1
|
Chaney HL, Current JZ, Zhang M, Yao J. Agouti-signaling protein (ASIP) improves bovine in vitro matured oocyte developmental competence and modulates lipid content. J Assist Reprod Genet 2025:10.1007/s10815-025-03502-9. [PMID: 40338290 DOI: 10.1007/s10815-025-03502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
PURPOSE Bovine embryos produced in vitro are developmentally inferior compared to in vivo derived embryos due to the lack of optimization of the oocyte and embryo culture conditions in vitro. Agouti-signaling protein (ASIP), a secreted protein produced by the bovine oocyte, has been recently shown to aid in acquiring oocyte developmental competence. Therefore, in the present study, we aimed to reveal the effects of supplementation of ASIP during in vitro oocyte maturation and embryo culture on subsequent embryonic development. METHODS Cumulus-oocyte complexes or presumptive zygotes were placed in culture medium containing either 0, 1, 10, or 100 ng/mL of recombinant ASIP (rASIP). Effects on development, gene expression, lipid content, and blastocyst cell allocation were examined. RESULTS Supplementation of rASIP during oocyte maturation was found to significantly increase the blastocyst development rate (P < 0.05) and produced blastocysts with an increased inner cell mass to trophectoderm cell ratio. Addition of rASIP during oocyte maturation increased oocyte (P < 0.05) but not embryo (P > 0.05) lipid levels. The expression of genes involved in lipid metabolism, including FASN, PPAR γ , SCD, CSL1, ELOVL5, and ELOVL6, was not significantly altered in blastocysts due to treatment (P > 0.05). Supplementation of rASIP during embryo culture was not found to affect blastocyst rates. CONCLUSIONS The data presented in this study further support the role of ASIP in oocyte competence and suggest that the supplementation of rASIP during oocyte maturation may lead to the production of blastocyst of increased quality.
Collapse
Affiliation(s)
- Heather L Chaney
- Division of Animal and Nutritional Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, USA
| | - Jaelyn Z Current
- Division of Animal and Nutritional Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, USA
| | - Mingxiang Zhang
- Division of Animal and Nutritional Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, USA
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
2
|
Chaney HL, Current JZ, Zhang M, Nist VA, Nicewarner BM, Yao J. Characterization of agouti-signaling protein (ASIP) in the bovine ovary and throughout early embryogenesis. Cells Dev 2024; 179:203930. [PMID: 38815807 DOI: 10.1016/j.cdev.2024.203930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The oocyte expresses certain genes during folliculogenesis to regulate the acquisition of oocyte competence. Oocyte competence, or oocyte quality, is directly related to the ability of the oocyte to result in a successful pregnancy following fertilization. Presently, approximately 40 % of bovine embryos will develop to the blastocyst stage in vitro. Characterization of factors regulating these processes is crucial to improve the efficiency of bovine in vitro embryo production. We demonstrated that the secreted protein, agouti-signaling protein (ASIP) is highly abundant in the bovine oocyte and aimed to characterize its spatiotemporal expression profile in the ovary and throughout early embryonic development. In addition to oocyte expression, ASIP was detected in granulosa, cumulus, and theca cells isolated from antral follicles. Both gene expression data and immunofluorescent staining indicated ASIP declines with oocyte maturation which may indicate a potential role for ASIP in the attainment of oocyte competence. Microinjection of zygotes using small interfering RNA targeting ASIP led to a 16 % reduction in the rate of development to the blastocyst stage. Additionally, we examined potential ASIP signaling mechanisms through which ASIP may function to establish oocyte developmental competence. The expression of melanocortin receptor 3 and 4 and the coreceptor attractin was detected in the oocyte and follicular cells. The addition of cortisol during in vitro maturation was found to increase significantly oocyte ASIP levels. In conclusion, these results suggest a functional role for ASIP in promoting oocyte maturation and subsequent embryonic development, potentially through signaling mechanisms involving cortisol.
Collapse
Affiliation(s)
- Heather L Chaney
- Davis College of Agriculture, Natural Resources and Design, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jaelyn Z Current
- Davis College of Agriculture, Natural Resources and Design, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Mingxiang Zhang
- Davis College of Agriculture, Natural Resources and Design, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Victoria A Nist
- Davis College of Agriculture, Natural Resources and Design, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Brady M Nicewarner
- Davis College of Agriculture, Natural Resources and Design, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jianbo Yao
- Davis College of Agriculture, Natural Resources and Design, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
3
|
Zhang W, Ma L, Zhou Q, Gu T, Zhang X, Xing H. Therapeutic Targets for Diabetic Kidney Disease: Proteome-Wide Mendelian Randomization and Colocalization Analyses. Diabetes 2024; 73:618-627. [PMID: 38211557 PMCID: PMC10958583 DOI: 10.2337/db23-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/23/2023] [Indexed: 01/13/2024]
Abstract
At present, safe and effective treatment drugs are urgently needed for diabetic kidney disease (DKD). Circulating protein biomarkers with causal genetic evidence represent promising drug targets, which provides an opportunity to identify new therapeutic targets. Summary data from two protein quantitative trait loci studies are presented, one involving 4,907 plasma proteins data from 35,559 individuals and the other encompassing 4,657 plasma proteins among 7,213 European Americans. Summary statistics for DKD were obtained from a large genome-wide association study (3,345 cases and 2,372 controls) and the FinnGen study (3,676 cases and 283,456 controls). Mendelian randomization (MR) analysis was conducted to examine the potential targets for DKD. The colocalization analysis was used to detect whether the potential proteins exist in the shared causal variants. To enhance the credibility of the results, external validation was conducted. Additionally, enrichment analysis, assessment of protein druggability, and the protein-protein interaction networks were used to further enrich the research findings. The proteome-wide MR analyses identified 21 blood proteins that may causally be associated with DKD. Colocalization analysis further supported a causal relationship between 12 proteins and DKD, with external validation confirming 4 of these proteins, and TGFBI was affirmed through two separate group data sets. These results indicate that targeting these four proteins could be a promising approach for treating DKD, and warrant further clinical investigations. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Leilei Ma
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qianyi Zhou
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Tianjiao Gu
- Department of Endocrinology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haitao Xing
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
4
|
[Body composition, mineral metabolism, and endocrine function of adipose tissue: influence of a nutritional supplement of propolis]. NUTR HOSP 2021; 38:585-591. [PMID: 33666089 DOI: 10.20960/nh.03438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: propolis and its components influence lipid metabolism; however, its effect on body composition and mineral metabolism remains unknown. Objectives: to determine the effect of natural propolis supplementation on body composition, mineral metabolism, and the endocrine function of adipose tissue. Material and methods: twenty albino male Wistar rats (8 weeks old) were divided into two groups of 10 animals each. The rats were fed two different types of diet for 90 days: a standard diet for the control group (group C) and the same standard diet + 2 % propolis (group P). Thyroid hormones, ghrelin, leptin, adiponectin and insulin, non-esterified fatty acids (NEFA) in plasma, body composition (lean mass, fat mass and body water), and mineral deposition in target organs (spleen, brain, heart, lungs, testicles, kidneys and femur) were assessed. Results: thyroid stimulating hormone (TSH), triiodothyronine (T3) and thyroxine (T4) did not show any differences after supplementation with propolis, while ghrelin and adiponectin decreased (p < 0.01 and p < 0.05, respectively) and insulin (p < 0.01), leptin (p < 0.05) and NEFA (p < 0.05) increased when 2 % propolis was supplied, while weight and body fat were reduced (p < 0.05) and lean mass increased. Lastly, the propolis supplement improves calcium deposition in the spleen, lungs, testes, and femur (p < 0.05). Conclusion: propolis supplementation of the diet (2 %) causes a decrease in the secretion of ghrelin and adiponectin, increasing the release of non-esterified fatty acids and the rate of insulin secretion. In addition, propolis supplementation induces an improvement in calcium deposition in target organs without affecting the rest of minerals, which improves body composition by inducing a reduction in weight and visceral adipose tissue, and improvement in lean mass.
Collapse
|
5
|
Lis M, Stańczykiewicz B, Liśkiewicz P, Misiak B. Impaired hormonal regulation of appetite in schizophrenia: A narrative review dissecting intrinsic mechanisms and the effects of antipsychotics. Psychoneuroendocrinology 2020; 119:104744. [PMID: 32534330 DOI: 10.1016/j.psyneuen.2020.104744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022]
Abstract
Cardiometabolic diseases are the main contributor of reduced life expectancy in patients with schizophrenia. It is now widely accepted that antipsychotic treatment plays an important role in the development of obesity and its consequences. However, some intrinsic mechanisms need to be taken into consideration. One of these mechanisms might be related to impaired hormonal regulation of appetite in this group of patients. In this narrative review, we aimed to dissect impairments of appetite-regulating hormones attributable to intrinsic mechanisms and those related to medication effects. Early hormonal alterations that might be associated with intrinsic mechanisms include low levels of leptin and glucagon-like peptide-1 (GLP-1) together with elevated insulin levels in first-episode psychosis (FEP) patients. However, evidence regarding low GLP-1 levels in FEP patients is based on one large study. In turn, multiple-episode schizophrenia patients show elevated levels of insulin, leptin and orexin A together with decreased levels of adiponectin. In addition, patients receiving olanzapine may present with low ghrelin levels. Post mortem studies have also demonstrated reduced number of neuropeptide Y neurons in the prefrontal cortex of patients with schizophrenia. Treatment with certain second-generation antipsychotics may also point to these alterations. Although our understanding of hormonal regulation of appetite in schizophrenia has largely been improved, several limitations and directions for future studies need to be addressed. This is of particular importance since several novel pharmacological interventions for obesity and diabetes have already been developed and translation of these developments to the treatment of cardiometabolic comorbidities in schizophrenia patients is needed.
Collapse
Affiliation(s)
- Michał Lis
- Clinical Department of Internal Diseases, Endocrinology and Diabetology, The Central Clinical Hospital of the Ministry of the Interior in Warsaw, Wołoska 137 Street, 02-507 Warsaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618, Wroclaw, Poland
| | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460, Szczecin, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| |
Collapse
|
6
|
Sochol KM, Johns TS, Buttar RS, Randhawa L, Sanchez E, Gal M, Lestrade K, Merzkani M, Abramowitz MK, Mossavar-Rahmani Y, Melamed ML. The Effects of Dairy Intake on Insulin Resistance: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2019; 11:nu11092237. [PMID: 31533272 PMCID: PMC6769921 DOI: 10.3390/nu11092237] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
The incidence of type 2 diabetes mellitus (DM) has increased in the US over the last several years. The consumption of low-fat dairy foods has been linked with decreasing the risk of DM but studies have yet to show a clear correlation. We conducted a systematic review and meta-analysis of randomized clinical trials (RCTs) evaluating the effects of dairy intake on homeostatic model assessment of insulin resistance (HOMA-IR), waist circumference, and body weight. In MEDLINE and Embase, we identified and reviewed 49 relevant RCTs: 30 had appropriate data format for inclusion in the meta-analysis. Using the Review Manager 5 software, we calculated the pooled standardized mean differences comparing dairy dietary interventions to control for our outcomes of interest. For HOMA-IR (794 individuals), we found a mean difference of −1.21 (95% CI −1.74 to −0.67; p-value < 0.00001; I2 = 92%). For waist circumference (1348 individuals), the mean difference was −1.09 cm (95% CI 1.68 to −0.58; p-value < 0.00001; I2 = 94%). For body weight (2362 individuals), the dairy intake intervention group weighed 0.42 kg less than control (p-value < 0.00001; I2 = 92%). Our findings suggest that dairy intake, especially low-fat dairy products, has a beneficial effect on HOMA-IR, waist circumference, and body weight. This could impact dietary recommendations to reduce DM risk.
Collapse
Affiliation(s)
- Kristen M Sochol
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Tanya S Johns
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Rupinder S Buttar
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Lovepreet Randhawa
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Edeline Sanchez
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Maya Gal
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Katherine Lestrade
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Massini Merzkani
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Matthew K Abramowitz
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Yasmin Mossavar-Rahmani
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Michal L Melamed
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
7
|
Bódis K, Roden M. Energy metabolism of white adipose tissue and insulin resistance in humans. Eur J Clin Invest 2018; 48:e13017. [PMID: 30107041 DOI: 10.1111/eci.13017] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/22/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insulin resistance not only occurs in obesity, but also in lipodystrophy. Although adipose tissue mass affects metabolic fluxes and participates in interorgan crosstalk, the role of energy metabolism within white adipose tissue for insulin resistance is less clear. MATERIALS AND METHODS A Medline search identified in vivo studies in humans on energy and lipid metabolism in subcutaneous (SAT) and visceral adipose tissue (VAT). Studies in adipocyte cultures and transgenic animal models were included for the better understanding of the link between abnormal energy metabolism in adipose tissue and insulin resistance. RESULTS The current literature indicates that higher lipolysis and lower lipogenesis in VAT compared to SAT enhance portal delivery of lipid metabolites (glycerol and fatty acids) to the liver. Thus, the lower lipolysis and higher lipogenesis in SAT favour storage of excess lipids and allow for protection of insulin-sensitive tissues from lipotoxic effects. In insulin-resistant humans, enhanced lipolysis and impaired lipogenesis in adipose tissue lead to release of cytokines and lipid metabolites, ultimately promoting insulin resistance. Adipose tissue of insulin-resistant humans also displays lower expression of proteins involved in mitochondrial function. In turn, this leads to lower availability of mitochondria-derived energy sources for lipogenesis in adipose tissue. CONCLUSIONS Abnormal mitochondrial function in human white adipose tissue likely contributes to the secretion of lipid metabolites and lactate, which are linked to insulin resistance in peripheral tissues. However, the relevance of adipose tissue energy metabolism for the regulation of human insulin sensitivity remains to be further elucidated.
Collapse
Affiliation(s)
- Kálmán Bódis
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
8
|
Lappe JM, McMahon DJ, Laughlin A, Hanson C, Desmangles JC, Begley M, Schwartz M. The effect of increasing dairy calcium intake of adolescent girls on changes in body fat and weight. Am J Clin Nutr 2017; 105:1046-1053. [PMID: 28298396 PMCID: PMC5402032 DOI: 10.3945/ajcn.116.138941] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/13/2017] [Indexed: 01/05/2023] Open
Abstract
Background: Overweight is epidemic in adolescents and is a major concern because it tracks into adulthood. Evidence supports the efficacy of high-calcium, high-dairy diets in achieving healthy weight in adults. However, no randomized controlled trials of the effect of dairy food on weight and body fat in adolescents have been reported to our knowledge.Objective: The aim was to determine whether increasing calcium intake to recommended amounts with dairy foods in adolescent girls with habitually low calcium intakes would decrease body fat gain compared with girls who continued their low calcium intake. Participants had above-the-median body mass index (BMI; in kg/m2).Design: We enrolled 274 healthy postmenarcheal 13- to 14-y-old overweight girls who had calcium intakes of ≤600 mg/d in a 12-mo randomized controlled trial. Girls were randomly assigned in a 1:1 ratio to 1 of 2 groups within each of 3 BMI percentiles: 50th to <70th, 70th to <85th, and 85th to <98th. The assignments were 1) dairy, which included low-fat milk or yogurt servings providing ≥1200 mg Ca/d or 2) control, which included the usual diet of ≤600 mg Ca/d.Results: We failed to detect a statistically significant difference between groups in percentage of body fat gain over 12 mo (mean ± SEM: dairy 0.40% ± 0.53% > control; P < 0.45). The effect of the intervention did not differ by BMI percentile stratum. There was no difference in weight change between the 2 groups.Conclusion: Our findings that the dairy group gained body fat similar to the control group provide no support for dairy food as a stratagem to decrease body fat or weight gain in overweight adolescent girls. This trial was registered at clinicaltrials.gov as NCT01066806.
Collapse
Affiliation(s)
- Joan M Lappe
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE; .,College of Nursing, Creighton University, Omaha, NE
| | - Donald J McMahon
- Department of Medicine, Columbia University Medical College, New York, NY
| | - Ann Laughlin
- College of Nursing, Creighton University, Omaha, NE
| | - Corrine Hanson
- Department of Medical Nutrition Education, University of Nebraska Medical Center, Omaha, NE; and
| | | | - Margaret Begley
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE
| | | |
Collapse
|
9
|
Rabaglino MB, Chang EI, Richards EM, James MO, Keller-Wood M, Wood CE. Genomic Effect of Triclosan on the Fetal Hypothalamus: Evidence for Altered Neuropeptide Regulation. Endocrinology 2016; 157:2686-97. [PMID: 27145008 PMCID: PMC4929550 DOI: 10.1210/en.2016-1080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Triclosan (TCS), an antibacterial compound commonly added to personal care products, could be an endocrine disruptor at low doses. Although TCS has been shown to alter fetal physiology, its effects in the developing fetal brain are unknown. We hypothesize that exposure to TCS during fetal life could affect fetal hypothalamic gene expression. The objective of this study was to use transcriptomics and systems analysis to identify significantly altered biological processes in the late gestation ovine fetal hypothalamus after direct or indirect exposure to low doses of TCS. For direct TCS exposure, chronically catheterized late gestation fetal sheep were infused with vehicle (n = 4) or TCS (250 μg/d; n = 4) iv. For indirect TCS exposure, TCS (100 μg/kg · d; n = 3) or vehicle (n = 3) was infused into the maternal circulation. Fetal hypothalami were collected after 2 days of infusion, and gene expression was measured through microarray. Hierarchical clustering of all samples according to gene expression profiles showed that samples from the TCS-treated animals clustered apart from the controls. Gene set enrichment analysis revealed that fetal hypothalamic genes stimulated by maternal and fetal TCS infusion were significantly enriching for cell cycle, reproductive process, and feeding behavior, whereas the inhibited genes were significantly enriching for chromatin modification and metabolism of steroids, lipoproteins, fatty acids, and glucose (P < .05). In conclusion, short-term infusion of TCS induces vigorous changes in the fetal hypothalamic transcriptomics, which are mainly related to food intake pathways and metabolism. If these changes persist to postnatal life, they could result in adverse consequences in adulthood.
Collapse
Affiliation(s)
- Maria Belen Rabaglino
- Centro de Excelencia en Procesos y Productos de Córdoba (M.B.R.), National Scientific and Technical Research Council, Córdoba, Argentina X5164; Department of Physiology and Functional Genomics (E.I.C., C.E.W.), College of Medicine, University of Florida, Gainesville, Florida 32610; and Departments of Medicinal Chemistry (M.O.J.) and Pharmacodynamics (E.M.R., M.K.-W.), College of Pharmacy, University of Florida, Gainesville, Florida 32610
| | - Eileen I Chang
- Centro de Excelencia en Procesos y Productos de Córdoba (M.B.R.), National Scientific and Technical Research Council, Córdoba, Argentina X5164; Department of Physiology and Functional Genomics (E.I.C., C.E.W.), College of Medicine, University of Florida, Gainesville, Florida 32610; and Departments of Medicinal Chemistry (M.O.J.) and Pharmacodynamics (E.M.R., M.K.-W.), College of Pharmacy, University of Florida, Gainesville, Florida 32610
| | - Elaine M Richards
- Centro de Excelencia en Procesos y Productos de Córdoba (M.B.R.), National Scientific and Technical Research Council, Córdoba, Argentina X5164; Department of Physiology and Functional Genomics (E.I.C., C.E.W.), College of Medicine, University of Florida, Gainesville, Florida 32610; and Departments of Medicinal Chemistry (M.O.J.) and Pharmacodynamics (E.M.R., M.K.-W.), College of Pharmacy, University of Florida, Gainesville, Florida 32610
| | - Margaret O James
- Centro de Excelencia en Procesos y Productos de Córdoba (M.B.R.), National Scientific and Technical Research Council, Córdoba, Argentina X5164; Department of Physiology and Functional Genomics (E.I.C., C.E.W.), College of Medicine, University of Florida, Gainesville, Florida 32610; and Departments of Medicinal Chemistry (M.O.J.) and Pharmacodynamics (E.M.R., M.K.-W.), College of Pharmacy, University of Florida, Gainesville, Florida 32610
| | - Maureen Keller-Wood
- Centro de Excelencia en Procesos y Productos de Córdoba (M.B.R.), National Scientific and Technical Research Council, Córdoba, Argentina X5164; Department of Physiology and Functional Genomics (E.I.C., C.E.W.), College of Medicine, University of Florida, Gainesville, Florida 32610; and Departments of Medicinal Chemistry (M.O.J.) and Pharmacodynamics (E.M.R., M.K.-W.), College of Pharmacy, University of Florida, Gainesville, Florida 32610
| | - Charles E Wood
- Centro de Excelencia en Procesos y Productos de Córdoba (M.B.R.), National Scientific and Technical Research Council, Córdoba, Argentina X5164; Department of Physiology and Functional Genomics (E.I.C., C.E.W.), College of Medicine, University of Florida, Gainesville, Florida 32610; and Departments of Medicinal Chemistry (M.O.J.) and Pharmacodynamics (E.M.R., M.K.-W.), College of Pharmacy, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
10
|
Zemel MB, Bruckbauer A. Effects of a leucine and pyridoxine-containing nutraceutical on fat oxidation, and oxidative and inflammatory stress in overweight and obese subjects. Nutrients 2012; 4:529-41. [PMID: 22822451 PMCID: PMC3397351 DOI: 10.3390/nu4060529] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 05/30/2012] [Accepted: 06/11/2012] [Indexed: 01/18/2023] Open
Abstract
Leucine stimulates tissue protein synthesis and may also attenuate adiposity by increasing fatty acid oxidation and mitochondrial biogenesis in muscle and adipocytes. Accordingly, the effects of a nutraceutical containing 2.25 g leucine and 30 mg pyridoxine (Vitamin B6) (NuFit active blend) were tested in cell culture and in a clinical trial. 3T3L1 adipocytes were treated with leucine (0.25 mM or 0.5 mM) and/or Pyridoxal Phosphate (PLP) (50 nM or 100 nM) for 48 h. For the clinical trial, twenty overweight or obese subjects received the NuFit active blend or placebo three times/day for 4 weeks without energy restriction. Leucine decreased fatty acid synthase (FAS) expression and triglyceride content in adipocytes, and PLP addition significantly augmented this effect. Administration of NuFit active blend in the clinical trial increased fat oxidation by 33.6 g/day (p < 0.04), decreased respiratory quotient, improved HOMAIR, reduced oxidative and inflammatory biomarkers (plasma MDA, 8-isoprostane-F2α, TNF-α, C-reactive protein), and increased the anti-inflammatory marker adiponectin. These data indicate that the NuFit active blend significantly increased fat oxidation and insulin sensitivity, and reduced oxidative and inflammatory stress. Therefore, the NuFit active blend appears to be a useful nutraceutical in the management of obesity and associated co-morbidities.
Collapse
Affiliation(s)
- Michael B. Zemel
- NuSirt Sciences, 11020 Solway School Road, Knoxville, TN 37931, USA;
- The University of Tennessee, 1215 W. Cumberland Ave, Knoxville, TN 37996, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-865-206-6154; Fax: +1-865-974-3491
| | - Antje Bruckbauer
- NuSirt Sciences, 11020 Solway School Road, Knoxville, TN 37931, USA;
| |
Collapse
|
11
|
Local Agouti Signaling Protein/Melanocortin Signaling System that Possibly Regulates Lipid Metabolism in Adipose Tissues of Chickens. J Poult Sci 2010. [DOI: 10.2141/jpsa.009110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Zemel MB. Proposed role of calcium and dairy food components in weight management and metabolic health. PHYSICIAN SPORTSMED 2009; 37:29-39. [PMID: 20048507 DOI: 10.3810/psm.2009.06.1707] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dietary calcium and dairy foods have demonstrated an antiobesity effect in animal studies, observational and population studies, and randomized clinical trials. Moreover, there is a strong theoretical framework to explain the effects of dietary calcium on energy metabolism. The supporting mechanisms include dietary calcium-correcting suboptimal calcium intakes, thereby preventing the endocrine response (parathyroid hormone [PTH] and calcitriol), which favors adipocyte energy storage and inhibits adipocyte loss via apoptosis. Dietary calcium appears to further promote energy loss via formation of calcium soaps in the gastrointestinal tract and thereby modestly reduces net energy absorption. Dietary calcium appears to be responsible for approximately 50% of the antiobesity bioactivity of dairy foods. The additional dairy bioactivity has not been fully identified, but is primarily localized in whey protein. The major components are the angiotensin-converting enzyme (ACE) inhibitor activity of whey proteins and the high concentration of leucine in whey. This high leucine content appears to be primarily responsible for the repartitioning of dietary energy from adipose tissue to skeletal muscle during weight loss, resulting in greater preservation of skeletal muscle and accelerated loss of adipose tissue during negative energy balance. Finally, high-calcium diets suppress obesity-induced oxidative and inflammatory stress independently from its role in modulating adiposity; these effects are similarly augmented by other dairy food components. However, the number of randomized clinical trials conducted is still modest, and a small number have not confirmed significant effects in weight management. Thus, the protective effects of dairy foods against obesity and its comorbidities are promising, but warrant further large-scale studies.
Collapse
Affiliation(s)
- Michael B Zemel
- The Nutrition Institute, The University of Tennessee, Knoxville, TN 37996-1920, USA.
| |
Collapse
|
13
|
Major GC, Chaput JP, Ledoux M, St-Pierre S, Anderson GH, Zemel MB, Tremblay A. Recent developments in calcium-related obesity research. Obes Rev 2008; 9:428-45. [PMID: 18282178 DOI: 10.1111/j.1467-789x.2007.00465.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The influence of calcium and dairy food intake on energy balance is the object of a growing scientific literature. This manuscript presents the information discussed by subject experts during a symposium on calcium and obesity, initially planned to document in a comprehensive manner the role of calcium and dairy food on energy balance and body composition. This manuscript is organized into 13 propositions statements which either resume the presentation of an invited speaker or integrate recent developments in calcium-related obesity research. More specifically, the effects of calcium and dairy consumption on body weight and adiposity level, appetite, weight loss intervention outcome, lipid-lipoprotein profile and the risk to develop metabolic syndrome are discussed together with the metabolic mechanisms proposed to explain these effects. Taken together, the observations presented in this manuscript suggest that calcium and dairy food intake can influence many components of energy and fat balance, indicating that inadequate calcium/dairy intake may increase the risk of positive energy balance and of other health problems.
Collapse
Affiliation(s)
- G C Major
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The Agouti-Related Protein (AgRP) is a powerful orexigenic peptide that increases food intake when ubiquitously overexpressed or when administered centrally. AgRP-deficiency, on the other hand, leads to increased metabolic rate and a longer lifespan when mice consume a high fat diet. In humans, AgRP polymorphisms have been consistently associated with resistance to fatness in Blacks and Whites and resistance to the development of type-2 diabetes in African Blacks. Systemically administered AgRP accumulates in the liver, the adrenal gland and fat tissue while recent findings suggest that AgRP may also have inverse agonist effects, both centrally and peripherally. AgRP could thus modulate energy balance via different actions. Its absence or reduced functionality may offer a benefit both in terms of bringing about negative energy balance in obesigenic environments, as well as leading to an increased lifespan.
Collapse
Affiliation(s)
- O. Ilnytska
- Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, 70809 USA
| | - G. Argyropoulos
- Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, 70809 USA
| |
Collapse
|
15
|
Staszkiewicz J, Horswell R, Argyropoulos G. Chronic consumption of a low-fat diet leads to increased hypothalamic agouti-related protein and reduced leptin. Nutrition 2007; 23:665-71. [PMID: 17643264 PMCID: PMC2030621 DOI: 10.1016/j.nut.2007.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 04/25/2007] [Accepted: 06/05/2007] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study examined the hypothesis that dietary fat under ad libitum feeding conditions influences expression levels (mRNA) of the mouse agouti-related protein (AgRP), leptin, leptin receptor (OBRb), and neuropeptide Y (NPY) at early stages of development. METHODS C57Bl/6J male mice were placed on a high-fat diet (HFD) or a low-fat diet (LFD) shortly after weaning. Groups of mice were euthanized at various ages and real-time one-step reverse transcriptase polymerase chain reaction was used to analyze gene expression in the hypothalamus (AgRP, NPY, OBRb), the adrenal gland (AgRP), the testis (AgRP), and epididymal fat (leptin). RESULTS Leptin expression increased linearly with age but only under the HFD despite body weight gain under both diets. This pattern of expression coincided with reduced expression of hypothalamic AgRP under an HFD, whereas OBRb and NPY did not fluctuate in response to diet. By contrast, consumption of an LFD (i.e., high carbohydrate) increased hypothalamic AgRP and suppressed adipose leptin, which is consistent with the notion that leptin could regulate AgRP centrally. In contrast, AgRP expression in the adrenal gland initially decreased and then increased with age under both diets. CONCLUSIONS Dietary fat can have a tissue-dependent effect on AgRP that may be unfettered by leptin under an HFD.
Collapse
Affiliation(s)
- Jaroslaw Staszkiewicz
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
| | | | | |
Collapse
|
16
|
Cha MH, Kim IC, Lee BH, Yoon Y. Baicalein Inhibits Adipocyte Differentiation by Enhancing COX-2 Expression. J Med Food 2006; 9:145-53. [PMID: 16822198 DOI: 10.1089/jmf.2006.9.145] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Baicalein, one of the major flavonoids in Scutellaria baicalensis (Chinese Skullcap), is well known for its effects on cell proliferation, apoptosis, and inflammation. Here we show that baicalein also inhibits the adipogenesis of 3T3-L1 preadipocytes. Baicalein inhibited triglyceride accumulation during adipogenesis and significantly decreased the mRNA expression of fatty acid-binding protein (FABP), a marker of adipogenesis. Microarray analysis revealed that several genes, which are differentially expressed during adipogenesis, were modulated by baicalein treatment in 3T-L1 cells. The expression of FABP, apolipoprotein D, and insulin-like growth factor 2, which was markedly up-regulated during adipogenesis, was down-regulated by baicalein. Cyclooxygenase (COX)-2 mRNA expression, which was decreased during adipogenesis, was up-regulated by baicalein. These COX-2 mRNA expression patterns were mirrored by the expression of COX-2 protein and its enzymatic activity. NS-398, a COX-2 inhibitor, partially abrogated the baicalein-induced inhibition of adipogenensis. Thus, the anti-adipogenic effect of baicalein may be mediated by its ability to enhance the expression of COX-2, which is normally down-regulated during adipogenesis.
Collapse
Affiliation(s)
- Min-Ho Cha
- Department of Medical Research, Korea Institute of Oriental Medicine, Daejeon, Korea
| | | | | | | |
Collapse
|
17
|
GRAPHODATSKAYA D, JOERG H, ASAI-COAKWELL M, JANETT F, STRANZINGER G. Expression and function of agouti signaling protein in cattle. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00317.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Stütz AM, Morrison CD, Argyropoulos G. The agouti-related protein and its role in energy homeostasis. Peptides 2005; 26:1771-81. [PMID: 15961186 DOI: 10.1016/j.peptides.2004.12.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 12/01/2004] [Indexed: 12/30/2022]
Abstract
The melanocortin system plays an important role in the regulation of energy homeostasis. The Agouti-related protein (AGRP) is a natural antagonist of the action of alpha-melanocyte stimulating hormone (alpha-MSH) at the melanocortin receptors (MCR). AGRP is upregulated by fasting while intracerebroventricular injections of synthetic AGRP lead to increased appetite and food intake. Transgenic mice overexpressing AGRP are also hyperphagic and eventually become obese. AGRP is, therefore, a significant regulator of energy balance and a candidate gene for human fatness. Indeed, humans with common single nucleotide polymorphisms (SNPs) in the promoter or the coding region are leaner and resistant to late-onset obesity than wild-type individuals. AGRP is also expressed in the periphery. Recent studies show that AGRP in the adrenal gland is upregulated by fasting as much as it is in the hypothalamus. These data open up the possibility for a wider role by AGRP not only in food intake but also in the regulation of energy balance through its actions on peripheral tissues. This review summarizes recent advances in the biochemical and physiological properties of AGRP in an effort to enhance our understanding of the role this powerful neuropeptide plays in mammalian energy homeostasis.
Collapse
Affiliation(s)
- Adrian M Stütz
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
19
|
Abstract
Growth hormone (GH) diminishes adipose tissue mass in vivo and decreases expression and activity of fatty acid synthase (FAS) in adipocytes. GH and prolactin (PRL) are potent activators of STAT5 and exert adipogenic and antiadipogenic effects in adipocytes. In this study, we demonstrate that GH and PRL decrease the mRNA and protein levels of FAS in 3T3-L1 adipocytes. We present evidence that indicates that FAS is repressed at the level of transcription. In addition, PRL responsiveness was shown to exist between -1,594 and -700 of the rat FAS promoter. Moreover, responsiveness to PRL was abolished with mutation of a site at position -908 to -893, which we have shown to bind STAT5A in a PRL-dependent manner. Taken together, these data strongly suggest that PRL directly represses expression of FAS in adipocytes through STAT5A binding to the -908 to -893 site. Furthermore, our results indicate that STAT5A has an antilipogenic function in adipocytes and may contribute to the regulation of energy balance.
Collapse
Affiliation(s)
- Jessica C Hogan
- Louisiana State University, Department of Biological Sciences, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | | |
Collapse
|
20
|
Sun X, Zemel MB. Calcium and dairy products inhibit weight and fat regain during ad libitum consumption following energy restriction in Ap2-agouti transgenic mice. J Nutr 2004; 134:3054-60. [PMID: 15514275 DOI: 10.1093/jn/134.11.3054] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We demonstrated previously that dietary calcium suppression of calcitriol reduces adipocyte Ca(2+), suppresses lipogenesis, and increases lipid utilization during energy restriction. Notably, dairy calcium sources exert markedly greater effects. To determine the effects of dietary calcium and dairy products on energy partitioning during subsequent refeeding, we induced obesity in aP2-agouti transgenic mice with a high-fat/high-sucrose diet, then restricted energy intake from a high-calcium (1.3%) diet for 6 wk to induce fat loss, and then provided free access to a low-calcium (0.4%) diet or to high-calcium (1.3%) diets that utilized either calcium-fortified foods or dairy products (milk or yogurt) for 6 wk. Refeeding the low-calcium diet caused the regain of all weight and fat, whereas all high-calcium diets reduced fat gain by 55% (P < 0.01). All high-calcium diets stimulated adipose tissue uncoupling protein (UCP)2 and skeletal muscle UCP3 expression (P < 0.001) and slightly increased core temperature (P = 0.136), but only the dairy-based diets elicited a marked (>10-fold, P < 0.001) increase in skeletal muscle peroxisome proliferator-activated receptor-alpha expression. All 3 high-calcium diets produced significant increases in lipolysis, decreases in fatty acid synthase expression and activity, and reduced fat regain (P < 0.03), but the 2 dairy-containing high-calcium diets exerted significantly greater effects on regain (P < 0.01). Thus, high-Ca diets elicit a shift in energy partitioning and reduction of weight gain during refeeding, with dairy Ca sources exerting markedly greater effects.
Collapse
Affiliation(s)
- Xiaocun Sun
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|
21
|
Abstract
Dietary calcium plays a key role in the regulation of energy metabolism and obesity risk. This appears to be mediated primarily by dietary calcium modulation of circulating calcitriol, which in turn regulates adipocyte intracellular calcium ([Ca2+]i). Increased [Ca2+]i stimulates lipogenic gene expression and activity and inhibits lipolysis, resulting in increased adipocyte lipid accumulation. Since calcitriol stimulates adipocyte Ca2+ influx, low calcium diets promote adiposity, while dietary calcium-suppression of calcitriol reduces adiposity. These concepts are confirmed in controlled rodent studies as well as by epidemiological and clinical trial data, all of which confirm protection from obesity with high calcium intakes. Moreover, dairy sources of calcium exert markedly greater effects which are most likely attributable to additional bioactive compounds in dairy which act synergistically with calcium to attenuate adiposity.
Collapse
Affiliation(s)
- Michael B Zemel
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996-1920, USA
| | | |
Collapse
|
22
|
Zemel MB. Role of calcium and dairy products in energy partitioning and weight management. Am J Clin Nutr 2004; 79:907S-912S. [PMID: 15113738 DOI: 10.1093/ajcn/79.5.907s] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary calcium plays a pivotal role in the regulation of energy metabolism because high-calcium diets attenuate adipocyte lipid accretion and weight gain during the overconsumption of an energy-dense diet and increase lipolysis and preserve thermogenesis during caloric restriction, which thereby markedly accelerates weight loss. Intracellular Ca(2+) plays a key regulatory role in adipocyte lipid metabolism and triacylglycerol storage; increased intracellular Ca(2+) results in the stimulation of lipogenic gene expression and lipogenesis and the suppression of lipolysis, which results in increased lipid filling and increased adiposity. Moreover, the increased calcitriol produced in response to low-calcium diets stimulates adipocyte Ca(2+) influx and, consequently, promotes adiposity, whereas higher-calcium diets inhibit lipogenesis, inhibit diet-induced obesity in mice, and promote lipolysis, lipid oxidation, and thermogenesis. Notably, dairy sources of calcium markedly attenuate weight and fat gain and accelerate fat loss to a greater degree than do supplemental sources of calcium. This augmented effect of dairy products relative to supplemental calcium is likely due to additional bioactive compounds, including the angiotensin-converting enzyme inhibitors and the rich concentration of branched-chain amino acids in whey, which act synergistically with calcium to attenuate adiposity. These concepts are confirmed by epidemiologic data and recent clinical trials, which indicate that diets that include > or =3 daily servings of dairy products result in significant reductions in adipose tissue mass in obese humans in the absence of caloric restriction and markedly accelerate weight and body fat loss secondary to caloric restriction compared with diets low in dairy products. These data indicate an important role for dairy products in both the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Michael B Zemel
- University of Tennessee Nutrition Institute, 1215 West Cumberland Avenue, Room 229, Knoxville, TN 37996-1920, USA.
| |
Collapse
|
23
|
Wang Y, Jones Voy B, Urs S, Kim S, Soltani-Bejnood M, Quigley N, Heo YR, Standridge M, Andersen B, Dhar M, Joshi R, Wortman P, Taylor JW, Chun J, Leuze M, Claycombe K, Saxton AM, Moustaid-Moussa N. The human fatty acid synthase gene and de novo lipogenesis are coordinately regulated in human adipose tissue. J Nutr 2004; 134:1032-8. [PMID: 15113941 DOI: 10.1093/jn/134.5.1032] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite its potential importance in obesity and related disorders, little is known about regulation of lipogenesis in human adipose tissue. To investigate this area at the molecular and mechanistic levels, we studied lipogenesis and the regulation of 1 of its core enzymes, fatty acid synthase (FAS), in human adipose tissue in response to hormonal and nutritional manipulation. As a paradigm for lipogenic genes, we cloned the upstream region of the human FAS gene, compared its sequence to that of FAS orthologs from other species, and identified important regulatory elements that lie upstream of the FAS coding region. Lipogenesis, as assessed by glucose incorporation into lipids, was increased by insulin and more so by the combination of insulin and dexamethasone (Dex, a potent glucocorticoid analogue). In parallel, FAS expression, activity, and gene transcription rate were also significantly increased by these treatments. We also showed that linoleic acid, a representative PUFA, attenuated the actions of insulin and Dex on fatty acid and lipid synthesis as well as FAS activity and expression. Using reporter assays, we determined that the regions responsible for hormonal regulation of the FAS gene lie in the proximal portion of the gene's 5'-flanking region, within which we identified an insulin response element similar to the E-box sequence we identified previously in the rat FAS gene. In summary, we demonstrated that lipogenesis occurs in human adipose tissue and can be induced by insulin, further enhanced by glucocorticoids, and suppressed by PUFA in a hormone-dependent manner.
Collapse
Affiliation(s)
- Yanxin Wang
- Department of Nutrition and Agricultural Experiment Station, University of Tennessee, Knoxville, TN 37996-1920,USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
Dietary calcium plays a pivotal role in the regulation of energy metabolism. High-calcium diets attenuate adipocyte lipid accretion and weight gain during overconsumption of an energy-dense diet and increase lipolysis and preserve thermogenesis during caloric restriction, thereby markedly accelerating weight loss. Our studies of the agouti gene demonstrate a key role for intracellular Ca2+ in regulating adipocyte lipid metabolism and TG storage. Increased intracellular Ca2+ resulting in stimulation of lipogenic gene expression, and lipogenesis and suppression of lipolysis resulting in adipocyte lipid filling and increased adiposity. Moreover, we recently demonstrated that the increased calcitriol produced in response to low-calcium diets stimulates adipocyte Ca2+ influx and, consequently, promotes adiposity. Accordingly, suppressing calcitriol levels by increasing dietary calcium is an attractive target for obesity intervention. In support of this concept, transgenic mice expressing the agouti gene specifically in adipocytes (a human-like pattern) respond to low-calcium diets with accelerated weight gain and fat accretion, whereas high-calcium diets markedly inhibit lipogenesis, accelerate lipolysis, increase thermogenesis, and suppress fat accretion and weight gain in animals maintained at identical caloric intakes. Further, low-calcium diets impede body fat loss, whereas high-calcium diets markedly accelerate fat loss in transgenic mice subjected to caloric restriction. Dairy sources of calcium exert markedly greater effects in attenuating weight and fat gain and accelerating fat loss. This augmented effect of dairy products is likely due to additional bioactive compounds in dairy that act synergistically with calcium to attenuate adiposity. These concepts are confirmed by both epidemiological and clinical data, which demonstrate that increasing dietary calcium results in significant reductions in adipose tissue mass in obese humans in the absence of caloric restriction and markedly accelerates the weight and body fat loss secondary to caloric restriction, whereas dairy products exert significantly greater effects. These data indicate an important role for dairy products in both the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Michael B Zemel
- Department of Nutrition, The University of Tennessee, Nutrition Institute, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
26
|
Abstract
Dietary calcium plays a pivotal role in the regulation of energy metabolism, in that we have found high calcium diets to attenuate adipocyte lipid accretion and weight gain during periods of overconsumption of an energy-dense diet and to increase lipolysis and preserve thermogenesis during caloric restriction, thereby markedly accelerating weight loss. Our studies of the agouti gene in obesity and insulin resistance demonstrate a key role for intracellular Ca(2+) in regulating adipocyte lipid metabolism and triglyceride storage, with increased intracellular Ca(2+), resulting in stimulation of lipogenic gene expression and lipogenesis, and suppression of lipolysis, resulting in adipocyte lipid filling and increased adiposity. Moreover, we have recently demonstrated that the increased calcitriol produced in response to low calcium diets stimulates Ca(2+) influx in human adipocytes and thereby promotes adiposity. Accordingly, suppressing calcitriol levels by increasing dietary calcium is an attractive target for the prevention and management of obesity. In support of this concept, transgenic mice expressing the agouti gene specifically in adipocytes (a humanlike pattern) respond to low calcium diets with accelerated weight gain and fat accretion, whereas high calcium diets markedly inhibit lipogenesis, accelerate lipolysis, increase thermogenesis and suppress fat accretion and weight gain in animals maintained at identical caloric intakes. Further, low calcium diets impede body fat loss, whereas high calcium diets markedly accelerate fat loss in transgenic mice subjected to caloric restriction. Notably, dairy sources of calcium exert markedly greater effects in attenuating weight and fat gain and accelerating fat loss. This augmented effect of dairy vs. supplemental calcium is likely attributable to additional bioactive compounds in dairy that act synergistically with calcium to attenuate adiposity; among these are angiotensin converting enzyme inhibitory peptides, which limit angiotensin II production and thereby limit angiotensin II stimulation of adipocyte lipogenesis. These concepts are confirmed by both epidemiological and clinical data, which similarly demonstrate that dairy products exert a substantially greater effect on both fat loss and fat distribution compared to an equivalent amount of supplemental calcium.
Collapse
Affiliation(s)
- Michael B Zemel
- Department of Nutrition, The University of Tennessee, Knoxville 37996, USA.
| |
Collapse
|
27
|
|
28
|
Voisey J, Imbeault P, Hutley L, Prins JB, van Daal A. Body mass index-related human adipocyte agouti expression is sex-specific but not depot-specific. OBESITY RESEARCH 2002; 10:447-52. [PMID: 12055320 DOI: 10.1038/oby.2002.62] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine if human adipocyte agouti signal protein (ASIP) mRNA expression is associated with obesity and is gender and/or depot specific. RESEARCH METHODS AND PROCEDURES Subjects included 8 men (64 +/- 3 years) and 14 women (56 +/- 15 years) undergoing elective abdominal surgery. ASIP mRNA levels in isolated omental and subcutaneous abdominal adipocytes were measured by quantitative reverse transcription polymerase chain reaction. RESULTS No significant depot difference was observed between genders; ASIP mRNA levels of omental and subcutaneous abdominal adipocytes were pooled for this analysis. BMI and ASIP gene expression were negatively correlated in men (rho = -0.70; p < 0.05), whereas a positive relationship was observed in women (rho = 0.48; p < 0.05). No significant difference was observed in age, body weight, body mass index (BMI), and waist circumference between groups. Hip circumference was significantly higher in women than in men (p < 0.05). Also, no significant difference in ASIP mRNA expression was observed between men and women, regardless of the fat depot. DISCUSSION These results show that men and women of similar age and BMI present similar ASIP mRNA levels in omental and subcutaneous abdominal adipocytes. However, a sexual dimorphism exists in the relationship between ASIP expression and BMI. If ASIP is involved in appetite regulation or energy homeostasis in humans, this observation may contribute to the recognized differences in these parameters between men and women.
Collapse
Affiliation(s)
- Joanne Voisey
- Cooperative Research Centre for Diagnostic Technologies, Queensland University of Technology, Brisbane, Australia
| | | | | | | | | |
Collapse
|
29
|
Abstract
The agouti protein regulates pigmentation in the mouse hair follicle producing a black hair with a subapical yellow band. Its effect on pigmentation is achieved by antagonizing the binding of alpha-melanocyte stimulating hormone (alpha-MSH) to melanocortin 1 receptor (Mc1r), switching melanin synthesis from eumelanin (black/brown) to phaeomelanin (red/yellow). Dominant mutations in the non-coding region of mouse agouti cause yellow coat colour and ectopic expression also results in obesity, type 11 diabetes, increased somatic growth and tumourigenesis. At least some of these pleiotropic effects can be explained by antagonism of other members of the melanocortin receptor family by agouti protein. The yellow coat colour is the result of agouti chronically antagonizing the binding of alpha-MSH to Mc1r and the obese phenotype results from agouti protein antagonizing the binding of alpha-MSH to Mc3r and/or Mc4r. Despite the existence of a highly homologous agouti protein in humans, agouti signal protein (ASIP), its role has yet to be defined. However it is known that human ASIP is expressed at highest levels in adipose tissue where it may antagonize one of the melanocortin receptors. The conserved nature of the agouti protein combined with the diverse phenotypic effects of agouti mutations in mouse and the different expression patterns of human and mouse agouti, suggest ASIP may play a role in human energy homeostasis and possibly human pigmentation.
Collapse
Affiliation(s)
- Joanne Voisey
- Co-operative Research Centre for Diagnostics, Queensland University of Technology, Brisbane, Australia
| | | |
Collapse
|
30
|
Lapseritis JM, Hayssen V. Thyroxine levels in agouti and non-agouti deer mice (Peromyscus maniculatus). Comp Biochem Physiol A Mol Integr Physiol 2001; 130:295-9. [PMID: 11544074 DOI: 10.1016/s1095-6433(01)00388-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Total thyroxine was assessed by radioimmunoassay for 58 female deer mice of two subspecies (Peromyscus maniculatus bairdii and P. m. gracilis) and two color morphs (agouti and non-agouti). P. m. bairdii of both color-morphs had significantly higher mean thyroxine levels than P. m. gracilis. Non-agouti deer mice of both subspecies had significantly higher mean thyroxine levels than agouti deer mice. This is the first report of thyroid hormone differences associated with the non-agouti allele.
Collapse
Affiliation(s)
- J M Lapseritis
- Department of Biology, Smith College, Northampton, MA 01063, USA
| | | |
Collapse
|