Madrid, Spain
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Mariann Gyongyosi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy
- Department of Internal Medicine, University of Texas Medical School in Houston, Houston, TX, USA
| |
Collapse
|
13
|
Naderi-Boldaji V, Joukar S, Noorafshan A, Bahreinipour MA. Limb Blood Flow Restriction Plus Mild Aerobic Exercise Training Protects the Heart Against Isoproterenol-Induced Cardiac Injury in Old Rats: Role of GSK-3β. Cardiovasc Toxicol 2020; 19:210-219. [PMID: 30406466 DOI: 10.1007/s12012-018-9490-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study was conducted to evaluate the effect of blood flow restriction (BFR) training on cardiac resistance to isoproterenol (ISO) induced heart injury in old rats and examined the hypothesis that BFR training may interfere with age-associated impairment of mitochondria by the inhibitory phosphorylation of GSK-3β at Ser9. Old male Wistar rats were divided into the following six groups: CTL (control), ISO (isoproterenol-treated), Sh + ISO (sham-operated plus ISO), BFR + ISO (blood flow restriction plus ISO), Sh-Ex + ISO (sham-operated subjected to exercise and ISO), and BFR-Ex + ISO (blood flow restriction along with exercise and ISO). 10 weeks of exercise training was considered. Then, cardiac injury was induced and physiological, histological, and biochemical parameters were recorded and assessed. Compared to CTL group, isoproterenol administration significantly reduced the systolic arterial pressure (SAP), left-ventricular systolic pressure (LVSP), and ± dp/dt max (P < 0.05). BFR training improved these parameters in the way that BFR-Ex + ISO group had higher SAP, LVSP and ± dp/dt max (P < 0.05) and lower LVEDP (left-ventricular end diastolic pressure) (P < 0.01) than untrained and Sh-Ex + ISO groups. The pS9-GSK-3β and pS9-GSK-3β/GSK-3β ratio were increased in the BFR-Ex + ISO group compared to CTL, ISO, Sh + ISO, and BFR + ISO groups (P < 0.05). The level of plasma cardiac Troponin-I and the severity of the injuries were significantly reduced in BFR-Ex + ISO group versus other cardiac damaged groups. In conclusion, our findings clearly confirmed the cardio-protective effect of BFR training against ISO-induced myocardial injury. Increased phosphorylated GSK-3β and angiogenesis in this model of exercise justify the resistance of old hearts facing stressful situations.
Collapse
Affiliation(s)
- Vida Naderi-Boldaji
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, P. O. Box 7616914115, Kerman, Iran. .,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad-Ali Bahreinipour
- Department of Physical Education, Faculty of Shahid Chamran, Kerman Branch, Technical and Vocational University (YVU), Tehran, Iran
| |
Collapse
|
14
|
Ruiz-Meana M, Boengler K, Garcia-Dorado D, Hausenloy DJ, Kaambre T, Kararigas G, Perrino C, Schulz R, Ytrehus K. Ageing, sex, and cardioprotection. Br J Pharmacol 2020; 177:5270-5286. [PMID: 31863453 DOI: 10.1111/bph.14951] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Translation of cardioprotective interventions aimed at reducing myocardial injury during ischaemia-reperfusion from experimental studies to clinical practice is an important yet unmet need in cardiovascular medicine. One particular challenge facing translation is the existence of demographic and clinical factors that influence the pathophysiology of ischaemia-reperfusion injury of the heart and the effects of treatments aimed at preventing it. Among these factors, age and sex are prominent and have a recognised role in the susceptibility and outcome of ischaemic heart disease. Remarkably, some of the most powerful cardioprotective strategies proven to be effective in young animals become ineffective during ageing. This article reviews the mechanisms and implications of the modulatory effects of ageing and sex on myocardial ischaemia-reperfusion injury and their potential effects on cardioprotective interventions. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Marisol Ruiz-Meana
- Hospital Universitari Vall d'Hebron, Department of Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV (CIBER-CV), Madrid, Spain
| | - Kerstin Boengler
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - David Garcia-Dorado
- Hospital Universitari Vall d'Hebron, Department of Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV (CIBER-CV), Madrid, Spain
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, Research & Development, London, UK.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlinand Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Kirsti Ytrehus
- Cardiovascular Research Group, Institute of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Navarro-Hortal MD, Ramírez-Tortosa CL, Varela-López A, Romero-Márquez JM, Ochoa JJ, Ramírez-Tortosa MC, Forbes-Hernández TY, Granados-Principal S, Battino M, Quiles JL. Heart Histopathology and Mitochondrial Ultrastructure in Aged Rats Fed for 24 Months on Different Unsaturated Fats (Virgin Olive Oil, Sunflower Oil or Fish Oil) and Affected by Different Longevity. Nutrients 2019; 11:E2390. [PMID: 31591312 PMCID: PMC6835383 DOI: 10.3390/nu11102390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Diet plays a decisive role in heart physiology, with lipids having especial importance in pathology prevention and development. This study aimed to investigate how dietary lipids varying in lipid profile (virgin olive oil, sunflower oil or fish oil) affected the heart of rats during aging. Heart histopathology, mitochondrial morphometry, and oxidative status were assessed. Typical histopathological features associated with aging, such as valvular lesions, endomyocardical hyperplasia, or papillary muscle calcification, were found at a low extent in all the experimental groups. The most relevant finding was that inflammation registered by fish oil group was lower compared to the other treatments. At the ultrastructural level, heart mitochondrial area, perimeter, and aspect ratio were higher in fish oil-fed rats than in those fed on sunflower oil. Concerning oxidative stress markers, there were differences only in coenzyme Q levels and catalase activity, lower in sunflower oil-fed animals compared with those fed on fish oil. In summary, dietary intake for a long period on dietary fats with different fatty acids profile led to differences in some aspects associated with the aging process at the heart. Fish oil seems to be the fat most protective of heart during aging.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - César L Ramírez-Tortosa
- UGC de Anatomía Patológica, Hospital San Cecilio de Granada, Avda, Conocimiento s/n, 18100 Granada, Spain.
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - José M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - Julio J Ochoa
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - MCarmen Ramírez-Tortosa
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Sergio Granados-Principal
- UGC de Oncología Médica, Hospital Universitario de Jaén, Avenida del Ejército Español 10, 23007 Jaén, Spain.
- Genyo, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración 114, 18016 Granada, Spain.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica, Università Politecnica delle Marche, Ancona, 60131 Ancona, Italy.
- International Research Center for Food Nutrition and Safety, Jiangsu University, 212013 Zhenjiang, China.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain.
| |
Collapse
|
16
|
Abstract
With the increasing age of the general population, medical conditions necessitating a surgical intervention will increase. Concomitant with advanced age, the prevalence of type 2 diabetes mellitus will also increase. These patients have a two- to three-fold higher risk of occurrence of cardiovascular events and are at higher risk of perioperative myocardial ischemia. This review will discuss recent advances in the field of perioperative cardioprotection and focus specifically on strategies that have aimed to protect the diabetic and the aged myocardium. This review will not deal with potential putative cardioprotective effects of opioids and anesthetic agents, as this is a very broad area that would necessitate a dedicated overview.
Collapse
Affiliation(s)
- Mona Momeni
- Department of Anesthesiology & Acute Medicine, Cliniques universitaires Saint Luc, Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Avenue Hippocrate, Brussels, 1200, Belgium
| | - Stefan De Hert
- Department of Anesthesiology & Perioperative Medicine, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Zhang Y, Gao J, Sun W, Wen X, Xi Y, Wang Y, Wei C, Xu C, Li H. H 2S restores the cardioprotective effects of ischemic post-conditioning by upregulating HB-EGF/EGFR signaling. Aging (Albany NY) 2019; 11:1745-1758. [PMID: 30912763 PMCID: PMC6461169 DOI: 10.18632/aging.101866] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/07/2019] [Indexed: 04/08/2023]
Abstract
Hydrogen sulfide (H2S) reduces ischemia/reperfusion (I/R) injury and apoptosis and restores the cardioprotective effects of ischemic post-conditioning (PC) in aged cardiomyocytes by inhibiting oxidative stress and endoplasmic reticulum stress and increasing autophagy. However, the mechanism is unclear. In the present study, we observed a loss of PC-mediated cardioprotection of aged cardiomyocytes. NaHS (a H2S donor) exerted significant protective effects against H/R-induced cell damage, apoptosis, production of cleaved caspase-3 and caspase-9, and release of cytochrome c. NaHS also reversed the H/R-induced reduction in cell viability and increased HB-EGF expression, cellular HB-EGF content, and EGFR phosphorylation. Additionally, NaHS increased expression of Bcl-2, c-myc, c-fos and c-jun, and the phosphorylation of ERK1/2, PI3K, Akt and GSK-3β. PC alone did not provide protection to H/R-treated aged cardiomyocytes, but it was significantly restored by supplementation of NaHS. The beneficial effects of NaHS during PC were inhibited by EGFR knockdown, AG1478 (EGFR inhibitor), PD98059 (ERK1/2 inhibitor) or LY294002 (PI3K inhibitor). These results suggest that exogenous H2S restores PC-mediated cardioprotection by up-regulating HB-EGF/EGFR signaling, which activates the ERK1/2-c-myc (and fos and c-jun) and PI3K-Akt- GSK-3β pathways in the aged cardiomyocytes.
Collapse
Affiliation(s)
- Yuanzhou Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
- Equal contribution
| | - Jun Gao
- Department of Osteology, the First Hospital of Harbin, Harbin, China
- Equal contribution
| | - Weiming Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xin Wen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yuehong Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
18
|
Naderi-boldaji V, Joukar S, Noorafshan A, Raji-amirhasani A, Naderi-boldaji S, Bejeshk MA. The effect of blood flow restriction along with low-intensity exercise on cardiac structure and function in aging rat: Role of angiogenesis. Life Sci 2018; 209:202-209. [DOI: 10.1016/j.lfs.2018.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/28/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
|
19
|
Panel M, Ghaleh B, Morin D. Mitochondria and aging: A role for the mitochondrial transition pore? Aging Cell 2018; 17:e12793. [PMID: 29888494 PMCID: PMC6052406 DOI: 10.1111/acel.12793] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
The cellular mechanisms responsible for aging are poorly understood. Aging is considered as a degenerative process induced by the accumulation of cellular lesions leading progressively to organ dysfunction and death. The free radical theory of aging has long been considered the most relevant to explain the mechanisms of aging. As the mitochondrion is an important source of reactive oxygen species (ROS), this organelle is regarded as a key intracellular player in this process and a large amount of data supports the role of mitochondrial ROS production during aging. Thus, mitochondrial ROS, oxidative damage, aging, and aging-dependent diseases are strongly connected. However, other features of mitochondrial physiology and dysfunction have been recently implicated in the development of the aging process. Here, we examine the potential role of the mitochondrial permeability transition pore (mPTP) in normal aging and in aging-associated diseases.
Collapse
Affiliation(s)
- Mathieu Panel
- INSERM U955, équipe 3; Créteil France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC; Créteil France
| | - Bijan Ghaleh
- INSERM U955, équipe 3; Créteil France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC; Créteil France
| | - Didier Morin
- INSERM U955, équipe 3; Créteil France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC; Créteil France
| |
Collapse
|
20
|
Ellenberger C, Sologashvili T, Cikirikcioglu M, Verdon G, Diaper J, Cassina T, Licker M. Risk factors of postcardiotomy ventricular dysfunction in moderate-to-high risk patients undergoing open-heart surgery. Ann Card Anaesth 2018; 20:287-296. [PMID: 28701592 PMCID: PMC5535568 DOI: 10.4103/aca.aca_60_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction: Ventricular dysfunction requiring inotropic support frequently occurs after cardiac surgery, and the associated low cardiac output syndrome largely contributes to postoperative death. We aimed to study the incidence and potential risk factors of postcardiotomy ventricular dysfunction (PCVD) in moderate-to-high risk patients scheduled for open-heart surgery. Methods: Over a 5-year period, we prospectively enrolled 295 consecutive patients undergoing valve replacement for severe aortic stenosis or coronary artery bypass surgery who presented with Bernstein-Parsonnet scores >7. The primary outcome was the occurrence of PCVD as defined by the need for sustained inotropic drug support and by transesophageal echography. The secondary outcomes included in-hospital mortality and the incidence of any major adverse events as well as Intensive Care Unit (ICU) and hospital length of stay. Results: The incidence of PCVD was 28.4%. Patients with PCVD experienced higher in-hospital mortality (12.6% vs. 0.6% in patients without PCVD) with a higher incidence of cardiopulmonary and renal complications as well as a prolonged stay in ICU (median + 2 days). Myocardial infarct occurred more frequently in patients with PCVD than in those without PCVD (19 [30.2%] vs. 12 [7.6%]). By logistic regression analysis, we identified four independent predictors of PCVD: left ventricular ejection fraction <40% (odds ratio [OR] = 6.36; 95% confidence interval [CI], 2.59–15.60), age older than 75 years (OR = 3.35; 95% CI, 1.64–6.81), prolonged aortic clamping time (OR = 3.72; 95% CI, 1.66–8.36), and perioperative bleeding (OR = 2.33; 95% CI, 1.01–5.41). The infusion of glucose-insulin-potassium was associated with lower risk of PCVD (OR = 0.14; 95% CI, 0.06–0.33). Conclusions: This cohort study indicates that age, preoperative ventricular function, myocardial ischemic time, and perioperative bleeding are predictors of PCVD which is associated with poor clinical outcome.
Collapse
Affiliation(s)
- Christoph Ellenberger
- Department of Anaesthesiology, Pharmacology and Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Tornike Sologashvili
- Division of Cardiovascular Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Mustafa Cikirikcioglu
- Division of Cardiovascular Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Gabriel Verdon
- Division of Cardiovascular Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - John Diaper
- Department of Anaesthesiology, Pharmacology and Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Tiziano Cassina
- Department of Anesthesia and Intensive Care, Cardiocentro Ticino, Lugano; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Licker
- Department of Anaesthesiology, Pharmacology and Intensive Care, University Hospital of Geneva; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Grundmann F, Müller RU, Reppenhorst A, Hülswitt L, Späth MR, Kubacki T, Scherner M, Faust M, Becker I, Wahlers T, Schermer B, Benzing T, Burst V. Preoperative Short-Term Calorie Restriction for Prevention of Acute Kidney Injury After Cardiac Surgery: A Randomized, Controlled, Open-Label, Pilot Trial. J Am Heart Assoc 2018. [PMID: 29535139 PMCID: PMC5907569 DOI: 10.1161/jaha.117.008181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Acute kidney injury is a frequent complication after cardiac surgery and is associated with adverse outcomes. Although short-term calorie restriction (CR) has proven protective in rodent models of acute kidney injury, similar effects have not yet been demonstrated in humans. METHODS AND RESULTS CR_KCH (Effect of a Preoperative Calorie Restriction on Renal Function After Cardiac Surgery) is a randomized controlled trial in patients scheduled for cardiac surgery. Patients were randomly assigned to receive either a formula diet containing 60% of the daily energy requirement (CR group) or ad libitum food (control group) for 7 days before surgery. In total, 82 patients were enrolled between April 16, 2012, and February 5, 2015. There was no between-group difference in the primary end point of median serum creatinine increment after 24 hours (control group: 0.0 mg/dL [-0.1 - (+0.2) mg/dL]; CR group: 0.0 mg/dL [-0.2 - (+0.2) mg/dL]; P=0.39). CR prevented a rise in median creatinine at 48 hours (control group: +0.1 mg/dL [0.0 - 0.3 mg/dL]; CR group: -0.1 mg/dL [-0.2 - (+0.1) mg/dL]; P=0.03), with most pronounced effects observed in male patients and patients with a body mass index >25. This benefit persisted until discharge: Median creatinine decreased by 0.1 mg/dL (-0.2 - 0.0 mg/dL) in the CR group, whereas it increased by 0.1 mg/dL (0.0 - 0.3 mg/dL; P=0.0006) in the control group. Incidence of acute kidney injury was reduced by 5.8% (41.7% in the CR group compared with 47.5% in the control group). Safety-related events did not differ between groups. CONCLUSIONS Despite disappointing results with respect to creatinine rise within the first 24 hours, the benefits observed at later time points and the subgroup analyses suggest the protective potential of short-term CR in patients at risk for acute kidney injury, warranting further investigation. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01534364.
Collapse
Affiliation(s)
- Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Annika Reppenhorst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Lennart Hülswitt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany
| | | | - Michael Faust
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany
| | - Ingrid Becker
- Institute of Medical Statistics and Computational Biology, University of Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, University of Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany
| |
Collapse
|
22
|
Song Y, Belardinelli L. Enhanced basal late sodium current appears to underlie the age-related prolongation of action potential duration in guinea pig ventricular myocytes. J Appl Physiol (1985) 2017; 125:1329-1338. [PMID: 29357519 DOI: 10.1152/japplphysiol.00916.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging hearts have prolonged QT interval and are vulnerable to oxidative stress. Because the QT interval indirectly reflects the action potential duration (APD), we examined the hypotheses that 1) the APD of ventricular myocytes increases with age; 2) the age-related prolongation of APD is due to an enhancement of basal late Na+ current (INaL); 3) inhibition of INaL may protect aging hearts from arrhythmogenic effects of hydrogen peroxide (H2O2). Experiments were performed on ventricular myocytes isolated from one-month (young) and one-year (old) guinea pigs (GPs). The APD of myocytes from old GPs was significantly longer than that from young GPs and was shortened by the INaL inhibitors GS967 and tetrodotoxin. The magnitude of INaL was significantly larger in myocytes from old than from young GPs. The CaMKII inhibitors KN-93 and AIP and the NaV1.5-channel blocker MTSEA blocked the INaL. There were no significant differences between myocytes from young and old GPs in L-type Ca2+ current and the rapidly- and slowly-activating delayed rectifier K+ currents, although the inward rectifier K+ current was slightly decreased in myocytes from old GPs. H2O2 induced more early afterdepolarizations in myocytes from old than from young GPs. The effect of H2O2 was attenuated by GS967. The results suggest that 1) the APD of myocytes from old GPs is prolonged, 2) a CaMKII-mediated increase in NaV1.5-channel INaL is responsible for the prolongation of APD, and 3) Inhibition of INaL may be beneficial for maintaining electrical stability under oxidative stress in myocytes of old GPs.
Collapse
Affiliation(s)
- Yejia Song
- Medicine, University of Florida, United States
| | | |
Collapse
|
23
|
Politano G, Logrand F, Brancaccio M, Di Carlo S. In-silico cardiac aging regulatory model including microRNA post-transcriptional regulation. Methods 2017; 124:57-68. [DOI: 10.1016/j.ymeth.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 12/28/2022] Open
|
24
|
Testai L, Da Pozzo E, Piano I, Pistelli L, Gargini C, Breschi MC, Braca A, Martini C, Martelli A, Calderone V. The Citrus Flavanone Naringenin Produces Cardioprotective Effects in Hearts from 1 Year Old Rat, through Activation of mitoBK Channels. Front Pharmacol 2017; 8:71. [PMID: 28289383 PMCID: PMC5326774 DOI: 10.3389/fphar.2017.00071] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/03/2017] [Indexed: 11/15/2022] Open
Abstract
Background and Purpose: Incidence of cardiovascular disorders increases with age, because of a dramatic fall of endogenous self-defense mechanisms and increased vulnerability of myocardium. Conversely, the effectiveness of many cardioprotective drugs is blunted in hearts of 1 year old rat. The Citrus flavanone naringenin (NAR) was reported to promote cardioprotective effects against ischemia/reperfusion (I/R) injury, through the activation of mitochondrial large conductance calcium-activated potassium channel (mitoBK). These effects were observed in young adult rats, but no data are available about the possible cardioprotective effects of NAR in aged animals. Experimental Approach: This study aimed at evaluating the potential cardioprotective effects of NAR against I/R damage in 1 year old rats, and the possible involvement of mitoBK. Key Results: Naringenin protected the hearts of 1 year old rats in both ex vivo and in vivo I/R protocols. Noteworthy, these effects were antagonized by paxilline, a selective BK-blocker. The cardioprotective effects of NAR were also observed in senescent H9c2 cardiomyoblasts. In isolated mitochondria from hearts of 1 year old, NAR exhibited the typical profile of a mitoBK opener. Finally, Western Blot analysis confirmed a significant (albeit reduced) presence of BK-forming alpha and beta subunits, both in cardiac tissue of 1 year old rats and in senescent H9c2 cells. Conclusion and Implications: This is the first work reporting cardioprotective effects of NAR in 1 year old rats. Although further studies are needed to better understand the whole pathway involved in the NAR-mediated cardioprotection, these preliminary data represent a promising perspective for a rational nutraceutical use of NAR in aging.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of PisaPisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health"Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of PisaPisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health"Pisa, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa Pisa, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of PisaPisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health"Pisa, Italy
| | | | | | - Alessandra Braca
- Department of Pharmacy, University of PisaPisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health"Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of PisaPisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health"Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of PisaPisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health"Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of PisaPisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health"Pisa, Italy
| |
Collapse
|
25
|
Chen J, Gao J, Sun W, Li L, Wang Y, Bai S, Li X, Wang R, Wu L, Li H, Xu C. Involvement of exogenous H2S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. Int J Cardiol 2016; 220:681-92. [PMID: 27393850 DOI: 10.1016/j.ijcard.2016.06.200] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/13/2016] [Accepted: 06/25/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hydrogen sulfide (H2S), which is a member of the gasotransmitter family, plays an important physiological and pathological role in cardiovascular system. Ischemic post-conditioning (PC) provides myocardial protective effect in the young hearts but not in the aged hearts. Exogenous H2S restores PC-induced cardioprotection by inhibition of mitochondrial permeability transition pore (mPTP) in the aged hearts. However, whether H2S contributes to the recovery of PC-induced cardioprotection via up-regulation of autophagy in the aged hearts is unclear. METHODS The isolated aged rat hearts (24-months-old, 450-500g) and aged cardiomyocytes-induced by d-galactose were exposed to an ischemia/reperfusion (I/R) and PC protocol. RESULTS We found PC lost cardioprotection in the aged hearts and cardiomyocytes. NaHS (a H2S donor) significantly restored cardioprotection of PC through decreasing myocardial damage, infarct size, and apoptosis, improving cardiac function, increasing cell viability and autophagy in the aged hearts and cardiomyocytes. 3-MA (an autophagy inhibitor) abolished beneficial effect of NaHS in the aged hearts. In addition, in the aged cardiomyocytes, NaHS up-regulated AMPK/mTOR pathway, and the effect of NaHS on PC was similar to the overexpression of Atg 5, treatment of AICAR (an AMPK activator) or Rapamycin (a mTOR inhibitor, an autophagy activator), respectively. CONCLUSIONS These results suggest that exogenous H2S restores cardioprotection from PC by up-regulation of autophagy via activation of AMPK/mTOR pathway in the aged hearts and cardiomyocytes.
Collapse
Affiliation(s)
- Junting Chen
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Jun Gao
- Department of Osteology, The First Hospital of Harbin, Harbin, China
| | - Weiming Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Lina Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Yuehong Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Shuzhi Bai
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Xiaoxue Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Rui Wang
- The Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- The Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China.
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China.
| |
Collapse
|
26
|
Li L, Li M, Li Y, Sun W, Wang Y, Bai S, Li H, Wu B, Yang G, Wang R, Wu L, Li H, Xu C. Exogenous H2S contributes to recovery of ischemic post-conditioning-induced cardioprotection by decrease of ROS level via down-regulation of NF-κB and JAK2-STAT3 pathways in the aging cardiomyocytes. Cell Biosci 2016; 6:26. [PMID: 27096074 PMCID: PMC4836181 DOI: 10.1186/s13578-016-0090-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background Hydrogen sulfide (H2S), a third member of gasotransmitter family along with nitric oxide and carbon monoxide, generated from mainly catalyzed by cystathionine-lyase, possesses important functions in the cardiovascular system. Ischemic post-conditioning (PC) strongly protects against the hypoxia/reoxygenation (H/R)-induced injury and apoptosis of cardiomyocytes. However, PC protection is ineffective in the aging cardiomyocytes. Whether H2S restores PC-induced cardioprotection by decrease of reactive oxygen species (ROS) level in the aging cardiomyocytes is unknown. Methods The aging cardiomyocytes were induced by treatment of primary cultures of neonatal cardiomyocytes using d-galactose and were exposed to H/R and PC protocols. Cell viability was observed by CCK-8 kit. Apoptosis was detected by Hoechst 33342 staining and flow cytometry. ROS level was analyzed using spectrofluorimeter. Related protein expressions were detected through Western blot. Results Treatment of NaHS (a H2S donor) protected against H/R-induced apoptosis, cell damage, the expression of cleaved caspase-3 and cleaved caspase-9, the release of cytochrome c (Cyt c). The supplementation of NaHS also decreased the activity of LDH and CK, MDA contents, ROS levels and the phosphorylation of IκBα, NF-κB, JNK2 and STAT3, and increased cell viability, the expression of Bcl-2, the activity of SOD, CAT and GSH-PX. PC alone did not provide cardioprotection in H/R-treated aging cardiomyocytes, which was significantly restored by the addition of NaHS. The beneficial role of NaHS was similar to the supply of N-acetyl-cysteine (NAC, an inhibitor of ROS), Ammonium pyrrolidinedithiocarbamate (PDTC, an inhibitor of NF-κB) and AG 490 (an inhibitor of JNK2), respectively, during PC. Conclusion Our results suggest that exogenous H2S contributes to recovery of PC-induced cardioprotection by decrease of ROS level via down-regulation of NF-κB and JAK2/STAT3 pathways in the aging cardiomyocytes.
Collapse
Affiliation(s)
- Lina Li
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Meixiu Li
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Youyou Li
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Weiming Sun
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yuehong Wang
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Shuzhi Bai
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Hongxia Li
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Bo Wu
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Guangdong Yang
- The Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON Canada
| | - Rui Wang
- The Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON Canada
| | - Lingyun Wu
- The Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON Canada
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Changing Xu
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
27
|
Stem cell therapy for heart failure: Ensuring regenerative proficiency. Trends Cardiovasc Med 2016; 26:395-404. [PMID: 27020904 DOI: 10.1016/j.tcm.2016.01.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 02/07/2023]
Abstract
Patient-derived stem cells enable promising regenerative strategies, but display heterogenous cardiac reparative proficiency, leading to unpredictable therapeutic outcomes impeding practice adoption. Means to establish and certify the regenerative potency of emerging biotherapies are thus warranted. In this era of clinomics, deconvolution of variant cytoreparative performance in clinical trials offers an unprecedented opportunity to map pathways that segregate regenerative from non-regenerative states informing the evolution of cardio-regenerative quality systems. A maiden example of this approach is cardiopoiesis-mediated lineage specification developed to ensure regenerative performance. Successfully tested in pre-clinical and early clinical studies, the safety and efficacy of the cardiopoietic stem cell phenotype is undergoing validation in pivotal trials for chronic ischemic cardiomyopathy offering the prospect of a next-generation regenerative solution for heart failure.
Collapse
|
28
|
What is hormesis and its relevance to healthy aging and longevity? Biogerontology 2015; 16:693-707. [PMID: 26349923 DOI: 10.1007/s10522-015-9601-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/16/2022]
Abstract
This paper provides a broad overview of hormesis, a specific type of biphasic dose response, its historical and scientific foundations as well as its biomedical applications, especially with respect to aging. Hormesis is a fundamental component of adaptability, neutralizing many endogenous and environmental challenges by toxic agents, thereby enhancing survival. Hormesis is highly conserved, broadly generalizable, and pleiotrophic, being independent of biological model, endpoint measured, inducing agent, level of biological organization and mechanism. The low dose stimulatory hormetic response has specific characteristics which defines both the quantitative features of biological plasticity and the potential for maximum biological performance, thereby estimating the limits to which numerous medical and pharmacological interventions may affect humans. The substantial degrading of some hormetic processes in the aged may profoundly reduce the capacity to respond effectively to numerous environmental/ischemic and other stressors leading to compromised health, disease and, ultimately, defining the bounds of longevity.
Collapse
|
29
|
Li H, Zhang C, Sun W, Li L, Wu B, Bai S, Li H, Zhong X, Wang R, Wu L, Xu C. Exogenous hydrogen sulfide restores cardioprotection of ischemic post-conditioning via inhibition of mPTP opening in the aging cardiomyocytes. Cell Biosci 2015; 5:43. [PMID: 26229588 PMCID: PMC4520088 DOI: 10.1186/s13578-015-0035-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/20/2015] [Indexed: 11/15/2022] Open
Abstract
The physiological and pathological roles of hydrogen sulfide (H2S) in the regulation of cardiovascular functions have been recognized. H2S protects against the hypoxia/reoxygenation (H/R)-induced injury and apoptosis of cardiomyocytes, and ischemic post-conditioning (PC) plays an important role in cardioprotection from H/R injury in neonatal cardiomyocytes but not in aging cardiomyocytes. Whether H2S is involved in the recovery of PC-induced cardioprotection in aging cardiomyocytes is unclear. In the present study, we found that both H/R and PC decreased cystathionine-γ-lyase (CSE) expression and the production rate of H2S. Supplementation of NaHS protected against H/R-induced apoptosis, the expression of cleaved caspase-3 and cleaved caspase-9, the release of cytochrome c (Cyt c), and mPTP opening. The addition of NaHS also counteracted the reduction of cell viability caused by H/R and increased the phosphorylation of ERK1/2, PI3K, Akt, GSK-3β and mitochondrial membrane potential. Additionally, NaHS increased Bcl-2 expression, promoted PKC-ε translocation to the cell membrane, and activated mitochondrial ATP-sensitive K channels (mitoKATP). PC alone did not provide cardioprotection in H/R-treated aging cardiomyocytes, which was significantly restored by the supplementation of NaHS. In conclusion, our results suggest that exogenous H2S restores PC-induced cardioprotection via the inhibition of mPTP opening by the activation of the ERK1/2-GSK-3β, PI3K-Akt-GSK-3β and PKC-ε-mitoKATP pathways in aging cardiomyocytes. These findings provide a novel target for the treatment of aging ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China ; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, 150086 China
| | - Chao Zhang
- Department of Emergency, Heilongjiang Provincial Hospital, Harbin, 150036 China
| | - Weiming Sun
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China
| | - Lina Li
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China
| | - Bo Wu
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China
| | - Shuzhi Bai
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China
| | - Hongxia Li
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China
| | - Xin Zhong
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China ; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, 150086 China
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada
| | - Lingyun Wu
- Department of Health Science, Lakehead University, Thunder Bay, ON P7B 5E1 Canada
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China ; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, 150086 China
| |
Collapse
|
30
|
l-Glycyl-l-glutamine provides the isolated and perfused young and middle-aged rat heart protection against ischaemia–reperfusion injury. Amino Acids 2015; 47:1559-65. [DOI: 10.1007/s00726-015-1997-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/23/2015] [Indexed: 02/04/2023]
|
31
|
The protective effect of lipoic acid on selected cardiovascular diseases caused by age-related oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:313021. [PMID: 25949771 PMCID: PMC4407629 DOI: 10.1155/2015/313021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/16/2015] [Accepted: 03/25/2015] [Indexed: 12/18/2022]
Abstract
Oxidative stress is considered to be the primary cause of many cardiovascular diseases, including endothelial dysfunction in atherosclerosis and ischemic heart disease, hypertension, and heart failure. Oxidative stress increases during the aging process, resulting in either increased reactive oxygen species (ROS) production or decreased antioxidant defense. The increase in the incidence of cardiovascular disease is directly related to age. Aging is also associated with oxidative stress, which in turn leads to accelerated cellular senescence and organ dysfunction. Antioxidants may help lower the incidence of some pathologies of cardiovascular diseases and have antiaging properties. Lipoic acid (LA) is a natural antioxidant which is believed to have a beneficial effect on oxidative stress parameters in relation to diseases of the cardiovascular system.
Collapse
|
32
|
Behfar A, Terzic A. Stem cells versus senescence: the yin and yang of cardiac health. J Am Coll Cardiol 2015; 65:148-50. [PMID: 25593055 DOI: 10.1016/j.jacc.2014.10.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Atta Behfar
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
33
|
The role of extracellular matrix in age-related conduction disorders: a forgotten player? JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2015; 12:76-82. [PMID: 25678907 PMCID: PMC4308461 DOI: 10.11909/j.issn.1671-5411.2015.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular aging is a physiological process gradually leading to structural degeneration and functional loss of all the cardiac and vascular components. Conduction system is also deeply influenced by the aging process with relevant reflexes in the clinical side. Age-related arrhythmias carry significant morbidity and mortality and represent a clinical and economical burden. An important and unjustly unrecognized actor in the pathophysiology of aging is represented by the extracellular matrix (ECM) that not only structurally supports the heart determining its mechanical and functional properties, but also sends a biological signaling regulating cellular function and maintaining tissue homeostasis. At the biophysical level, cardiac ECM exhibits a peculiar degree of anisotropy, which is among the main determinants of the conductive properties of the specialized electrical conduction system. Age-associated alterations of cardiac ECM are therefore able to profoundly affect the function of the conduction system with striking impact on the patient clinical conditions. This review will focus on the ECM changes that occur during aging in the heart conduction system and on their translation to the clinical scenario. Potential diagnostic and therapeutical perspectives arising from the knowledge on ECM age-associated alterations are further discussed.
Collapse
|
34
|
Wu JP, Hsieh DJY, Kuo WW, Han CK, Pai P, Yeh YL, Lin CC, Padma VV, Day CH, Huang CY. Secondhand Smoke Exposure Reduced the Compensatory Effects of IGF-I Growth Signaling in the Aging Rat Hearts. Int J Med Sci 2015; 12:708-18. [PMID: 26392808 PMCID: PMC4571548 DOI: 10.7150/ijms.12032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/09/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Secondhand smoke (SHS) exposure is associated with increased risk of cardiovascular disease. Aging is a physiological process that involves progressive impairment of normal heart functions due to increased vulnerability to damage. This study examines secondhand smoke exposure in aging rats to determine the age-related death-survival balance. METHODS Rats were placed into a SHS exposure chamber and exposed to smog. Old age male Sprague-Dawley rats were exposed to 10 cigarettes for 30 min, day and night, continuing for one week. After 4 weeks the rats underwent morphological and functional studies. Left ventricular sections were stained with hematoxylin-eosin for histopathological examination. TUNEL detected apoptosis cells and protein expression related death and survival pathway were analyzed using western blot. RESULTS Death receptor-dependent apoptosis upregulation pathways and the mitochondria apoptosis proteins were apparent in young SHS exposure and old age rats. These biological markers were enhanced in aging SHS-exposed rats. The survival pathway was found to exhibit compensation only in young SHS-exposed rats, but not in the aging rats. Further decrease in the activity of this pathway was observed in aging SHS-exposed rats. TUNEL apoptotic positive cells were increased in young SHS-exposed rats, and in aging rats with or without SHS-exposure. CONCLUSIONS Aging reduces IGF-I compensated signaling with accelerated cardiac apoptotic effects from second-hand smoke.
Collapse
Affiliation(s)
- Jia-Ping Wu
- 1. Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- 2. School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- 3. Department of Biological Science and Technology, China Medical University, Taichung
| | - Chien-Kuo Han
- 4. Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Peiying Pai
- 5. Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Lan Yeh
- 6. Department of pathology, Changhua Christian Hospital, Changhua ; 7. Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Chien-Chung Lin
- 8. Orthopaedic Department, Armed Forces General Hospital, Taichung, Taiwan
| | - V Vijaya Padma
- 9. Department of Biotechnology, Bharathiar University, Coimbatore-641 046, India
| | - Cecilia Hsuan Day
- 10. Department of Nursing, Mei Ho University, 23 Pingguang Road, Pingtung 91202, Taiwan
| | - Chih-Yang Huang
- 1. Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan ; 11. School of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan ; 12. Department of Health and Nutrition Biotechnology, Asia University, 500 Lioufeng Road, Taichung 41354, Taiwan
| |
Collapse
|
35
|
Strunets A, Mirza M, Sra J, Jahangir A. Novel anticoagulants for stroke prevention in atrial fibrillation: safety issues in the elderly. Expert Rev Clin Pharmacol 2014; 6:677-89. [DOI: 10.1586/17512433.2013.842125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Mirza M, Shen WK, Sofi A, Tran C, Jahangir A, Sultan S, Khan U, Viqar M, Cho C, Jahangir A. Frequent periodic leg movement during sleep is an unrecognized risk factor for progression of atrial fibrillation. PLoS One 2013; 8:e78359. [PMID: 24147132 PMCID: PMC3797735 DOI: 10.1371/journal.pone.0078359] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/19/2013] [Indexed: 01/04/2023] Open
Abstract
Sleep apnea has been recognized as a factor predisposing to atrial fibrillation recurrence and progression. The effect of other sleep-disturbing conditions on atrial fibrillation progression is not known. We sought to determine whether frequent periodic leg movement during sleep is a risk factor for progression of atrial fibrillation. In this retrospective study, patients with atrial fibrillation and a clinical suspicion of restless legs syndrome who were referred for polysomnography were divided into two groups based on severity of periodic leg movement during sleep: frequent (periodic movement index >35/h) and infrequent (≤35/h). Progression of atrial fibrillation to persistent or permanent forms between the two groups was compared using Wilcoxon rank-sum test, chi-square tests and logistic regression analysis. Of 373 patients with atrial fibrillation (77% paroxysmal, 23% persistent), 108 (29%) progressed to persistent or permanent atrial fibrillation during follow-up (median, 33 months; interquartile range, 16-50). Compared to patients with infrequent periodic leg movement during sleep (n=168), patients with frequent periodic leg movement during sleep (n=205) had a higher rate of atrial fibrillation progression (23% vs. 34%; p=0.01). Patients with frequent periodic leg movement during sleep were older and predominantly male; however, there were no significant differences at baseline in clinical factors that promote atrial fibrillation progression between both groups. On multivariate analysis, independent predictors of atrial fibrillation progression were persistent atrial fibrillation at baseline, female gender, hypertension and frequent periodic leg movement during sleep. In patients with frequent periodic leg movement during sleep, dopaminergic therapy for control of leg movements in patients with restless legs syndrome reduced risk of atrial fibrillation progression. Frequent leg movement during sleep in patients with restless legs syndrome is associated with progression of atrial fibrillation to persistent and permanent forms.
Collapse
Affiliation(s)
- Mahek Mirza
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora University of Wisconsin Medical Group, Milwaukee, Wisconsin, United States of America
- Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Win-Kuang Shen
- Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona, United States of America
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aamir Sofi
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Canh Tran
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ahad Jahangir
- Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Sulaiman Sultan
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Uzma Khan
- Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Maria Viqar
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Chi Cho
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora University of Wisconsin Medical Group, Milwaukee, Wisconsin, United States of America
| | - Arshad Jahangir
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora University of Wisconsin Medical Group, Milwaukee, Wisconsin, United States of America
- Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona, United States of America
| |
Collapse
|
37
|
Rengo G, Parisi V, Femminella GD, Pagano G, de Lucia C, Cannavo A, Liccardo D, Giallauria F, Scala O, Zincarelli C, Perrone Filardi P, Ferrara N, Leosco D. Molecular aspects of the cardioprotective effect of exercise in the elderly. Aging Clin Exp Res 2013; 25:487-97. [PMID: 23949971 DOI: 10.1007/s40520-013-0117-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/09/2013] [Indexed: 01/01/2023]
Abstract
Aging is a well-recognized risk factor for several different forms of cardiovascular disease. However, mechanisms by which aging exerts its negative effect on outcome have been only partially clarified. Numerous evidence indicate that aging is associated with alterations of several mechanisms whose integrity confers protective action on the heart and vasculature. The present review aims to focus on the beneficial effects of exercise, which plays a pivotal role in primary and secondary prevention of cardiovascular diseases, in counteracting age-related deterioration of protective mechanisms that are crucially involved in the homeostasis of cardiovascular system. In this regard, animal and human studies indicate that exercise training is able: (1) to improve the inotropic reserve of the aging heart through restoration of cardiac β-adrenergic receptor signaling; (2) to rescue the mechanism of cardiac preconditioning and angiogenesis whose integrity has been shown to confer cardioprotection against ischemia and to improve post-myocardial infarction left ventricular remodeling; (3) to counteract age-related reduction of antioxidant systems that is associated to decreased cellular resistance to reactive oxygen species accumulation. Moreover, this review also describes the molecular effects induced by different exercise training protocols (endurance vs. resistance) in the attempt to better explain what kind of exercise strategy could be more efficacious to improve cardiovascular performance in the elderly population.
Collapse
Affiliation(s)
- Giuseppe Rengo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, via Sergio Pansini, 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Della-Morte D, Cacciatore F, Salsano E, Pirozzi G, Del Genio MT, D'Antonio I, Gargiulo G, Palmirotta R, Guadagni F, Rundek T, Abete P. Age-related reduction of cerebral ischemic preconditioning: myth or reality? Clin Interv Aging 2013; 8:1055-61. [PMID: 24204128 PMCID: PMC3817003 DOI: 10.2147/cia.s47462] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stroke is one of the leading causes of death in industrialized countries for people older than 65 years of age. The reasons are still unclear. A reduction of endogenous mechanisms against ischemic insults has been proposed to explain this phenomenon. The “cerebral” ischemic preconditioning mechanism is characterized by a brief episode of ischemia that renders the brain more resistant against subsequent longer ischemic events. This ischemic tolerance has been shown in numerous experimental models of cerebral ischemia. This protective mechanism seems to be reduced with aging both in experimental and clinical studies. Alterations of mediators released and/or intracellular pathways may be responsible for age-related ischemic preconditioning reduction. Agents able to mimic the “cerebral” preconditioning effect may represent a new powerful tool for the treatment of acute ischemic stroke in the elderly. In this article, animal and human cerebral ischemic preconditioning, its age-related difference, and its potential therapeutical applications are discussed.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA ; Department of Advanced Biotechnologies and Bioimaging, IRCCS San Raffaele, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Terzic A, Nelson TJ. Regenerative medicine primer. Mayo Clin Proc 2013; 88:766-75. [PMID: 23809322 DOI: 10.1016/j.mayocp.2013.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 01/14/2023]
Abstract
The pandemic of chronic diseases, compounded by the scarcity of usable donor organs, mandates radical innovation to address the growing unmet needs of individuals and populations. Beyond life-extending measures that are often the last available option, regenerative strategies offer transformative solutions in treating degenerative conditions. By leveraging newfound knowledge of the intimate processes fundamental to organogenesis and healing, the emerging regenerative armamentarium aims to boost the aptitude of human tissues for self-renewal. Regenerative technologies strive to promote, augment, and reestablish native repair processes, restituting organ structure and function. Multimodal regenerative approaches incorporate transplant of healthy tissues into damaged environments, prompt the body to enact a regenerative response in damaged tissues, and use tissue engineering to manufacture new tissue. Stem cells and their products have a unique aptitude to form specialized tissues and promote repair signaling, providing active ingredients of regenerative regimens. Concomitantly, advances in materials science and biotechnology have unlocked additional prospects for growing tissue grafts and engineering organs. Translation of regenerative principles into practice is feasible and safe in the clinical setting. Regenerative medicine and surgery are, thus, poised to transit from proof-of-principle studies toward clinical validation and, ultimately, standardization, paving the way for next-generation individualized management algorithms.
Collapse
Affiliation(s)
- Andre Terzic
- Mayo Clinic Center for Regenerative Medicine, Mayo Clinic, Rochester, MN; Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN; Department of Medical Genetics, Mayo Clinic, Rochester, MN.
| | | |
Collapse
|
40
|
Jazbutyte V, Fiedler J, Kneitz S, Galuppo P, Just A, Holzmann A, Bauersachs J, Thum T. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. AGE (DORDRECHT, NETHERLANDS) 2013; 35:747-62. [PMID: 22538858 PMCID: PMC3636396 DOI: 10.1007/s11357-012-9407-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/28/2012] [Indexed: 05/07/2023]
Abstract
MicroRNAs (miRs) are small non- coding RNA molecules controlling a plethora of biological processes such as development, cellular survival and senescence. We here determined miRs differentially regulated during cardiac postnatal development and aging. Cardiac function, morphology and miR expression profiles were determined in neonatal, 4 weeks, 6 months and 19 months old normotensive male healthy C57/Bl6N mice. MiR-22 was most prominently upregulated during cardiac aging. Cardiac expression of its bioinformatically predicted target mimecan (osteoglycin, OGN) was gradually decreased with advanced age. Luciferase reporter assays validated mimecan as a bona fide miR-22 target. Both, miR-22 and its target mimecan were co- expressed in cardiac fibroblasts and smooth muscle cells. Functionally, miR-22 overexpression induced cellular senescence and promoted migratory activity of cardiac fibroblasts. Small interference RNA-mediated silencing of mimecan in cardiac fibroblasts mimicked the miR-22-mediated effects. Rescue experiments revealed that the effects of miR-22 on cardiac fibroblasts were only partially mediated by mimecan. In conclusion, miR-22 upregulation in the aging heart contributed at least partly to accelerated cardiac fibroblast senescence and increased migratory activity. Our results suggest an involvement of miR-22 in age-associated cardiac changes, such as cardiac fibrosis.
Collapse
Affiliation(s)
- Virginija Jazbutyte
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Susanne Kneitz
- Microarray Core Facility, Interdisciplinary Centre of Clinical Research, University of Würzburg, Würzburg, Germany
| | - Paolo Galuppo
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Annette Just
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Angelika Holzmann
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Centre for Clinical and Basic Research, IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
41
|
Fridolfsson HN, Patel HH. Caveolin and caveolae in age associated cardiovascular disease. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2013; 10:66-74. [PMID: 23610576 PMCID: PMC3627709 DOI: 10.3969/j.issn.1671-5411.2013.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/15/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022]
Abstract
It is estimated that the elderly (> 65 years of age) will increase from 13%−14% to 25% by 2035. If this trend continues, > 50% of the United States population and more than two billion people worldwide will be “aged” in the next 50 years. Aged individuals face formidable challenges to their health, as aging is associated with a myriad of diseases. Cardiovascular disease is the leading cause of morbidity and mortality in the United States with > 50% of mortality attributed to coronary artery disease and > 80% of these deaths occurring in those age 65 and older. Therefore, age is an important predictor of cardiovascular disease. The efficiency of youth is built upon cellular signaling scaffolds that provide tight and coordinated signaling. Lipid rafts are one such scaffold of which caveolae are a subset. In this review, we consider the importance of caveolae in common cardiovascular diseases of the aged and as potential therapeutic targets. We specifically address the role of caveolin in heart failure, myocardial ischemia, and pulmonary hypertension.
Collapse
Affiliation(s)
- Heidi N Fridolfsson
- Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
42
|
Mirza M, Strunets A, Shen WK, Jahangir A. Mechanisms of arrhythmias and conduction disorders in older adults. Clin Geriatr Med 2013; 28:555-73. [PMID: 23101571 DOI: 10.1016/j.cger.2012.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Aging is associated with an increased prevalence of cardiac arrhythmias, which contribute to higher morbidity and mortality in the elderly. The frequency of cardiac arrhythmias, particularly atrial fibrillation and ventricular tachyarrhythmia, is projected to increase as the population ages, greatly impacting health care resource utilization. Several clinical factors associated with the risk of arrhythmias have been identified in the population, yet the molecular bases for the increased predisposition to arrhythmogenesis in the elderly are not fully understood. This review highlights the epidemiology of cardiac dysrhythmias, changes in cardiac structure and function associated with aging, and the basis for arrhythmogenesis in the elderly.
Collapse
Affiliation(s)
- Mahek Mirza
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora University of Wisconsin Medical Group, Aurora Health Care, 3033 South 27th Street, Milwaukee, WI 53215, USA
| | | | | | | |
Collapse
|
43
|
Nelson TJ, Martinez-Fernandez A, Yamada S, Terzic A. Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Whittington HJ, Hall AR, McLaughlin CP, Hausenloy DJ, Yellon DM, Mocanu MM. Chronic Metformin Associated Cardioprotection Against Infarction: Not Just a Glucose Lowering Phenomenon. Cardiovasc Drugs Ther 2012. [DOI: 10.1007/s10557-012-6425-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Li T, Zhou R, Xiang X, Zhu D, Li Y, Liu J, Wu W, Yang C. Polymerized human placenta hemoglobin given before ischemia protects rat heart from ischemia reperfusion injury. ACTA ACUST UNITED AC 2012; 39:392-7. [PMID: 22066796 DOI: 10.3109/10731199.2011.611472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study was to investigate whether polymerized human placenta hemoglobin (PolyPHb) given before ischemia protects in vivo rat heart function against ischemia/reperfusion (I/R) injury. Forty-five male Sprague-Dawley rats were randomly divided (n = 15 per group) into a sham group, control group (pretreatment with Lactated Ringer's solution), or PolyPHb group (pretreatment with 0.1 gHb/kg PolyPHb). Rat hearts were subjected to 30-min ischemia by occlusion of left anterior descending, followed by 2-hr reperfusion. As compared to the control group, PolyPHb preserved cardiac function and reduced cardiac troponin-I release and histopathological changes. Therefore, PolyPHb pretreatment provided a profound cardioprotective effect on the in vivo rat heart.
Collapse
Affiliation(s)
- Tao Li
- Laboratory of Anesthesiology and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dutta D, Calvani R, Bernabei R, Leeuwenburgh C, Marzetti E. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res 2012; 110:1125-38. [PMID: 22499902 PMCID: PMC3353545 DOI: 10.1161/circresaha.111.246108] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of cardiovascular disease increases with advancing age. Although long-term exposure to cardiovascular risk factors plays a major role in the etiopathogenesis of cardiovascular disease, intrinsic cardiac aging enhances the susceptibility to developing heart pathologies in late life. The progressive decline of cardiomyocyte mitochondrial function is considered a major mechanism underlying heart senescence. Damaged mitochondria not only produce less ATP but also generate increased amounts of reactive oxygen species and display a greater propensity to trigger apoptosis. Given the postmitotic nature of cardiomyocytes, the efficient removal of dysfunctional mitochondria is critical for the maintenance of cell homeostasis, because damaged organelles cannot be diluted by cell proliferation. The only known mechanism whereby mitochondria are turned over is through macroautophagy. The efficiency of this process declines with advancing age, which may play a critical role in heart senescence and age-related cardiovascular disease. The present review illustrates the putative mechanisms whereby alterations in the autophagic removal of damaged mitochondria intervene in the process of cardiac aging and in the pathogenesis of specific heart diseases that are especially prevalent in late life (eg, left ventricular hypertrophy, ischemic heart disease, heart failure, and diabetic cardiomyopathy). Interventions proposed to counteract cardiac aging through improvements in macroautophagy (eg, calorie restriction and calorie restriction mimetics) are also presented.
Collapse
Affiliation(s)
- Debapriya Dutta
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL 32610-0143, USA
| | - Riccardo Calvani
- Department of Gerontology, Geriatrics and Physiatrics, University Hospital “Agostino Gemelli”, Catholic University of the Sacred Heart School of Medicine, Rome 00168, Italy
- Institute of Crystallography, National Research Council (CNR), Bari 70126, Italy
| | - Roberto Bernabei
- Department of Gerontology, Geriatrics and Physiatrics, University Hospital “Agostino Gemelli”, Catholic University of the Sacred Heart School of Medicine, Rome 00168, Italy
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL 32610-0143, USA
| | - Emanuele Marzetti
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL 32610-0143, USA
- Department of Gerontology, Geriatrics and Physiatrics, University Hospital “Agostino Gemelli”, Catholic University of the Sacred Heart School of Medicine, Rome 00168, Italy
| |
Collapse
|
47
|
Effects of aging on isoflurane-induced and protein kinase A-mediated activation of ATP-sensitive potassium channels in cultured rat aortic vascular smooth muscle cells. J Cardiovasc Pharmacol 2012; 56:676-85. [PMID: 20881605 DOI: 10.1097/fjc.0b013e3181fc4671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Isoflurane activates protein kinase A (PKA) in vascular smooth muscle cells (VSMCs), which in turn activates ATP-sensitive potassium (K(ATP)) channels and causes vasodilation. The present study was undertaken to examine whether advanced age influences the effect of isoflurane on K(ATP) channel activity in cultured VSMCs. We used VSMCs obtained from 12- to 15-week-old (adult) and 24- to 25-month-old (aged) male Wistar rats. Electrophysiological experiments were performed using cell-attached and inside-out patch-clamp techniques to monitor the K(ATP) channel activity. Application of isoflurane or forskolin to the bath solution in cell-attached recordings induced a significant increase in K(ATP) channel activity in the VSMCs from the adult group. However, K(ATP) channel opening induced by isoflurane, but not forskolin, was significantly suppressed by aging. On the other hand, cell-free recordings showed similar pharmacologic sensitivity to the K(ATP) channel opener pinacidil, inward rectification, and unitary conductance (40–45 pS) between groups. In addition, direct K(ATP) channel activation by c-PKA in the inside-out patches was similar in both groups. Furthermore, increasing PKA activation in cell-attached patches by CPT-cAMP restored isoflurane's effects in the aged group. These results suggest that aging decreases isoflurane-induced PKA activation, resulting in attenuation of K(ATP) channel opening.
Collapse
|
48
|
Vinciguerra M, Santini MP, Martinez C, Pazienza V, Claycomb WC, Giuliani A, Rosenthal N. mIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell 2012; 11:139-49. [PMID: 22051242 DOI: 10.1111/j.1474-9726.2011.00766.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress contributes to the pathogenesis of aging-associated heart failure. Among various signaling pathways mediating oxidative stress, the NAD(+) -dependent protein deacetylase SirT1 has been implicated in the protection of heart muscle. Expression of a locally acting insulin-like growth factor-1 (IGF-1) propeptide (mIGF-1) helps the heart to recover from infarct and enhances SirT1 expression in cardiomyocytes (CM) in vitro, exerting protection from hypertrophic and oxidative stresses. To study the role of mIGF-1/SirT1 signaling in vivo, we generated cardiac-specific mIGF-1 transgenic mice in which SirT1 was depleted from adult CM in a tamoxifen-inducible and conditional fashion. Analysis of these mice confirmed that mIGF-1-induced SirT1 activity is necessary to protect the heart from paraquat (PQ)-induced oxidative stress and lethality. In cultured CM, mIGF-1 increases SirT1 expression through a c-Jun NH(2)-terminal protein kinase 1 (JNK1)-dependent signaling mechanism. Thus, mIGF-1 protects the heart from oxidative stress via SirT1/JNK1 activity, suggesting new avenues for cardiac therapy during aging and heart failure.
Collapse
Affiliation(s)
- Manlio Vinciguerra
- European Molecular Biology Laboratory-Mouse Biology Unit, Monterotondo-Scalo, Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
Alternative use of isoflurane and propofol confers superior cardioprotection than using one of them alone in a dog model of cardiopulmonary bypass. Eur J Pharmacol 2011; 677:138-46. [PMID: 22222823 DOI: 10.1016/j.ejphar.2011.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/15/2011] [Accepted: 12/17/2011] [Indexed: 02/05/2023]
Abstract
Our previous clinical study reported that isoflurane preconditioning and high-dose propofol posttreatment attenuated myocardial ischemia/reperfusion injury of patients in surgery with cardiopulmonary bypass (CPB). This study was designed to confirm this cardiac protection by use of a dog CPB model and to elucidate the related mechanism. Adult mongrel male dogs undergoing standard CPB were assigned into 4 groups: Sham group, Propofol group, Isoflurane (Iso) group and isoflurane in combination of propofol (pre-Iso+P) group. After induction, anesthesia was maintained with propofol (Propofol group), isoflurane (Iso group) or isoflurane preconditioning in combination with propofol posttreatment (pre-Iso+P group). After 2 h cardiac arrest and CPB, aortic cross-clamping was released to allow 2 h reperfusion. The results demonstrated that joint use of isoflurane and propofol facilitated cardiac functional recovery, improved myocardial oxygen utilization and decreased cardiac enzyme release. Also, the oxidative damage caused by ischemia/reperfusion injury was remarkably attenuated. Linear regression analysis showed that cardiac function performance and oxidative stress status were inversely correlated, indicating the improved cardiac function was in closed association with the attenuation of oxidative stress. In addition, the cardiac oxygen consumption (VO(2)) was found to be significantly associated with the above cardiac function and oxidative stress parameters, suggesting VO(2) was predictive for the levels of cardiac damage and oxidative stress. Therefore, we conclude that alternative use of isoflurane and propofol confers superior cardioprotection against postischemic myocardial injury and dysfunction, and this protection was probably mediated by attenuation of cardiac oxidative damage.
Collapse
|
50
|
Cai H, Yuan Z, Fei Q, Zhao J. Investigation of thrombospondin-1 and transforming growth factor-β expression in the heart of aging mice. Exp Ther Med 2011; 3:433-436. [PMID: 22969907 DOI: 10.3892/etm.2011.426] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/09/2011] [Indexed: 11/06/2022] Open
Abstract
Elderly patients face the problems of morbidity and mortality due to age-mediated disabilities. The purpose of the present study was to investigate the expression of thrombospondin-1 (TSP-1) and transforming growth factor-β (TGF-β) in aging mice, and its probable mechanism in the pathological changes of aging myocardium. The aging model group (AM) comprised 30-month-old mice, while the control group comprised 2-month-old mice. The pathological changes were explored by H&E staining, and the contents of superoxide dismulase (SOD) and malondialdehyde (MDA) in the hearts were determined by xanthine oxidation or TBA colorimetry. TSP-1 and TGF-β expression in the left ventricular myocardium was also measured by immunohistochemistry. The results showed that the activities of SOD decreased and the MDA content increased markedly in the hearts of the AM group compared to the control group. H&E staining showed that the control group myocardial cells lined up in order with clear structure and stained equably, while the AM group myocardial cells lined up in disorder with an augmented cell body and the appearance of many granules and interstitial fibrosis. Compared to the control group, in the hearts of the AM group, TSP-1 and TGF-β protein expression in myocardial cells showed a significant increase (P<0.01). TSP-1 and TGF-β expression increased in the myocardium, which may be related to pathological changes of age-related heart diseases, such as hypertrophy, fibrosis of myocardial cells and microvessel dissepiment thickening.
Collapse
Affiliation(s)
- Huabo Cai
- Department of ICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016
| | | | | | | |
Collapse
|