1
|
Hiramatsu S, Saito K, Kondo S, Katow H, Yamagata N, Wu CF, Tanimoto H. Synaptic enrichment and dynamic regulation of the two opposing dopamine receptors within the same neurons. eLife 2025; 13:RP98358. [PMID: 39882849 PMCID: PMC11781798 DOI: 10.7554/elife.98358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Dopamine can play opposing physiological roles depending on the receptor subtype. In the fruit fly Drosophila melanogaster, Dop1R1 and Dop2R encode the D1- and D2-like receptors, respectively, and are reported to oppositely regulate intracellular cAMP levels. Here, we profiled the expression and subcellular localization of endogenous Dop1R1 and Dop2R in specific cell types in the mushroom body circuit. For cell-type-specific visualization of endogenous proteins, we employed reconstitution of split-GFP tagged to the receptor proteins. We detected dopamine receptors at both presynaptic and postsynaptic sites in multiple cell types. Quantitative analysis revealed enrichment of both receptors at the presynaptic sites, with Dop2R showing a greater degree of localization than Dop1R1. The presynaptic localization of Dop1R1 and Dop2R in dopamine neurons suggests dual feedback regulation as autoreceptors. Furthermore, we discovered a starvation-dependent, bidirectional modulation of the presynaptic receptor expression in the protocerebral anterior medial (PAM) and posterior lateral 1 (PPL1) clusters, two distinct subsets of dopamine neurons, suggesting their roles in regulating appetitive behaviors. Our results highlight the significance of the co-expression of the two opposing dopamine receptors in the spatial and conditional regulation of dopamine responses in neurons.
Collapse
Affiliation(s)
- Shun Hiramatsu
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Kokoro Saito
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Hidetaka Katow
- Department of Cell Biology, New York UniversityNew YorkUnited States
| | - Nobuhiro Yamagata
- Faculty and Graduate School of Engineering Science, Akita UniversityAkitaJapan
| | - Chun-Fang Wu
- Department of Biology, University of IowaIowa CityUnited States
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| |
Collapse
|
2
|
Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev 2024; 164:105809. [PMID: 39004323 PMCID: PMC11771367 DOI: 10.1016/j.neubiorev.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.
Collapse
|
3
|
Lara Aparicio SY, Laureani Fierro ÁDJ, Aranda Abreu GE, Toledo Cárdenas R, García Hernández LI, Coria Ávila GA, Rojas Durán F, Aguilar MEH, Manzo Denes J, Chi-Castañeda LD, Pérez Estudillo CA. Current Opinion on the Use of c-Fos in Neuroscience. NEUROSCI 2022; 3:687-702. [PMID: 39483772 PMCID: PMC11523728 DOI: 10.3390/neurosci3040050] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 11/03/2024] Open
Abstract
For years, the biochemical processes that are triggered by harmful and non-harmful stimuli at the central nervous system level have been extensively studied by the scientific community through numerous techniques and animal models. For example, one of these techniques is the use of immediate expression genes, which is a useful, accessible, and reliable method for observing and quantifying cell activation. It has been shown that both the c-fos gene and its protein c-Fos have rapid activation after stimulus, with the length of time that they remain active depending on the type of stimulus and the activation time depending on the stimulus and the structure studied. Fos requires the participation of other genes (such as c-jun) for its expression (during hetero-dimer forming). c-Fos dimerizes with c-Jun protein to form factor AP-1, which promotes the transcription of various genes. The production and removal of c-Fos is part of cellular homeostasis, but its overexpression results in increased cell proliferation. Although Fos has been used as a marker of cellular activity since the 1990s, which molecular mechanism participates in the regulation of the expression of this protein is still unknown because the gene and the protein are not specific to neurons or glial cells. For these reasons, this work has the objective of gathering information about this protein and its use in neuroscience.
Collapse
Affiliation(s)
- Sandra Yasbeth Lara Aparicio
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Av. Luis Castelazo S/N, Col. Industrial Las Ánimas, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | | | | - Rebeca Toledo Cárdenas
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Luis Isauro García Hernández
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Genaro Alfonso Coria Ávila
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Fausto Rojas Durán
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | | - Jorge Manzo Denes
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Lizbeth Donají Chi-Castañeda
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | |
Collapse
|
4
|
Ben-Azu B, Adebayo OG, Jarikre TA, Oyovwi MO, Edje KE, Omogbiya IA, Eduviere AT, Moke EG, Chijioke BS, Odili OS, Omondiabge OP, Oyovbaire A, Esuku DT, Ozah EO, Japhet K. Taurine, an essential β-amino acid insulates against ketamine-induced experimental psychosis by enhancement of cholinergic neurotransmission, inhibition of oxidative/nitrergic imbalances, and suppression of COX-2/iNOS immunoreactions in mice. Metab Brain Dis 2022; 37:2807-2826. [PMID: 36057735 DOI: 10.1007/s11011-022-01075-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/23/2022] [Indexed: 12/22/2022]
Abstract
Cholinergic, oxidative, nitrergic alterations, and neuroinflammation are some key neuropathological features common in schizophrenia disease. They involve complex biological processes that alter normal behavior. The present treatments used in the management of the disorder remain ineffective together with some serious side effects as one of their setbacks. Taurine is a naturally occurring essential β-amino acid reported to elicit antipsychotic property in first episode psychosis in clinical setting, thus require preclinical investigation. Hence, we set out to investigate the effects of taurine in the prevention and reversal of ketamine-induced psychotic-like behaviors and the associated putative neurobiological mechanisms underlying its effects. Adult male Swiss mice were sheared into three separate cohorts of experiments (n = 7): drug alone, preventive and reversal studies. Treatments consisted of saline (10 mL/kg/p.o./day), taurine (50 and 100 mg/kg/p.o./day) and risperidone (0.5 mg/kg/p.o./day) with concomitant ketamine (20 mg/kg/i.p./day) injections between days 8-14, or 14 days entirely. Behavioral hyperactivity, despair, cognitive impairment, and catalepsy were measured. Brain oxidative/nitrergic imbalance, immunoreactivity (COX-2 and iNOS), and cholinergic markers were determined in the striatum, prefrontal-cortex, and hippocampus. Taurine abates ketamine-mediated psychotic-like episodes without cataleptogenic potential. Taurine attenuated ketamine-induced decrease in glutathione, superoxide-dismutase and catalase levels in the striatum, prefrontal-cortex and hippocampus. Also, taurine prevented and reversed ketamine-mediated elevation of malondialdehyde, nitrite contents, acetylcholinesterase activity, and suppressed COX-2 and iNOS expressions in a brain-region dependent manner. Conclusively, taurine insulates against ketamine-mediated psychotic phenotype by normalizing brain central cholinergic neurotransmissions, oxidative, nitrergic and suppression of immunoreactive proteins in mice brains.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Thiophilus Aghogho Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mega O Oyovwi
- Department of Basic Medical Science, Achievers University, Owo, Ondo State, Nigeria
| | - Kesiena Emmanuel Edje
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Itivere Adrian Omogbiya
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Anthony T Eduviere
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emuesiri Goodies Moke
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Bienose S Chijioke
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Onyebuchi S Odili
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Osemudiame P Omondiabge
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Aghogho Oyovbaire
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Daniel T Esuku
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Esther O Ozah
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Kelvin Japhet
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
5
|
Zatsepina OG, Nikitina EA, Shilova VY, Chuvakova LN, Sorokina S, Vorontsova JE, Tokmacheva EV, Funikov SY, Rezvykh AP, Evgen'ev MB. Hsp70 affects memory formation and behaviorally relevant gene expression in Drosophila melanogaster. Cell Stress Chaperones 2021; 26:575-594. [PMID: 33829398 PMCID: PMC8065088 DOI: 10.1007/s12192-021-01203-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins, in particular Hsp70, play a central role in proteostasis in eukaryotic cells. Due to its chaperone properties, Hsp70 is involved in various processes after stress and under normal physiological conditions. In contrast to mammals and many Diptera species, inducible members of the Hsp70 family in Drosophila are constitutively synthesized at a low level and undergo dramatic induction after temperature elevation or other forms of stress. In the courtship suppression paradigm used in this study, Drosophila males that have been repeatedly rejected by mated females during courtship are less likely than naive males to court other females. Although numerous genes with known function were identified to play important roles in long-term memory, there is, to the best of our knowledge, no direct evidence implicating Hsp70 in this process. To elucidate a possible role of Hsp70 in memory formation, we used D. melanogaster strains containing different hsp70 copy numbers, including strains carrying a deletion of all six hsp70 genes. Our investigations exploring the memory of courtship rejection paradigm demonstrated that a low constitutive level of Hsp70 is apparently required for learning and the formation of short and long-term memories in males. The performed transcriptomic studies demonstrate that males with different hsp70 copy numbers differ significantly in the expression of a few definite groups of genes involved in mating, reproduction, and immunity in response to rejection. Specifically, our analysis reveals several major pathways that depend on the presence of hsp70 in the genome and participate in memory formation and consolidation, including the cAMP signaling cascade.
Collapse
Affiliation(s)
- O G Zatsepina
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - E A Nikitina
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Human and Animal Anatomy and Physiology, Herzen State Pedagogical University, St. Petersburg, Russia
| | - V Y Shilova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - L N Chuvakova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - S Sorokina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - J E Vorontsova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - E V Tokmacheva
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - S Y Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - A P Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
6
|
Soltani H, Sadat-Shirazi MS, Pakpour B, Ashabi G, Zarrindast MR. Toxic effect of calcium/calmodulin kinase II on anxiety behavior, neuronal firing and plasticity in the male offspring of morphine-abstinent rats. Behav Brain Res 2020; 395:112877. [PMID: 32841609 DOI: 10.1016/j.bbr.2020.112877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Studies have shown that epigenetic changes such as alteration in histone acetylation and DNA methylation in various brain regions play an essential role in anxiety behavior. According to the critical role of calcium/calmodulin protein kinaseII (CaMKII) in these processes, the present study examined the effect of CaMKII inhibitor (KN93) on neuronal activity and level of c-fos in the amygdala and nucleus accumbens (NAC) in the offspring of morphine-exposed parents. Adult male and female Wistar rats received morphine orally (for 21 days). After the washout period (10 days), rats were mated with either drug-naïve or morphine-exposed rats. KN93 was microinjected into the brain of male offspring. The anxiety-like behavior, the neuronal firing rate in the NAC and the amygdala and level of c-fos were assessed by related techniques. Data showed the offspring with one and/or two morphine-abstinent parent(s) had more anxiety-like behavior than the control group. However, the administration of KN-93 decreased anxiety in the offspring of morphine-exposed rats compared with saline-treated groups. The expression level of the c-fos was not significantly altered by the inhibition of CaMKII in the amygdala, but the c-fos level was reduced in the NAC. The neuronal firing rate of these groups was associated with an increase in the amygdala in comparison to the saline groups but was decreased in the NAC. Results showed that CaMKII had a role in anxiety-like behavior in the offspring of morphine-exposed parents, and changes in neuronal firing rate and c-fos level in the NAC might be involved in this process.
Collapse
Affiliation(s)
- Haniyeh Soltani
- Department of Biology, Faculty of Basic Science, University of Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Pakpour
- Department of Biology, Faculty of Basic Science, University of Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Pharmacology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
7
|
Soldado-Magraner S, Brandalise F, Honnuraiah S, Pfeiffer M, Moulinier M, Gerber U, Douglas R. Conditioning by subthreshold synaptic input changes the intrinsic firing pattern of CA3 hippocampal neurons. J Neurophysiol 2019; 123:90-106. [PMID: 31721636 DOI: 10.1152/jn.00506.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Unlike synaptic strength, intrinsic excitability is assumed to be a stable property of neurons. For example, learning of somatic conductances is generally not incorporated into computational models, and the discharge pattern of neurons in response to test stimuli is frequently used as a basis for phenotypic classification. However, it is increasingly evident that signal processing properties of neurons are more generally plastic on the timescale of minutes. Here we demonstrate that the intrinsic firing patterns of CA3 neurons of the rat hippocampus in vitro undergo rapid long-term plasticity in response to a few minutes of only subthreshold synaptic conditioning. This plasticity on the spike timing could also be induced by intrasomatic injection of subthreshold depolarizing pulses and was blocked by kinase inhibitors, indicating that discharge dynamics are modulated locally. Cluster analysis of firing patterns before and after conditioning revealed systematic transitions toward adapting and intrinsic burst behaviors, irrespective of the patterns initially exhibited by the cells. We used a conductance-based model to decide appropriate pharmacological blockade and found that the observed transitions are likely due to recruitment of low-voltage calcium and Kv7 potassium conductances. We conclude that CA3 neurons adapt their conductance profile to the subthreshold activity of their input, so that their intrinsic firing pattern is not a static signature, but rather a reflection of their history of subthreshold activity. In this way, recurrent output from CA3 neurons may collectively shape the temporal dynamics of their embedding circuits.NEW & NOTEWORTHY Although firing patterns are widely conserved across the animal phyla, it is still a mystery why nerve cells present such diversity of discharge dynamics upon somatic step currents. Adding a new timing dimension to the intrinsic plasticity literature, here we show that CA3 neurons rapidly adapt through the space of known firing patterns in response to the subthreshold signals that they receive from their embedding circuit, potentially adjusting their network processing to the temporal statistics of their circuit.
Collapse
Affiliation(s)
| | - Federico Brandalise
- Brain Research Institute, University of Zurich, Switzerland.,Department of Fundamental Neurosciences, University of Geneva, Switzerland
| | - Suraj Honnuraiah
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
| | - Michael Pfeiffer
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
| | - Marie Moulinier
- Department of Fundamental Neurosciences, University of Geneva, Switzerland
| | - Urs Gerber
- Brain Research Institute, University of Zurich, Switzerland
| | - Rodney Douglas
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
8
|
Soriani O, Kourrich S. The Sigma-1 Receptor: When Adaptive Regulation of Cell Electrical Activity Contributes to Stimulant Addiction and Cancer. Front Neurosci 2019; 13:1186. [PMID: 31780884 PMCID: PMC6861184 DOI: 10.3389/fnins.2019.01186] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
The sigma-1 receptor (σ1R) is an endoplasmic reticulum (ER)-resident chaperone protein that acts like an inter-organelle signaling modulator. Among its several functions such as ER lipid metabolisms/transports and indirect regulation of genes transcription, one of its most intriguing feature is the ability to regulate the function and trafficking of a variety of functional proteins. To date, and directly relevant to the present review, σ1R has been found to regulate both voltage-gated ion channels (VGICs) belonging to distinct superfamilies (i.e., sodium, Na+; potassium, K+; and calcium, Ca2+ channels) and non-voltage-gated ion channels. This regulatory function endows σ1R with a powerful capability to fine tune cells’ electrical activity and calcium homeostasis—a regulatory power that appears to favor cell survival in pathological contexts such as stroke or neurodegenerative diseases. In this review, we present the current state of knowledge on σ1R’s role in the regulation of cellular electrical activity, and how this seemingly adaptive function can shift cell homeostasis and contribute to the development of very distinct chronic pathologies such as psychostimulant abuse and tumor cell growth in cancers.
Collapse
Affiliation(s)
| | - Saïd Kourrich
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
9
|
Shrestha A, Sultana R, Lee CC, Ogundele OM. SK Channel Modulates Synaptic Plasticity by Tuning CaMKIIα/β Dynamics. Front Synaptic Neurosci 2019; 11:18. [PMID: 31736736 PMCID: PMC6834780 DOI: 10.3389/fnsyn.2019.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
N-Methyl-D-Aspartate Receptor 1 (NMDAR)-linked Ca++ current represents a significant percentage of post-synaptic transient that modulates synaptic strength and is pertinent to dendritic spine plasticity. In the hippocampus, Ca++ transient produced by glutamatergic ionotropic neurotransmission facilitates Ca++-Calmodulin-dependent kinase 2 (CaMKII) Thr286 phosphorylation and promote long-term potentiation (LTP) expression. At CA1 post-synaptic densities, Ca++ transients equally activate small conductance (SK2) channel which regulates excitability by suppressing Ca++ movement. Here, we demonstrate that upstream attenuation of GluN1 function in the hippocampus led to a decrease in Thr286 CaMKIIα phosphorylation, and increased SK2 expression. Consistent with the loss of GluN1 function, potentiation of SK channel in wild type hippocampus reduced CaMKIIα expression and abrogate synaptic localization of T286 pCaMKIIα. Our results demonstrate that positive modulation of SK channel at hippocampal synapses likely refine GluN1-linked plasticity by tuning dendritic localization of CaMKIIα.
Collapse
Affiliation(s)
| | | | | | - Olalekan M. Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
10
|
Park JY, Chae S, Kim CS, Kim YJ, Yi HJ, Han E, Joo Y, Hong S, Yun JW, Kim H, Shin KH. Role of nociceptin/orphanin FQ and nociceptin opioid peptide receptor in depression and antidepressant effects of nociceptin opioid peptide receptor antagonists. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:427-448. [PMID: 31680765 PMCID: PMC6819898 DOI: 10.4196/kjpp.2019.23.6.427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 01/28/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) and its receptor, nociceptin opioid peptide (NOP) receptor, are localized in brain areas implicated in depression including the amygdala, bed nucleus of the stria terminalis, habenula, and monoaminergic nuclei in the brain stem. N/OFQ inhibits neuronal excitability of monoaminergic neurons and monoamine release from their terminals by activation of G protein-coupled inwardly rectifying K+ channels and inhibition of voltage sensitive calcium channels, respectively. Therefore, NOP receptor antagonists have been proposed as a potential antidepressant. Indeed, mounting evidence shows that NOP receptor antagonists have antidepressant-like effects in various preclinical animal models of depression, and recent clinical studies again confirmed the idea that blockade of NOP receptor signaling could provide a novel strategy for the treatment of depression. In this review, we describe the pharmacological effects of N/OFQ in relation to depression and explore the possible mechanism of NOP receptor antagonists as potential antidepressants.
Collapse
Affiliation(s)
- Jong Yung Park
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Suji Chae
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Chang Seop Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Yoon Jae Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Hyun Joo Yi
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Eunjoo Han
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Youngshin Joo
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Surim Hong
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Jae Won Yun
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Hyojung Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Kyung Ho Shin
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
11
|
PKA and cAMP/CNG Channels Independently Regulate the Cholinergic Ca(2+)-Response of Drosophila Mushroom Body Neurons. eNeuro 2015; 2:eN-NWR-0054-14. [PMID: 26464971 PMCID: PMC4596083 DOI: 10.1523/eneuro.0054-14.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 01/22/2023] Open
Abstract
The mushroom bodies (MBs) are the most prominent structures in adult Drosophila brain. They have been involved in several crucial functions, such as learning and memory, sleep, locomotor activity, and decision making. The mushroom bodies (MBs), one of the main structures in the adult insect brain, play a critical role in olfactory learning and memory. Though historical genes such as dunce and rutabaga, which regulate the level of cAMP, were identified more than 30 years ago, their in vivo effects on cellular and physiological mechanisms and particularly on the Ca2+-responses still remain largely unknown. In this work, performed in Drosophila, we took advantage of in vivo bioluminescence imaging, which allowed real-time monitoring of the entire MBs (both the calyx/cell-bodies and the lobes) simultaneously. We imaged neuronal Ca2+-activity continuously, over a long time period, and characterized the nicotine-evoked Ca2+-response. Using both genetics and pharmacological approaches to interfere with different components of the cAMP signaling pathway, we first show that the Ca2+-response is proportional to the levels of cAMP. Second, we reveal that an acute change in cAMP levels is sufficient to trigger a Ca2+-response. Third, genetic manipulation of protein kinase A (PKA), a direct effector of cAMP, suggests that cAMP also has PKA-independent effects through the cyclic nucleotide-gated Ca2+-channel (CNG). Finally, the disruption of calmodulin, one of the main regulators of the rutabaga adenylate cyclase (AC), yields different effects in the calyx/cell-bodies and in the lobes, suggesting a differential and regionalized regulation of AC. Our results provide insights into the complex Ca2+-response in the MBs, leading to the conclusion that cAMP modulates the Ca2+-responses through both PKA-dependent and -independent mechanisms, the latter through CNG-channels.
Collapse
|
12
|
Abstract
Exposure to drugs of abuse, such as cocaine, leads to plastic changes in the activity of brain circuits, and a prevailing view is that these changes play a part in drug addiction. Notably, there has been intense focus on drug-induced changes in synaptic excitability and much less attention on intrinsic excitability factors (that is, excitability factors that are remote from the synapse). Accumulating evidence now suggests that intrinsic factors such as K+ channels are not only altered by cocaine but may also contribute to the shaping of the addiction phenotype.
Collapse
|
13
|
Liu L, Wu CF. Distinct effects of Abelson kinase mutations on myocytes and neurons in dissociated Drosophila embryonic cultures: mimicking of high temperature. PLoS One 2014; 9:e86438. [PMID: 24466097 PMCID: PMC3897706 DOI: 10.1371/journal.pone.0086438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/07/2013] [Indexed: 11/18/2022] Open
Abstract
Abelson tyrosine kinase (Abl) is known to regulate axon guidance, muscle development, and cell-cell interaction in vivo. The Drosophila primary culture system offers advantages in exploring the cellular mechanisms mediated by Abl with utilizing various experimental manipulations. Here we demonstrate that single-embryo cultures exhibit stage-dependent characteristics of cellular differentiation and developmental progression in neurons and myocytes, as well as nerve-muscle contacts. In particular, muscle development critically depends on the stage of dissociated embryos. In wild-type (WT) cultures derived from embryos before stage 12, muscle cells remained within cell clusters and were rarely detected. Interestingly, abundant myocytes were spotted in Abl mutant cultures, exhibiting enhanced myocyte movement and fusion, as well as neuron-muscle contacts even in cultures dissociated from younger, stage 10 embryos. Notably, Abl myocytes frequently displayed well-expanded lamellipodia. Conversely, Abl neurons were characterized with fewer large veil-like lamellipodia, but instead had increased numbers of filopodia and darker nodes along neurites. These distinct phenotypes were equally evident in both homo- and hetero-zygous cultures (Abl/Abl vs. Abl/+) of different alleles (Abl1 and Abl4) indicating dominant mutational effects. Strikingly, in WT cultures derived from stage 10 embryos, high temperature (HT) incubation promoted muscle migration and fusion, partially mimicking the advanced muscle development typical of Abl cultures. However, HT enhanced neuronal growth with increased numbers of enlarged lamellipodia, distinct from the characteristic Abl neuronal morphology. Intriguingly, HT incubation also promoted Abl lamellipodia expansion, with a much greater effect on nerve cells than muscle. Our results suggest that Abl is an essential regulator for myocyte and neuron development and that high-temperature incubation partially mimics the faster muscle development typical of Abl cultures. Despite the extensive alterations by Abl mutations, we observed myocyte fusion events and nerve-muscle contact formation between WT and Abl cells in mixed WT and Abl cultures derived from labeled embryos.
Collapse
Affiliation(s)
- Lijuan Liu
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| | - Chun-Fang Wu
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
14
|
Ueda A, Wu CF. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations. J Neurogenet 2012; 26:64-81. [PMID: 22380612 DOI: 10.3109/01677063.2011.652752] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss factors that could contribute to the effectiveness of counterbalancing interactions between dnc and rut mutations for phenotypic rescue.
Collapse
Affiliation(s)
- Atsushi Ueda
- Department of Biology, University of Iowa, IA 52242, USA.
| | | |
Collapse
|
15
|
Constitutive activation of Ca2+/calmodulin-dependent protein kinase II during development impairs central cholinergic transmission in a circuit underlying escape behavior in Drosophila. J Neurosci 2012; 32:170-82. [PMID: 22219280 DOI: 10.1523/jneurosci.6583-10.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of neural circuitry relies on precise matching between correct synaptic partners and appropriate synaptic strength tuning. Adaptive developmental adjustments may emerge from activity and calcium-dependent mechanisms. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been associated with developmental synaptic plasticity, but its varied roles in different synapses and developmental stages make mechanistic generalizations difficult. In contrast, we focused on synaptic development roles of CaMKII in a defined sensory-motor circuit. Thus, different forms of CaMKII were expressed with UAS-Gal4 in distinct components of the giant fiber system, the escape circuit of Drosophila, consisting of photoreceptors, interneurons, motoneurons, and muscles. The results demonstrate that the constitutively active CaMKII-T287D impairs development of cholinergic synapses in giant fiber dendrites and thoracic motoneurons, preventing light-induced escape behavior. The locus of the defects is postsynaptic as demonstrated by selective expression of transgenes in distinct components of the circuit. Furthermore, defects among these cholinergic synapses varied in severity, while the glutamatergic neuromuscular junctions appeared unaffected, demonstrating differential effects of CaMKII misregulation on distinct synapses of the same circuit. Limiting transgene expression to adult circuits had no effects, supporting the role of misregulated kinase activity in the development of the system rather than in acutely mediating escape responses. Overexpression of wild-type transgenes did not affect circuit development and function, suggesting but not proving that the CaMKII-T287D effects are not due to ectopic expression. Therefore, regulated CaMKII autophosphorylation appears essential in central synapse development, and particular cholinergic synapses are affected differentially, although they operate via the same nicotinic receptor.
Collapse
|
16
|
Cho J, Bhatt R, Elgersma Y, Silva AJ. α-Calcium calmodulin kinase II modulates the temporal structure of hippocampal bursting patterns. PLoS One 2012; 7:e31649. [PMID: 22363696 PMCID: PMC3282754 DOI: 10.1371/journal.pone.0031649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/10/2012] [Indexed: 11/19/2022] Open
Abstract
The alpha calcium calmodulin kinase II (α-CaMKII) is known to play a key role in CA1/CA3 synaptic plasticity, hippocampal place cell stability and spatial learning. Additionally, there is evidence from hippocampal electrophysiological slice studies that this kinase has a role in regulating ion channels that control neuronal excitability. Here, we report in vivo single unit studies, with α-CaMKII mutant mice, in which threonine 305 was replaced with an aspartate (α-CaMKII(T305D) mutants), that indicate that this kinase modulates spike patterns in hippocampal pyramidal neurons. Previous studies showed that α-CaMKII(T305D) mutants have abnormalities in both hippocampal LTP and hippocampal-dependent learning. We found that besides decreased place cell stability, which could be caused by their LTP impairments, the hippocampal CA1 spike patterns of α-CaMKII(T305D) mutants were profoundly abnormal. Although overall firing rate, and overall burst frequency were not significantly altered in these mutants, inter-burst intervals, mean number of intra-burst spikes, ratio of intra-burst spikes to total spikes, and mean intra-burst intervals were significantly altered. In particular, the intra burst intervals of place cells in α-CaMKII(T305D) mutants showed higher variability than controls. These results provide in vivo evidence that besides its well-known function in synaptic plasticity, α-CaMKII, and in particular its inhibitory phosphorylation at threonine 305, also have a role in shaping the temporal structure of hippocampal burst patterns. These results suggest that some of the molecular processes involved in acquiring information may also shape the patterns used to encode this information.
Collapse
Affiliation(s)
- Jeiwon Cho
- Departments of Neurobiology, Psychiatry, and Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Center for Neural Science, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Korea
- Department of Neuroscience, University of Science and Technology, Seoul, Korea
| | - Rushi Bhatt
- Yahoo! SDC, Embassy Golf Links Business Park, Bangalore, India
| | - Ype Elgersma
- Departments of Neurobiology, Psychiatry, and Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Alcino J. Silva
- Departments of Neurobiology, Psychiatry, and Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
17
|
Liang R, Liu X, Wei L, Wang W, Zheng P, Yan X, Zhao Y, Liu L, Cao X. The modulation of the excitability of primary sensory neurons by Ca2+–CaM–CaMKII pathway. Neurol Sci 2011; 33:1083-93. [DOI: 10.1007/s10072-011-0907-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/14/2011] [Indexed: 01/19/2023]
|
18
|
Lee KY, Kim JS, Kim SH, Park HS, Jeong YG, Lee NS, Kim DK. Altered Purkinje cell responses and calmodulin expression in the spontaneously ataxic mouse, Pogo. Eur J Neurosci 2011; 33:1493-503. [DOI: 10.1111/j.1460-9568.2011.07641.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Bushey D, Cirelli C. From genetics to structure to function: exploring sleep in Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:213-44. [PMID: 21906542 DOI: 10.1016/b978-0-12-387003-2.00009-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sleep consists of quiescent periods with reduced responsiveness to external stimuli. Despite being maladaptive in that when asleep, animals are less able to respond to dangerous stimuli; sleep behavior is conserved in all animal species studied to date. Thus, sleep must be performing at least one fundamental, conserved function that is necessary, and/or whose benefits outweigh its maladaptive consequences. Currently, there is no consensus on what that function might be. Over the last 10 years, multiple groups have started to characterize the molecular mechanisms and brain structures necessary for normal sleep in Drosophila melanogaster. These researchers are exploiting genetic tools developed in Drosophila over the past century to identify and manipulate gene expression. Forward genetic screens can identify molecular components in complex biological systems and once identified, these genes can be manipulated within specific brain areas to determine which neuronal groups are important to initiate and maintain sleep. Screening for mutations and brain regions necessary for normal sleep has revealed that several genes that affect sleep are involved in synaptic plasticity and have preferential expression in the mushroom bodies (MBs). Moreover, altering MB neuronal activity alters sleep. Previous genetic screens found that the same genes enriched in MB are necessary for learning and memory. Increasing evidence in mammals, including humans, points to a beneficial role for sleep in synaptic plasticity, learning and memory. Thus, results from both flies and mammals suggest a strong link between sleep need and wake plasticity.
Collapse
Affiliation(s)
- Daniel Bushey
- Department of Psychiatry, University of Wisconsin, 6001 Research Park Blvd.Madison, WI 53719, USA
| | | |
Collapse
|
20
|
Bulley S, Shen W. Reciprocal regulation between taurine and glutamate response via Ca2+-dependent pathways in retinal third-order neurons. J Biomed Sci 2010; 17 Suppl 1:S5. [PMID: 20804625 PMCID: PMC2994392 DOI: 10.1186/1423-0127-17-s1-s5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although taurine and glutamate are the most abundant amino acids conducting neural signals in the central nervous system, the communication between these two neurotransmitters is largely unknown. This study explores the interaction of taurine and glutamate in the retinal third-order neurons. Using specific antibodies, both taurine and taurine transporters were localized in photoreceptors and Off-bipolar cells, glutamatergic neurons in retinas. It is possible that Off-bipolar cells release juxtaposed glutamate and taurine to activate the third-order neurons in retina. The interaction of taurine and glutamate was studied in acutely dissociated third-order neurons in whole-cell patch-clamp recording and Ca2+ imaging. We find that taurine effectively reduces glutamate-induced Ca2+ influx via ionotropic glutamate receptors and voltage-dependent Ca2+ channels in the neurons, and the effect of taurine was selectively inhibited by strychnine and picrotoxin, but not GABA receptor antagonists, although GABA receptors are present in the neurons. A CaMKII inhibitor partially reversed the effect of taurine, suggesting that a Ca2+/calmodulin-dependent pathway is involved in taurine regulation. On the other hand, a rapid influx of Ca2+ through ionotropic glutamate receptors could inhibit the amplitude and kinetics of taurine-elicited currents in the third-order neurons, which could be controlled with intracellular application of BAPTA a fast Ca2+ chelator. This study indicates that taurine is a potential neuromodulator in glutamate transmission. The reciprocal inhibition between taurine and glutamate in the postsynaptic neurons contributes to computation of visual signals in the retinal neurons.
Collapse
Affiliation(s)
- Simon Bulley
- College of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|
21
|
Farzan SF, Stegman MA, Ogden SK, Ascano M, Black KE, Tacchelly O, Robbins DJ. A quantification of pathway components supports a novel model of Hedgehog signal transduction. J Biol Chem 2009; 284:28874-84. [PMID: 19717563 PMCID: PMC2781433 DOI: 10.1074/jbc.m109.041608] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/25/2009] [Indexed: 11/06/2022] Open
Abstract
The secreted protein Hedgehog (Hh) plays a critical instructional role during metazoan development. In Drosophila, Hh signaling is interpreted by a set of conserved, downstream effectors that differentially localize and interact to regulate the stability and activity of the transcription factor Cubitus interruptus. Two essential models that integrate genetic, cell biological, and biochemical information have been proposed to explain how these signaling components relate to one another within the cellular context. As the molar ratios of the signaling effectors required in each of these models are quite different, quantitating the cellular ratio of pathway components could distinguish these two models. Here, we address this important question using a set of purified protein standards to perform a quantitative analysis of Drosophila cell lysates for each downstream pathway component. We determine each component's steady-state concentration within a given cell, demonstrate the molar ratio of Hh signaling effectors differs more than two orders of magnitude and that this ratio is conserved in vivo. We find that the G-protein-coupled transmembrane protein Smoothened, an activating component, is present in limiting amounts, while a negative pathway regulator, Suppressor of Fused, is present in vast molar excess. Interestingly, despite large differences in the steady-state ratio, all downstream signaling components exist in an equimolar membrane-associated complex. We use these quantitative results to re-evaluate the current models of Hh signaling and now propose a novel model of signaling that accounts for the stoichiometric differences observed between various Hh pathway components.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Melanie A. Stegman
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Stacey K. Ogden
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Manuel Ascano
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Kendall E. Black
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Ofelia Tacchelly
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - David J. Robbins
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
- the Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756
| |
Collapse
|
22
|
Hodge JJL. Ion channels to inactivate neurons in Drosophila. Front Mol Neurosci 2009; 2:13. [PMID: 19750193 PMCID: PMC2741205 DOI: 10.3389/neuro.02.013.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/11/2009] [Indexed: 02/05/2023] Open
Abstract
Ion channels are the determinants of excitability; therefore, manipulation of their levels and properties provides an opportunity for the investigator to modulate neuronal and circuit function. There are a number of ways to suppress electrical activity in Drosophila neurons, for instance, over-expression of potassium channels (i.e. Shaker Kv1, Shaw Kv3, Kir2.1 and DORK) that are open at resting membrane potential. This will result in increased potassium efflux and membrane hyperpolarisation setting resting membrane potential below the threshold required to fire action potentials. Alternatively over-expression of other channels, pumps or co-transporters that result in a hyperpolarised membrane potential will also prevent firing. Lastly, neurons can be inactivated by, disrupting or reducing the level of functional voltage-gated sodium (Nav1 paralytic) or calcium (Cav2 cacophony) channels that mediate the depolarisation phase of action potentials. Similarly, strategies involving the opposite channel manipulation should allow net depolarisation and hyperexcitation in a given neuron. These changes in ion channel expression can be brought about by the versatile transgenic (i.e. Gal4/UAS based) systems available in Drosophila allowing fine temporal and spatial control of (channel) transgene expression. These systems are making it possible to electrically inactivate (or hyperexcite) any neuron or neural circuit in the fly brain, and much like an exquisite lesion experiment, potentially elucidate whatever interesting behaviour or phenotype each network mediates. These techniques are now being used in Drosophila to reprogram electrical activity of well-defined circuits and bring about robust and easily quantifiable changes in behaviour, allowing different models and hypotheses to be rapidly tested.
Collapse
Affiliation(s)
- James J L Hodge
- Physiology and Pharmacology Department, University of Bristol Bristol, UK
| |
Collapse
|
23
|
Cai SQ, Wang Y, Park KH, Tong X, Pan Z, Sesti F. Auto-phosphorylation of a voltage-gated K+ channel controls non-associative learning. EMBO J 2009; 28:1601-11. [PMID: 19387491 DOI: 10.1038/emboj.2009.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 03/30/2009] [Indexed: 11/09/2022] Open
Abstract
Here, we characterize a new K(+) channel-kinase complex that operates in the metazoan Caenorhabditis elegans to control learning behaviour. This channel is composed of a pore-forming subunit, dubbed KHT-1 (73% homology to human Kv3.1), and the accessory subunit MPS-1, which shows kinase activity. Genetic, biochemical and electrophysiological evidence show that KHT-1 and MPS-1 form a complex in vitro and in native mechanosensory PLM neurons, and that KHT-1 is a substrate for the kinase activity of MPS-1. Behavioural analysis further shows that the kinase activity of MPS-1 is specifically required for habituation to repetitive mechanical stimulation. Thus, worms bearing an inactive MPS-1 variant (D178N) respond normally to touch on the body but do not habituate to repetitive mechanical stimulation such as tapping on the side of the Petri dish. Hence, the phosphorylation status of KHT-1-MPS-1 seems to be linked to distinct behavioural responses. In the non-phosphorylated state the channel is necessary for the normal function of the touch neurons. In the auto-phosphorylated state the channel acts to induce neuronal adaptation to mechanical stimulation. Taken together, these data establish a new mechanism of dynamic regulation of electrical signalling in the nervous system.
Collapse
Affiliation(s)
- Shi-Qing Cai
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | | | | | | | | | | |
Collapse
|
24
|
Krause Y, Krause S, Huang J, Liu CH, Hardie RC, Weckström M. Light-dependent modulation of Shab channels via phosphoinositide depletion in Drosophila photoreceptors. Neuron 2008; 59:596-607. [PMID: 18760696 DOI: 10.1016/j.neuron.2008.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 05/08/2008] [Accepted: 07/11/2008] [Indexed: 11/26/2022]
Abstract
The Drosophila phototransduction cascade transforms light into depolarizations that are further shaped by activation of voltage-dependent K+ (Kv) channels. In whole-cell recordings of isolated photoreceptors, we show that light selectively modulated the delayed rectifier (Shab) current. Shab currents were increased by light with similar kinetics to the light-induced current itself (latency approximately 20 ms), recovering to control values with a t(1/2) of approximately 60 s in darkness. Genetic disruption of PLCbeta4, responsible for light-induced PIP(2) hydrolysis, abolished this light-dependent modulation. In mutants of CDP-diaclyglycerol synthase (cds(1)), required for PIP(2) resynthesis, the modulation became irreversible, but exogenously applied PIP(2) restored reversibility. The modulation was accurately and reversibly mimicked by application of PIP(2) to heterologously expressed Shab channels in excised inside-out patches. The results indicate a functionally implemented mechanism of Kv channel modulation by PIP(2) in photoreceptors, which enables light-dependent regulation of signal processing by direct coupling to the phototransduction cascade.
Collapse
Affiliation(s)
- Yani Krause
- University of Oulu, Department of Physical Sciences, Division of Biophysics, 90014 Oulun Yliopisto, Finland
| | | | | | | | | | | |
Collapse
|
25
|
Lee J, Ueda A, Wu CF. Pre- and post-synaptic mechanisms of synaptic strength homeostasis revealed by slowpoke and shaker K+ channel mutations in Drosophila. Neuroscience 2008; 154:1283-96. [PMID: 18539401 PMCID: PMC3362398 DOI: 10.1016/j.neuroscience.2008.04.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/11/2008] [Accepted: 04/15/2008] [Indexed: 11/24/2022]
Abstract
We report naturally occurring, systematic variations in synaptic strength at neuromuscular junctions along the dorsal-ventral (D-V) axis of the Drosophila larval body wall. These gradual changes were correlated with differences in presynaptic neurotransmitter release regulated by nerve terminal excitability and in postsynaptic receptor composition influencing miniature excitatory junctional potential (mEJP) amplitude. Surprisingly, synaptic strength and D-V differentials at physiological Ca(2+) levels were not significantly altered in slowpoke (slo) and Shaker (Sh) mutants, despite their defects in two major repolarizing forces, Ca(2+)-activated Slo (BK) and voltage-activated Sh currents, respectively. However, lowering [Ca(2+)](o) levels revealed greatly altered synaptic mechanisms in these mutants, indicated by drastically enhanced excitatory junctional potentials (EJPs) in Sh but paradoxically reduced EJPs in slo. Removal of Sh current in slo mutants by 4-aminopyridine blockade or by combining slo with Sh mutations led to strikingly increased synaptic transmission, suggesting upregulation of presynaptic Sh current to limit excessive neurotransmitter release in the absence of Slo current. In addition, slo mutants displayed altered immunoreactivity intensity ratio between DGluRIIA and DGluRIIB receptor subunits. This modified receptor composition caused smaller mEJP amplitudes, further preventing excessive transmission in the absence of Slo current. Such compensatory regulations were prevented by rutabaga (rut) adenylyl cyclase mutations in rut slo double mutants, demonstrating a novel role of rut in homeostatic plasticity, in addition to its well-established function in learning behavior.
Collapse
Affiliation(s)
- Jihye Lee
- Interdisciplinary Program in Neuroscience, The University of Iowa, Iowa City, IA 52242, USA
| | - Atsushi Ueda
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Chun-Fang Wu
- Interdisciplinary Program in Neuroscience, The University of Iowa, Iowa City, IA 52242, USA
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
Lores-Arnaiz S, Bustamante J, Czernizyniec A, Galeano P, González Gervasoni M, Rodil Martínez A, Paglia N, Cores V, Lores-Arnaiz MR. Exposure to enriched environments increases brain nitric oxide synthase and improves cognitive performance in prepubertal but not in young rats. Behav Brain Res 2007; 184:117-23. [PMID: 17675170 DOI: 10.1016/j.bbr.2007.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/23/2007] [Accepted: 06/29/2007] [Indexed: 12/26/2022]
Abstract
Rats were randomly assigned to enriched (EE) or standard environments (SE) at 21 or 73 days of age, for 17 days. Half of the rats of each rearing condition were trained in a radial maze (RM). At 38 days (pre-pubertal) or 90 days (young), rats were sacrificed and brain cytosolic and mitochondrial nitric oxide synthase (mtNOS) activity was assayed. Western blot analysis of brain mtNOS was conducted. In the pre-pubertal group, EE rats improved their performance in the RM while SE rats did not. In the young group, SE and EE rats showed a random performance in the RM. In SE pre-pubertal rats, training increased brain cytosolic NOS and mtNOS activity by 68% and 82%. In EE non-trained pre-pubertal rats, brain cytosolic NOS and mtNOS activity increased by 80% and 60%, as compared with SE non-trained pre-pubertal rats. In EE pre-pubertal rats that were trained, brain cytosolic NOS and mtNOS activity increased by 70% and 90%, as compared with SE pre-pubertal rats that were not trained. A higher protein expression of brain mtNOS was found in EE rats, as compared with SE animals. Mitochondrial complex I activity was higher in EE than in SE rats. Training had no effect on complex I activity neither in SE nor in EE rats. In young rats, no significant differences in enzyme activities were found between EE and SE rats. These results support the hypothesis that brief exposure to EE and training produce effects on behavioral performance and on biochemical parameters in an age-dependent manner.
Collapse
Affiliation(s)
- S Lores-Arnaiz
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Qu L, Li Y, Tian H, Wang Z, Cui L, Jin H, Wang W, Yang L. Effects of PKC on inhibition of delayed rectifier potassium currents by N/OFQ. Biochem Biophys Res Commun 2007; 356:582-6. [PMID: 17382298 DOI: 10.1016/j.bbrc.2007.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 03/01/2007] [Indexed: 11/21/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand for the opioid receptor-like-1 (ORL-1) orphan receptor, which is responsible for inhibition of delayed rectifier potassium current (I(K)). But its mechanism of N/OFQ acting on I(K) is not clear and whether PKC is involved in the modulation of this processing is still unknown. Whole-cell patch-clamp recordings were performed in acutely dissociated rat parietal cortical neurons. Bath application of N/OFQ (10 nM-10 microM) resulted in a dose-dependent depression of I(K) with partially recovery on washout. Furthermore, we investigated the role of PKC in the inhibition of I(K) by N/OFQ. Chelerythrine, an inhibitor of PKC, attenuated the inhibition of N/OFQ on I(K). On the contrary, PDBu, an activator of PKC, augmented N/OFQ-evoked responses. The present study suggested that N/OFQ inhibited I(K) and PKC was involved in N/OFQ-evoked response in acutely dissociated rat cerebral parietal cortical neurons.
Collapse
Affiliation(s)
- Lihui Qu
- Laboratory of Neural Electrophysiology, Department of Physiology, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Peng IF, Wu CF. Drosophila cacophony channels: a major mediator of neuronal Ca2+ currents and a trigger for K+ channel homeostatic regulation. J Neurosci 2007; 27:1072-81. [PMID: 17267561 PMCID: PMC6673189 DOI: 10.1523/jneurosci.4746-06.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/20/2006] [Accepted: 12/21/2006] [Indexed: 11/21/2022] Open
Abstract
The cacophony (cac) locus in Drosophila encodes a Ca2+ channel alpha subunit, but little is known about properties of cac-mediated currents and functional consequences of cac mutations in central neurons. We found that, in Drosophila cultured neurons, Ca2+ currents were mediated predominantly by the cac channels. The cac channels contribute to low- and high-threshold, fast- and slow-inactivating types of Ca2+ currents, take part in membrane depolarization, and strongly activate Ca2+-activated K+ current [I(K(Ca))]. In cac neurons, unexpectedly, voltage-activated transient K+ current I(A) is upregulated to a level that matches I(K(Ca)) reduction, implicating a homeostatic regulation that was mimicked by chronic pharmacological blockade of Ca2+ currents in wild-type neurons. Among K+ channel transcripts, Shaker mRNA levels were preferentially increased in cac flies. However, Ca2+ current expression levels remained unaltered in several K+ channel mutants, illustrating a key role of cac in developmental regulation of Drosophila neuronal excitability.
Collapse
Affiliation(s)
- I-Feng Peng
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Chun-Fang Wu
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
29
|
Peng IF, Wu CF. Differential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila. J Neurophysiol 2006; 97:780-94. [PMID: 17079336 DOI: 10.1152/jn.01012.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Different K(+) currents participate in generating neuronal firing patterns. The Drosophila embryonic "giant" neuron culture system has facilitated current- and voltage-clamp recordings to correlate distinct excitability patterns with the underlying K(+) currents and to delineate the mutational effects of identified K(+) channels. Mutations of Sh and Shab K(+) channels removed part of inactivating I(A) and sustained I(K), respectively, and the remaining I(A) and I(K) revealed the properties of their counterparts, e.g., Shal and Shaw channels. Neuronal subsets displaying the delayed, tonic, adaptive, and damping spike patterns were characterized by different profiles of K(+) current voltage dependence and kinetics and by differential mutational effects. Shab channels regulated membrane repolarization and repetitive firing over hundreds of milliseconds, and Shab neurons showed a gradual decline in repolarization during current injection and their spike activities became limited to high-frequency, damping firing. In contrast, Sh channels acted on events within tens of milliseconds, and Sh mutations broadened spikes and reduced firing rates without eliminating any categories of firing patterns. However, removing both Sh and Shal I(A) by 4-aminopyridine converted the delayed to damping firing pattern, demonstrating their actions in regulating spike initiation. Specific blockade of Shab I(K) by quinidine mimicked the Shab phenotypes and converted tonic firing to a damping pattern. These conversions suggest a hierarchy of complexity in K(+) current interactions underlying different firing patterns. Different lineage-defined neuronal subsets, identifiable by employing the GAL4-UAS system, displayed different profiles of spike properties and K(+) current compositions, providing opportunities for mutational analysis in functionally specialized neurons.
Collapse
Affiliation(s)
- I-Feng Peng
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
30
|
Beadle DJ. Insect neuronal cultures: an experimental vehicle for studies of physiology, pharmacology and cell interactions. INVERTEBRATE NEUROSCIENCE 2006; 6:95-103. [PMID: 16874504 DOI: 10.1007/s10158-006-0024-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 06/26/2006] [Indexed: 10/25/2022]
Abstract
The current status of insect neuronal cultures is discussed and their contribution to our understanding of the insect nervous system is explored. Neuronal cultures have been developed from a wide range of insect species and from all developmental stages. These have been used to study the morphological development of insect neurones and some of the extrinsic factors that affect this process. In addition, they have been used to investigate the physiology of sodium, potassium and calcium channels and the pharmacology of acetylcholine and GABA receptors. Insect neurones have also been grown in culture with muscle and glial cells to study cell interactions.
Collapse
Affiliation(s)
- D J Beadle
- School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
31
|
Ohno M, Sametsky EA, Silva AJ, Disterhoft JF. Differential effects of alphaCaMKII mutation on hippocampal learning and changes in intrinsic neuronal excitability. Eur J Neurosci 2006; 23:2235-40. [PMID: 16630070 DOI: 10.1111/j.1460-9568.2006.04746.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alpha-calcium/calmodulin-dependent kinase II (alphaCaMKII) is central to synaptic plasticity but it remains unclear whether this kinase contributes to neuronal excitability changes, which are a cellular correlate of learning. Using knock-in mice with a targeted T286A mutation that prevents the autophosphorylation of alphaCaMKII (alphaCaMKII(T286A)), we studied the role of alphaCaMKII signaling in regulating hippocampal neuronal excitability during hippocampus-dependent spatial learning in the Morris water maze. Wild-type control mice showed increased excitability of CA1 pyramidal neurons, as assessed by a reduction in the postburst afterhyperpolarization (AHP), after spatial training in the water maze. Importantly, wild-type mice did not show AHP changes when they were exposed to the water maze without the escape platform and swam the same amount of time as the trained mice (swim controls), thus manifesting learning-specific increases in hippocampal CA1 excitability associated with spatial training. Meanwhile, alphaCaMKII(T286A) mice showed impairments in spatial learning but exhibited reduced levels of AHP that were similar to wild-type controls after water-maze training. Notably, both trained and swim-control groups of alphaCaMKII(T286A) mutants showed similar increased excitability, indicating that swimming by itself is enough to induce changes in excitability in the absence of normal alphaCaMKII function. This result demonstrates dissociation of alphaCaMKII-independent changes in intrinsic neuron excitability from learning and synaptic plasticity mechanisms, suggesting that increases in excitability per se are not perfectly correlated with learning. Our findings suggest that alphaCaMKII signaling may function to suppress learning-unrelated changes during training, thereby allowing hippocampal CA1 neurons to increase their excitability appropriately for encoding spatial memories.
Collapse
Affiliation(s)
- Masuo Ohno
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611-3008, USA.
| | | | | | | |
Collapse
|
32
|
Ueda A, Wu CF. Distinct frequency-dependent regulation of nerve terminal excitability and synaptic transmission by IA and IK potassium channels revealed by Drosophila Shaker and Shab mutations. J Neurosci 2006; 26:6238-48. [PMID: 16763031 PMCID: PMC6675186 DOI: 10.1523/jneurosci.0862-06.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Regulation of synaptic efficacy by nerve terminal excitability has not been extensively studied. We performed genetic and pharmacological dissections for presynaptic actions of K+ channels in Drosophila neuromuscular transmission by using electrophysiological and optical imaging techniques. Current understanding of the roles of the Shab IK channel and its mammalian Kv2 counterparts is relatively poor, as compared with that for Shaker IA channels and their Kv1 homologues. Our results revealed the striking effect of Shab mutations during high-frequency synaptic activity, as well as a functional division in synaptic regulation between the Shaker and Shab channels. Shaker channels control the basal level of release, indicated by a response to single nerve stimulation, whereas Shab channels regulate repetitive synaptic activities. These observations highlight the crucial control of nerve terminal excitability by Shaker and Shab channels to confer temporal patterns of synaptic transmission and suggest the potential participation of these channels, along with the transmitter release machinery, in activity-dependent synaptic plasticity.
Collapse
|
33
|
Abstract
Behavioral and genetic studies in Drosophila have contributed to our understanding of molecular mechanisms that underlie the complex processes of learning and memory. Use of this model organism for exploration of the cellular mechanisms of memory formation requires the ability to monitor synaptic activity in the underlying neural networks, a challenging task in the tiny adult fly. Here, we describe an isolated whole-brain preparation in which it is possible to obtain in situ whole-cell recordings from adult Kenyon cells, key members of a neural circuit essential for olfactory associative learning in Drosophila. The presence of sodium action potential (AP)-dependent synaptic potentials and synaptic currents in >50% of the Kenyon cells shows that these neurons are members of a spontaneously active neural circuit in the isolated brain. The majority of sodium AP-dependent synaptic transmission is blocked by curare and by alpha-bungarotoxin (alpha-BTX). This demonstrates that nicotinic acetylcholine receptors (nAChRs) are responsible for most of the spontaneous excitatory drive in this circuit in the absence of normal sensory input. Furthermore, analysis of sodium AP-independent synaptic currents provides the first direct demonstration that alpha-BTX-sensitive nAChRs mediate fast excitatory synaptic transmission in Kenyon cells in the adult Drosophila brain. This new preparation, in which whole-cell recordings and pharmacology can be combined with genetic approaches, will be critical in understanding the contribution of nAChR-mediated fast synaptic transmission to cellular plasticity in the neural circuits underlying olfactory associative learning.
Collapse
Affiliation(s)
- Huaiyu Gu
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-1280, USA
| | | |
Collapse
|
34
|
Kidd JF, Brown LA, Sattelle DB. Effects of amyloid peptides on A-type K+ currents ofDrosophila larval cholinergic neurons. ACTA ACUST UNITED AC 2006; 66:476-87. [PMID: 16470685 DOI: 10.1002/neu.20227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Accumulation of amyloid (Abeta) peptides has been suggested to be the primary event in Alzheimer's disease. In neurons, K+ channels regulate a number of processes, including setting the resting potential, keeping action potentials short, timing interspike intervals, synaptic plasticity, and cell death. In particular, A-type K+ channels have been implicated in the onset of LTP in mammalian neurons, which is thought to underlie learning and memory. A number of studies have shown that Abeta peptides alter the properties of K+ currents in mammalian neurons. We set out to determine the effects of Abeta peptides on the neuronal A-type K+ channels of Drosophila. Treatment of cells for 18 h with 1 microM Abeta1-42 altered the kinetics of the A-type K+ current, shifting steady-state inactivation to more depolarized potentials and increasing the rate of recovery from inactivation. It also caused a decrease in neuronal viability. Thus it seems that alteration in the properties of the A-type K+ current is a prelude to the amyloid-induced death of neurons. This alteration in the properties of the A-type K+ current may provide a basis for the early memory impairment that was observed prior to neurodegeneration in a recent study of a transgenic Drosophila melanogaster line over-expressing the human Abeta1-42 peptide.
Collapse
Affiliation(s)
- Jackie F Kidd
- Department of Human Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom.
| | | | | |
Collapse
|
35
|
McGuire SE, Deshazer M, Davis RL. Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog Neurobiol 2005; 76:328-47. [PMID: 16266778 DOI: 10.1016/j.pneurobio.2005.09.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Revised: 07/19/2005] [Accepted: 09/07/2005] [Indexed: 12/25/2022]
Abstract
The last 30 years have witnessed tremendous progress in elucidating the basic mechanisms underlying a simple form of olfactory learning and memory in Drosophila. The application of the mutagenic approach to the study of olfactory learning and memory in Drosophila has yielded insights into the participation of a large number of genes in both the development of critical brain regions as well as in the physiology underlying the acquisition, storage, and retrieval of memory. Newer sophisticated molecular-genetic tools have further allowed for the specification and functional dissection of the neuronal circuitry involved in these processes at a systems level. With these advances in our understanding of the genes, neurons, and circuits involved in learning and memory, the field of Drosophila memory research is nearing a state of integration of the bottom up and top down approaches to understanding this form of behavioral plasticity.
Collapse
Affiliation(s)
- Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
36
|
Shaikh AG, Finlayson PG. Excitability of auditory brainstem neurons, in vivo, is increased by cyclic-AMP. Hear Res 2005; 201:70-80. [PMID: 15721562 DOI: 10.1016/j.heares.2004.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 10/08/2004] [Indexed: 11/17/2022]
Abstract
Physiological control of auditory neural responses is critical for accurate representation of acoustic information, such as sound source localization and speech perception. Central auditory neural responses are almost certainly regulated by a range of mechanisms, including second messenger systems, such as the cAMP pathway. An increase in spontaneous neural discharge is known to accompany cochlear insults. Here we report that an increase in spontaneous as well as tone-evoked discharge can also be induced by pressure application of forskolin, a pharmacological agent that elevates intracellular cAMP level by activating adenyl cyclase. The forskolin induced increase in superior olivary complex (SOC) brainstem neurons is specific, dose-dependent, and reversible, whereas application of artificial cerebrospinal fluid (aCSF, the vehicle) does not alter activity. Forskolin-application also has a relatively greater effect on spontaneous activity compared to tone evoked responses. Blockade of the hyperpolarization-activated current, Ih, by ZD7288, consistently reversed the effects of forskolin. Based on these findings, we propose that the second messenger, cAMP, can significantly modulate neural excitability and spontaneous discharge in SOC neurons, principally by shifting the activation of Ih channels.
Collapse
Affiliation(s)
- Aasef G Shaikh
- Department of Otolaryngology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
37
|
Tao Y, Zeng R, Shen B, Jia J, Wang Y. Neuronal transmission stimulates the phosphorylation of Kv1.4 channel at Ser229 through protein kinase A1. J Neurochem 2005; 94:1512-22. [PMID: 16000151 DOI: 10.1111/j.1471-4159.2005.03297.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorylation of voltage-gated K+ channels (Kv) is involved in regulation of neuronal excitability, synaptic plasticity and neuronal survival. Among Kv channels expressed in the CNS, Kv1.4 is located in the soma, dendrite and axon terminus of neurones in most regions of the brain. Here, we show that Ser229 found within the highly conserved T1 domain of Kv1.4 in cultured rat cortical neurones is phosphorylated by protein kinase A (PKA), as demonstrated by in vitro protein kinase assay and Western blotting with a polyclonal antibody specific against phosphorylated Ser229. Glutamate, high concentrations of K+ or K+ channel blockers known to increase neurotransmission all stimulated the phosphorylation of Kv1.4 at Ser229 via N-methyl-D-aspartate (NMDA), but not alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptor, whereas tetradotoxin (TTX), known to block neuronal transmission, and depletion of extracellular Ca2+ inhibited phosphorylation induced by tetraethylammonium (TEA), a non-selective K+ channel blocker. Mutation of Ser229 to Ala229 enhanced the current density. Taken together, elevation of the neuronal transmission stimulates the phosphorylation of Kv1.4 at Ser229 via the Ca2+ influx through NMDA receptor. Thus, it is possible that neuronal transmission regulates neuronal excitability partially through the phosphorylation of Kv1.4S229.
Collapse
Affiliation(s)
- Yanmei Tao
- Institute of Neuroscience, Shanghai Institutes of Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | |
Collapse
|
38
|
Jerng HH, Pfaffinger PJ, Covarrubias M. Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol Cell Neurosci 2005; 27:343-69. [PMID: 15555915 DOI: 10.1016/j.mcn.2004.06.011] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/22/2004] [Accepted: 06/08/2004] [Indexed: 11/23/2022] Open
Abstract
The somatodendritic subthreshold A-type K+ current (ISA) in nerve cells is a critical component of the ensemble of voltage-gated ionic currents that determine somatodendritic signal integration. The underlying K+ channel belongs to the Shal subfamily of voltage-gated K+ channels. Most Shal channels across the animal kingdom share a high degree of structural conservation, operate in the subthreshold range of membrane potentials, and exhibit relatively fast inactivation and recovery from inactivation. Mammalian Shal K+ channels (Kv4) undergo preferential closed-state inactivation with features that are generally inconsistent with the classical mechanisms of inactivation typical of Shaker K+ channels. Here, we review (1) the physiological and genetic properties of ISA, 2 the molecular mechanisms of Kv4 inactivation and its remodeling by a family of soluble calcium-binding proteins (KChIPs) and a membrane-bound dipeptidase-like protein (DPPX), and (3) the modulation of Kv4 channels by protein phosphorylation.
Collapse
Affiliation(s)
- Henry H Jerng
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
39
|
Varga AW, Yuan LL, Anderson AE, Schrader LA, Wu GY, Gatchel JR, Johnston D, Sweatt JD. Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents. J Neurosci 2004; 24:3643-54. [PMID: 15071113 PMCID: PMC6729731 DOI: 10.1523/jneurosci.0154-04.2004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium-calmodulin-dependent kinase II (CaMKII) has a long history of involvement in synaptic plasticity, yet little focus has been given to potassium channels as CaMKII targets despite their importance in repolarizing EPSPs and action potentials and regulating neuronal membrane excitability. We now show that Kv4.2 acts as a substrate for CaMKII in vitro and have identified CaMKII phosphorylation sites as Ser438 and Ser459. To test whether CaMKII phosphorylation of Kv4.2 affects channel biophysics, we expressed wild-type or mutant Kv4.2 and the K(+) channel interacting protein, KChIP3, with or without a constitutively active form of CaMKII in Xenopus oocytes and measured the voltage dependence of activation and inactivation in each of these conditions. CaMKII phosphorylation had no effect on channel biophysical properties. However, we found that levels of Kv4.2 protein are increased with CaMKII phosphorylation in transfected COS cells, an effect attributable to direct channel phosphorylation based on site-directed mutagenesis studies. We also obtained corroborating physiological data showing increased surface A-type channel expression as revealed by increases in peak K(+) current amplitudes with CaMKII phosphorylation. Furthermore, endogenous A-currents in hippocampal pyramidal neurons were increased in amplitude after introduction of constitutively active CaMKII, which results in a decrease in neuronal excitability in response to current injections. Thus CaMKII can directly modulate neuronal excitability by increasing cell-surface expression of A-type K(+) channels.
Collapse
Affiliation(s)
- Andrew W Varga
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Renden RB, Broadie K. Mutation and activation of Galpha s similarly alters pre- and postsynaptic mechanisms modulating neurotransmission. J Neurophysiol 2003; 89:2620-38. [PMID: 12611964 DOI: 10.1152/jn.01072.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Constitutive activation of Galphas in the Drosophila brain abolishes associative learning, a behavioral disruption far worse than that observed in any single cAMP metabolic mutant, suggesting that Galphas is essential for synaptic plasticity. The intent of this study was to examine the role of Galphas in regulating synaptic function by targeting constitutively active Galphas to either pre- or postsynaptic cells and by examining loss-of-function Galphas mutants (dgs) at the glutamatergic neuromuscular junction (NMJ) model synapse. Surprisingly, both loss of Galphas and activation of Galphas in either pre- or postsynaptic compartment similarly increased basal neurotransmission, decreased short-term plasticity (facilitation and augmentation), and abolished posttetanic potentiation. Elevated synaptic function was specific to an evoked neurotransmission pathway because both spontaneous synaptic vesicle fusion frequency and amplitude were unaltered in all mutants. In the postsynaptic cell, the glutamate receptor field was regulated by Galphas activity; based on immunocytochemical studies, GluRIIA receptor subunits were dramatically downregulated (>75% decrease) in both loss and constitutive active Galphas genotypes. In the presynaptic cell, the synaptic vesicle cycle was regulated by Galphas activity; based on FM1-43 dye imaging studies, evoked vesicle fusion rate was increased in both loss and constitutively active Galphas genotypes. An important conclusion of this study is that both increased and decreased Galphas activity very similarly alters pre- and postsynaptic mechanisms. A second important conclusion is that Galphas activity induces transynaptic signaling; targeted Galphas activation in the presynapse downregulates postsynaptic GluRIIA receptors, whereas targeted Galphas activation in the postsynapse enhances presynaptic vesicle cycling.
Collapse
Affiliation(s)
- Robert B Renden
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City 84112-0840, USA
| | | |
Collapse
|
41
|
Rohrbough J, O'Dowd DK, Baines RA, Broadie K. Cellular bases of behavioral plasticity: establishing and modifying synaptic circuits in the Drosophila genetic system. JOURNAL OF NEUROBIOLOGY 2003; 54:254-71. [PMID: 12486708 DOI: 10.1002/neu.10171] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic malleability and amenability to behavioral assays make Drosophila an attractive model for dissecting the molecular mechanisms of complex behaviors, such as learning and memory. At a cellular level, Drosophila has contributed a wealth of information on the mechanisms regulating membrane excitability and synapse formation, function, and plasticity. Until recently, however, these studies have relied almost exclusively on analyses of the peripheral neuromuscular junction, with a smaller body of work on neurons grown in primary culture. These experimental systems are, by themselves, clearly inadequate for assessing neuronal function at the many levels necessary for an understanding of behavioral regulation. The pressing need is for access to physiologically relevant neuronal circuits as they develop and are modified throughout life. In the past few years, progress has been made in developing experimental approaches to examine functional properties of identified populations of Drosophila central neurons, both in cell culture and in vivo. This review focuses on these exciting developments, which promise to rapidly expand the frontiers of functional cellular neurobiology studies in Drosophila. We discuss here the technical advances that have begun to reveal the excitability and synaptic transmission properties of central neurons in flies, and discuss how these studies promise to substantially increase our understanding of neuronal mechanisms underlying behavioral plasticity.
Collapse
Affiliation(s)
- Jeffrey Rohrbough
- Department of Biological Sciences, Vanderbilt University, VU Station B, Box 35-1634, Nashville, Tennessee 37235-1634, USA.
| | | | | | | |
Collapse
|
42
|
Chin JH, Harris K, MacTavish D, Jhamandas JH. Nociceptin/orphanin FQ modulation of ionic conductances in rat basal forebrain neurons. J Pharmacol Exp Ther 2002; 303:188-95. [PMID: 12235250 DOI: 10.1124/jpet.102.037945] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ) is an endogenous opioid-like heptadecapeptide that plays an important role in a variety of physiological functions. N/OFQ and its receptor opioid receptor-like orphan receptor-1 are abundant in the diagonal band of Broca (DBB), a basal forebrain nucleus where the loss of cholinergic neurons is linked to memory and spatial learning deficits. In the whole animal, central injections of N/OFQ have been shown to disrupt spatial learning. In this study, we investigated the basis for these behavioral observations by examining the cellular effects of N/OFQ on chemically identified DBB neurons. Whole cell patch-clamp recordings were performed on enzymatically dissociated DBB neurons. Under voltage-clamp conditions, bath application of N/OFQ (10 pM-1 microM) resulted in a dose-dependent depression of whole cell currents. Single cell reverse transcription-polymerase chain reaction analysis identified cholinergic and fewer GABAergic cells to be N/OFQ-responsive. [Nphe(1)]nociceptin-(1-13)-NH(2) and CompB (J-113397) antagonized the N/OFQ response, but both compounds also displayed partial agonist activity. Using a combination of channel blockers we determined that the effects of N/OFQ were mediated via a suite of Ca(2+) (N- and L-type) and Ca(2+)-dependent K(+) (iberiotoxin-sensitive) conductances. In addition, biophysical analysis of voltage subtraction protocols revealed that N/OFQ reduces transient outward and the delayed rectifier K(+) currents. Because N-type and L-type Ca(2+) channels are important in the context of neurotransmitter release, our observations indicate that N/OFQ inhibition of Ca(2+)-dependent conductances in cholinergic neurons would be expected to result in depression of acetylcholine release, which may explain the behavioral actions of N/OFQ in the brain.
Collapse
Affiliation(s)
- J H Chin
- Department of Medicine (Neurology), Centre for Neuroscience, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
43
|
Park D, Coleman MJ, Hodge JJL, Budnik V, Griffith LC. Regulation of neuronal excitability in Drosophila by constitutively active CaMKII. JOURNAL OF NEUROBIOLOGY 2002; 52:24-42. [PMID: 12115891 DOI: 10.1002/neu.10066] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ability of calcium/calmodulin-dependent protein kinase II (CaMKII) to become calcium independent after autophosphorylation makes this enzyme a temporal marker of neuronal activity. Here we show that the calcium-independent form of CaMKII has unique effects on larval viability, locomotion, and neuronal excitability in Drosophila. Expression of constitutively active T287D, but not calcium-dependent T287A, mutant CaMKII in Drosophila neurons resulted in decreased viability, behavioral defects, and failure of action potential propagation. The actions of T287D may be mediated, at least in part, by increased potassium conductances. Expression of T287D CaMKII also stimulated an increase in the number of boutons at the larval neuromuscular junction, but did not affect the mechanics of release. This study defines a role for autophosphorylation of CaMKII in the regulation of multiple neuronal functions including the intrinsic properties of neurons.
Collapse
Affiliation(s)
- Demian Park
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Cellular processes that mediate learning and memory show a remarkable level of conservation between vertebrates and invertebrates. Recent studies have shown that learning and memory formation in invertebrates, so-called 'simple systems', involves a highly complex arrangement of cellular pathways. Some pathways contribute to a single stage of memory formation, whereas others impact on multiple stages of memory development. Distinct cellular pathways may also act in series or in parallel during various stages of memory formation.
Collapse
Affiliation(s)
- B D Burrell
- Department of Biological Sciences, 1392 Lilly Hall of Life Sciences, West Lafayette, IN 47907-1392, USA.
| | | |
Collapse
|
45
|
Abstract
Genes are understandably crucial to physiology, morphology and biochemistry, but the idea of genes contributing to individual differences in behaviour once seemed outrageous. Nevertheless, some scientists have aspired to understand the relationship between genes and behaviour, and their research has become increasingly informative and productive over the past several decades. At the forefront of behavioural genetics research is the fruitfly Drosophila melanogaster, which has provided us with important insights into the molecular, cellular and evolutionary bases of behaviour.
Collapse
Affiliation(s)
- M B Sokolowski
- Department of Zoology, University of Toronto, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6.
| |
Collapse
|