1
|
Pathophysiologic approach in genetic hypokalemia: An update. ANNALES D'ENDOCRINOLOGIE 2023; 84:298-307. [PMID: 36639120 DOI: 10.1016/j.ando.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023]
Abstract
The pathophysiology of genetic hypokalemia is close to that of non-genetic hypokalemia. New molecular pathways physiologically involved in renal and extrarenal potassium homeostasis have been highlighted. A physiological approach to diagnosis is illustrated here, with 6 cases. Mechanisms generating and sustaining of hypokalemia are discussed. After excluding acute shift of extracellular potassium to the intracellular compartment, related to hypokalemic periodic paralysis, inappropriate kaliuresis (>40mmol/24h) concomitant to hypokalemia indicates renal potassium wasting. Clinical analysis distinguishes hypertension-associated hypokalemia, due to hypermineralocorticism or related disorders. Genetic hypertensive hypokalemia is rare. It includes familial hyperaldosteronism, Liddle syndrome, apparent mineralocorticoid excess,11beta hydroxylase deficiency and Geller syndrome. In case of normo- or hypo-tensive hypokalemia, two etiologies are to be considered: chloride depletion or salt-wasting tubulopathy. Diarrhea chlorea is a rare disease responsible for intestinal chloride depletion. Due to the severity of hypokalemic metabolic alkalosis, this disease can be misdiagnosed as pseudo-Bartter syndrome. Gitelman syndrome is the most frequent cause of genetic hypokalemia. It typically associates renal sodium and potassium wasting, hypomagnesemia, conserved chloride excretion (>40mmol/24h), and low-range calcium excretion (urinary Ca/creatinine ratio<0.20mmol/mmol). Systematic analysis of hydroelectrolytic disorder and dynamic hormonal investigation optimizes indications for and orientation of genotyping of hereditary salt-losing tubulopathy.
Collapse
|
2
|
Du Y, Mou Y, Liu J. Efficiency evaluation and safety monitoring of tailored rapid potassium supplementation strategy for fatal severe hypokalemia. Exp Ther Med 2019; 17:3222-3232. [PMID: 30936997 DOI: 10.3892/etm.2019.7292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/25/2019] [Indexed: 02/05/2023] Open
Abstract
Stringent regulations have been established for the intravenous administration of potassium to avoid hyperkalemia in the clinic. The standard approach, however, often does not work well for treating severe hypokalemia. In the present study, a rabbit model of hyperkalemia was used to develop an tailored rapid potassium supplementation strategy and the effectiveness and safety of this new strategy were assessed. A total of 20 rabbits with induced severe hypokalemia were randomly divided into two equal treatment groups. All of the animals were injected with 3% KCl through the auricular marginal veins by a micro-injection pump; the target serum potassium concentration was 4 mmol/l. The conventional treatment group was administered a continued potassium infusion at the standard infusion rate of 0.4 mmol/kg/h. The tailored rapid supplementation group was treated in two steps: First, a loading dose of potassium was rapidly injected for 5 min and this step was repeated until the serum potassium concentration was increased to 3.5 mmol/l. After this increase in serum potassium concentration, a sustained potassium infusion at a constant dose was performed. Electrocardiogram, blood pressure, respiratory rate, serum potassium concentration, urine volume and vital signs were monitored in real-time. No hyperkalemia occurred in any of the two the groups. However, compared with the conventional group, the tailored rapid group had a significantly shorter duration of potassium infusion and arrhythmia, and a higher survival rate. In conclusion, these results demonstrate that the tailored rapid potassium supplementation strategy shortened the time of hypokalemia and is a safe and better treatment option to remedy life-threatening arrhythmia caused by severe hypokalemia with a high success rate.
Collapse
Affiliation(s)
- Yu Du
- Emergency Department and Intensive Care Unit, West China School of Public Health, No. 4 West China Teaching Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Mou
- Geroscience and Chronic Disease Department, The 8th Municipal People's Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Jin Liu
- Department of Anesthesia and Intensive Care, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
3
|
Fukuda Y, Yamamoto S, Taniguchi Y, Marukawa S, Kurihara H, Nakajima H, Yamasaki T. Relationship between Food-Intake Trends and Estimated Glomerular Filtration Rate in Elderly Patients with Type 2 Diabetes Mellitus. J Nutr Sci Vitaminol (Tokyo) 2019; 64:425-431. [PMID: 30606965 DOI: 10.3177/jnsv.64.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study is to investigate how vegetable and fruit intake trends affect the estimated glomerular filtration rate (eGFR) by analyzing therapeutic diet status in elderly type 2 diabetes mellitus patients. The study included 59 elderly patients with type 2 diabetes mellitus (mean age: 70.1±7.8 y) who had previously received therapeutic education for type 2 diabetes mellitus from a clinical team and were subsequently receiving outpatient treatment. Blood examination data were retrospectively collected from medical records and diet status was investigated using a simplified self-administered diet history questionnaire. Dietary patterns were extracted using principal component analysis, and the relationships with each blood examination data were investigated. Linear regression analysis was then used to examine the intake food groups related to eGFR. Energy intake was 27±9 kcal/kg. Overall, these results were in line with the Guidelines for the Treatment of Diabetes in Japan 2016. As a result of principal component analysis, seven dietary patterns were extracted, and the cumulative contribution ratio of the seven components was 74.0%. Among the dietary patterns, the 6th factor (positive weighting with fruit) for eGFR was a negative prognostic factor (p=0.010). Analysis of food group intake and eGFR indicated that green and yellow vegetables were positive prognostic factors, whereas fruits were negative prognostic factors (both p<0.05). The dietary patterns dependent on green and yellow vegetables and fruit intake appeared to influence eGFR positively and negatively, respectively.
Collapse
Affiliation(s)
- Yasuko Fukuda
- Department of Food Science and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University.,Department of Nutrition Management, Osaka International Cancer Institute
| | - Shumi Yamamoto
- Department of Food Science and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University
| | - Yuko Taniguchi
- Department of Nutrition Management, Osaka International Cancer Institute
| | - Satoko Marukawa
- Department of Endocrinology/Metabolism Internal Medicine, Clinical Examination, Osaka International Cancer Institute
| | - Hiroko Kurihara
- Department of Endocrinology/Metabolism Internal Medicine, Clinical Examination, Osaka International Cancer Institute
| | - Hiromu Nakajima
- Department of Endocrinology/Metabolism Internal Medicine, Clinical Examination, Osaka International Cancer Institute
| | - Tomoyuki Yamasaki
- Department of Endocrinology/Metabolism Internal Medicine, Clinical Examination, Osaka International Cancer Institute
| |
Collapse
|
4
|
Yeung SMH, Vogt L, Rotmans JI, Hoorn EJ, de Borst MH. Potassium: poison or panacea in chronic kidney disease? Nephrol Dial Transplant 2018; 34:175-180. [DOI: 10.1093/ndt/gfy329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022] Open
Affiliation(s)
- Stanley M H Yeung
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
|
6
|
Weiner ID. Roles of renal ammonia metabolism other than in acid-base homeostasis. Pediatr Nephrol 2017; 32:933-942. [PMID: 27169421 PMCID: PMC5107182 DOI: 10.1007/s00467-016-3401-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023]
Abstract
The importance of renal ammonia metabolism in acid-base homeostasis is well known. However, the effects of renal ammonia metabolism other than in acid-base homeostasis are not as widely recognized. First, ammonia differs from almost all other solutes in the urine in that it does not result from arterial delivery. Instead, ammonia is produced by the kidney, and only a portion of the ammonia produced is excreted in the urine, with the remainder returned to the systemic circulation through the renal veins. In normal individuals, systemic ammonia addition is metabolized efficiently by the liver, but in patients with either acute or chronic liver disease, conditions that increase the addition of ammonia of renal origin to the systemic circulation can result in precipitation and/or worsening of hyperammonemia. Second, ammonia appears to serve as an intrarenal paracrine signaling molecule. Hypokalemia increases proximal tubule ammonia production and secretion as well as reabsorption in the thick ascending limb of the loop of Henle, thereby increasing delivery to the renal interstitium and the collecting duct. In the collecting duct, ammonia decreases potassium secretion and stimulates potassium reabsorption, thereby decreasing urinary potassium excretion and enabling feedback correction of the initiating hypokalemia. Finally, the stimulation of renal ammonia metabolism by hypokalemia may contribute to the development of metabolic alkalosis, which in turn can stimulate NaCl reabsorption and contribute to the intravascular volume expansion, increased blood pressure and diuretic resistance that can develop with hypokalemia. The evidence supporting these novel non-acid-base roles of renal ammonia metabolism is discussed in this review.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, PO Box 100224, Gainesville, FL, 32610-0224, USA.
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.
| |
Collapse
|
7
|
Affiliation(s)
- Alan M Weinstein
- Department of Physiology and Biophysics, Department of Medicine, Weill Medical College of Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
8
|
Cil O, Esteva-Font C, Tas ST, Su T, Lee S, Anderson MO, Ertunc M, Verkman AS. Salt-sparing diuretic action of a water-soluble urea analog inhibitor of urea transporters UT-A and UT-B in rats. Kidney Int 2015; 88:311-20. [PMID: 25993324 PMCID: PMC4523423 DOI: 10.1038/ki.2015.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 03/10/2015] [Accepted: 03/26/2015] [Indexed: 11/09/2022]
Abstract
Inhibitors of kidney urea transporter (UT) proteins have potential use as salt-sparing diuretics ('urearetics') with a different mechanism of action than diuretics that target salt transporters. To study UT inhibition in rats, we screened about 10,000 drugs, natural products and urea analogs for inhibition of rat UT-A1. Drug and natural product screening found nicotine, sanguinarine and an indolcarbonylchromenone with IC50 of 10-20 μM. Urea analog screening found methylacetamide and dimethylthiourea (DMTU). DMTU fully and reversibly inhibited rat UT-A1 and UT-B by a noncompetitive mechanism with IC50 of 2-3 mM. Homology modeling and docking computations suggested DMTU binding sites on rat UT-A1. Following a single intraperitoneal injection of 500 mg/kg DMTU, peak plasma concentration was 9 mM with t1/2 of about 10 h, and a urine concentration of 20-40 mM. Rats chronically treated with DMTU had a sustained, reversible reduction in urine osmolality from 1800 to 600 mOsm, a 3-fold increase in urine output, and mild hypokalemia. DMTU did not impair urinary concentrating function in rats on a low protein diet. Compared to furosemide-treated rats, the DMTU-treated rats had greater diuresis and reduced urinary salt loss. In a model of syndrome of inappropriate antidiuretic hormone secretion, DMTU treatment prevented hyponatremia and water retention produced by water-loading in dDAVP-treated rats. Thus, our results establish a rat model of UT inhibition and demonstrate the diuretic efficacy of UT inhibition.
Collapse
Affiliation(s)
- Onur Cil
- 1] Departments of Medicine and Physiology, University of California, San Francisco, CA, USA [2] Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Cristina Esteva-Font
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| | - Sadik Taskin Tas
- Department of Pharmacology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tao Su
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| | - Sujin Lee
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Mert Ertunc
- Department of Pharmacology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Carrisoza-Gaytán R, Salvador C, Diaz-Bello B, Escobar LI. Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron. J Mol Histol 2014; 45:583-97. [PMID: 24948003 DOI: 10.1007/s10735-014-9581-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/11/2014] [Indexed: 11/25/2022]
Abstract
Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.
Collapse
Affiliation(s)
- Rolando Carrisoza-Gaytán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, México, DF, Mexico
| | | | | | | |
Collapse
|
10
|
Ilyaskin AV, Baturina GS, Katkova LE, Solenov EI, Ivanova LN. The influence of increased NaCl uptake on the transport of Na+ and K+ across the plasma membrane of rat renal collecting duct principal cells. DOKL BIOCHEM BIOPHYS 2014; 453:280-2. [PMID: 24385095 DOI: 10.1134/s160767291306001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Indexed: 11/22/2022]
Affiliation(s)
- A V Ilyaskin
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent'eva 10, Novosibirsk, 630090, Russia
| | | | | | | | | |
Collapse
|
11
|
Katori M, Majima M. Renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:59-109. [PMID: 25130040 DOI: 10.1007/978-3-319-06683-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A large variety of antihypertensive drugs, such as angiotensin converting enzyme inhibitors, diuretics, and others, are prescribed to hypertensive patients, with good control of the condition. In addition, all individuals are generally believed to be salt sensitive and, thus, severe restriction of salt intake is recommended to all. Nevertheless, the physiological defense mechanisms in the kidney against excess salt intake have not been well clarified. The present review article demonstrated that the renal (tissue) kallikrein-kinin system (KKS) is ideally situated within the nephrons of the kidney, where it functions to inhibit the reabsorption of NaCl through the activation of bradykinin (BK)-B2 receptors localized along the epithelial cells of the collecting ducts (CD). Kinins generated in the CD are immediately inactivated by two kidney-specific kinin-inactivating enzymes (kininases), carboxypeptidase Y-like exopeptidase (CPY), and neutral endopeptidase (NEP). Our work demonstrated that ebelactone B and poststatin are selective inhibitors of these kininases. The reduced secretion of the urinary kallikrein is linked to the development of salt-sensitive hypertension, whereas potassium ions and ATP-sensitive potassium channel blockers ameliorate salt-sensitive hypertension by accelerating the release of renal kallikrein. On the other hand, ebelactone B and poststatin prolong the life of kinins in the CD after excess salt intake, thereby leading to the augmentation of natriuresis and diuresis, and the ensuing suppression of salt-sensitive hypertension. In conclusion, accelerators of the renal kallikrein release and selective renal kininase inhibitors are both novel types of antihypertensive agents that may be useful for treatment of salt-sensitive hypertension.
Collapse
|
12
|
Stockand JD, Vallon V, Ortiz P. In vivo and ex vivo analysis of tubule function. Compr Physiol 2013; 2:2495-525. [PMID: 23720256 DOI: 10.1002/cphy.c100051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Analysis of tubule function with in vivo and ex vivo approaches has been instrumental in revealing renal physiology. This work allows assignment of functional significance to known gene products expressed along the nephron, primary of which are proteins involved in electrolyte transport and regulation of these transporters. Not only we have learned much about the key roles played by these transport proteins and their proper regulation in normal physiology but also the combination of contemporary molecular biology and molecular genetics with in vivo and ex vivo analysis opened a new era of discovery informative about the root causes of many renal diseases. The power of in vivo and ex vivo analysis of tubule function is that it preserves the native setting and control of the tubule and proteins within tubule cells enabling them to be investigated in a "real-life" environment with a high degree of precision. In vivo and ex vivo analysis of tubule function continues to provide a powerful experimental outlet for testing, evaluating, and understanding physiology in the context of the novel information provided by sequencing of the human genome and contemporary genetic screening. These tools will continue to be a mainstay in renal laboratories as this discovery process continues and as we continue to identify new gene products functionally compromised in renal disease.
Collapse
Affiliation(s)
- James D Stockand
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | |
Collapse
|
13
|
Chen Z, Dong H, Jia C, Song Q, Chen J, Zhang Y, Lai P, Fan X, Zhou X, Liu M, Lin J, Yang C, Li M, Gao T, Bai X. Activation of mTORC1 in collecting ducts causes hyperkalemia. J Am Soc Nephrol 2013; 25:534-45. [PMID: 24203997 DOI: 10.1681/asn.2013030225] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutation of TSC (encoding tuberous sclerosis complex protein) and activation of mammalian target of rapamycin (mTOR) have been implicated in the pathogenesis of several renal diseases, such as diabetic nephropathy and polycystic kidney disease. However, the role of mTOR in renal potassium excretion and hyperkalemia is not known. We showed that mice with collecting-duct (CD)-specific ablation of TSC1 (CDTsc1KO) had greater mTOR complex 1 (mTORC1) activation in the CD and demonstrated features of pseudohypoaldosteronism, including hyperkalemia, hyperaldosteronism, and metabolic acidosis. mTORC1 activation caused endoplasmic reticulum stress, columnar cell lesions, and dedifferentiation of CD cells with loss of aquaporin-2 and epithelial-mesenchymal transition-like phenotypes. Of note, mTORC1 activation also reduced the expression of serum- and glucocorticoid-inducible kinase 1, a crucial regulator of potassium homeostasis in the kidney, and decreased the expression and/or activity of epithelial sodium channel-α, renal outer medullary potassium channel, and Na(+), K(+)-ATPase in the CD, which probably contributed to the aldosterone resistance and hyperkalemia in these mice. Rapamycin restored these phenotypic changes. Overall, this study identifies a novel function of mTORC1 in regulating potassium homeostasis and demonstrates that loss of TSC1 and activation of mTORC1 results in dedifferentiation and dysfunction of the CD and causes hyperkalemia. The CDTsc1KO mice provide a novel model for hyperkalemia induced exclusively by dysfunction of the CD.
Collapse
|
14
|
Zarogiannis SG, Ilyaskin AV, Baturina GS, Katkova LE, Medvedev DA, Karpov DI, Ershov AP, Solenov EI. Regulatory volume decrease of rat kidney principal cells after successive hypo-osmotic shocks. Math Biosci 2013; 244:176-87. [PMID: 23727475 DOI: 10.1016/j.mbs.2013.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 11/27/2022]
Abstract
Outer Medullary Collecting Duct (OMCD) principal cells are exposed to significant changes of the extracellular osmolarity and thus the analysis of their regulatory volume decrease (RVD) function is of great importance in order to avoid cell membrane rupture and subsequent death. In this paper we provide a sub-second temporal analysis of RVD events occurring after two successive hypo-osmotic challenges in rat kidney OMCD principal cells. We performed experimental cell volume measurements and created a mathematical model based on our experimental results. As a consequence of RVD the cell expels part of intracellular osmolytes and reduces the permeability of the plasma membrane to water. The next osmotic challenge does not cause significant RVD if it occurs within a minute after the primary shock. In such a case the cell reacts as an ideal osmometer. Through our model we provide the basis for further detailed studies on RVD dynamical modeling.
Collapse
Affiliation(s)
- Sotirios G Zarogiannis
- Department of Physiology, Medical School, University of Thessaly, Biopolis, Larissa, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pochynyuk O, Zaika O, O’Neil RG, Mamenko M. Novel insights into TRPV4 function in the kidney. Pflugers Arch 2013; 465:177-186. [PMID: 23207579 PMCID: PMC3562383 DOI: 10.1007/s00424-012-1190-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
Kidneys are complex highly organized paired organs of nearly one million nephrons each. They rigorously process about 180 l of plasma daily to keep whole body homeostasis. To effectively perform such a titanic work, kidneys rely on mechanisms able to sense dynamic changes in composition and flow rates of protourine along the renal tubule. It is envisioned that Ca(2+)-permeable transient receptor potential (TRP) channels, and specifically mechanosensitive TRPV4, can serve to interpret these external mechanical cues in the form of elevated intracellular Ca(2+) concentration. This, in turn, initiates multiple cellular responses and adaptation mechanisms. The current review summarizes up-to-date knowledge about the sites of TRPV4 expression in renal tissue as well as discusses the functional role of the channel in cellular responses to hypotonicity and tubular flow. We will also provide insights as to how TRPV4 fits into classical polycystin mechanosensory complex in cilia and will speculate about previously underappreciated clinical implication of pharmacological TRPV4 targeting in treatment of polycystic kidney disease.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin st., Houston TX 77030, USA; Phone: (713) 500-7466; Fax: (713) 500-7455
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin st., Houston, TX 77030 USA; Phone: (713) 500-6342; Fax: (713) 500-7455
| | - Roger G. O’Neil
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin st., Houston TX 77030, USA; Phone: (713) 500-6316; Fax: (713) 500-7455
| | - Mykola Mamenko
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin st., Houston TX 77030, USA; Phone: (713) 500-6342; Fax: (713) 500-7455
| |
Collapse
|
16
|
Abstract
The central goal of this overview article is to summarize recent findings in renal epithelial transport,focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD).Mammalian CCD and CNT are involved in fine-tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, for example, aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades.Recent studies shed new light on several key questions concerning the regulation of renal transport.Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will also be covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
17
|
Castañeda-Bueno M, Arroyo JP, Gamba G. Independent regulation of Na+ and K+ balance by the kidney. Med Princ Pract 2012; 21:101-14. [PMID: 22042004 DOI: 10.1159/000332580] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/15/2011] [Indexed: 02/04/2023] Open
Abstract
The understanding of the independent regulation of sodium and potassium by the kidney has remained elusive. Recent evidence now points to dissimilar regulatory mechanisms in ion handling, dependent on the presence of either aldosterone alone or angiotensin II with aldosterone among other factors. This review summarizes past and present information in an attempt to reconcile the current concepts of differential regulation of sodium and potassium balance through the with-no-lysine (K) kinase (WNK) system and the previous knowledge regarding ion transport mechanisms in the distal nephron.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Instituto Nacional de Cardiología Ignacio Chávez, and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | |
Collapse
|
18
|
Ilyaskin AV, Baturina GS, Medvedev DA, Ershov AP, Solenov EI. Study of the reaction of kidney collecting duct principal cells to hypotonic shock. Experiment and mathematical model. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911030092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Irazabal MV, Torres VE, Hogan MC, Glockner J, King BF, Ofstie TG, Krasa HB, Ouyang J, Czerwiec FS. Short-term effects of tolvaptan on renal function and volume in patients with autosomal dominant polycystic kidney disease. Kidney Int 2011; 80:295-301. [DOI: 10.1038/ki.2011.119] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Maeda S, Jun JG, Kuwahara-Otani S, Tanaka K, Hayakawa T, Seki M. Non-neuronal expression of choline acetyltransferase in the rat kidney. Life Sci 2011; 89:408-14. [PMID: 21798270 DOI: 10.1016/j.lfs.2011.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/27/2011] [Accepted: 07/09/2011] [Indexed: 01/11/2023]
Abstract
AIMS Acetylcholine (ACh) has been shown to increase ion and water excretion in the kidneys, resulting in hypotension. However, no evidence of renal parasympathetic innervation has been shown, and the source of ACh acting on nephrons is still unknown. The aim of the present study was to identify ACh-producing cells in the rat kidney, by examining the expression of cholinergic agents and localization of an ACh-synthesizing enzyme, choline acetyltransferase (ChAT), in the kidney. MAIN METHODS Adult mail Sprague-Dawley rats were used in this study. Expression of mRNA of cholinergic agents, ChAT, vesicular ACh transporter (VAChT), and high-affinity choline transporter (CHT-1), in the kidney was examined by RT-PCR. Localization of ChAT mRNA and protein was examined by in situ hybridization and tyramide-enhanced immunohistochemistry, respectively. KEY FINDINGS RT-PCR showed the expression of ChAT, VAChT, and CHT-1. In situ hybridization demonstrated that ChAT mRNA is localized to the renal cortical collecting ducts (CCD). Immunohistochemistry showed that the ChAT-positive cells were principal cells, and that they were unevenly distributed in the tubules, and constituted approximately 15.2% of CCD in the cortex, and 3.6% and 1.5% in the outer and inner medulla, respectively. ChAT-positive immunoreactivity was localized to the apical side of principal cells, suggesting that ACh synthesis may occur in the apical compartment of these cells. SIGNIFICANCE These results suggest that the cholinergic effects in the nephron may be mediated at least in part by ACh originating from CCD principal cells and its expression may be locally regulated in the rat kidney.
Collapse
Affiliation(s)
- Seishi Maeda
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Solenov EI, Ilyaskin AV, Baturina GS, Medvedev DA, Ershov AP, Karpov DI. A mathematical model of the cell volume regulation in a hypotonic medium. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2011; 437:79-81. [PMID: 21562950 DOI: 10.1134/s0012496611020104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Indexed: 05/30/2023]
Affiliation(s)
- E I Solenov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
22
|
Carrisoza-Gaytán R, Salvador C, Satlin LM, Liu W, Zavilowitz B, Bobadilla NA, Trujillo J, Escobar LI. Potassium secretion by voltage-gated potassium channel Kv1.3 in the rat kidney. Am J Physiol Renal Physiol 2010; 299:F255-64. [PMID: 20427469 DOI: 10.1152/ajprenal.00697.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The fine regulation of Na(+) and K(+) transport takes place in the cortical distal nephron. It is well established that K(+) secretion occurs through apical K(+) channels: the ROMK and the Ca(2+)- and voltage-dependent maxi-K. Previously, we identified the voltage-gated Kv1.3 channel in the inner medulla of the rat kidney (Escobar LI, Martínez-Téllez JC, Salas M, Castilla SA, Carrisoza R, Tapia D, Vázquez M, Bargas J, Bolívar JJ. Am J Physiol Cell Physiol 286: C965-C974, 2004). To examine the role of Kv1.3 in the renal regulation of K(+) homeostasis, we characterized the effect of dietary K(+) on the molecular and functional expression of this channel. We performed real-time-PCR and immunoblot assays in kidneys from rats fed a control (CK; 1.2% wt/wt) or high-K(+) (HK; 10% wt/wt) diet for 5-15 days. Kv1.3 mRNA and protein expression did not change with HK in the whole kidney. However, dietary K(+) loading provoked a change in the cellular distribution of Kv1.3 from the cytoplasm to apical membranes. Immunolocalization of Kv1.3 detected the channel exclusively in the intercalated cells. We investigated whether Kv1.3 mediated K(+) transport in microperfused cortical collecting ducts (CCDs). The HK diet led to an increase in net K(+) transport from 7.4 +/- 1.1 (CK) to 11.4 +/- 1.0 (HK) pmol x min(-1.) mm(-1). Luminal margatoxin, a specific blocker of Kv1.3, decreased net K(+) secretion in HK CCDs to 6.0 +/- 1.6 pmol x min(-1.) mm(-1). Our data provide the first evidence that Kv1.3 channels participate in K(+) secretion and that apical membrane localization of Kv1.3 is enhanced in the intercalated cells by dietary K(+) loading.
Collapse
Affiliation(s)
- Rolando Carrisoza-Gaytán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mechanism underlying hypokalemia induced by trimethyltin chloride: Inhibition of H+/K+-ATPase in renal intercalated cells. Toxicology 2010; 271:45-50. [PMID: 20211677 DOI: 10.1016/j.tox.2010.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/26/2010] [Accepted: 02/26/2010] [Indexed: 11/26/2022]
Abstract
Trimethyltin chloride (TMT), a byproduct of plastic stabilizers, has caused 67 poisoning accidents in the world; more than 98% (1814/1849) of the affected patients since 1998 have been in China. As a long-established toxic chemical, TMT severely affects the limbic system and the cerebellum; however, its relationship with hypokalemia, a condition observed in the majority of the cases in the last decade, remains elusive. To understand the mechanism underlying hypokalemia induced by TMT, Sprague-Dawley (SD) rats were administered TMT to determine the relationship between H(+)/K(+)-ATPase activity and the blood and urine K(+) concentration and pH, respectively. H(+)/K(+)-ATPase protein and mRNA were observed too. In vitro changes to intracellular pH, K(+) channels in renal cells were measured. The results showed that TMT increased potassium leakage from the kidney, raised urine pH, and inhibited H(+)/K(+)-ATPase activity both in vitro and in vivo. In the tested animals, H(+)/K(+)-ATPase activity was positively correlated with the decrease of plasma K(+) and blood pH but was negatively correlated with the increase of urine K(+) and urine pH (P<0.01), while TMT did not change the expression of H(+)/K(+)-ATPase protein and mRNA. TMT decreased intracellular pH and opened K(+) channels in renal intercalated cells. Our findings suggest TMT can directly inhibit the activity of H(+)/K(+)-ATPases in renal intercalated cells, reducing urine K(+) reabsorption and inducing hypokalemia.
Collapse
|
24
|
Katori M, Majima M. A Novel Category of Anti-Hypertensive Drugs for Treating Salt-Sensitive Hypertension on the Basis of a New Development Concept. Pharmaceuticals (Basel) 2010; 3:59-109. [PMID: 27713243 PMCID: PMC3991021 DOI: 10.3390/ph3010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/24/2009] [Accepted: 01/06/2010] [Indexed: 12/20/2022] Open
Abstract
Terrestrial animals must conserve water and NaCl to survive dry environments. The kidney reabsorbs 95% of the sodium filtered from the glomeruli before sodium reaches the distal connecting tubules. Excess sodium intake requires the renal kallikrein-kinin system for additional excretion. Renal kallikrein is secreted from the distal connecting tubule cells of the kidney, and its substrates, low molecular kininogen, from the principal cells of the cortical collecting ducts (CD). Formed kinins inhibit reabsorption of NaCl through bradykinin (BK)-B₂ receptors, localized along the CD. Degradation pathway of BK by kinin-destroying enzymes in urine differs completely from that in plasma, so that ACE inhibitors are ineffective. Urinary BK is destroyed mainly by a carboxypeptidase-Y-like exopeptidase (CPY) and partly by a neutral endopeptidase (NEP). Inhibitors of CPY and NEP, ebelactone B and poststatin, respectively, were found. Renal kallikrein secretion is accelerated by potassium and ATP-sensitive potassium (KATP) channel blockers, such as PNU-37883A. Ebelactone B prevents DOCA-salt hypertension in rats. Only high salt intake causes hypertension in animals deficient in BK-B2 receptors, tissue kallikrein, or kininogen. Hypertensive patients, and spontaneously hypertensive rats, excrete less kallikrein than normal subjects, irrespective of races, and become salt-sensitive. Ebelactone B, poststatin, and KATP channel blockers could become novel antihypertensive drugs by increase in urinary kinin levels. Roles of kinin in cardiovascular diseases were discussed.
Collapse
Affiliation(s)
- Makoto Katori
- Department of Pharmacology, School of Medicine, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan.
| | - Masataka Majima
- Department of Pharmacology, School of Medicine, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
| |
Collapse
|
25
|
Kamata Y, Fujita T, Kato T, Hayashi I, Kurosaka M, Katori M, Fujita Y, Majima M. An ATP-sensitive potassium channel blocker suppresses sodium-induced hypertension through increased secretion of urinary kallikrein. Hypertens Res 2009; 32:220-6. [DOI: 10.1038/hr.2008.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Katori M, Majima M. Are all individuals equally sensitive in the blood pressure to high salt intake? (Review article). ACTA ACUST UNITED AC 2008; 95:247-65. [PMID: 18788465 DOI: 10.1556/aphysiol.95.2008.3.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been reported that only one-third of normotensive subjects and half of hypertensive patients are salt-sensitive. Many causes of salt-sensitivity have been proposed. Our suggestion is that a reduced urinary kallikrein level may be one cause, since mutant kininogen-deficient rats, which cannot generate kinin in the urine, are salt-sensitive. Renal kallikrein is secreted by the connecting tubule cells of the kidney, which are located just distal to the macula densa or the tubuloglomerular feedback system. Excess amounts of sodium taken overflow into the distal tubules and are reabsorbed in the collecting ducts. Kinins generated inhibit sodium reabsorption in the collecting ducts. Both blacks and whites with essential hypertension excrete less urinary kallikrein than do their normotensive counterparts, but the mean value in "normotensive blacks" were not different from that in "hypertensive whites". African-Americans consume less potassium than whites. Potassium and ATP-sensitive potassium channel blockers are releasers of renal kallikrein. In a small-scale study, sodium loading caused more increase in the systolic blood pressure in urinary low-kallikrein group than in urinary high-kallikrein group. Large-scale clinical studies, under strict control of potassium intake, are needed to elucidate the relationship between salt-sensitivity and urinary kallikrein levels.
Collapse
Affiliation(s)
- M Katori
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan.
| | | |
Collapse
|
27
|
Lachheb S, Cluzeaud F, Bens M, Genete M, Hibino H, Lourdel S, Kurachi Y, Vandewalle A, Teulon J, Paulais M. Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells. Am J Physiol Renal Physiol 2008; 294:F1398-407. [PMID: 18367659 DOI: 10.1152/ajprenal.00288.2007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
K(+) channels in the basolateral membrane of mouse cortical collecting duct (CCD) principal cells were identified with patch-clamp technique, real-time PCR, and immunohistochemistry. In cell-attached membrane patches, three K(+) channels with conductances of approximately 75, 40, and 20 pS were observed, but the K(+) channel with the intermediate conductance (40 pS) predominated. In inside-out membrane patches exposed to an Mg(2+)-free medium, the current-voltage relationship of the intermediate-conductance channel was linear with a conductance of 38 pS. Addition of 1.3 mM internal Mg(2+) had no influence on the inward conductance (G(in) = 35 pS) but reduced outward conductance (G(out)) to 13 pS, yielding a G(in)/G(out) of 3.2. The polycation spermine (6 x 10(-7) M) reduced its activity on inside-out membrane patches by 50% at a clamp potential of 60 mV. Channel activity was also dependent on intracellular pH (pH(i)): a sigmoid relationship between pH(i) and channel normalized current (NP(o)) was observed with a pK of 7.24 and a Hill coefficient of 1.7. By real-time PCR on CCD extracts, inwardly rectifying K(+) (Kir)4.1 and Kir5.1, but not Kir4.2, mRNAs were detected. Kir4.1 and Kir5.1 proteins cellularly colocalized with aquaporin 2 (AQP2), a specific marker of CCD principal cells, while AQP2-negative cells (i.e., intercalated cells) showed no staining. Dietary K(+) had no influence on the properties of the intermediate-conductance channel, but a Na(+)-depleted diet increased its open probability by approximately 25%. We conclude that the Kir4.1/Kir5.1 channel is a major component of the K(+) conductance in the basolateral membrane of mouse CCD principal cells.
Collapse
MESH Headings
- Animals
- Cell Polarity/physiology
- Cloning, Molecular
- Immunohistochemistry
- In Vitro Techniques
- Kidney Cortex/physiology
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/physiology
- Male
- Mice
- Mice, Inbred Strains
- Models, Biological
- Patch-Clamp Techniques
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/physiology
- Potassium, Dietary/pharmacokinetics
- RNA, Messenger/metabolism
- Sodium, Dietary/pharmacokinetics
- Kir5.1 Channel
Collapse
Affiliation(s)
- Sahran Lachheb
- Université Pierre et Marie Curie, 75720 Paris Cedex 06, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wu L, Gao X, Brown RC, Heller S, O'Neil RG. Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Renal Physiol 2007; 293:F1699-713. [PMID: 17699550 DOI: 10.1152/ajprenal.00462.2006] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gain/loss of function studies were utilized to assess the potential role of the endogenous vanilloid receptor TRPV4 as a sensor of flow and osmolality in M-1 collecting duct cells (CCD). TRPV4 mRNA and protein were detectable in M-1 cells and stably transfected HEK-293 cells, where the protein occurred as a glycosylated doublet on Western blots. Immunofluorescence imaging demonstrated expression of TRPV4 at the cell membranes of TRPV4-transfected HEK and M-1 cells and at the luminal membrane of mouse kidney CCD. By using intracellular calcium imaging techniques, calcium influx was monitored in cells grown on coverslips. Application of known activators of TRPV4, including 4α-PDD and hypotonic medium, induced strong calcium influx in M-1 cells and TRPV4-transfected HEK-293 cells but not in nontransfected cells. Applying increased flow/shear stress in a parallel plate chamber induced calcium influx in both M-1 and TRPV4-transfected HEK cells but not in nontransfected HEK cells. Furthermore, in loss-of-function studies employing small interference (si)RNA knockdown techniques, transfection of both M-1 and TRPV4-transfected HEK cells with siRNA specific for TRPV4, but not an inappropriate siRNA, led to a time-dependent decrease in TRPV4 expression that was accompanied by a loss of stimuli-induced calcium influx to flow and hypotonicity. It is concluded that TRPV4 displays a mechanosensitive nature with activation properties consistent with a molecular sensor of both fluid flow (or shear stress) and osmolality, or a component of a sensor complex, in flow-sensitive renal CCD.
Collapse
Affiliation(s)
- Ling Wu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
29
|
Zies DL, Gumz ML, Wingo CS, Cain BD. The renal H+, K+-ATPases as therapeutic targets. Expert Opin Ther Targets 2007; 11:881-90. [PMID: 17614757 DOI: 10.1517/14728222.11.7.881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The kidney is an important regulatory organ responsible for maintaining constant blood volume and composition despite wide variations in the intake of food and water. Throughout the nephron, the functional unit of the kidney, there is a wide variety of proteins that function to add additional waste products and to recover needed materials from the lumen filtrate. The collecting duct of the nephron is the primary renal location for the H+, K+-ATPases, a group of ion pumps that function in both acid/base balance and potassium homeostasis. This review summarizes the present understanding of the structure and functions for the different subtypes of the H+, K+-ATPases under specific physiologic conditions. The obstacles in determining the pharmacologic properties of the different subtypes are considered and future directions for the inhibition and/or stimulation of the H+, K+-ATPases are evaluated.
Collapse
Affiliation(s)
- Deborah L Zies
- University of Mary Washington, Department of Biology, Fredericksburg, VA 22401, USA
| | | | | | | |
Collapse
|
30
|
Carmosino M, Brooks HL, Cai Q, Davis LS, Opalenik S, Hao C, Breyer MD. Axial heterogeneity of vasopressin-receptor subtypes along the human and mouse collecting duct. Am J Physiol Renal Physiol 2007; 292:F351-60. [PMID: 16835408 DOI: 10.1152/ajprenal.00049.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vasopressin and vasopressin antagonists are finding expanded use in mouse models of disease and in clinical medicine. To provide further insight into the physiological role of V1a and V2 vasopressin receptors in the human and mouse kidney, intrarenal localization of the receptors mRNA was determined by in situ hybridization. V2-receptor mRNA was predominantly expressed in the medulla, whereas mRNA for V1a receptors predominated in the cortex. The segmental localization of vasopressin-receptor mRNAs was determined using simultaneous in situ hybridization and immunohistochemistry for segment-specific markers, including aquaporin-2, Dolichos biflorus agglutinin, epithelial Na channels, Tamm Horsfall glycoprotein, and thiazide-sensitive Na+-Cl−cotransporter. Notably, V1a receptor expression was exclusively expressed in V-ATPase/anion exchanger-1-labeled alpha-intercalated cells of the medullary collecting duct in both mouse and human kidney. In cortical collecting ducts, V1a mRNA was more widespread and detected in both principal and intercalated cells. V2-receptor mRNA is diffusely expressed along the collecting ducts in both mouse and human kidney, with higher expression levels in the medulla. These results demonstrate heterogenous axial expression of both V1a and V2 vasopressin receptors along the human and mouse collecting duct. The restricted expression of V1a-receptor mRNA in intercalated cells suggests a role for this receptor in acid-base balance. These findings further suggest distinct regulation of renal transport function by AVP through V1a and V2 receptors in the cortex vs. the medulla.
Collapse
Affiliation(s)
- Monica Carmosino
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Capasso G. A crucial nephron segment in acid–base and electrolyte transport: The connecting tubule. Kidney Int 2006; 70:1674-6. [PMID: 17080156 DOI: 10.1038/sj.ki.5001943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cortical distal nephron is a heterogenous structure where the fine regulation of electrolyte and water balance takes place. Among the other segments, previous reports have emphasized the importance of the connecting tubule in sodium and potassium renal handling. Kovacikova et al. report that the connecting tubule is also the major segment in electrogenic urinary acidification, thus reinforcing the central role of this segment in overall electrolyte transport.
Collapse
Affiliation(s)
- G Capasso
- Department of Internal Medicine, Second University of Naples, Naples, Italy.
| |
Collapse
|
32
|
Mathot M, Maton P, Henrion E, François-Adant A, Marguglio A, Gaillez S, Collard L, Langhendries JP. Pseudo-Bartter syndrome in a pregnant mother and her fetus. Pediatr Nephrol 2006; 21:1037-40. [PMID: 16773420 DOI: 10.1007/s00467-006-0123-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Revised: 01/31/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
Pseudo-Bartter syndrome presents the same clinical and biological characteristics as Bartter syndrome but without primary renal tubule abnormalities. We relate the case of a premature baby presenting at birth with severe hypokalemic metabolic alkalosis associated with hyponatremia and hypochloremia. Maternal blood at the time of delivery showed the same electrolyte perturbations. The baby's mother had suffered from anorexia and vomiting during pregnancy. A few weeks after birth the baby's blood abnormalities had almost returned to normal. Chloride depletion is at the origin of both maternal and fetal hypokalemic alkalosis.
Collapse
|
33
|
Pluznick JL, Sansom SC. BK channels in the kidney: role in K(+) secretion and localization of molecular components. Am J Physiol Renal Physiol 2006; 291:F517-29. [PMID: 16774904 DOI: 10.1152/ajprenal.00118.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it is generally accepted that ROMK is the K(+) secretory channel in the mammalian distal nephron, recent in vitro and in vivo studies have provided evidence that large-conductance Ca(2+)-activated K(+) channels (BK, or maxi K) also secrete K(+) in renal tubules. This review assesses the current evidence relating BK channels with K(+) secretion. We shall consider the component proteins of the BK channel, their localization with respect to segment and cell type, and the electrophysiological forces involved in K(+) secretion. Although the majority of studies have focused on a role for BK channels in flow-mediated K(+) secretion, this review also considers a potential role for BK channels in high-K diet-induced K(+) secretion. The division of workload between ROMK and BK is discussed as a mechanism for ensuring a constant plasma K(+) concentration.
Collapse
Affiliation(s)
- Jennifer L Pluznick
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
34
|
Katori M, Majima M. A missing link between a high salt intake and blood pressure increase. J Pharmacol Sci 2006; 100:370-90. [PMID: 16651701 DOI: 10.1254/jphs.crj06003x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
It is widely accepted that a high sodium intake triggers blood pressure rise. However, only one-third of the normotensive subjects were reported to show salt-sensitivity in their blood pressure. Many factors have been proposed as causes of salt-sensitive hypertension, but none of them provides a satisfactory explanation. We propose, on the basis of accumulated data, that the reduced activity of the kallikrein-kinin system in the kidney may provide this link. Renal kallikrein is secreted by the distal connecting tubular cells and all kallikrein-kinin system components are distributed along the collecting ducts in the distal nephron. Bradykinin generated is immediately destroyed by carboxypeptidase Y-like exopeptidase and neutral endopeptidase, both quite independent from the kininases in plasma, such as angiotensin converting enzyme. The salt-sensitivity of the blood pressure depends largely upon ethnicity and potassium intake. Interestingly, potassium and ATP-sensitive potassium (K(ATP)) channel blockers accelerate renal kallikrein secretion and suppress blood pressure rises in animal hypertension models. Measurement of urinary kallikrein may become necessary in salt-sensitive normotensive and hypertensive subjects. Furthermore, pharmaceutical development of renal kallikrein releasers, such as K(ATP) channel blockers, and renal kininase inhibitors, such as ebelactone B, may lead to the development of novel antihypertensive drugs.
Collapse
Affiliation(s)
- Makoto Katori
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa, Japan.
| | | |
Collapse
|
35
|
Muto S, Tsuruoka S, Miyata Y, Fujimura A, Kusano E. Effect of trimethoprim-sulfamethoxazole on Na and K+ transport properties in the rabbit cortical collecting duct perfused in vitro. Nephron Clin Pract 2005; 102:p51-60. [PMID: 16286787 DOI: 10.1159/000089682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 07/20/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In this study, the membrane mechanisms of hyperkalemia caused by trimethoprim-sulfamethoxazole (TMP-SMX) combination antibiotics were assessed in the cortical collecting duct (CCD). METHODS We used the microelectrode technique and flux measurements, and examined the effects of TMP and SMX on electrical properties of the apical and basolateral membranes in the rabbit CCD perfused in vitro. RESULTS TMP in the lumen caused increases in apical membrane voltage, fractional apical membrane resistance (fRA), and transepithelial resistance (RT), all effects which were completely inhibited by luminal amiloride, but not by luminal Ba2+. The luminal TMP inhibited both net Na+ reabsorption and K+ secretion in the CCD. TMP in the bath slightly but significantly depolarized transepithelial voltage and basolateral membrane voltage without influencing fRA or RT. SMX in the lumen or bath had no effect on barrier voltages or resistances. CONCLUSION TMP mainly acts on the apical membrane of the CCD, inhibits the amiloride-sensitive macroscopic Na+ conductance in this membrane, and thereby decreases the net driving force for K+ exit across the membrane, resulting in an inhibition of K+ secretion. SMX in the lumen or bath had no effect on the CCD.
Collapse
Affiliation(s)
- Shigeaki Muto
- Department of Nephrology, Jichi Medical School, Minamikawachi, Kawachi, Tochigi, Japan.
| | | | | | | | | |
Collapse
|
36
|
Nüsing RM, Pantalone F, Gröne HJ, Seyberth HW, Wegmann M. Expression of the potassium channel ROMK in adult and fetal human kidney. Histochem Cell Biol 2005; 123:553-9. [PMID: 15895241 DOI: 10.1007/s00418-004-0742-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2004] [Indexed: 11/27/2022]
Abstract
The renal potassium channel ROMK is a crucial element of K+ recycling and secretion in the distal tubule and the collecting duct system. Mutations in the ROMK gene (KCNJ1) lead to hyperprostaglandin E syndrome/antenatal Bartter syndrome, a life-threatening hypokalemic disorder of the newborn. The localization of ROMK channel protein, however, remains unknown in humans. We generated an affinity-purified specific polyclonal anti-ROMK antibody raised against a C-terminal peptide of human ROMK. Immunoblotting revealed a 45 kDa protein band in both rat and human kidney tissue. In human kidney sections, the antibody showed intense staining of epithelial cells in the cortical and medullary thick ascending limb (TAL), the connecting tubule, and the collecting duct. Moreover, a strong expression of ROMK protein was detected in cells of the macula densa. In epithelial cells of the TAL expression of ROMK protein was mainly restricted to the apical membrane. In human fetal kidney expression of ROMK protein was detected mainly in distal tubules of mature nephrons but not or only marginally in the collecting system. No expression was found in early developmental stages such as comma or S shapes, indicating a differentiation-dependent expression of ROMK protein. In summary, these findings support the proposed role of ROMK channels in potassium recycling and in the regulation of K+ secretion and present a rationale for the phenotype observed in patients with ROMK deficiency.
Collapse
Affiliation(s)
- Rolf M Nüsing
- Department of Clinical Pharmacology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
37
|
Meneton P, Loffing J, Warnock DG. Sodium and potassium handling by the aldosterone-sensitive distal nephron: the pivotal role of the distal and connecting tubule. Am J Physiol Renal Physiol 2004; 287:F593-601. [PMID: 15345493 DOI: 10.1152/ajprenal.00454.2003] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sodium reabsorption and potassium secretion in the distal convoluted tubule and in the connecting tubule can maintain the homeostasis of the body, especially when dietary sodium intake is high and potassium intake is low. Under these conditions, a large proportion of the aldosterone-regulated sodium and potassium transport would occur in these nephron segments before the tubular fluid reaches the collecting duct. The differences between these two segments and the collecting duct would be more quantitative than qualitative. The collecting duct would come into play when the upstream segments are overloaded by a primary genetic defect that affects sodium and/or potassium transport or by a diet that is exceedingly poor in sodium and rich in potassium. It is likely that the homeostatic role of the distal convoluted and connecting tubules, which are technically difficult to study, has been underestimated, whereas the role of the more easily accessible collecting duct may have been overemphasized.
Collapse
Affiliation(s)
- Pierre Meneton
- Unité 367 de l'Institut National de la Santé et de la Recherche Médicale, 75005 Paris, France.
| | | | | |
Collapse
|
38
|
Giebisch G. Challenges to potassium metabolism: internal distribution and external balance. Wien Klin Wochenschr 2004; 116:353-66. [PMID: 15291287 DOI: 10.1007/bf03040914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A complex pump-leak system involving both active and passive transport mechanisms is responsible for the appropriate distribution of potassium (K) between the intra- and extracellular fluid compartments. In addition, the kidneys, and to a lesser extent the colon, safeguard maintenance of the narrow range of low K concentrations in the extracellular fluid. Early renal clearance studies showed that K is normally both reabsorbed and secreted by renal tubules, and that regulated secretion is the major source of K excretion. Net K secretion occurs mainly in principal cells while K absorption takes place in intercalated cells. Studies on single tubules and principal and intercalated cells have defined the determinants of K secretion and reabsorption including the electrochemical driving forces, specific carriers, ATPases, and K channels. Recent studies on the properties and molecular identity of renal K channels have also contributed significantly to understanding the renal mechanisms that transport and regulate K excretion.
Collapse
Affiliation(s)
- Gerhard Giebisch
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
39
|
Chu PY, Quigley R, Babich V, Huang CL. Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct. Am J Physiol Renal Physiol 2003; 285:F1179-87. [PMID: 12952855 DOI: 10.1152/ajprenal.00150.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ROMK potassium channels are present in the cortical collecting ducts (CCDs) of the kidney and serve as the exit pathways for K+ secretion in this nephron segment. Dietary K+ restriction reduces the abundance of ROMK in the kidney. We have previously shown that ROMK undergoes endocytosis via clathrin-coated vesicles in Xenopus laevis oocytes and in cultured cells. Here, we examined the effect of dietary K+ restriction on endocytosis of ROMK in CCDs using double-labeling immunofluorescent staining and confocal microscopic imaging in whole kidney sections as well as in individually isolated tubules. We found that ROMK abundance in kidney cortex and CCDs was reduced in rats fed a K+-restricted diet compared with rats fed the control K+ diet. In the control animals, ROMK staining was preferentially localized to the apical membrane of CCDs. Compared with control tubules, ROMK staining in CCDs was markedly shifted toward intracellular locations in animals fed a K+-deficient diet for 48 h. Some of the intracellular distribution of ROMK colocalized with an early endosomal marker, early endosomal antigen-1 or with a late endosomal/lysosomal marker, lysosomal membrane glycoprotein-120. These results suggest that K+ restriction reduces the abundance of ROMK in CCDs by increasing endocytosis and degradation of the channel protein. This decrease in the abundance of ROMK is likely important for maintaining K+ homeostasis during K+ deficiency.
Collapse
Affiliation(s)
- Po-Yin Chu
- Department of Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8856, USA
| | | | | | | |
Collapse
|
40
|
Warth R. Potassium channels in epithelial transport. Pflugers Arch 2003; 446:505-13. [PMID: 12707775 DOI: 10.1007/s00424-003-1075-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 03/26/2003] [Indexed: 10/26/2022]
Abstract
Epithelial cells in the kidney, gastrointestinal tract and exocrine glands are engaged in vectorial transport of salt and nutrients. In these tissues, K(+) channels play an important role for the stabilization of membrane voltage and maintenance of the driving force for electrogenic transport. Luminal K(+) channels represent an exit pathway for the excretion of K(+) in secreted fluid, urine and faeces, thereby effecting body K(+) homeostasis. Indeed, the expression and function of several luminal K(+) channels is modulated by hormones regulating water, Na(+), and K(+) metabolism. In addition to net transport of K(+) in the serosal (or apical) direction, K(+) channels can be coupled functionally to K(+)-transporting ATPases such as the basolateral Na(+)/K(+) ATPase or the luminal H(+)/K(+) ATPase. These ATPases export Na(+) or H(+) and take up K(+), which is then recycled via K(+) channels. This review gives a short overview on the molecular identity of epithelial K(+) channels and summarizes the different mechanisms of K(+) channel function during transport in epithelial cells.
Collapse
Affiliation(s)
- Richard Warth
- Physiologisches Institut, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
41
|
Hay-Schmidt A, Grunnet M, Abrahamse SL, Knaus HG, Klaerke DA. Localization of Ca2+ -activated big-conductance K+ channels in rabbit distal colon. Pflugers Arch 2003; 446:61-8. [PMID: 12690464 DOI: 10.1007/s00424-002-0983-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Accepted: 10/24/2002] [Indexed: 11/25/2022]
Abstract
Big-conductance Ca(2+)-activated K(+) channels (BK channels) may play an important role in the regulation of epithelial salt and water transport, but little is known about the expression level and the precise localization of BK channels in epithelia. The aim of the present study was to quantify and localize the BK channels in the distal colon epithelium by iberiotoxin (IbTX) binding using the radiolabeled iberiotoxin analogue (125)I-IbTX-D19Y/Y36F, by autoradiography and by immunohistochemical studies. The results showed that the surface cells, responsible for Na(+) absorption, contained a high number of BK channels, whereas the abundance of the channels in the Cl(-)-secreting crypt cells was very low or absent. Surprisingly, the (125)I-IbTX-D19Y/Y36F binding and immunohistochemical studies showed expression of BK channels in the apical as well as in the basolateral membranes of the surface cells. In conclusion, the significant and distinct expression of BK channels in epithelia, combined with their strict regulation, indicate that these channels may play an important role in the overall regulation of salt and water transport.
Collapse
Affiliation(s)
- Anders Hay-Schmidt
- Department of Anatomy, The Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
42
|
Katori M, Majima M. The renal kallikrein-kinin system: its role as a safety valve for excess sodium intake, and its attenuation as a possible etiologic factor in salt-sensitive hypertension. Crit Rev Clin Lab Sci 2003; 40:43-115. [PMID: 12627748 DOI: 10.1080/713609329] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The distal tubules of the kidney express the full set of the components of the kallikrein-kinin system, which works independently from the plasma kallikrein-kinin system. Studies on the role of the renal kallikrein-kinin system, using congenitally kininogen-deficient Brown-Norway Katholiek rats and also bradykinin B2 receptor knockout mice, revealed that this system starts to function and to induce natriuresis and diuresis when sodium accumulates in the body as a result of excess sodium intake or aldosterone release, for example, by angiotensin II. Thus, it can be hypothesized that the system works as a safety valve for sodium accumulation. The large numbers of studies on hypertensive animal models and on essential hypertensive patients, particularly those with salt sensitivity, indicate a tendency toward the reduced excretion of urinary kallikrein, although this reduction is modified by potassium intake and impaired renal function. We hypothesize that the reduced excretion of the renal kallikrein may be attributable to a genetic defect of factor(s) in renal kallikrein secretion process and may cause salt-sensitive hypertension after salt intake.
Collapse
Affiliation(s)
- Makoto Katori
- Department of Pharmacology, Kitasato University School of Medicine, Kitasato 1-15-1, Sagamihara, Kanagawa, 228-8555, Japan.
| | | |
Collapse
|
43
|
Wallace DP, Christensen M, Reif G, Belibi F, Thrasher B, Herrell D, Grantham JJ. Electrolyte and fluid secretion by cultured human inner medullary collecting duct cells. Am J Physiol Renal Physiol 2002; 283:F1337-50. [PMID: 12388381 DOI: 10.1152/ajprenal.00165.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inner medullary collecting ducts (IMCD) are the final nephron segments through which urine flows. To investigate epithelial ion transport in human IMCD, we established primary cell cultures from initial (hIMCD(i)) and terminal (hIMCD(t)) inner medullary regions of human kidneys. AVP, PGE(2), and forskolin increased cAMP in both hIMCD(i) and hIMCD(t) cells. The effects of AVP and PGE2 were greatest in hIMCD(i); however, forskolin increased cAMP to the same extent in hIMCD(i) and hIMCD(t). Basal short-circuit current (I(SC)) of hIMCD(i) monolayers was 1.4 +/- 0.5 microA/cm2 and was inhibited by benzamil, a Na+ channel blocker. 8-Bromo-cAMP, AVP, PGE(2), and forskolin increased I(SC); the current was reduced by blocking PKA, apical Cl- channels, basolateral NKCC1 (a Na+ - K+ - 2Cl- cotransporter), and basolateral Cl-/HCO(3)(-) exchangers. In fluid transport studies, hIMCD(i) monolayers absorbed fluid in the basal state and forskolin reversed net fluid transport to secretion. In hIMCD(t) monolayers, basal current was not different from zero and cAMP had no effect on I(SC). We conclude that AVP and PGE2 stimulate cAMP-dependent Cl- secretion by hIMCD(i) cells, but not hIMCD(t) cells, in vitro. We suggest that salt secretion at specialized sites along human collecting ducts may be important in the formation of the final urine.
Collapse
Affiliation(s)
- Darren P Wallace
- Kidney Institute and Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
A complex pump-leak system involving both active and passive transport mechanisms is responsible for the appropriate distribution of potassium (K) between the intra- and extracellular fluid compartments. In addition, the kidneys, and to a lesser extent the colon, safeguard maintenance of the narrow range of low K concentrations in the extracellular fluid. Early renal clearance studies showed that K is normally both reabsorbed and secreted by renal tubules, and that regulated secretion is the major source of K excretion. Studies at the tubule and cell level have localized secretion and reabsorption of K to principal and intercalated cells in the collecting ducts. Measurements of the electrochemical driving forces across individual cell membranes have permitted the characterization of specific ATPases, K channels and K cotransporters and also provided insights into the molecular structure of individual transporters that regulate K excretion.
Collapse
Affiliation(s)
- Gerhard H Giebisch
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
45
|
Bundgaard H, Kjeldsen K. Potassium depletion increases potassium clearance capacity in skeletal muscles in vivo during acute repletion. Am J Physiol Cell Physiol 2002; 283:C1163-70. [PMID: 12225980 DOI: 10.1152/ajpcell.00588.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscular K uptake depends on skeletal muscle Na-K-ATPase concentration and activity. Reduced K uptake is observed in vitro in K-depleted rats. We evaluated skeletal muscle K clearance capacity in vivo in rats K depleted for 14 days. [(3)H]ouabain binding, alpha(1) and alpha(2) Na-K-ATPase isoform abundance, and K, Na, and Mg content were measured in skeletal muscles. Skeletal muscle K, Na, and Mg and plasma K were measured in relation to intravenous KCl infusion that continued until animals died, i.e., maximum KCl dose was administered. In soleus, extensor digitorum longus (EDL), and gastrocnemius muscles K depletion significantly reduced K content by 18%, 15%, and 19%, [(3)H]ouabain binding by 36%, 41%, and 68%, and alpha(2) isoform abundance by 34%, 44%, and 70%, respectively. No significant change was observed in alpha(1) isoform abundance. In EDL and gastrocnemius muscles K depletion significantly increased Na (48% and 59%) and Mg (10% and 17%) content, but only tendencies to increase were observed in soleus muscle. K-depleted rats tolerated up to a fourfold higher KCl dose. This was associated with a reduced rate of increase in plasma K and increases in soleus, EDL, and gastrocnemius muscle K of 56%, 42%, and 41%, respectively, but only tendencies to increase in controls. However, whereas K uptake was highest in K-depleted animals, the K uptake rate was highest in controls. In vivo K depletion is associated with markedly increased K tolerance and K clearance despite significantly reduced skeletal muscle Na-K-ATPase concentration. The concern of an increased risk for K intoxication during K repletion seems unwarranted.
Collapse
Affiliation(s)
- Henning Bundgaard
- Medical Department B 2142, The Heart Centre, Rigshospitalet, National University Hospital, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | | |
Collapse
|
46
|
Schafer JA. Abnormal regulation of ENaC: syndromes of salt retention and salt wasting by the collecting duct. Am J Physiol Renal Physiol 2002; 283:F221-35. [PMID: 12110505 DOI: 10.1152/ajprenal.00068.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the aldosterone-responsive segments of the nephron together reabsorb <10% of the filtered Na+, certain single-gene defects that affect the epithelial Na+ channel (ENaC) in the luminal membrane of the collecting duct (CD) or its regulation by aldosterone cause severe hypertension, whereas others cause salt wasting and hypotension. These rare defects illustrate the key role of the distal nephron in maintaining normal extracellular volume and blood pressure. Genetic defects that increase the Cl- conductance of the junctional complexes may also lead to salt retention and hypertension. Less dramatic alterations in regulatory actions of other hormones such as vasopressin (VP), either alone or with other genetic variations, diet, or environmental factors, may also produce Na+ retention or loss. Although VP acts primarily to regulate water balance, it is also an antinatriuretic hormone. Elevated basal plasma VP levels, and/or augmented VP release with increased Na+ intake, have been linked to essential hypertension in humans and in animal models of congestive heart failure and cirrhosis. Norepinephrine, dopamine, and prostaglandin E2 can inhibit the antinatriuretic effects of VP, and changes in the actions of these autocrine and paracrine regulators may also be involved in abnormal regulation of Na+ reabsorption.
Collapse
Affiliation(s)
- James A Schafer
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| |
Collapse
|
47
|
Abstract
BACKGROUND Hyperkalemia is a common feature of chronic renal insufficiency, usually ascribed to impaired K+ homeostasis. However, various experimental observations suggest that the increase in extracellular [K+] actually functions in a homeostatic fashion, directly stimulating renal K+ excretion through an effect that is independent of, and additive to, aldosterone. METHODS We have reviewed relevant studies in experimental animals and in human subjects that have examined the regulation of K+ excretion and its relation to plasma [K+]. RESULTS Studies indicate that (1) extracellular [K+] in patients with renal insufficiency correlates directly with intracellular K+ content, and (2) hyperkalemia directly promotes K+ secretion in the principal cells of the collecting duct by increasing apical and basolateral membrane conductances. The effect of hyperkalemia differs from that of aldosterone in that K+ conductances are increased as the primary event. The changes in principal cell function and structure induced by hyperkalemia are indistinguishable from the effects seen in adaptation to a high K+ diet. CONCLUSIONS We propose that hyperkalemia plays a pivotal role in K+ homeostasis in renal insufficiency by stimulating K+ excretion. In patients with chronic renal insufficiency, a new steady state develops in which extracellular [K+] rises to the level needed to stimulate K+ excretion so that it again matches intake. When this new steady state is achieved, plasma [K+] remains stable unless dietary intake increases, glomerular filtration rate falls, or drugs are given that disrupt the new balance.
Collapse
Affiliation(s)
- F John Gennari
- Fletcher Allen Health Care, University of Vermont College of Medicine, Burlington, VT 05401, USA.
| | | |
Collapse
|
48
|
Suter PM, Sierro C, Vetter W. Nutritional factors in the control of blood pressure and hypertension. NUTRITION IN CLINICAL CARE : AN OFFICIAL PUBLICATION OF TUFTS UNIVERSITY 2002; 5:9-19. [PMID: 12134718 DOI: 10.1046/j.1523-5408.2002.00513.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differing hypertension prevalence rates between certain population and age groups are partially due to differences in the intake of certain nutrients. Blood pressure is positively associated with higher sodium, alcohol, and protein intakes; it is inversely associated with potassium, calcium, and magnesium intakes. Salt may lead to an increase in blood pressure in the presence of salt sensitivity, but there is no inexpensive or easy strategy to identify salt-sensitive patients. Other risk factors for hypertension include obesity and lack of regular physical activity. The best strategy appears to be moderate salt restriction (6-7 g/day) in combination with an optimal compliance of the antihypertensive drug therapy, as well as adoption of the combination diet of the DASH study--a diet rich in fruits and vegetables, and thus rich in potassium. Current evidence does not support the increased intake of Ca2+ or Mg2+ for blood-pressure-lowering purposes only; however, calcium and magnesium may represent important components in the combination diet of the DASH study. It seems that it is the combination of these nutrients that is of crucial importance for the achievement of optimal blood-pressure reduction. Also recommended is a decrease in alcohol consumption and an increase in regular physical activity. Instead of a severe intervention with regard to 1 risk factor alone, positive changes in 5 habits combined--high salt intake, high sodium-to-potassium ratio, alcohol intake, calorie imbalance, and a sedentary life--may be the most realistic and effective strategy to counteract the present hypertension epidemic.
Collapse
|
49
|
Wetzel RK, Sweadner KJ. Immunocytochemical localization of Na-K-ATPase alpha- and gamma-subunits in rat kidney. Am J Physiol Renal Physiol 2001; 281:F531-45. [PMID: 11502602 DOI: 10.1152/ajprenal.2001.281.3.f531] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gamma-subunit of the Na-K-ATPase is a single-span membrane protein that alters the kinetic properties of the enzyme. It is expressed in the kidney, but our initial observations indicated that it is not present in all nephron segments (Arystarkhova E, Wetzel RK, Asinovski NK, and Sweadner KJ. J Biol Chem 274: 33183-33185, 1999). Here we used triple-label confocal immunofluorescence microscopy in rat kidney with antibodies to Na-K-ATPase alpha1- and gamma-subunits and nephron segment-specific markers. Na-K-ATPase alpha1-subunit stain was low but unambiguous in proximal segments, moderate in macula densa, connecting tubules, and cortical collecting ducts, high in thick ascending limb and distal convoluted tubules, and nearly undetectable in glomeruli, descending and ascending thin limb, and medullary collecting ducts. The gamma-subunit colocalized at staining levels similar to alpha1-subunit in basolateral membranes in all segments except cortical thick ascending limb and cortical collecting ducts, which had alpha1-subunit but no detectable gamma-subunit stain. Selective gamma-subunit expression may contribute to the variations in Na-K-ATPase properties in different renal segments.
Collapse
Affiliation(s)
- R K Wetzel
- Laboratory of Membrane Biology, Neuroscience Center, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, USA
| | | |
Collapse
|