1
|
Zhang X, Li G, Tan F, Yu T, Xu C, Li K, Zhang F, Zhang M, Wang J. MARCHF8-mediated ubiquitination via TGFBI regulates NF-κB dependent inflammatory responses and ECM degradation in intervertebral disc degeneration. PLoS One 2025; 20:e0314021. [PMID: 39752341 PMCID: PMC11698339 DOI: 10.1371/journal.pone.0314021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/05/2024] [Indexed: 01/06/2025] Open
Abstract
AIM To explore the role of the hub gene Transforming Growth Factor Beta Induced (TGFBI) in Intervertebral disc degeneration (IDD) pathogenesis and its regulatory relationship with Membrane Associated Ring-CH-Type Finger 8 (MARCHF8). BACKGROUND IDD is a prevalent musculoskeletal disorder leading to spinal pathology. Despite its ubiquity and impact, effective therapeutic strategies remain to be explored. OBJECTIVE Identify key modules associated with IDD and understand the impact of TGFBI on nucleus pulposus (NP) cell behavior, extracellular matrix (ECM)-related proteins, and the Nuclear Factor kappa-light-chain-enhancer of Activated B cells (NF-κB) signaling pathway. METHODS The GSE146904 dataset underwent Weighted Gene Co-Expression Network Analysis (WGCNA) for key module identification and Differentially Expressed Genes (DEGs) screening. Intersection analysis, network analysis, and co-expression identified TGFBI as a hub gene. In vitro experiments delved into the interplay between TGFBI and MARCHF8 and their effects on NP cells. RESULTS WGCNA linked the MEturquoise module with IDD samples, revealing 145 shared genes among DEGs. In vitro findings indicated that MARCHF8 determines TGFBI expression. TGFBI boosts apoptosis and ECM breakdown in Lipopolysaccharide-stimulated (LPS-stimulated) NP cells. Altering TGFBI levels modulated these effects and the NF-κB signaling pathway, influencing inflammatory cytokine concentrations. Moreover, MARCHF8 ubiquitination controlled TGFBI expression. CONCLUSION TGFBI, modulated by MARCHF8, significantly influences IDD progression by affecting NP cell apoptosis, ECM degradation, and inflammation through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xingpeng Zhang
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Guang Li
- Department of Traumatic Surgery, Emergency Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Tan
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Tao Yu
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Chengping Xu
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Kai Li
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Feng Zhang
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Meiyan Zhang
- Shanghai Circle Harmony Xinyong Clinic, Shanghai, China
| | - Jian Wang
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
2
|
Piffard SH, Hennig GW, Sackheim AM, Howard AJ, Lambert A, Majumdar D, Nelson MT, Freeman K. DISTINCT PATTERNS OF ENDOTHELIAL CELL ACTIVATION PRODUCED BY EXTRACELLULAR HISTONES AND BACTERIAL LIPOPOLYSACCHARIDE. Shock 2024; 62:728-735. [PMID: 39194254 DOI: 10.1097/shk.0000000000002461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ABSTRACT Objective : Vascular endothelial cells (ECs) sense and respond to both trauma factors (histone proteins) and sepsis signals (bacterial lipopolysaccharide, LPS) with elevations in calcium (Ca 2+ ), but it is not clear if the patterns of activation are similar or different. We hypothesized that within seconds of exposure, histones but not LPS would produce a large EC Ca 2+ response. We also hypothesized that histones would produce different spatio-temporal patterns of Ca 2+ events in veins than in arteries. Methods : We studied cultured ECs (EA.hy926) and native endothelial cells from surgically opened murine blood vessels. High-speed live cell imaging of Ca 2+ events were acquired for 5 min before and after stimulation of cultured ECs with histones or LPS alone or in combination. Histone-induced EC Ca 2+ events were also compared in native endothelial cells from resistance-sized arteries and veins. Ca 2+ activity was quantified as "Ca 2+ prevalence" using custom spatiotemporal analysis. Additionally, cultured ECs were collected after 6 h of exposure to histones or LPS for RNA sequencing. Results : ECs-both in culture and in blood vessels-rapidly increased Ca 2+ activity within seconds of histone exposure. In contrast, LPS exposure produced only a slight increase in Ca 2+ activity in cultured ECs and no effect on blood vessels over 5-min recording periods. Histones evoked large aberrant Ca 2+ events (>30 s in duration) in both veins and arteries, but with different spatio-temporal patterns. Ca 2+ activity in arterial ECs often appeared as "rosettes", with Ca 2+ events that propagated from one cell to all adjacent surrounding cells. In veins, ECs responded individually without spreading. Surprisingly, exposure of cultured ECs to LPS for 5 min before histones potentiated EC Ca 2+ activity by an order of magnitude. Exposure of ECs to histones or LPS both increased gene expression, but different mRNAs were induced. Conclusions : LPS and histones activate ECs through mechanisms that are distinct and additive; only histones produce large aberrant Ca 2+ events. ECs in arteries and veins display different patterns of Ca 2+ responses to histones.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark T Nelson
- Surgery; Larner College of Medicine, University of Vermont, Burlington VT
| | | |
Collapse
|
3
|
Saito T, Tyagi P, Minagawa T, Ogawa T, Ishizuka O, Yoshimura N. Intravesical nerve growth factor antisense therapy for bladder hypersensitivity induced by psychological stress. Gene Ther 2024; 31:607-613. [PMID: 39223380 DOI: 10.1038/s41434-024-00484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This study assessed the relationship between NGF expression in the bladder and bladder hypersensitivity caused by psychological stress using water avoidance stress (WAS) in rats by modulating the NGF expression using intravesical liposome-complexed NGF antisense oligonucleotide (OND) therapy on WAS-induced bladder dysfunction. Female Wistar rats were divided into control and WAS groups, the latter of which received WAS sessions for 10 days with or without the OND pretreatment. Rats underwent cystometry with or without intravesical application of low-dose protamine sulfate (LD-PS), or pain behavior measurements after LD-PS application. After functional evaluations, the bladder was harvested for histology and molecular studies. WAS rats with or without LD-PS showed shortened intercontraction intervals and increased pain behaviors compared to control rats, which was improved by OND-treatment. Histological studies revealed that LD-PS provoked urothelial exfoliation in WAS rats. Compared to controls, protein assay showed increased NGF levels, and RT-PCR showed increases of TRPV1 and TRPA1 and a decrease in Cx43 in WAS rat bladders, which were improved by OND-treatment. WAS caused bladder hypersensitivity, which was improved by NGF antisense OND treatment. NGF upregulation in the bladder may be a therapeutic target for the treatment of psychological stress-induced bladder dysfunction.
Collapse
Affiliation(s)
- Tetsuichi Saito
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tomonori Minagawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Teruyuki Ogawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Osamu Ishizuka
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Gillett DA, Neighbarger NK, Cole C, Wallings RL, Tansey MG. Investigating the role and regulation of GPNMB in progranulin-deficient macrophages. Front Immunol 2024; 15:1417836. [PMID: 39391322 PMCID: PMC11464288 DOI: 10.3389/fimmu.2024.1417836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Progranulin (PGRN) is a holoprotein that is internalized and taken to the lysosome where it is processed to individual granulins (GRNs). PGRN is critical for successful aging, and insufficient levels of PGRN are associated with increased risk for developing neurodegenerative diseases like AD, PD, and FTD. A unifying feature among these diseases is dysregulation of peripheral immune cell populations. However, considerable gaps exist in our understanding of the function(s) of PGRN/GRNs in immune cells and their role in regulating central-peripheral neuroimmune crosstalk. One of the most upregulated genes and proteins in humans with GRN haploinsufficiency and in aged Grn knock-out (KO) mice is glycoprotein non-metastatic B (GPNMB) but its normal role within the context of immune crosstalk has not been elucidated. Methods To address this gap, peritoneal macrophages (pMacs) from 5-to-6-month old WT and Grn KO mice were assessed for Gpnmb expression and stimulation-dependent cytokine release in the presence or absence of the Gpnmb extracellular domain (ECD). Cellular localization, as well as inhibition of, the microphthalmia-associated transcription factor (MITF) was assessed to determine its mechanistic role in Gpnmb overexpression in Grn KO pMacs. Results We observed an increase in GPNMB protein and mRNA as a result of insufficient progranulin in peripheral immune cells at a very early age relative to previous reports on the brain. Stimulation-dependent cytokine release was decreased in the media of Grn KO pMacs relative to WT controls; a phenotype that could be mimicked in WT pMacs with the addition og GPNMB ECD. We also found that MITF is dysregulated in Grn KO pMacs; however, its nuclear translocation and activity are not required to rescue the immune dysregulation of Grn KO macrophages, suggesting redundancy in the system. Discussion These findings highlight the fact that knowledge of early-stage disease mechanism(s) in peripheral populations may inform treatment strategies to delay disease progression at an early, prodromal timepoint prior to development of neuroinflammation and CNS pathology.
Collapse
Affiliation(s)
- Drew A Gillett
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Noelle K Neighbarger
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Cassandra Cole
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Rebecca L Wallings
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| |
Collapse
|
5
|
Marino AL, Rex TS, Harrison FE. Modulation of microglia activation by the ascorbic acid transporter SVCT2. Brain Behav Immun 2024; 120:557-570. [PMID: 38972487 PMCID: PMC11458066 DOI: 10.1016/j.bbi.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024] Open
Abstract
Neuroinflammation is a major characteristic of pathology in several neurodegenerative diseases. Microglia, the brain's resident myeloid cells, shift between activation states under neuroinflammatory conditions, both responding to, but also driving damage in the brain. Vitamin C (ascorbate) is an essential antioxidant for central nervous system function that may have a specific role in the neuroinflammatory response. Uptake of ascorbate throughout the central nervous system is facilitated by the sodium-dependent vitamin C transporter 2 (SVCT2). SVCT2 transports the reduced form of ascorbate into neurons and microglia, however the contribution of altered SVCT2 expression to the neuroinflammatory response in microglia is not well understood. In this study we demonstrate that SVCT2 expression modifies microglial response, as shown through changes in cell morphology and mRNA expression, following a mild traumatic brain injury (mTBI) in mice with decreased or increased expression of SVCT2. Results were supported by in vitro studies in an immortalized microglial cell line and in primary microglial cultures derived from SVCT2-heterozygous and transgenic animals. Overall, this work demonstrates the importance of SVCT2 and ascorbate in modulating the microglial response to mTBI and suggests a potential role for both in response to neuroinflammatory challenges.
Collapse
Affiliation(s)
- Amanda L Marino
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Tonia S Rex
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fiona E Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
6
|
Shetty AC, Sivinski J, Cornell J, McCracken C, Sadzewicz L, Mahurkar A, Wang XQ, Colloca L, Lin W, Pilli N, Kane MA, Seneviratne C. Peripheral blood transcriptomic profiling of molecular mechanisms commonly regulated by binge drinking and placebo effects. Sci Rep 2024; 14:10733. [PMID: 38730024 PMCID: PMC11087488 DOI: 10.1038/s41598-024-56900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/12/2024] [Indexed: 05/12/2024] Open
Abstract
Molecular responses to alcohol consumption are dynamic, context-dependent, and arise from a complex interplay of biological and external factors. While many have studied genetic risk associated with drinking patterns, comprehensive studies identifying dynamic responses to pharmacologic and psychological/placebo effects underlying binge drinking are lacking. We investigated transcriptome-wide response to binge, medium, and placebo alcohol consumption by 17 healthy heavy social drinkers enrolled in a controlled, in-house, longitudinal study of up to 12 days. Using RNA-seq, we identified 251 and 13 differentially expressed genes (DEGs) in response to binge drinking and placebo, respectively. Eleven protein-coding DEGs had very large effect sizes in response to binge drinking (Cohen's d > 1). Furthermore, binge dose significantly impacted the Cytokine-cytokine receptor interaction pathway (KEGG: hsa04060) across all experimental sequences. Placebo also impacted hsa04060, but only when administered following regular alcohol drinking sessions. Similarly, medium-dose and placebo commonly impacted KEGG pathways of Systemic lupus erythematosus, Neutrophil extracellular trap formation, and Alcoholism based on the sequence of drinking sessions. These findings together indicate the "dose-extending effects" of placebo at a molecular level. Furthermore, besides supporting alcohol dose-specific molecular changes, results suggest that the placebo effects may induce molecular responses within the same pathways regulated by alcohol.
Collapse
Affiliation(s)
- Amol Carl Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - John Sivinski
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Jessica Cornell
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Anup Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Xing-Qun Wang
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Luana Colloca
- Department of Pain and Translational Symptom Science, Placebo Beyond Opinions (PBO) Center, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Chamindi Seneviratne
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Gillett DA, Neighbarger NK, Cole C, Wallings RL, Tansey MG. Investigating the Role and Regulation of GPNMB in Progranulin-deficient Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584649. [PMID: 38558966 PMCID: PMC10980078 DOI: 10.1101/2024.03.12.584649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progranulin is a holoprotein that is critical for successful aging, and insufficient levels of progranulin are associated with increased risk for developing age-related neurodegenerative diseases like AD, PD, and FTD. Symptoms can vary widely, but a uniting feature among these different neurodegenerative diseases is prodromal peripheral immune cell phenotypes. However, there remains considerable gaps in the understanding of the function(s) of progranulin in immune cells, and recent work has identified a novel target candidate called GPNMB. We addressed this gap by investigating the peritoneal macrophages of 5-6-month-old Grn KO mice, and we discovered that GPNMB is actively increased as a result of insufficient progranulin and that MITF, a transcription factor, is also dysregulated in progranulin-deficient macrophages. These findings highlight the importance of early-stage disease mechanism(s) in peripheral cell populations that may lead to viable treatment strategies to delay disease progression at an early, prodromal timepoint and extend therapeutic windows.
Collapse
|
8
|
Archer AC, DeBerry JJ, DeWitte C, Ness TJ. Neonatal Cystitis Makes Adult Female Rat Urinary Bladders More Sensitive to Low Concentration Microbial Antigens. Res Rep Urol 2023; 15:531-539. [PMID: 38106986 PMCID: PMC10723592 DOI: 10.2147/rru.s444167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic pain disorder. Patients with IC/BPS often experience "flares" of symptom exacerbation throughout their lifetime, initiated by triggers, such as urinary tract infections. This study sought to determine whether neonatal bladder inflammation (NBI) alters the sensitivity of adult rat bladders to microbial antigens. Methods Female NBI rats received intravesical zymosan treatments on postnatal days P14-P16 while anesthetized; Neonatal Control Treatment (NCT) rats were anesthetized. In adults, bladder and spinal cord Toll-like receptor type 2 and 4 (TLR2, TLR4) contents were determined using ELISAs. Other rats were injected intravesically with lipopolysaccharide (LPS; mimics an E. coli infection; 25, 50, 100, or 200 μg/mL) or Zymosan (mimics yeast infection; 0.01, 0.1, 1, and 10 mg/mL) solutions on the following day. Visceromotor responses (VMRs; abdominal contractions) to graded urinary bladder distention (UBD, 10-60 mm Hg, 20s) were quantified as abdominal electromyograms (EMGs). Results Bladder TLR2 and TLR4 protein levels increased in NBI rats. These rats displayed statistically significant, dose-dependent, robustly augmented VMRs following all but the lowest doses of LPS and Zymosan tested, when compared with their adult treatment control groups. The NCT groups showed minimal responses to LPS in adults and minimally increased EMG measurements following the highest dose of Zymosan. Conclusion The microbial antigens LPS and Zymosan augmented nociceptive VMRs to UBD in rats that experienced NBI but had little effect on NCT rats at the doses tested. The greater content of bladder TLR2 and TLR4 proteins in the NBI group was consistent with increased responsiveness to their agonists, Zymosan and LPS, respectively. Given that patients with IC/BPS have a higher incidence of childhood urinary tract infections, this increased responsiveness to microbial antigens may explain the flares in symptoms following "subclinical" tract infections.
Collapse
Affiliation(s)
- Ashley C Archer
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Jennifer J DeBerry
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cary DeWitte
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Ho TY, Lo HY, Lu GL, Liao PY, Hsiang CY. Analysis of target organs of Houttuynia cordata: A study on the anti-inflammatory effect of upper respiratory system. JOURNAL OF ETHNOPHARMACOLOGY 2023:116687. [PMID: 37244408 DOI: 10.1016/j.jep.2023.116687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Houttuynia cordata Thunb. (HC) is a traditional anti-pyretic herb that is classified as the lung meridian in traditional Chinese medicine. However, no articles have explored the main organs responsible for the anti-inflammatory activities of HC. AIM OF THE STUDY The aim of the study was to investigate the meridian tropism theory of HC in lipopolysaccharide (LPS)-induced pyretic mice, as well as to identify the underlying mechanisms. MATERIALS AND METHODS Transgenic mice carrying the luciferase gene driven by nuclear factor-κB (NF-κB) were intraperitoneally injected with LPS and orally administered standardized concentrated HC aqueous extract. The phytochemicals present in the HC extract were analyzed using high-performance liquid chromatography. In vivo and ex vivo luminescent imaging from transgenic mice was used to investigate the meridian tropism theory and anti-inflammatory effects of HC. Microarray analysis of gene expression patterns was used to elucidate the therapeutic mechanisms of HC. RESULTS HC extract was found to contain phenolic acids, such as protocatechuic acid (4.52%) and chlorogenic acid (8.12%), as well as flavonoids like rutin (2.05%) and quercitrin (7.73%). The bioluminescent intensities induced by LPS in the heart, liver, respiratory system, and kidney were significantly suppressed by HC, while the maximal decrease (about 90% reduction) of induced luminescent intensity was observed in the upper respiratory tract. These data suggested that upper respiratory system might be the target for HC anti-inflammatory abilities. HC affected the processes involved in innate immunity, such as chemokine-mediated signaling pathway, inflammatory response, chemotaxis, neutrophil chemotaxis, and cellular response to interleukin-1 (IL-1). Moreover, HC significantly reduced the proportions of p65-stained cells and the amount of IL-1β in trachea tissues. CONCLUSION Bioluminescent imaging coupled with gene expression profile was used to demonstrate the organ selectivity, anti-inflammatory effects, and therapeutic mechanisms of HC. Our data demonstrated for the first time that HC displayed lung meridian-guiding effects and exhibited great anti-inflammatory potential in the upper respiratory tract. The NF-κB and IL-1β pathways were associated with the anti-inflammatory mechanism of HC against LPS-provoked airway inflammation. Moreover, chlorogenic acid and quercitrin might be involved in the anti-inflammatory properties of HC.
Collapse
Affiliation(s)
- Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan; Department of Health and Nutrition Biotechnology Asia University, Taichung, 413305, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Guan-Ling Lu
- Department of Microbiology and Immunology, China Medical University, Taichung, 404333, Taiwan
| | - Pei-Yung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 500209, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung, 404333, Taiwan.
| |
Collapse
|
10
|
Shetty AC, Sivinski J, Cornell J, Sadzewicz L, Mahurkar A, Wang XQ, Colloca L, Lin W, Kane MA, Seneviratne C. Peripheral blood transcriptomic profiling indicates molecular mechanisms commonly regulated by binge-drinking and placebo-effects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.21.23287501. [PMID: 36993621 PMCID: PMC10055573 DOI: 10.1101/2023.03.21.23287501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Molecular changes associated with alcohol consumption arise from complex interactions between pharmacological effects of alcohol, psychological/placebo context surrounding drinking, and other environmental and biological factors. The goal of this study was to tease apart molecular mechanisms regulated by pharmacological effects of alcohol - particularly at binge-drinking, from underlying placebo effects. Transcriptome-wide RNA-seq analyses were performed on peripheral blood samples collected from healthy heavy social drinkers (N=16) enrolled in a 12-day randomized, double-blind, cross-over human laboratory trial testing three alcohol doses: Placebo, moderate (0.05g/kg (men), 0.04g/kg (women)), and binge (1g/kg (men), 0.9g/kg (women)), administered in three 4-day experiments, separated by minimum of 7-day washout periods. Effects of beverage doses on the normalized gene expression counts were analyzed within each experiment compared to its own baseline using paired-t-tests. Differential expression of genes (DEGs) across experimental sequences in which each beverage dose was administered, as well as responsiveness to regular alcohol compared to placebo (i.e., pharmacological effects), were analyzed using generalized linear mixed-effects models. The 10% False discovery rate-adjusted DEGs varied across experimental sequences in response to all three beverage doses. We identified and validated 22 protein coding DEGs potentially responsive to pharmacological effects of binge and medium doses, of which 11 were selectively responsive to binge dose. Binge-dose significantly impacted the Cytokine-cytokine receptor interaction pathway (KEGG: hsa04060) across all experimental-sequences that it was administered in, and during dose-extending placebo. Medium dose and placebo impacted pathways hsa05322, hsa04613, and hsa05034, in the first two and last experimental sequences, respectively. In summary, our findings add novel, and confirm previously reported data supporting dose-dependent effects of alcohol on molecular mechanisms and suggest that the placebo effects may induce molecular responses within the same pathways regulated by alcohol. Innovative study designs are required to validate molecular correlates of placebo effects underlying drinking.
Collapse
|
11
|
Malik S, Wang H, Xavier S, Slayo M, Bozinovski S, Sominsky L, Spencer SJ. The role of microglia and monocytes in the generation and resolution of the immune response in female and male rats. Brain Behav Immun 2023; 107:179-192. [PMID: 36270436 DOI: 10.1016/j.bbi.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Microglia have long been thought to be responsible for the initiation of the central nervous system (CNS) immune response to pathogen exposure. However, we recently reported that depleting CNS microglia and circulating monocytes does not abrogate the sickness response in male rats or mice to bacterial endotoxin, lipopolysaccharide (LPS). How the central immune response to an endotoxin challenge is initiated and resolved in the absence of microglia and monocytes remains unclear. Here we investigated the role of microglia and monocytes in driving the behavioral, febrile and neuroimmune response to LPS using the Cx3cr1-Dtr rat model of conditional microglia/monocyte depletion, assessed if this role is similar in females and males, and examined how the response to an immune challenge might be initiated in the absence of these cells. We show that depletion of microglia and monocytes exacerbates the response to LPS at each phase of the immune cascade. Our data indicate that the changes in the central response to immune challenge may be an indirect effect of excess neutrophil expansion into the bloodstream and infiltration into peripheral organs stimulating a rapid and exacerbated cytokine and prostaglandin response to the LPS that is not curtailed by the usual negative feedback mechanisms. Thus, we show that a demonstrable immune response can be generated (and resolved) in the near complete absence of microglia and monocytes and that these cells play a regulatory role in the initiation and resolution of the response to an immune challenge, rather than being critical for it to occur.
Collapse
Affiliation(s)
- Sajida Malik
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Soniya Xavier
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Mary Slayo
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Steve Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia; Barwon Health Laboratory, Barwon Health, University Hospital, Geelong, VIC, Australia; Institute for Physical and Mental Health and Clinical Transformation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Cornell J, Conchas A, Wang XQ, Fink JC, Chen H, Kane MA, Pilli N, Ait-Daoud N, Gorelick DA, Li MD, Johnson BA, Seneviratne C. Validation of serotonin transporter mRNA as a quantitative biomarker of heavy drinking and its comparison to ethyl glucuronide/ethyl sulfate: A randomized, double-blind, crossover trial. Alcohol Clin Exp Res 2022; 46:1888-1899. [PMID: 36031718 PMCID: PMC9588643 DOI: 10.1111/acer.14931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The serotonin transporter (SERT) mRNA was previously reported to be a quantitative and pathophysiology-based biomarker of heavy drinking in 5HTTLPR:LL genotype-carriers treated with ondansetron. Here, we validated the potential use of SERT mRNA for quantitative prediction of recent alcohol consumption (in the absence of treatment) and compared it with the known biomarkers ethyl glucuronide (EtG) and ethyl sulfate (EtS). METHODS Binge drinking men and women of European ancestry aged 21 to 65 years were enrolled in a 12-day, in-patient, randomized, double-blind, crossover study, where they were administered three beverage doses (placebo, 0.5 g/kg [0.4 g/kg] ethanol, and 1 g/kg [0.9 g/kg] ethanol for men [women]) individually in three 4-day periods (experiments), separated by minimum 7-day washout period. Diet, sleep, and physical activity were controlled throughout the inpatient experiments. Twenty-nine participants were randomized to receive beverage doses counterbalancing the sequence of treatment and gender within subgroups stratified by SERT genotypes 5HTTLPR:LL+rs25531:AA (LA LA ) versus 5HTTLPR:LS/SS. Peripheral venous blood was collected daily for (1) quantification of SERT mRNA (the primary outcome measure) using qRT-PCR and (2) plasma EtG and EtS levels using tandem mass-spectrometry. RESULTS The association between administered beverage dose and SERT mRNA from completers of at least one 4-day experiment (N = 18) assessed by a linear mixed model was not statistically significant. Significant positive associations were found with beverage dose and plasma EtG, EtS and EtG/EtS ratio (β = 5.8, SE = 1.2, p < 0.0001; β = 1.3, SE = 0.6, p = 0.023; and β = 3.0, SE = 0.7, p < 0.0001, respectively; the C-statistics for discriminating outcomes were 0.97, 0.8, and 0.92, respectively). Additionally, we observed a sequence effect with a greater placebo effect on SERT mRNA when it was administered during the first experiment (p = 0.0009), but not on EtG/EtS measures. CONCLUSION The findings do not validate the use of SERT as a biomarker of heavy drinking. Larger and more innovative studies addressing the effects of placebo, race, gender, and response to treatment with serotonergic agents are needed to fully assess the utility of SERT as a biomarker of heavy and binge drinking.
Collapse
Affiliation(s)
- Jessica Cornell
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Andrew Conchas
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD (former affiliation)
| | - Xin-Qun Wang
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Jeffrey C. Fink
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Hegang Chen
- Department of Epidemiology, University of Maryland School of Medicine, Baltimore, MD
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD
| | - Nassima Ait-Daoud
- Department of Psychiatry, University of Virginia, Charlottesville, VA
| | - David A. Gorelick
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | | | - Bankole A. Johnson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD (former affiliation)
| | - Chamindi Seneviratne
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
Steele LA, Spiller KL, Cohen S, Rom S, Polyak B. Temporal Control over Macrophage Phenotype and the Host Response via Magnetically Actuated Scaffolds. ACS Biomater Sci Eng 2022; 8:3526-3541. [PMID: 35838679 DOI: 10.1021/acsbiomaterials.2c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic strain generated at the cell-material interface is critical for the engraftment of biomaterials. Mechanosensitive immune cells, macrophages regulate the host-material interaction immediately after implantation by priming the environment and remodeling ongoing regenerative processes. This study investigated the ability of mechanically active scaffolds to modulate macrophage function in vitro and in vivo. Remotely actuated magnetic scaffolds enhance the phenotype of murine classically activated (M1) macrophages, as shown by the increased expression of the M1 cell-surface marker CD86 and increased secretion of multiple M1 cytokines. When scaffolds were implanted subcutaneously into mice and treated with magnetic stimulation for 3 days beginning at either day 0 or day 5 post-implantation, the cellular infiltrate was enriched for host macrophages. Macrophage expression of the M1 marker CD86 was increased, with downstream effects on vascularization and the foreign body response. Such effects were not observed when the magnetic treatment was applied at later time points after implantation (days 12-15). These results advance our understanding of how remotely controlled mechanical cues, namely, cyclic strain, impact macrophage function and demonstrate the feasibility of using mechanically active nanomaterials to modulate the host response in vivo.
Collapse
Affiliation(s)
- Lindsay A Steele
- Department of Surgery, College of Medicine, Drexel University, 245 N. 15th Street, Philadelphia 19102, Pennsylvania, United States
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 712, Philadelphia 19104, Pennsylvania, United States
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva Blvd. 1, Bldg. 42, Room 328, Beer-Sheva 84105, Israel
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia 19140, Pennsylvania, United States.,Center for Substance Abuse Research, Temple University, 3500 N. Broad Street, Medical Education and Research Building, Room 842, Philadelphia 19140, Pennsylvania, United States
| | - Boris Polyak
- Department of Surgery, College of Medicine, Drexel University, 245 N. 15th Street, Philadelphia 19102, Pennsylvania, United States
| |
Collapse
|
14
|
Xie AX, Iguchi N, Clarkson TC, Malykhina AP. Pharmacogenetic inhibition of lumbosacral sensory neurons alleviates visceral hypersensitivity in a mouse model of chronic pelvic pain. PLoS One 2022; 17:e0262769. [PMID: 35077502 PMCID: PMC8789164 DOI: 10.1371/journal.pone.0262769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The study investigated the cellular and molecular mechanisms in the peripheral nervous system (PNS) underlying the symptoms of urologic chronic pelvic pain syndrome (UCPPS) in mice. This work also aimed to test the feasibility of reversing peripheral sensitization in vivo in alleviating UCPPS symptoms. Intravesical instillation of vascular endothelial growth factor A (VEGFA) was used to induce UCPPS-like symptoms in mice. Spontaneous voiding spot assays and manual Von Frey tests were used to evaluate the severity of lower urinary tract symptoms (LUTS) and visceral hypersensitivity in VEGFA-instilled mice. Bladder smooth muscle strip contractility recordings (BSMSC) were used to identify the potential changes in myogenic and neurogenic detrusor muscle contractility at the tissue-level. Quantitative real-time PCR (qPCR) and fluorescent immunohistochemistry were performed to compare the expression levels of VEGF receptors and nociceptors in lumbosacral dorsal root ganglia (DRG) between VEGFA-instilled mice and saline-instilled controls. To manipulate primary afferent activity, Gi-coupled Designer Receptors Exclusively Activated by Designer Drugs (Gi-DREADD) were expressed in lumbosacral DRG neurons of TRPV1-Cre-ZGreen mice via targeted adeno-associated viral vector (AAVs) injections. A small molecule agonist of Gi-DREADD, clozapine-N-oxide (CNO), was injected into the peritoneum (i. p.) in awake animals to silence TRPV1 expressing sensory neurons in vivo during physiological and behavioral recordings of bladder function. Intravesical instillation of VEGFA in the urinary bladders increased visceral mechanical sensitivity and enhanced RTX-sensitive detrusor contractility. Sex differences were identified in the baseline detrusor contractility responses and VEGF-induced visceral hypersensitivity. VEGFA instillations in the urinary bladder led to significant increases in the mRNA and protein expression of transient receptor potential cation channel subfamily A member 1 (TRPA1) in lumbosacral DRG, whereas the expression levels of transient receptor potential cation channel subfamily V member 1 (TRPV1) and VEGF receptors (VEGFR1 and VEGFR2) remained unchanged when compared to saline-instilled animals. Importantly, the VEGFA-induced visceral hypersensitivity was reversed by Gi-DREADD-mediated neuronal silencing in lumbosacral sensory neurons. Activation of bladder VEGF signaling causes sensory neural plasticity and visceral hypersensitivity in mice, confirming its role of an UCPPS biomarker as identified by the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) research studies. Pharmacogenetic inhibition of lumbosacral sensory neurons in vivo completely reversed VEGFA-induced pelvic hypersensitivity in mice, suggesting the strong therapeutic potential for decreasing primary afferent activity in the treatment of pain severity in UCPPS patients.
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Nao Iguchi
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Taylor C. Clarkson
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Anna P. Malykhina
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| |
Collapse
|
15
|
Ness TJ, DeWitte C, DeBerry JJ, Hart MP, Clodfelder-Miller B, Gu JG, Ling J, Randich A. A Model in Female Rats With Phenotypic Features Similar to Interstitial Cystitis/Bladder Pain Syndrome. FRONTIERS IN PAIN RESEARCH 2021; 2:791045. [PMID: 35295535 PMCID: PMC8915626 DOI: 10.3389/fpain.2021.791045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
This report describes methodological and exploratory investigations of the zymosan-induced neonatal bladder inflammation (NBI) model of interstitial cystitis/bladder pain syndrome (IC/BPS) in female rats. These results validate and extend the currently employed model by evaluating critical timepoints for obtaining treatment effects and identified that a second insult as an adult including repeat intravesical zymosan, intravesical lipopolysaccharide, acute footshock stress, neuropathic nociception (facial) or somatic inflammation (hindpaw) all resulted in magnified visceromotor responses to urinary bladder distension (UBD) in rats which had experienced NBI when compared with their controls. NBI also resulted in increased tone and reactivity of pelvic floor musculature to UBD, as well as increased responsiveness to intravesical potassium chloride solutions, abnormal anxiety measures (elevated plus maze) and an increased number of submucosal petechial hemorrhages following 30 min of hydrodistension of the bladder. These phenotypic findings have correlates to the clinical features of IC/BPS in humans and so support use of this model system to examine mechanisms of and treatments for IC/BPS.
Collapse
Affiliation(s)
- Timothy J. Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Calmasini FB, Alexandre EC, Oliveira MG, Silva FH, Soares AG, Costa SKP, Antunes E. Lipopolysaccharide reduces urethral smooth muscle contractility via cyclooxygenase activation. J Physiol Biochem 2021; 77:557-564. [PMID: 34018097 DOI: 10.1007/s13105-021-00819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Lipopolysaccharide (LPS) is a component of gram-negative bacteria wall that elicits inflammatory response in the host through the toll-like receptor 4 (TLR4) activation. In the lower urinary tract (LUT), bacteria-derived LPS has been associated with lower urinary tract symptoms (LUTS); however, little is known about the effects of LPS in the urethral smooth muscle (USM). In the present study, we evaluated the functional and molecular effects of LPS in mouse USM in vitro, focusing on the LPS-induced TLR4-signaling pathway. Male C57BL6/JUnib and TLR4 knockout mice (TLR4 KO) were used. The USM contraction was performed in the presence of LPS (62.5-500 μg/mL), indomethacin (10 μM), L-NAME (100 μM), and TAK 242 (1 μM). The RT-PCR assay for the IL-1β, NF-kB, and COX-2 genes was also evaluated in the presence of LPS (125 μg/mL) and caspase 1 inhibitor (20 μM). Our results showed that LPS reduces mouse USM contraction elicited by phenylephrine and vasopressin. This LPS-induced urethral inhibitory effect was not reversed by the TLR4 inhibition or its absence in the TLR4 KO mice. Conversely, indomethacin (but not L-NAME) reversed the LPS-induced USM hypocontractility. Molecular protocols indicated upregulation of IL-1β, NF-kβ, and COX-2 mRNA upon LPS incubation, which were blunted by caspase 1 inhibition. Our data showed that LPS reduced mouse USM contraction independently of TLR4 activation, involving caspase 1 and IL1β, NF-kB, and COX-2 gene overexpression. Therefore, this alternative pathway might be a valuable target to reduce the LPS-induced urethral dysfunction under infection and inflammatory conditions.
Collapse
Affiliation(s)
- Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Science, State University of Campinas, Campinas, SP, 13084-971, Brazil.
| | - Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Science, State University of Campinas, Campinas, SP, 13084-971, Brazil
| | - Mariana G Oliveira
- Department of Pharmacology, Faculty of Medical Science, State University of Campinas, Campinas, SP, 13084-971, Brazil
| | - Fábio H Silva
- Laboratory of Multidisciplinary Research, São Francisco University (USF), Bragança Paulista, Brazil
| | - António G Soares
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Science, State University of Campinas, Campinas, SP, 13084-971, Brazil
| |
Collapse
|
17
|
Jia R, Yi Y, Liu J, Pei D, Hu B, Hao H, Wu L, Wang Z, Luo X, Lu Y. Cyclic compression emerged dual effects on the osteogenic and osteoclastic status of LPS-induced inflammatory human periodontal ligament cells according to loading force. BMC Oral Health 2020; 20:7. [PMID: 31907038 PMCID: PMC6945767 DOI: 10.1186/s12903-019-0987-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Appropriate mechanical stimulation is essential for bone homeostasis in healthy periodontal tissues. While the osteogenesis and osteoclast differentiation of inflammatory periodontal ligament cells under different dynamic loading has not been yet clear. The aim of this study is to clarify the inflammatory, osteogenic and pro-osteoclastic effects of different cyclic stress loading on the inflammatory human periodontal ligament cells (hPDLCs). METHODS hPDLCs were isolated from healthy premolars and cultured in alpha minimum Eagle's medium (α-MEM). Lipopolysaccharides (LPS) were used to induce the inflammation state of hPDLCs in vitro. Determination of LPS concentration for the model of inflammatory periodontium was based on MTT and genes expression analysis. Then the cyclic stress of 0, 0-50, 0-90 and 0-150 kPa was applied to the inflammatory hPDLCs for 5 days respectively. mRNA and protein levels of osteogenic, osteoclastic and inflammation-related markers were examined after the treatment. RESULTS MTT and RT-PCR results showed that 10 μg/ml LPS up-regulated TNF-α, IL-1β, IL-6, IL-8 and MCP-1 mRNA levels (P < 0.05) and did not affect the cell viability (P > 0.05). The excessive loading of stress (150 kPa) with or without LPS strongly increased the expression of inflammatory-related markers TNF-α, IL-1β, IL-6, IL-8, MCP-1 (P < 0.05) and osteoclastic markers RANKL, M-CSF, PTHLH and CTSK compared with other groups (P < 0.05), but had no significant effect on osteogenic genes. While 0-90 kPa cyclic pressure could up-regulate the expression of osteogenic genes ALP, COL-1, RUNX2, OCN, OPN and OSX in the healthy hPDLSCs. CONCLUSIONS Collectively, it could be concluded that 0-150 kPa was an excessive stress loading which accelerated both inflammatory and osteoclastic effects, while 0-90 kPa may be a positive factor for the osteogenic differentiation of hPDLCs in vitro.
Collapse
Affiliation(s)
- Ru Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Yingjie Yi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Jie Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Dandan Pei
- Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Bo Hu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Huanmeng Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Linyue Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Zhenzhen Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| | - Yi Lu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China. .,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China.
| |
Collapse
|
18
|
Ma F, Kouzoukas DE, Meyer-Siegler KL, Hunt DE, Leng L, Bucala R, Vera PL. MIF mediates bladder pain, not inflammation, in cyclophosphamide cystitis. Cytokine X 2019; 1. [PMID: 31289792 PMCID: PMC6615480 DOI: 10.1016/j.cytox.2019.100003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MIF mediates bladder pain but not bladder inflammation induced by CYP. ISO-1 blocks CYP induced bladder inflammation independent of MIF. MIF may mediate bladder pain by promoting bladder ERK phosphorylation.
Macrophage migration inhibitory factor (MIF), a proinflammatory mediator, is recognized as a player in inflammatory and neuropathic pain. Cyclophosphamide (CYP) results in bladder inflammation and pain and it’s a frequently used animal model of interstitial cystitis/bladder pain syndrome (IC/BPS). Because pretreatment with a MIF inhibitor (ISO-1) prevented both CYP-induced bladder pain and inflammation we used genetic MIF knockout (KO) mice to further investigate MIF’s role in CYP-induced bladder pain and inflammation. Abdominal mechanical threshold measured bladder pain induced by CYP in wild type (WT) and MIF KO mice at several time points (0–48 h). End-point (48 h) changes in micturition parameters and histological signs of bladder inflammation were also evaluated. Abdominal mechanical hypersensitivity developed within 4 h after CYP injection (and lasted for the entire observation period: 48 h) in WT mice. MIF KO mice, on the other hand, did not develop abdominal mechanical hypersensitivity suggesting that MIF is a pivotal molecule in mediating CYP-induced bladder pain. Both WT and MIF KO mice treated with CYP showed histological signs of marked bladder inflammation and showed a significant decrease in micturition volume and increase in frequency. Since both changes were blocked in MIF KO mice by pretreatment with a MIF inhibitor (ISO-1) it is likely these are non-specific effects of ISO-1. MIF mediates CYP-induced bladder pain but not CYP-induced bladder inflammation. The locus of effect (bladder) or central (spinal) for MIF mediation of bladder pain remains to be determined.
Collapse
Affiliation(s)
- Fei Ma
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, Kentucky, United States of America.,Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Dimitrios E Kouzoukas
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, Kentucky, United States of America
| | - Katherine L Meyer-Siegler
- Department of Natural Sciences, St. Petersburg College, St. Petersburg, Florida, United States of America
| | - David E Hunt
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, Kentucky, United States of America
| | - Lin Leng
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Richard Bucala
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Pedro L Vera
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, Kentucky, United States of America.,Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America.,Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
19
|
Stefanson AL, Bakovic M. Falcarinol Is a Potent Inducer of Heme Oxygenase-1 and Was More Effective than Sulforaphane in Attenuating Intestinal Inflammation at Diet-Achievable Doses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3153527. [PMID: 30420908 PMCID: PMC6215554 DOI: 10.1155/2018/3153527] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/20/2018] [Accepted: 09/02/2018] [Indexed: 02/08/2023]
Abstract
Nuclear factor- (erythroid-derived 2) like 2 (Nrf2) is a transcription factor that regulates the expression of a battery of antioxidant, anti-inflammatory, and cytoprotective enzymes including heme oxygenase-1 (Hmox1, Ho-1) and NADPH:quinone oxidoreductase-1 (Nqo1). The isothiocyanate sulforaphane (SF) is widely understood to be the most effective natural activator of the Nrf2 pathway. Falcarinol (FA) is a lesser studied natural compound abundant in medicinal plants as well as dietary plants from the Apiaceae family such as carrot. We evaluated the protective effects of FA and SF (5 mg/kg twice per day in CB57BL/6 mice) pretreatment for one week against acute intestinal and systemic inflammation. The phytochemical pretreatment effectively reduced the magnitude of intestinal proinflammatory gene expression (IL-6, Tnfα/Tnfαr, Infγ, STAT3, and IL-10/IL-10r) with FA showing more potency than SF. FA was also more effective in upregulating Ho-1 at mRNA and protein levels in both the mouse liver and the intestine. FA but not SF attenuated plasma chemokine eotaxin and white blood cell growth factor GM-CSF, which are involved in the recruitment and stabilization of first-responder immune cells. Phytochemicals generally did not attenuate plasma proinflammatory cytokines. Plasma and intestinal lipid peroxidation was also not significantly changed 4 h after LPS injection; however, FA did reduce basal lipid peroxidation in the mesentery. Both phytochemical pretreatments protected against LPS-induced reduction in intestinal barrier integrity, but FA additionally reduced inflammatory cell infiltration even below negative control.
Collapse
Affiliation(s)
- Amanda L. Stefanson
- Department of Human Health and Nutritional Sciences, 50 Stone Rd E, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, 50 Stone Rd E, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
20
|
Fuller EA, Sominsky L, Sutherland JM, Redgrove KA, Harms L, McLaughlin EA, Hodgson DM. Neonatal immune activation depletes the ovarian follicle reserve and alters ovarian acute inflammatory mediators in neonatal rats. Biol Reprod 2018; 97:719-730. [PMID: 29040417 DOI: 10.1093/biolre/iox123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/07/2017] [Indexed: 12/30/2022] Open
Abstract
Normal ovarian development is crucial for female reproductive success and longevity. Interruptions to the delicate process of initial folliculogenesis may lead to ovarian dysfunction. We have previously demonstrated that an early life immune challenge in the rat, induced by administration of lipopolysaccharide (LPS) on postnatal day (PND) 3 and 5, depletes ovarian follicle reserve long term. Here, we hypothesized that this neonatal immune challenge leads to an increase in peripheral and ovarian inflammatory signaling, contributing to an acute depletion of ovarian follicles. Morphological analysis of neonatal ovaries indicated that LPS administration significantly depleted PND 5 primordial follicle populations and accelerated follicle maturation. LPS exposure upregulated circulating interleukin 6, tumor necrosis factor alpha (TNFa), and C-reactive protein on PND 5, and upregulated ovarian mRNA expression of Tnfa, mitogen-activated protein kinase 8 (Mapk8/Jnk1), and growth differentiation factor 9 (Gdf9) (P < 0.05). Mass spectrometry and cell signaling pathway analysis indicated upregulation of cellular pathways associated with acute phase signaling, and cellular survival and assembly. Apoptosis assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling indicated significantly increased positive staining in the ovaries of LPS-treated neonates. These findings suggest that increased proinflammatory signaling within the neonatal ovary may be responsible for the LPS-induced depletion of the primordial follicle pool. These findings also have implications for female reproductive health, as the ovarian reserve is a major determinate of female reproductive longevity.
Collapse
Affiliation(s)
- Erin A Fuller
- Laboratory of Neuroimmunology, Priority Research Centre for Brain and Mental Health Research, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Jessie M Sutherland
- School of Environmental and Life Sciences, Priority Research Centre in Chemical Biology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kate A Redgrove
- School of Environmental and Life Sciences, Priority Research Centre in Chemical Biology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Lauren Harms
- Laboratory of Neuroimmunology, Priority Research Centre for Brain and Mental Health Research, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, Priority Research Centre in Chemical Biology, University of Newcastle, Callaghan, New South Wales, Australia.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Deborah M Hodgson
- Laboratory of Neuroimmunology, Priority Research Centre for Brain and Mental Health Research, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
21
|
Ma F, Kouzoukas DE, Meyer-Siegler KL, Hunt DE, Leng L, Bucala R, Vera PL. Macrophage migration inhibitory factor mediates protease-activated receptor 4-induced bladder pain through urothelial high mobility group box 1. Physiol Rep 2018; 5:5/24/e13549. [PMID: 29263120 PMCID: PMC5742707 DOI: 10.14814/phy2.13549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) mediates pain although the mechanisms are not well understood. Urothelial activation of protease activated receptor 4 (PAR4) results in urothelial MIF release, urothelial high mobility group box 1 (HMGB1) release and bladder pain in mice without bladder inflammation. All three effects are prevented by MIF inhibition while intravesical disulfide HMGB1 alone can induce bladder pain. This study utilizes genetic MIF deletion to determine whether MIF mediates PAR4‐induced bladder pain and is upstream of HMGB1‐induced bladder pain. Wild type (C57/BL6) and MIF knockout (KO) mice were treated with intravesical PAR4 activating peptide or disulfide HMGB1 and tested for abdominal mechanical hypersensitivity at baseline (before treatment) and 24 h after injection. Micturition parameters and bladder histology were examined after behavioral test. Real‐time PCR and western blotting measured HMGB1 mRNA and protein levels in the bladders of naïve wild type and MIF KO mice, while immunofluorescence measured HMGB1 protein levels in the urothelium of both strains. Intravesical PAR4 activation resulted in abdominal mechanical hypersensitivity in wild‐type mice but not MIF KO mice. Intravesical disulfide HMGB1 induced abdominal mechanical hypersensitivity in both strains. Neither treatment resulted in significant changes in micturition or bladder histology in either strain. HMGB1 mRNA and protein levels were higher in MIF KO mouse bladders and the urothelium of MIF KO bladder had greater immunostaining than the wild‐type strain. MIF is a pivotal molecule mediating PAR4‐induced bladder pain and regulating urothelial HMGB1 production and release to elicit bladder pain.
Collapse
Affiliation(s)
- Fei Ma
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky.,Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Dimitrios E Kouzoukas
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky.,Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | | | - David E Hunt
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky
| | - Lin Leng
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Richard Bucala
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Pedro L Vera
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky .,Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Surgery, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
22
|
Ma C, Ying Y, Zhang T, Zhang W, Peng H, Cheng X, Xu L, Tong H. Establishment of a prediction model of changing trends in cardiac hypertrophy disease based on microarray data screening. Exp Ther Med 2016; 11:1734-1740. [PMID: 27168795 PMCID: PMC4840528 DOI: 10.3892/etm.2016.3105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/15/2016] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to construct a mathematical model to predict the changing trends of cardiac hypertrophy at gene level. Microarray data were downloaded from Gene Expression Omnibus database (accession, GSE21600), which included 35 samples harvested from the heart of Wistar rats on postoperative days 1 (D1 group), 6 (D6 group) and 42 (D42 group) following aorta ligation and sham operated Wistar rats, respectively. Each group contained six samples, with the exception of the samples harvested from the aorta ligated group after 6 days, where n=5. Differentially expressed genes (DEGs) were identified using a Limma package in R. Hierarchical clustering analysis was performed on common DEGs in order to construct a linear equation between the D1 and D42 groups, using linear discriminant analysis. Subsequent verification was performed using receiver operating characteristic (ROC) curve and the measurement data at day 42. A total of 319, 44 and 57 DEGs were detected in D1, D6 and D42 sample groups, respectively. AKIP1, ANKRD23, LTBP2, TGF-β2 and TNFRSF12A were identified as common DEGs in all groups. The predicted linear equation between D1 and D42 group was calculated to be y=1.526×-186.671. Assessment of the ROC curve demonstrated that the area under the curve was 0.831, with a specificity and sensitivity of 0.8. As compared with the predictive and measurement data at day 42, the consistency of the two sets of data was 76.5%. In conclusion, the present model may contribute to the early prediction of changing trends in cardiac hypertrophy disease at gene level.
Collapse
Affiliation(s)
- Caiyan Ma
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Yongjun Ying
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Tianjie Zhang
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Wei Zhang
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Hui Peng
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Xufeng Cheng
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Lin Xu
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Hong Tong
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
23
|
Kashyap M, Pore S, Yoshimura N, Tyagi P. Constitutive expression Of NGF And P75(NTR) affected by bladder distension and NGF antisense treatment. Life Sci 2016; 148:93-8. [PMID: 26855002 DOI: 10.1016/j.lfs.2016.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 12/16/2022]
Abstract
AIMS It is known that bladder exposure to noxious stimuli elicits nerve growth factor (NGF) expression with region wise differences. Here, we investigated the effect of bladder distension (cystometry) and bladder wall injection of NGF antisense oligonucleotide (ODN) together as well as separately on spontaneous (constitutive) expression of NGF and its cognate p75 neurotrophin receptor (p75(NTR)). METHOD Under isoflurane anesthesia, either 15μg of protamine sulfate (vehicle) alone or complexed with 1.5μg of NGF antisense or scrambled ODN was injected (10μL) at 4 sites in bladder wall of 24 adult female Sprague-Dawley rats and 6 rats were left untreated (n=30). Under urethane anesthesia, cystometry (CMG) was performed in treated and control rats. Fluorescent ODN and NGF/p75(NTR) expression was localized in harvested tissue. KEY FINDINGS Complexation of ODN with protamine was essential for the retention of ODN in bladder tissue as the uncomplexed ODN was untraceable after injection. Bladder distension from CMG raised the expression of NGF and p75(NTR) relative to CMG naïve rats. The groups treated with vehicle, scrambled and antisense ODN were indistinct with regard to CMG parameters, but the intense immunoreactivity of NGF and p75(NTR) seen in the vehicle and scrambled ODN groups was reduced following treatment with NGF antisense. SIGNIFICANCE The constitutive expression of NGF and p75(NTR) is responsive to bladder distension and administration of NGF antisense. Complexation with protamine reduces the clearance of ODN and demonstrates the potential of ODN nanoparticles as an option for reducing the inducible NGF expression in OAB patients following intradetrusor injection.
Collapse
Affiliation(s)
- Mahendra Kashyap
- Department of Urology, University of Pittsburgh, Pittsburgh, United States
| | - Subrata Pore
- Department of Urology, University of Pittsburgh, Pittsburgh, United States
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, Pittsburgh, United States
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, United States.
| |
Collapse
|
24
|
Saban R. Angiogenic factors, bladder neuroplasticity and interstitial cystitis-new pathobiological insights. Transl Androl Urol 2016; 4:555-62. [PMID: 26816854 PMCID: PMC4708555 DOI: 10.3978/j.issn.2223-4683.2015.08.05] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is essential for normal embryonic development, and maintenance of adult vascular function. Originally described as a vascular permeability factor, VEGF alters tight cell junctions and contributes to maintenance of bladder permeability. VEGF and its receptors are not only expressed in bladder blood vessels but also in apical cells and intramural ganglia. VEGF receptors are fundamentally altered by inflammation and bladder diseases such as interstitial cystitis (IC). Experimental results indicate that VEGF exerts direct effects on bladder nerve density and function. Regardless of the etiology or initiating cause for IC, it is hypothesized that the urinary bladder responds to injury by increasing the production of VEGF that acts initially as a survival mechanism. However, VEGF also has the capacity to increase vascular permeability leading to glomerulations, edema, and inflammation. Moreover, due to elevated numbers of VEGF receptors in the urothelium, the increased levels of VEGF further increase bladder permeability and establish a vicioCus cycle of disease pathophysiology.
Collapse
Affiliation(s)
- Ricardo Saban
- 1 University Anhembi Morumbi, S.Paulo, SP 03164-000, Brazil ; 2 Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
25
|
Domingos-Pereira S, Hojeij R, Reggi E, Derré L, Chevalier MF, Romero P, Jichlinski P, Nardelli-Haefliger D. Local Salmonella immunostimulation recruits vaccine-specific CD8 T cells and increases regression of bladder tumor. Oncoimmunology 2015; 4:e1016697. [PMID: 26140240 DOI: 10.1080/2162402x.2015.1016697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 12/13/2022] Open
Abstract
The efficacy of antitumoral responses can be increased using combinatorial vaccine strategies. We recently showed that vaccination could be optimized by local administration of diverse molecular or bacterial agents to target and augment antitumoral CD8 T cells in the genital mucosa (GM) and increase regression of cervical cancer in an animal model. Non muscle-invasive bladder cancer is another disease that is easily amenable to local therapies. In contrast to data obtained in the GM, in this study we show that intravesical (IVES) instillation of synthetic toll-like receptor (TLR) agonists only modestly induced recruitment of CD8 T cells to the bladder. However, IVES administration of Ty21a, a live bacterial vaccine against typhoid fever, was much more effective and increased the number of total and vaccine-specific CD8 T cells in the bladder approximately 10 fold. Comparison of chemokines induced in the bladder by either CpG (a TLR-9 agonist) or Ty21a highlighted the preferential increase in complement component 5a, CXCL5, CXCL2, CCL8, and CCL5 by Ty21a, suggesting their involvement in the attraction of T cells to the bladder. IVES treatment with Ty21a after vaccination also significantly increased tumor regression compared to vaccination alone, resulting in 90% survival in an orthotopic murine model of bladder cancer expressing a prototype tumor antigen. Our data demonstrate that combining vaccination with local immunostimulation may be an effective treatment strategy for different types of cancer and also highlight the great potential of the Ty21a vaccine, which is routinely used worldwide, in such combinatorial therapies.
Collapse
Key Words
- BCG, Bacillus Calmette Guerin
- BMDC, bone marrow-derived dendritic cell
- C5a, complement component 5a
- ESL, E-selectin ligands
- GM, genital mucosa
- IVAG, intravaginal
- IVES, intravesical
- NMIBC, non-muscle invasive bladder cancer
- PBS, phosphate buffered saline
- PE, phycoerythrin
- PIC, poly (I:C)
- SEM, standard error of the mean
- Salmonella Ty21a
- TLR, toll-like receptor
- TUR, transurethral resection
- bacterial immunostimulant
- bladder cancer
- combinatorial therapy
- s.c., subcutaneously
- therapeutic vaccination
Collapse
Affiliation(s)
| | - Rim Hojeij
- Dept. Urology; Lausanne University Hospital (CHUV); Lausanne, Switzerland
| | - Erica Reggi
- Dept. Urology; Lausanne University Hospital (CHUV); Lausanne, Switzerland
| | - Laurent Derré
- Dept. Urology; Lausanne University Hospital (CHUV); Lausanne, Switzerland
| | | | - Pedro Romero
- Ludwig Center for Cancer Research of University of Lausanne ; Lausanne, Switzerland
| | - Patrice Jichlinski
- Dept. Urology; Lausanne University Hospital (CHUV); Lausanne, Switzerland
| | | |
Collapse
|
26
|
Oh S, Song S, Dasgupta N, Grabowski G. The analytical landscape of static and temporal dynamics in transcriptome data. Front Genet 2014; 5:35. [PMID: 24600473 PMCID: PMC3929947 DOI: 10.3389/fgene.2014.00035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/30/2014] [Indexed: 12/16/2022] Open
Abstract
Interpreting gene expression profiles often involves statistical analysis of large numbers of differentially expressed genes, isoforms, and alternative splicing events at either static or dynamic spectrums. Reduced sequencing costs have made feasible dense time-series analysis of gene expression using RNA-seq; however, statistical methods in the context of temporal RNA-seq data are poorly developed. Here we will review current methods for identifying temporal changes in gene expression using RNA-seq, which are limited to static pairwise comparisons of time points and which fail to account for temporal dependencies in gene expression patterns. We also review recently developed very few number of temporal dynamic RNA-seq specific methods. Application and development of RNA-specific temporal dynamic methods have been continuously under the development, yet, it is still in infancy. We fully cover microarray specific temporal methods and transcriptome studies in initial digital technology (e.g., SAGE) between traditional microarray and new RNA-seq.
Collapse
Affiliation(s)
- Sunghee Oh
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Seongho Song
- Department of Mathematical Sciences, McMicken College of Arts and Sciences, University of Cincinnati Cincinnati, OH, USA
| | - Nupur Dasgupta
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Gregory Grabowski
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| |
Collapse
|
27
|
Evaluation of selective cannabinoid CB(1) and CB(2) receptor agonists in a mouse model of lipopolysaccharide-induced interstitial cystitis. Eur J Pharmacol 2014; 729:67-74. [PMID: 24561047 DOI: 10.1016/j.ejphar.2014.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/22/2023]
Abstract
Interstitial cystitis is a debilitating bladder inflammation disorder. To date, the understanding of the causes of interstitial cystitis remains largely fragmentary and there is no effective treatment available. Recent experimental results have shown a functional role of the endocannabinoid system in urinary bladder. In this study, we evaluated the anti-inflammatory effect of selective cannabinoid CB1 and CB2 receptor agonists in a mouse model of interstitial cystitis. Bladder inflammation was induced in mice by lipopolysaccharide (LPS) and whole bladders were removed 24h later. LPS induced a significant increase of the contractile amplitude in spontaneous activity and a hypersensitivity to exogenous acetylcholine-induced contraction of whole-isolated bladder. Next, we evaluated the anti-inflammatory activity of cannabinoidergic compounds by pretreating mice with CB1 or CB2 selective agonist compounds, respectively ACEA and JWH015. Interestingly, JWH015, but not ACEA, antagonized LPS-induced bladder inflammation. Additionally, anti-inflammatory activity was studied by evaluation, leukocytes mucosa infiltration, myeloperoxidase activity, and mRNA expression of pro-inflammatory interleukin (IL-1α and IL-1β), tumor necrosis factor-alpha (TNF-α) and cannabinoid CB1 and CB2 receptors. JWH015 significantly decreased leukocytes infiltration in both submucosa and mucosa, as well as the myeloperoxydase activity, in LPS treated mice. JWH015 reduced mRNA expression of IL-1α, IL-1β, and TNF-α. LPS treatment increased expression of bladder CB2 but not CB1 mRNA. Taken together, these findings strongly suggest that modulation of the cannabinoid CB2 receptors might be a promising therapeutic strategy for the treatment of bladder diseases and conditions characterized by inflammation, such as interstitial cystitis.
Collapse
|
28
|
Tyagi P, Kashyap MP, Kawamorita N, Yoshizawa T, Chancellor M, Yoshimura N. Intravesical liposome and antisense treatment for detrusor overactivity and interstitial cystitis/painful bladder syndrome. ISRN PHARMACOLOGY 2014; 2014:601653. [PMID: 24527221 PMCID: PMC3914518 DOI: 10.1155/2014/601653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022]
Abstract
Purpose. The following review focuses on the recent advancements in intravesical drug delivery, which brings added benefit to the therapy of detrusor overactivity and interstitial cystitis/painful bladder syndrome (IC/PBS). Results. Intravesical route is a preferred route of administration for restricting the action of extremely potent drugs like DMSO for patients of interstitial cystitis/painful bladder syndrome (IC/PBS) and botulinum toxin for detrusor overactivity. Patients who are either refractory to oral treatment or need to mitigate the adverse effects encountered with conventional routes of administration also chose this route. Its usefulness in some cases can be limited by vehicle (carrier) toxicity or short duration of action. Efforts have been underway to overcome these limitations by developing liposome platform for intravesical delivery of biotechnological products including antisense oligonucleotides. Conclusions. Adoption of forward-thinking approaches can achieve advancements in drug delivery systems targeted to future improvement in pharmacotherapy of bladder diseases. Latest developments in the field of nanotechnology can bring this mode of therapy from second line of treatment for refractory cases to the forefront of disease management.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, University of Pittsburgh, PA 15213, USA
| | | | | | | | - Michael Chancellor
- Department of Urology, William Beaumont School of Medicine, Royal oak, MI 48073, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, PA 15213, USA
| |
Collapse
|
29
|
Kashyap M, Kawamorita N, Tyagi V, Sugino Y, Chancellor M, Yoshimura N, Tyagi P. Down-regulation of nerve growth factor expression in the bladder by antisense oligonucleotides as new treatment for overactive bladder. J Urol 2013; 190:757-64. [PMID: 23454160 PMCID: PMC3734554 DOI: 10.1016/j.juro.2013.02.090] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 12/19/2022]
Abstract
PURPOSE Nerve growth factor over expression in the bladder has a role in overactive bladder symptoms via the mediation of functional changes in bladder afferent pathways. We studied whether blocking nerve growth factor over expression in bladder urothelium by a sequence specific gene silencing mechanism would suppress bladder overactivity and chemokine expression induced by acetic acid. MATERIALS AND METHODS Female Sprague-Dawley® rats anesthetized with isoflurane were instilled with 0.5 ml saline, scrambled or TYE™ 563 labeled antisense oligonucleotide targeting nerve growth factor (12 μM) alone or complexed with cationic liposomes for 30 minutes. The efficacy of nerve growth factor antisense treatments for acetic acid induced bladder overactivity was assessed by cystometry. Bladder nerve growth factor expression levels and cellular distribution were quantified by immunofluorescence staining and enzyme-linked immunosorbent assay. Effects on bladder chemokine expression were measured by Luminex® xMAP® analysis. RESULTS Liposomes were needed for bladder uptake of oligonucleotide, as seen by the absence of bright red TYE 563 fluorescence in rats instilled with oligonucleotide alone. At 24 hours after liposome-oligonucleotide treatment baseline bladder activity during saline infusion was indistinct in the sham and antisense treated groups with a mean ± SEM intercontraction interval of 348 ± 55 and 390 ± 120 seconds, respectively. Acetic acid induced bladder overactivity was shown by a decrease in the intercontraction interval to a mean of 33.2% ± 4.0% of baseline in sham treated rats. However, the reduction was blunted to a mean of 75.8% ± 3.4% of baseline in rats treated with liposomal antisense oligonucleotide (p <0.05). Acetic acid induced increased nerve growth factor in the urothelium of sham treated rats, which was decreased by antisense treatment, as shown by enzyme-linked immunosorbent assay and reduced nerve growth factor immunoreactivity in the urothelium. Increased nerve growth factor in bladder tissue was associated with sICAM-1, sE-selectin, CXCL-10 and 1, leptin, MCP-1 and vascular endothelial growth factor over expression, which was significantly decreased by nerve growth factor antisense treatment (p <0.01). CONCLUSIONS Acetic acid induced bladder overactivity is associated with nerve growth factor over expression in the urothelium and with chemokine up-regulation. Treatment with liposomal antisense suppresses bladder overactivity, and nerve growth factor and chemokine expression. Local suppression of nerve growth factor in the bladder could be an attractive approach for overactive bladder. It would avoid the systemic side effects that may be associated with nonspecific blockade of nerve growth factor expression.
Collapse
Affiliation(s)
| | | | - Vikas Tyagi
- Departments of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, and William Beaumont Oakland University School of Medicine (VT, MC), Royal Oak, Michigan
| | - Yoshio Sugino
- Departments of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, and William Beaumont Oakland University School of Medicine (VT, MC), Royal Oak, Michigan
| | | | - Naoki Yoshimura
- Departments of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, and William Beaumont Oakland University School of Medicine (VT, MC), Royal Oak, Michigan
| | - Pradeep Tyagi
- Correspondence: Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (telephone: 412-692-4119; FAX: 412-692-4380; )
| |
Collapse
|
30
|
Stemler KM, Crock LW, Lai HH, Mills JC, Gereau RW, Mysorekar IU. Protamine sulfate induced bladder injury protects from distention induced bladder pain. J Urol 2013; 189:343-51. [PMID: 23174261 PMCID: PMC3662487 DOI: 10.1016/j.juro.2012.08.189] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 12/21/2022]
Abstract
PURPOSE Bladder pain is a debilitating symptom of many urological conditions. There is no generally effective treatment. Abnormal urothelial turnover is common to multiple disease states but the specific components of urothelial injury and the resulting molecular signals that lead to bladder pain are unknown. We examined mouse models of bladder injury induced by uropathogenic Escherichia coli, protamine sulfate (Sigma®) and bacterial lipopolysaccharide to identify cellular and molecular correlates underlying pain sensitization in response to the stimuli. MATERIALS AND METHODS C57BL/6 female mice (Jackson Laboratory, Bar Harbor, Maine) were given intravesicular protamine sulfate, lipopolysaccharide or uropathogenic E. coli. The impact of each on nociception was determined by measuring the evoked visceromotor response to bladder distention 24 hours after inoculation. Levels of pyuria and tissue inflammation were examined by urinary cytology and tissue histology. Quantitative polymerase chain reaction and gene expression analysis were used to identify injury profiles associated with nociception. RESULTS Protamine sulfate treatment was significantly analgesic upon bladder distention. Protamine treated bladders did not show pyuria or extensive tissue damage. Protamine injury was associated with a global decrease in the expression of inflammation associated genes. In contrast, uropathogenic E. coli injury significantly increased the nociceptive response to bladder distention. Lipopolysaccharide treatment did not affect nociception. Finally, injury induced expression of inflammation associated genes correlated with nociceptive responses. CONCLUSIONS Protamine treatment of the bladder is analgesic and tissue protective, and it suppresses the inflammatory cytokine expression normally associated with nociception. Also, the injury modalities that result in differential tissue response patterns provide an innovative method for identifying mediators of visceral pain.
Collapse
Affiliation(s)
- Kristina M. Stemler
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Lara W. Crock
- Washington University Pain Center, Department of Anesthesiology, Surgery, Washington University School of Medicine, St. Louis, MO, 63110
| | - H. Henry Lai
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110
| | - Jason C. Mills
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110
| | - Robert W. Gereau
- Washington University Pain Center, Department of Anesthesiology, Surgery, Washington University School of Medicine, St. Louis, MO, 63110
| | - Indira U. Mysorekar
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110
| |
Collapse
|
31
|
El-Mosalamy H, Salman TM, Ashmawey AM, Osama N. Role of chronic E. coli infection in the process of bladder cancer- an experimental study. Infect Agent Cancer 2012; 7:19. [PMID: 22873280 PMCID: PMC3511874 DOI: 10.1186/1750-9378-7-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/30/2012] [Indexed: 12/22/2022] Open
Abstract
Background Bladder cancer is a common malignancy in Egypt. A history of urinary tract infection can be considered as a risk factor for bladder cancer. Escherichia coli (E. coli) infection is responsible for 70% of urinary tract infection. This study aimed to evaluate the role of chronic E. coli infection during bladder carcinogenesis. In order to achieve this aim, we investigated the histopathological changes in bladder tissue and measured the level of nuclear factor kappa p65 (NF-κBp65), Bcl-2 and interleukin 6 (IL-6) in four groups each consisting of 25 male albino rats except of control group consisting of 20 rats. The first group was normal control group, the second group was infected with E. coli, the third group was administered nitrosamine precursor, and the forth group was infected with E. coli and administered nitrosamine precursor. Results The histopathological examination revealed that E. coli infected group was able alone to produce some histopathological changes in bladder tissue and that nitrosamine precursor plus E. coli group showed highest incidences of urinary bladder lesions than the nitrosamine precursor group. NF-κBp65, Bcl-2 and IL-6 levels were significantly higher in nitrosamine precursor plus E. coli group than the other groups. Conclusion These findings suggested that urinary bladder infection by E. coli may play a major additive and synergistic role during bladder carcinogenesis.
Collapse
Affiliation(s)
- Hala El-Mosalamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | | | | | | |
Collapse
|
32
|
Wan H, Yuan Y, Liu J, Chen G. Pioglitazone, a PPAR-γ activator, attenuates the severity of cerulein-induced acute pancreatitis by modulating early growth response-1 transcription factor. Transl Res 2012; 160:153-61. [PMID: 22677361 DOI: 10.1016/j.trsl.2012.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/17/2012] [Accepted: 02/06/2012] [Indexed: 01/15/2023]
Abstract
The purpose of this study was to test the hypothesis that activation of endogenous peroxisome proliferator-activated receptor (PPARγ) inhibits induction of early growth response factor-1 (Egr-1), which is rapidly induced in the pancreas following cerulein intraperitoneal injection. Acute pancreatitis was induced in mice by hourly intraperitoneal injection of cerulein. Pioglitazone was administered prophylactically and pancreatic inflammation was assessed. AR42J cells were stimulated with caerulein 10⁻⁸ M co-incubated in presence of different concentration of pioglitazone. The expression of PPARγ, Egr-1, and the target genes of Egr-1 were studied by real-time reverse transcriptase polymerase chain reaction (PCR), Western blot, and immunohistochemistry. In vitro, a PPAR-γ activator (pioglitazone) strikingly diminished Egr-1 mRNA and protein expression corresponding to Egr-1. In vivo, treatment with pioglitazone prior to the intraperitoneal injection of cerulein induction of Egr-1 and its target genes such as, monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein-1 (MIP-1). The inhibitory effect of pioglitazone on Egr-1 expression induced by cerulein was almost fully restored by GW9662. Activation of PPAR-γ suppressed the activation of Egr-1 and its inflammatory gene targets and provided potent protection against pancreas injury. These data suggest a new mechanism in which PPAR-γ activation may decrease tissue inflammation in response to a cerulein insult.
Collapse
Affiliation(s)
- Hongyu Wan
- Department of Gastroenterology, Shanghai Minhang District Central Hospital, Shanghai, China
| | | | | | | |
Collapse
|
33
|
Robinson KG, Nie T, Baldwin A, Yang E, Kiick KL, Akins RE. Differential effects of substrate modulus on human vascular endothelial, smooth muscle, and fibroblastic cells. J Biomed Mater Res A 2012; 100:1356-67. [PMID: 22374788 PMCID: PMC3351091 DOI: 10.1002/jbm.a.34075] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 12/18/2022]
Abstract
Regenerative medicine approaches offer attractive alternatives to standard vascular reconstruction; however, the biomaterials to be used must have optimal biochemical and mechanical properties. To evaluate the effects of biomaterial properties on vascular cells, heparinized poly(ethylene glycol) (PEG)-based hydrogels of three different moduli, 13.7, 5.2, and 0.3 kPa, containing fibronectin and growth factor were utilized to support the growth of three human vascular cell types. The cell types exhibited differences in attachment, proliferation, and gene expression profiles associated with the hydrogel modulus. Human vascular smooth muscle cells demonstrated preferential attachment on the highest-modulus hydrogel, adventitial fibroblasts demonstrated preferential growth on the highest-modulus hydrogel, and human umbilical vein endothelial cells demonstrated preferential growth on the lowest-modulus hydrogel investigated. Our studies suggest that the growth of multiple vascular cell types can be supported by PEG hydrogels and that different populations can be controlled by altering the mechanical properties of biomaterials.
Collapse
Affiliation(s)
- Karyn G. Robinson
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Ting Nie
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| | - Aaron Baldwin
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| | - Elaine Yang
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19716, USA
| | - Robert E. Akins
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| |
Collapse
|
34
|
Kowalewska PM, Burrows LL, Fox-Robichaud AE. Intravital microscopy of the murine urinary bladder microcirculation. Microcirculation 2012; 18:613-22. [PMID: 21790840 DOI: 10.1111/j.1549-8719.2011.00123.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To establish an in vivo mouse model of the urinary bladder microcirculation, and characterize the molecular mechanisms of endotoxin-induced leukocyte recruitment. METHODS The murine model was adapted from a technique previously reported for the rat. Mouse bladder microcirculation was observed using intravital microscopy, four hours after intravesical challenge with lipopolysaccharide (LPS) and leukocyte-endothelial interactions were examined. Molecular mechanisms of leukocyte recruitment were identified using antibodies to adhesion molecules and chemokines. RESULTS LPS from Escherichia coli administered intravesically resulted in a significant increase in leukocyte adhesion and rolling at four hours post stimulation. LPS from Pseudomonas aeruginosa administered at similar doses resulted in a significant, but lower increase in leukocyte adhesion after four hours compared with E. coli LPS. Leukocyte adhesion within the bladder microcirculation was dependent on α(4) -integrins and ICAM-1, whereas leukocyte rolling was P-selectin dependent, but α(4) -integrin independent. Blockade of MIP-2 and KC did not alter leukocyte-endothelial interactions. The bladder endothelium expressed P-selectin, ICAM-1, VCAM-1, MIP-2, and MCP-1. Only VCAM-1 endothelial expression was significantly increased after LPS stimulation. CONCLUSION The mouse model of the urinary bladder microcirculation is suitable for the study of inflammatory responses during urinary tract infection (UTI) in vivo.
Collapse
|
35
|
Leviton A, Allred EN, Yamamoto H, Fichorova RN. Relationships among the concentrations of 25 inflammation-associated proteins during the first postnatal weeks in the blood of infants born before the 28th week of gestation. Cytokine 2011; 57:182-90. [PMID: 22133344 DOI: 10.1016/j.cyto.2011.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/14/2011] [Accepted: 11/01/2011] [Indexed: 01/25/2023]
Abstract
BACKGROUND Inflammation appears to be involved in processes leading to organ damage in preterm newborns, yet little is known about the relationships among elevated concentrations of inflammation-associated proteins in the blood of preterm newborns. METHODS In this exploratory study, we used an electrochemiluminescence method to measure 25 proteins in blood obtained on postnatal day 1 (range 1-3), day 7 (range 5-8), and day 14 (range 12-15) from 939 children born before the 28th week of gestation and evaluated to what extent those whose concentration of each protein was elevated (defined as in the highest quartile for gestational age and day the specimen was obtained) also had an elevated concentration of every other protein the same day or on a day 1 or 2 weeks later (p<.0001). RESULTS On each of the 3 days assessed, elevated concentrations of 17 proteins were associated with elevated concentrations of 15 or more of the other 24 proteins. VEGF, VEGF-R1, VEGF-R2 were among these proteins, while IGFBP-1 was associated with 13 other proteins on day 7. An elevated concentration of eight proteins on day 1 predicted an elevated concentration of 10 or more proteins on day 7, while an elevated concentration of only two proteins on day 7 were associated with elevated concentrations of 10 or more proteins on day-14. Few associations were seen between days 1 and 14. CONCLUSIONS/INFERENCES: Inflammation is a diffuse process in ELGANs, with elevated concentrations of cytokines, chemokines, adhesion molecules, matrix metalloproteinases, a growth factor and its receptors, as well as a growth factor binding protein associated with each other the same day, as well as on subsequent days.
Collapse
Affiliation(s)
- Alan Leviton
- Department of Neurology, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115-5724, USA.
| | | | | | | | | |
Collapse
|
36
|
Ochodnický P, Cruz CD, Yoshimura N, Michel MC. Nerve growth factor in bladder dysfunction: Contributing factor, biomarker, and therapeutic target. Neurourol Urodyn 2011; 30:1227-41. [DOI: 10.1002/nau.21022] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/21/2010] [Indexed: 12/11/2022]
|
37
|
Girard BM, Cheppudira BP, Malley SE, Schutz KC, May V, Vizzard MA. Increased expression of interleukin-6 family members and receptors in urinary bladder with cyclophosphamide-induced bladder inflammation in female rats. Front Neurosci 2011; 5:20. [PMID: 21373362 PMCID: PMC3044559 DOI: 10.3389/fnins.2011.00020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/09/2011] [Indexed: 12/12/2022] Open
Abstract
Recent studies suggest that janus-activated kinases-signal transducer and activator of transcription signaling pathways contribute to increased voiding frequency and referred pain of cyclophosphamide (CYP)-induced cystitis in rats. Potential upstream chemical mediator(s) that may be activated by CYP-induced cystitis to stimulate JAK/STAT signaling are not known in detail. In these studies, members of the interleukin (IL)-6 family of cytokines including, leukemia inhibitory factor (LIF), IL-6, and ciliary neurotrophic factor (CNTF) and associated receptors, IL-6 receptor (R) α, LIFR, and gp130 were examined in the urinary bladder in control and CYP-treated rats. Cytokine and receptor transcript and protein expression and distribution were determined in urinary bladder after CYP-induced cystitis using quantitative, real-time polymerase chain reaction (Q-PCR), western blotting, and immunohistochemistry. Acute (4 h; 150 mg/kg; i.p.), intermediate (48 h; 150 mg/kg; i.p.), or chronic (75 mg/kg; i.p., once every 3 days for 10 days) cystitis was induced in adult, female Wistar rats with CYP treatment. Q-PCR analyses revealed significant (p ≤ 0.01) CYP duration- and tissue- (e.g., urothelium, detrusor) dependent increases in LIF, IL-6, IL-6Rα, LIFR, and gp130 mRNA expression. Western blotting demonstrated significant (p ≤ 0.01) increases in IL-6, LIF, and gp130 protein expression in whole urinary bladder with CYP treatment. CYP-induced cystitis significantly (p ≤ 0.01) increased LIF-immunoreactivity (IR) in urothelium, detrusor, and suburothelial plexus whereas increased gp130-IR was only observed in urothelium and detrusor. These studies suggest that IL-6 and LIF may be potential upstream chemical mediators that activate JAK/STAT signaling in urinary bladder pathways.
Collapse
Affiliation(s)
- Beatrice M Girard
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine Burlington, VT, USA
| | | | | | | | | | | |
Collapse
|
38
|
Shanu A, Parry SN, Wood S, Rodas E, Witting PK. The synthetic polyphenol tert-butyl-bisphenol inhibits myoglobin-induced dysfunction in cultured kidney epithelial cells. Free Radic Res 2011; 44:843-53. [PMID: 20528578 DOI: 10.3109/10715762.2010.485993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract Rhabdomyolysis caused by severe burn releases extracellular myoglobin (Mb) that accumulates in the kidney and urine (maximum [Mb] approximately 50 microM) (termed myoglobinuria). Extracellular Mb can be a pro-oxidant. This study cultured Madin-Darby-canine-kidney-Type-II (MDCK II) cells in the presence of Mb and tested whether supplementation with a synthetic tert-butyl-polyphenol (tert-butyl-bisphenol; t-BP) protects these renal cells from dysfunction. In the absence of t-BP, cells exposed to 0-100 microM Mb for 24 h showed a dose-dependent decrease in ATP and the total thiol (TSH) redox status without loss of viability. Gene expression of superoxide dismutases-1/2, haemoxygenase-1 and tumour necrosis factor increased and receptor-mediated endocytosis of transferrin and monolayer permeability decreased significantly. Supplementation with t-BP before Mb-insult maintained ATP and the TSH redox status, diminished antioxidant/pro-inflammatory gene responses, enhanced monolayer permissiveness and restored transferrin uptake. Overall, bolstering the total antioxidant capacity of the kidney may protect against oxidative stress induced by experimental myoglobinuria.
Collapse
Affiliation(s)
- Anu Shanu
- Discipline of Pathology, Redox Biology Group, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | |
Collapse
|
39
|
Sugiyama M, Kakeji Y, Tsujitani S, Harada Y, Onimaru M, Yoshida K, Tanaka S, Emi Y, Morita M, Morodomi Y, Hasegawa M, Maehara Y, Yonemitsu Y. Antagonism of VEGF by genetically engineered dendritic cells is essential to induce antitumor immunity against malignant ascites. Mol Cancer Ther 2011; 10:540-9. [PMID: 21209070 DOI: 10.1158/1535-7163.mct-10-0479] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant ascitis (MA) is a highly intractable and immunotherapy-resistant state of advanced gastrointestinal and ovarian cancers. Using a murine model of MA with CT26 colon cancer cells, we here determined that the imbalance between the VEGF-A/vascular permeability factor and its decoy receptor, soluble fms-like tryrosine kinase receptor-1 (sFLT-1), was a major cause of MA resistance to dendritic cell (DC)-based immunotherapy. We found that the ratio of VEGF-A/sFLT-1 was increased not only in murine but also in human MA, and F-gene-deleted recombinant Sendai virus (rSeV/dF)-mediated secretion of human sFLT-1 by DCs augmented not only the activity of DCs themselves, but also dramatically improved the survival of tumor-bearing animals associated with enhanced CTL activity and its infiltration to peritoneal tumors. These findings were not seen in immunodeficient mice, indicating that a VEGF-A/sFLT-1 imbalance is critical for determining the antitumor immune response by DC-vaccination therapy against MA.
Collapse
Affiliation(s)
- Masahiko Sugiyama
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Rm 505 Collaborative Research Station II, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Saban MR, Sferra TJ, Davis CA, Simpson C, Allen A, Maier J, Fowler B, Knowlton N, Birder L, Wu XR, Saban R. Neuropilin-VEGF signaling pathway acts as a key modulator of vascular, lymphatic, and inflammatory cell responses of the bladder to intravesical BCG treatment. Am J Physiol Renal Physiol 2010; 299:F1245-56. [PMID: 20861073 DOI: 10.1152/ajprenal.00352.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent findings indicate that VEGF receptors and coreceptors (neuropilins; NRP) are expressed on nonendothelial cells in human bladder urothelium, in one human bladder cancer cell line (J82), and in the mouse bladder urothelium. In addition, VEGFR1, VEGFR2, NRP1, and NRP2 expressions were upregulated in animal models of chronic bladder inflammation induced by four weekly instillations of protease-activated receptors (PAR)-activating peptides or bacillus Calmette-Guérin (BCG) into the mouse bladder. Here, we used four weekly instillations of BCG as a model for chronic bladder inflammation to further investigate whether VEGF receptors and NRPs play a role in the migration of inflammatory cells and inflammation-induced lymphangiogenesis and angiogenesis. For this purpose, we used neutralizing antibodies that were engineered to specifically block the binding of VEGF to NRP (anti-NRP1(B)) and the binding of semaphorins to NRP (anti-NRP1(A)). C57BL/6 mice received intraperitoneal injections of PBS, anti-NRP1(A)- or anti-NRP1(B)-neutralizing antibodies and then were challenged chronically with intravesical PBS or BCG. At the end of chronic challenge period, a fluorescent internalizable tracer, scVEGF/Cy5.5, was administered to all mice and near-infrared fluorescence images were obtained in vivo and in real time. BCG increased the overall accumulation of scVEGF/Cy5.5 in the urinary bladder urothelium and inflammatory cells. In addition, BCG increased the density of blood and lymphatic vessels concomitantly with an upregulation of NRP2 expression in lymphatic vessels. Treatment of the mice with NRP1-neutralizing antibodies dramatically reduced scVEGF/Cy5.5 uptake, polymorphonuclear (myeloperoxidase-positive cells) and dendritic cell (CD11c-positive cells) infiltration, and decreased the overall density of BCG-induced blood and lymphatic vessels. These results implicate NRPs as critical in vivo regulators of the vascular and inflammatory responses to the intravesical administration of BCG.
Collapse
Affiliation(s)
- Marcia R Saban
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gene expression profiles characterize inflammation stages in the acute lung injury in mice. PLoS One 2010; 5:e11485. [PMID: 20628605 PMCID: PMC2900209 DOI: 10.1371/journal.pone.0011485] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 06/08/2010] [Indexed: 01/05/2023] Open
Abstract
Acute Lung Injury (ALI) carries about 50 percent mortality and is frequently associated with an infection (sepsis). Life-support treatment with mechanical ventilation rescues many patients, although superimposed infection or multiple organ failure can result in death. The outcome of a patient developing sepsis depends on two factors: the infection and the pre-existing inflammation. In this study, we described each stage of the inflammation process using a transcriptional approach and an animal model. Female C57BL6/J mice received an intravenous oleic acid injection to induce an acute lung injury (ALI). Lung expression patterns were analyzed using a 9900 cDNA mouse microarray (MUSV29K). Our gene-expression analysis revealed marked changes in the immune and inflammatory response metabolic pathways, notably lipid metabolism and transcription. The early stage (1 hour–1.5 hours) is characterized by a pro-inflammatory immune response. Later (3 hours–4 hours), the immune cells migrate into inflamed tissues through interaction with vascular endothelial cells. Finally, at late stages of lung inflammation (18 hours–24 hours), metabolism is deeply disturbed. Highly expressed pro-inflammatory cytokines activate transcription of many genes and lipid metabolism. In this study, we described a global overview of critical events occurring during lung inflammation which is essential to understand infectious pathologies such as sepsis where inflammation and infection are intertwined. Based on these data, it becomes possible to isolate the impact of a pathogen at the transcriptional level from the global gene expression modifications resulting from the infection associated with the inflammation.
Collapse
|
42
|
Palmitate induced IL-6 and MCP-1 expression in human bladder smooth muscle cells provides a link between diabetes and urinary tract infections. PLoS One 2010; 5:e10882. [PMID: 20526368 PMCID: PMC2878332 DOI: 10.1371/journal.pone.0010882] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 05/08/2010] [Indexed: 01/20/2023] Open
Abstract
Background Urinary tract infections (UTI) are more frequent in type-2 diabetes mellitus patients than in subjects with normal glucose metabolism. The mechanisms underlying this higher prevalence of UTI are unknown. However, cytokine levels are altered in diabetic patients and may thus contribute to the development of UTI. Increased levels of free fatty acids (FFA), as observed in obese patients, can induce IL-6 production in various cell types. Therefore we studied the effects of the free fatty acid palmitate and bacterial lipopolysaccharide (LPS) on interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1) expression and secretion in cultured human bladder smooth muscle cells (hBSMC). Methodology/Principal Findings Biopsies were taken from patients undergoing cystectomy due to bladder cancer. Palmitate or LPS stimulated hBSMC were analysed for the production and secretion of the IL-6, gp80, gp80soluble, gp130, MCP-1, pSTAT3, SOCS3, NF-κB and SHP2 by quantitative PCR, ELISA, Western blotting, and confocal immunofluorescence. In signal transduction inhibition experiments we evaluated the involvement of NF-κB and MEK1 in IL-6 and MCP-1 regulation. Palmitate upregulates IL-6 mRNA expression and secretion via NF-κB dependent pathways in a concentration- and time-dependent manner. MCP-1 was moderately upregulated by palmitate but was strongly upregulated by LPS involving NF-κB and MEK1 dependent pathways. Soluble IL-6 receptor (gp80soluble) was downregulated by palmitate and LPS, while membrane-bound gp80 was moderately upregulated. LPS increased SOCS3 and SHP2, whereas palmitate only induced SOCS3. Secondary finding: most of the IL-6 is secreted. Conclusions/Significance Bacterial infection (LPS) or metabolic alterations (palmitate) have distinct effects on IL-6 expression in hBSMC, (i) short term LPS induced autocrine JAK/STAT signaling and (ii) long-term endocrine regulation of IL-6 by palmitate. Induction of IL-6 in human bladder smooth muscle cells by fatty acids may represent a pathogenetic factor underlying the higher frequency and persistence of urinary tract infections in patients with metabolic diseases.
Collapse
|
43
|
Rudick CN, Billips BK, Pavlov VI, Yaggie RE, Schaeffer AJ, Klumpp DJ. Host-pathogen interactions mediating pain of urinary tract infection. J Infect Dis 2010; 201:1240-9. [PMID: 20225955 DOI: 10.1086/651275] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Pelvic pain is a major component of the morbidity associated with urinary tract infection (UTI), yet the molecular mechanisms underlying UTI-induced pain remain unknown. UTI pain mechanisms probably contrast with the clinical condition of asymptomatic bacteriuria (ASB), characterized by significant bacterial loads without lack symptoms. METHODS A murine UTI model was used to compare pelvic pain behavior elicited by infection with uropathogenic Escherichia coli strain NU14 and ASB strain 83972. RESULTS NU14-infected mice exhibited pelvic pain, whereas mice infected with 83972 did not exhibit pain, similar to patients infected with 83972. NU14-induced pain was not dependent on mast cells, not correlated with bacterial colonization or urinary neutrophils. UTI pain was not influenced by expression of type 1 pili, the bacterial adhesive appendages that induce urothelial apoptosis. However, purified NU14 lipopolysaccharide (LPS) induced Toll-like receptor 4 (TLR4)-dependent pain, whereas 83972 LPS induced no pain. Indeed, 83972 LPS attenuated the pain of NU14 infection, suggesting therapeutic potential. CONCLUSIONS These data suggest a novel mechanism of infection-associated pain that is dependent on TLR4 yet independent of inflammation. Clinically, these findings also provide the rational for probiotic therapies that would minimize the symptoms of infection without reliance on empirical therapies that contribute to antimicrobial resistance.
Collapse
Affiliation(s)
- Charles N Rudick
- Department of Urology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
44
|
Allen AM, Saban R. Model for chronic overexpression of NGF challenges old paradigms: focus on "overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function". Am J Physiol Regul Integr Comp Physiol 2010; 298:R532-3. [PMID: 20089712 DOI: 10.1152/ajpregu.00001.2010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Uropathogenic Escherichia coli-induced inflammation alters mouse urinary bladder contraction via an interleukin-6-activated inducible nitric oxide synthase-related pathway. Infect Immun 2009; 77:3312-9. [PMID: 19470750 DOI: 10.1128/iai.00013-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is the most common cause of urinary tract infection. Elevated blood and urine interleukin-6 (IL-6) levels have been shown in inflammatory urinary tract diseases. The role of IL-6 in mediating the urodynamic dysfunction in response to E. coli-induced urinary tract infection has not yet been fully elucidated. In this study, we investigated the role of IL-6 in the nitric oxide (NO)-triggered alteration of contractile responses in the urinary bladder under an E. coli-induced inflammatory condition. The electrical field stimulation (EFS)-evoked contractions of the isolated detrusor strips, and immunoblotting for detecting protein expression in the bladders was measured short term (1 h) or long term (6 or 24 h) after intraperitoneal injection of E. coli endotoxin (lipopolysaccharide [LPS]) or intravesical instillation of human pyelonephritogenic E. coli-J96 (O4:K6) strain or LPS into mice. IL-6 and NO productions were increased in the urinary bladders of mice 1 to 24 h after LPS or E. coli-J96 treatment. Inducible NO synthase (iNOS) expression and protein kinase C (PKC) activation and EFS-evoked detrusor contractions were increased in the bladders at 6 h after LPS or E. coli-J96 treatment, which could be reversed by anti-IL-6 antibody and iNOS inhibitor aminoguanidine. At 1 h after LPS administration, bladder NO generation, endothelial NOS expression, and EFS-evoked detrusor contractions were effectively increased, whereas anti-IL-6 antibody could not reverse these LPS-induced responses. These results indicate that IL-6 may play an important role in the iNOS/NO-triggered PKC-activated contractile response in urinary bladder during E. coli or LPS-induced inflammation.
Collapse
|
46
|
Elgavish A. Epigenetic Reprogramming: A Possible Etiological Factor in Bladder Pain Syndrome/Interstitial Cystitis? J Urol 2009; 181:980-4. [DOI: 10.1016/j.juro.2008.10.145] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Indexed: 10/21/2022]
Affiliation(s)
- Ada Elgavish
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
47
|
Oleksiewicz MB, Southgate J, Iversen L, Egerod FL. Rat Urinary Bladder Carcinogenesis by Dual-Acting PPARalpha + gamma Agonists. PPAR Res 2009; 2008:103167. [PMID: 19197366 PMCID: PMC2632771 DOI: 10.1155/2008/103167] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/07/2008] [Indexed: 12/25/2022] Open
Abstract
Despite clinical promise, dual-acting activators of PPARalpha and gamma (here termed PPARalpha+gamma agonists) have experienced high attrition rates in preclinical and early clinical development, due to toxicity. In some cases, discontinuation was due to carcinogenic effect in the rat urothelium, the epithelial layer lining the urinary bladder, ureters, and kidney pelvis. Chronic pharmacological activation of PPARalpha is invariably associated with cancer in rats and mice. Chronic pharmacological activation of PPARgamma can in some cases also cause cancer in rats and mice. Urothelial cells coexpress PPARalpha as well as PPARgamma, making it plausible that the urothelial carcinogenicity of PPARalpha+gamma agonists may be caused by receptor-mediated effects (exaggerated pharmacology). Based on previously published mode of action data for the PPARalpha+gamma agonist ragaglitazar, and the available literature about the role of PPARalpha and gamma in rodent carcinogenesis, we propose a mode of action hypothesis for the carcinogenic effect of PPARalpha+gamma agonists in the rat urothelium, which combines receptor-mediated and off-target cytotoxic effects. The proposed mode of action hypothesis is being explored in our laboratories, towards understanding the human relevance of the rat cancer findings, and developing rapid in vitro or short-term in vivo screening approaches to faciliate development of new dual-acting PPAR agonist compounds.
Collapse
Affiliation(s)
| | - Jennifer Southgate
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5YW, UK
| | - Lars Iversen
- Biopharm Toxicology and Safety Pharmacology, Novo Nordisk A/S, 2760 Maalov, Denmark
| | | |
Collapse
|
48
|
Yura RE, Bradley SG, Ramesh G, Reeves WB, Bond JS. Meprin A metalloproteases enhance renal damage and bladder inflammation after LPS challenge. Am J Physiol Renal Physiol 2008; 296:F135-44. [PMID: 18971209 DOI: 10.1152/ajprenal.90524.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Meprin metalloproteases, composed of alpha and/or beta subunits, consist of membrane-bound and secreted forms that are abundantly expressed in proximal tubules of the kidney as well as secreted into the urinary tract. Previous studies indicated that meprin metalloproteases play a role in pathological conditions such as ischemic acute renal failure and urinary tract infection. The aim of this work was to examine the role of meprins in endotoxemic acute renal failure using meprin alpha knockout (alphaKO), meprin beta knockout (betaKO), and wild-type (WT) mice. Differences among the responses of the genotypes were observed as early as 1 h after challenge with 2.5 mg/kg ip Escherichia coli LPS, establishing roles for meprins in the endotoxemic response. Meprin alphaKO mice displayed lower blood urea nitrogen levels and decreased nitric oxide levels, indicative of a decreased systemic response to LPS compared with WT and meprin betaKO mice. Serum cytokine profiles showed lower levels of IL-1beta and TNF-alpha in the meprin alphaKO mice within 3 h after LPS challenge and confirmed a role for meprins in the early phases of the host response. Meprin alphaKO mice were also hyporesponsive to LPS administered to the bladder, exhibiting significantly less bladder edema, leukocyte infiltration, and bladder permeability than WT mice. These data indicate that meprin A contributes to the renal and urogenital pathogenesis of endotoxicity.
Collapse
Affiliation(s)
- Renee E Yura
- Dept. of Biochemistry and Molecular Biology, The Pennsylvania State Univ. College of Medicine, 500 Univ. Drive, H171, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
49
|
Cheppudira BP, Girard BM, Malley SE, Schutz KC, May V, Vizzard MA. Upregulation of vascular endothelial growth factor isoform VEGF-164 and receptors (VEGFR-2, Npn-1, and Npn-2) in rats with cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 2008; 295:F826-36. [PMID: 18632792 DOI: 10.1152/ajprenal.90305.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulation of the VEGF-VEGF receptor system was examined in the urinary bladder after acute (2-48 h) and chronic (10 days) cyclophosphamide (CYP)-induced cystitis. ELISAs demonstrated significant (P < or = 0.01) upregulation of VEGF in whole urinary bladder with acute and chronic CYP-induced cystitis; however, the magnitude of increase was greater after acute (2-4 h) cystitis. Immunohistochemistry for VEGF immunoreactivity revealed a significant (P < or = 0.05) increase in VEGF immunoreactivity in the urothelium, suburothelial vasculature, and detrusor smooth muscle with acute (4 and 48 h) CYP treatment. RT-PCR identified the isoform VEGF-164, the VEGF receptor VEGFR-2, and the VEGF co-receptors neuropilin (Npn)-1 and Npn-2 in the urinary bladder. Quantitative PCR demonstrated upregulation of VEGF-164 transcript with acute and chronic CYP-induced cystitis, but VEGFR-2, Npn-1, and Npn-2 transcripts were upregulated (P < or = 0.01) in whole bladder only with chronic CYP-induced cystitis. Additional studies demonstrated regulation of VEGF transcript expression in the urinary bladder by nerve growth factor (NGF) in a novel line of NGF-overexpressing mice. These studies demonstrated that urinary bladder inflammation and NGF regulate the VEGF-VEGF receptor system in the urinary bladder. Functional role(s) for the VEGF-VEGF receptor system in urinary bladder inflammation remain to be determined.
Collapse
Affiliation(s)
- Bopaiah P Cheppudira
- Department of Neurology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
50
|
Girard BM, Malley SE, Braas KM, Waschek JA, May V, Vizzard MA. Exaggerated expression of inflammatory mediators in vasoactive intestinal polypeptide knockout (VIP-/-) mice with cyclophosphamide (CYP)-induced cystitis. J Mol Neurosci 2008; 36:188-99. [PMID: 18483878 DOI: 10.1007/s12031-008-9084-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/08/2008] [Indexed: 12/18/2022]
Abstract
Vasoactive intestinal polypeptide (VIP) is an immunomodulatory neuropeptide distributed in micturition pathways. VIP(-/-) mice exhibit altered bladder function and neurochemical properties in micturition pathways after cyclophosphamide (CYP)-induced cystitis. Given VIP's role as an anti-inflammatory mediator, we hypothesized that VIP(-/-) mice would exhibit enhanced inflammatory mediator expression after cystitis. A mouse inflammatory cytokine and receptor RT2 profiler array was used to determine regulated transcripts in the urinary bladder of wild type (WT) and VIP(-/-) mice with or without CYP-induced cystitis (150 mg/kg; i.p.; 48 h). Four binary comparisons were made: WT control versus CYP treatment (48 h), VIP(-/-) control versus CYP treatment (48 h), WT control versus VIP(-/-) control, and WT with CYP treatment (48 h) versus VIP(-/-) with CYP treatment (48 h). The genes presented represent (1) greater than 1.5-fold change in either direction and (2) the p value is less than 0.05 for the comparison being made. Several regulated genes were validated using enzyme-linked immunoassays including IL-1beta and CXCL1. CYP treatment significantly (p < or = 0.001) increased expression of CXCL1 and IL-1beta in the urinary bladder of WT and VIP(-/-) mice, but expression in VIP(-/-) mice with CYP treatment was significantly (p < or = 0.001) greater (4.2- to 13-fold increase) than that observed in WT urinary bladder (3.6- to 5-fold increase). The data suggest that in VIP(-/-) mice with bladder inflammation, inflammatory mediators are increased above that observed in WT with CYP. This shift in balance may contribute to increased bladder dysfunction in VIP(-/-) mice with bladder inflammation and altered neurochemical expression in micturition pathways.
Collapse
Affiliation(s)
- Beatrice M Girard
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, VT, USA
| | | | | | | | | | | |
Collapse
|