1
|
Pan C, Pan J, Zhaxi Y, Li H, Zhang Z, Guan F, Jinmei J, Baijiu Z, Baima S, Yixi Q, Song T, Zhao W. Rumen microbiota regulates IMF deposition in Xizang sheep by activating the PPARγ transcription factor: a rumen-muscle axis perspective. mSystems 2025; 10:e0155724. [PMID: 40152602 PMCID: PMC12013263 DOI: 10.1128/msystems.01557-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
The interaction between microbiota and muscle by the rumen-muscle axis and its impact on sheep meat flavor has received little attention. This study selected Xizang sheep under summer and autumn grazing conditions as models for different rumen bacteria and intramuscular fat (IMF) to attempt to address the current research gap. Specifically, the deposition characteristics of IMF and the expression of lipid metabolism genes in Xizang sheep were determined; 16S rDNA sequencing technology and gas chromatography were used to study the rumen microbiota and its metabolic products, short-chain fatty acids (SCFAs); RNA sequencing was used to identify the transcriptome of the rumen epithelium. Based on the above results, we proposed the hypothesis that the flavor of Xizang sheep meat is regulated by the microbiota-rumen-muscle axis. SCFAs produced in the rumen of Xizang sheep are absorbed by the rumen epithelium under the regulation of the solute carrier family genes (SLC). SCFAs can directly reach muscle tissue through the circulatory system and then activate the expression of the peroxisome proliferator-activated receptor Gamma (PPARγ) gene through the rumen-muscle axis. The expression of fat synthesis genes carnitine palmitoyltransferase II (CPT2), fatty acid synthase (FAS), patatin-like phospholipase domain-containing 2 (PNPLA2), and stearoyl-CoA desaturase 1 (SCD1) is correspondingly upregulated, promoting the deposition of IMF in Xizang sheep and thus affecting its flavor. This study introduces the theory of the microbiota-rumen-muscle axis into the research of the flavor of ruminant animal food, comprehensively elucidating the regulatory mechanism of the flavor of Xizang sheep meat.IMPORTANCEOur study employed a multi-omics approach to reveal how the rumen microbiota regulate muscle lipid metabolism in Xizang sheep through the activation of the PPARγ transcription factor. Importantly, by developing models of Xizang sheep with varying rumen microbial communities and muscle fatty acid profiles, we established the critical role of the microbiota-rumen-muscle axis in determining the flavor of Xizang sheep meat. This finding suggests that modulating the composition of the microbial community could serve as a strategy to improve the flavor of ruminant-derived food products. These insights provide valuable understanding of the complex interactions between rumen bacteria and mutton flavor, offering new approaches for research in this field.
Collapse
Affiliation(s)
- Cheng Pan
- School of Life Sciences and Agri-forestry, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Junru Pan
- School of Life Sciences and Agri-forestry, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Yangzong Zhaxi
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, Xizang, China
- Key Laboratory of Animal Genetics and Breeding on Xizang Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, Xizang, China
| | - Haiyan Li
- School of Life Sciences and Agri-forestry, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Zhenzhen Zhang
- School of Life Sciences and Agri-forestry, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Feng Guan
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Jiacuo Jinmei
- Xizang Animal Husbandry Station, Lhasa, Xizang, China
| | - Zhaxi Baijiu
- Cultural Service Center of Maqian Township, Nagqu, Xizang, China
| | - Sangzhu Baima
- The Service Station of Agricultural and Animal Husbandry Technical of Baingoin County, Nagqu, Xizang, China
| | - Quzhu Yixi
- Cultural Service Center of Maqian Township, Nagqu, Xizang, China
| | - Tianzeng Song
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, Xizang, China
- Key Laboratory of Animal Genetics and Breeding on Xizang Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, Xizang, China
| | - Wangsheng Zhao
- School of Life Sciences and Agri-forestry, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
2
|
Nicchio IG, Cirelli T, Quil LCDC, Camilli AC, Scarel-Caminaga RM, Leite FRM. Understanding the peroxisome proliferator-activated receptor gamma (PPAR-γ) role in periodontitis and diabetes mellitus: A molecular perspective. Biochem Pharmacol 2025; 237:116908. [PMID: 40157459 DOI: 10.1016/j.bcp.2025.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Periodontitis and Type 2 Diabetes Mellitus (T2DM) are chronic conditions with dysregulated immune responses. Periodontitis involves immune dysfunction and dysbiotic biofilms, leading to tissue destruction. T2DM is marked by insulin resistance and systemic inflammation, driving metabolic and tissue damage. Both conditions share activation of key pathways, including Nuclear Factor Kappa B (NF-κB), Activator Protein-1 (AP-1), and Signal Transducer and Activator of Transcription (STAT) proteins, reinforcing an inflammatory feedback loop. This review highlights the role of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), a transcription factor central to lipid and glucose metabolism, adipogenesis, and immune regulation. PPAR-γ activation has been shown to suppress inflammatory mediators such as Tumor Necrosis Factor Alpha (TNF-α) and Interleukin 6 (IL-6) through the inhibition of NF-κB, AP-1, and STAT pathways, thereby potentially disrupting the inflammatory-metabolic cycle that drives both diseases. PPAR-γ agonists, including thiazolidinediones (TZDs) and endogenous ligands such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), show promise in reducing inflammation and improving insulin sensitivity, but they are limited by adverse effects. Therapies, including Selective Peroxisome Proliferator-Activated Receptor Modulators (SPPARMs), have been developed to offer a more targeted approach, allowing for selective modulation of PPAR-γ activity to retain its anti-inflammatory benefits while minimizing their side effects. By integrating insights into PPAR-γ's molecular mechanisms, this review underscores its therapeutic potential in mitigating inflammation and enhancing metabolic control.
Collapse
Affiliation(s)
- Ingra Gagno Nicchio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Thamiris Cirelli
- Department of Dentistry, Centro Universitário das Faculdades Associadas, São João da Boa Vista 13870-377, SP, Brazil.
| | - Lucas César da Costa Quil
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Angelo Constantino Camilli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Raquel Mantuaneli Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Fabio Renato Manzolli Leite
- National Dental Research Institute Singapore, National Dental Centre Singapore, 168938, Singapore; Oral Health Academic Clinical Programme, Duke-NUS Medical School, 169857, Singapore.
| |
Collapse
|
3
|
Navarro-Ledesma S. Frozen Shoulder as a Metabolic and Immune Disorder: Potential Roles of Leptin Resistance, JAK-STAT Dysregulation, and Fibrosis. J Clin Med 2025; 14:1780. [PMID: 40095902 PMCID: PMC11901274 DOI: 10.3390/jcm14051780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Frozen shoulder (FS) is a complex and multifactorial condition characterized by persistent inflammation, fibrosis, and metabolic dysregulation. Despite extensive research, the underlying drivers of FS remain poorly understood. Recent findings indicate the coexistence of pro-inflammatory and fibrosis-resolving macrophages within affected tissues, suggesting a dysregulated immune response influenced by metabolic and neuroendocrine factors. This review proposes that leptin resistance, a hallmark of metabolic syndrome and chronic inflammation, may play a central role in FS pathogenesis by impairing macrophage polarization, perpetuating inflammation, and disrupting fibrosis resolution. The JAK-STAT signaling pathway, critically modulated by leptin resistance, may further contribute to immune dysregulation by sustaining inflammatory macrophage activation and interfering with tissue remodeling. Additionally, FS shares pathogenic features with fibrotic diseases driven by TGF-β signaling, mitochondrial dysfunction, and circadian disruption, further linking systemic metabolic dysfunction to localized fibrotic pathology. Beyond immune and metabolic regulation, alterations in gut microbiota, bacterial translocation, and chronic psychosocial stress may further exacerbate systemic inflammation and neuroendocrine imbalances, intensifying JAK-STAT dysregulation and leptin resistance. By examining the intricate interplay between metabolism, immune function, and fibrotic remodeling, this review highlights targeting leptin sensitivity, JAK-STAT modulation, and mitochondrial restoration as novel therapeutic strategies for FS treatment. Future research should explore these interconnections to develop integrative interventions that address both the metabolic and immune dysregulation underlying FS, ultimately improving clinical outcomes.
Collapse
Affiliation(s)
- Santiago Navarro-Ledesma
- Department of Physiotherapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, Querol Street 5, 52004 Melilla, Spain
| |
Collapse
|
4
|
Ashaari S, Jamialahmadi T, Davies NM, Almahmeed W, Sahebkar A. Di (2-ethyl hexyl) phthalate and its metabolite-induced metabolic syndrome: a review of molecular mechanisms. Drug Chem Toxicol 2025; 48:325-343. [PMID: 39322993 DOI: 10.1080/01480545.2024.2405830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES Metabolic disorders, as multifactorial disorders, are induced by genetic susceptibility and exposure to environmental chemicals. Di (2-ethyl hexyl) phthalate (DEHP), a ubiquitous plasticizer, is well known as an endocrine-disrupting chemical in living organisms. In recent decades, researchers have focused on the potential of DEHP and its main metabolite (Mono (2-ethylhexyl) phthalate) (MEHP) to induce metabolic disorders. In the present review, we aimed to summarize studies regarding DEHP and MEHP-induced Metabolic syndrome (MetS) as well as address the involved mechanisms. METHODS A search has been carried out in Google Scholar, PubMed, Scopus, and Web of Science databases using appropriate keywords including 'Metabolic syndrome' or 'Metabolic disorder' or 'Obesity' or 'Hyperglycemia' or 'Hyperlipidemia' or 'Hypertension' or 'Non-alcoholic fatty liver disease' and 'DEHP' or 'Di (2-ethyl hexyl) phthalate' or 'Bis(2-ethylhexyl) phthalate' or 'MEHP' or 'Mono (2-ethylhexyl) phthalate'. Studies were chosen based on inclusion and exclusion criteria. Inclusion criteria are in vitro, in vivo, epidemiological studies, and English-written studies. Exclusion criteria are lack of access to the full text of studies, editorial articles, review articles, and conference articles. RESULTS Animal studies indicate that DEHP and MEHP disrupt insulin hemostasis, increase glucose content, and induce hyperlipidemia and hypertension as well as obesity, which could lead to type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). DEHP and its metabolite induce such effects directly through influence on nuclear receptors such as peroxisome proliferator-activated receptors (PPARs) or indirectly through reactive oxygen species (ROS) production. Both events led to the disruption of several molecular signaling pathways and subsequently metabolic syndrome (MetS). Furthermore, epidemiological studies showed that there was a correlation between DEHP metabolites levels and obesity, hyperglycemia, and hypertension. CONCLUSIONS According to studies, DEHP and its main metabolite have the potential to induce MetS by involving various molecular mechanisms. Epidemiological studies concerning the association of DEHP and MetS in humans are not sufficient. Therefore, more studies are needed in this regard.
Collapse
Affiliation(s)
- Sorour Ashaari
- Vice Chancellery for Research and Technology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Munteanu C, Kotova P, Schwartz B. Impact of Olive Oil Components on the Expression of Genes Related to Type 2 Diabetes Mellitus. Nutrients 2025; 17:570. [PMID: 39940428 PMCID: PMC11820997 DOI: 10.3390/nu17030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterized by insulin resistance and beta cell dysfunction, resulting in hyperglycemia. Olive oil, a cornerstone of the Mediterranean diet, has attracted considerable attention due to its potential health benefits, including reducing the risk of developing T2DM. This literature review aims to critically examine and synthesize existing research regarding the impact of olive oil on the expression of genes relevant to T2DM. This paper also seeks to provide an immunological and genetic perspective on the signaling pathways of the main components of extra virgin olive oil. Key bioactive components of olive oil, such as oleic acid and phenolic compounds, were identified as modulators of insulin signaling. These compounds enhanced the insulin signaling pathway, improved lipid metabolism, and reduced oxidative stress by decreasing reactive oxygen species (ROS) production. Additionally, they were shown to alleviate inflammation by inhibiting the NF-κB pathway and downregulating pro-inflammatory cytokines and enzymes. Furthermore, these bioactive compounds were observed to mitigate endoplasmic reticulum (ER) stress by downregulating stress markers, thereby protecting beta cells from apoptosis and preserving their function. In summary, olive oil, particularly its bioactive constituents, has been demonstrated to enhance insulin sensitivity, protect beta cell function, and reduce inflammation and oxidative stress by modulating key genes involved in these processes. These findings underscore olive oil's therapeutic potential in managing T2DM. However, further research, including well-designed human clinical trials, is required to fully elucidate the role of olive oil in personalized nutrition strategies for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Polina Kotova
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| |
Collapse
|
6
|
Chen Y, Zhu M, Sheng S, Yang H, Zhang Q, Chen X, Xu K, Li M, Huang B, Han Q, Jiang Y, Su J. Biomimetic Extracellular Vesicles Containing Biominerals for Targeted Osteoporosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5823-5840. [PMID: 39807533 DOI: 10.1021/acsami.4c17238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization. Drawing from these principles, we developed a biomimetic approach to replicate the structure and function of the osteoblast-derived EVs by engineering biomimetic mitochondrial minerals with bone marrow homing cell membranes (CMs). This bone-targeted biomimetic system exhibits excellent biocompatibility, enhancing osteogenic differentiation and stimulating angiogenesis by regulating cellular energy metabolism. Additionally, the CM-coated structure shows affinity for collagen fibrils, effectively enhancing intrafibrillar collagen mineralization, thereby facilitating osteoporotic bone repair. Overall, the biomimetic system offers a safe and efficient therapeutic alternative, positioning it as a platform for bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yutong Chen
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
| | - Mengru Zhu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
| | - Shihao Sheng
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Huijian Yang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Clinical Laboratory, Shanghai Zhongye Hospital, Shanghai 200941, People's Republic of China
| | - Qin Zhang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Ke Xu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
| | - Mengmeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
| | - Biaotong Huang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Qinglin Han
- Orthopaedic Department, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yingying Jiang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| |
Collapse
|
7
|
Kamga-Simo FDY, Kamatou GP, Kgopa AH, Mokgotho MP, Shai LJ. Evaluation of the Potential Hypoglycaemic Properties of Mimusops zeyheri Sond. and Aloe marlothii A.Berger, Two Plants Used by Traditional Healers in South Africa. PLANTS (BASEL, SWITZERLAND) 2024; 13:3323. [PMID: 39683116 DOI: 10.3390/plants13233323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Mimusops zeyheri Sond. And Aloe marlothii A.Berger are used traditionally in South Africa to manage many diseases, including diabetes mellitus. The mechanism through which these extracts exert blood glucose lowering is not well understood or reported. This study was aimed at assessing M. zeyheri and A. marlothii plant extracts for their potential to exhibit antidiabetic activity and their associated mechanisms. We evaluated the action of both extracts on major genes involved in the insulin signalling pathways in skeletal muscle cells. The in vitro cytotoxic effects of M. zeyheri and A. marlothii extracts were evaluated using the MTT assay and glucose uptake was evaluated using a glucose oxidase assay. The amount of translocated GLUT-4 was determined using the flow cytometry. Conventional PCR was used to determine the expression of GLUT-1 and GLUT-4 and RT-qPCR. IRS-1 total protein and Phospho-Akt were determined using ELISA. Plant extracts stimulated glucose absorption by skeletal muscle cells. M. zeyheri extract increased glucose absorption in muscle cells after 1 and 3 h of incubation. A 2-fold increase in translocated GLUT-4 was noted with M. zeyheri. The mRNA levels of GLUT-4 and GLUT-1 remained uniform in all treatments, while IRS-1, PI3K, Akt1, Akt2, and PPAR-γ were downregulated by both extracts. The expression of GLUT-4 was significantly increased by the action of insulin and M. zeyheri extract at 500 μg/mL. This study validates the traditional use of aqueous extracts of A. marlothii and M. zeyheri as hypoglycaemic plants and raises the assertion that the selected plant extracts utilise the IRS-1/PI3K/Akt pathway.
Collapse
Affiliation(s)
| | - Guy Paulin Kamatou
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Ananias Hodi Kgopa
- Department of Biochemistry, Sefako Makgatho Health Sciences University, P.O. Box 236, Medunsa, Pretoria 0204, South Africa
| | - Matlou Phineas Mokgotho
- Department of Biomedical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Leshweni Jeremia Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
8
|
Fu H, Han X, Guo W, Zhao X, Yu C, Zhao W, Feng S, Wang J, Zhang Z, Lei K, Li M, Wang T. Cystathionine-γ-lyase contributes to tamoxifen resistance, and the compound I194496 alleviates this effect by inhibiting the PPARγ/ACSL1/STAT3 signalling pathway in oestrogen receptor-positive breast cancer. Sci Rep 2024; 14:22988. [PMID: 39362925 PMCID: PMC11449925 DOI: 10.1038/s41598-024-71962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Tamoxifen (TAM) resistance is a major challenge in treating oestrogen receptor-positive (ER+) breast cancers. It is possible that the H2S synthase cystathionine-γ-lyase (CSE), which has been previously shown to promote tumour growth and metastasis in other cancer cells, is involved in this resistance. Therefore, we investigated CSE's role and potential mechanisms in TAM-resistant breast cancer cells. First, we examined the effect of CSE expression on TAM sensitivity and resistance in MCF7 (breast cancer) cells. The findings revealed that CSE was directly associated with TAM sensitivity and involved in TAM resistance in ER+ breast cancer cells, indicating that it may be useful as a biomarker. Next, we wanted to determine the molecular mechanism of CSE's role in TAM resistance. Using cell migration, co-immunoprecipitation, western blotting, and cell viability assays, we determined that the CSE/H2S system can affect the expression of PPARγ by promoting the sulfhydrylation of PPARγ, which regulates the transcriptional activity of ACSL1. ACSL1, in turn, influences STAT3 activation by affecting the phosphorylation, palmitoylation and dimerization of STAT3, ultimately leading to the development of TAM resistance in breast cancer. Finally, we examined the effect of CSE inhibitors on reducing drug resistance to determine whether CSE may be used as a biomarker of TAM resistance. We observed that the novel CSE inhibitor I194496 can reverse TAM resistance in TAM-resistant breast cancer via targeting the PPARγ/ACSL1/STAT3 signalling pathway. Overall, our data indicate that CSE may serve as a biomarker of TAM resistance and that the CSE inhibitor I194496 is a promising candidate for combating TAM resistance.
Collapse
Affiliation(s)
- Han Fu
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Xue Han
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Wenqing Guo
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Xuening Zhao
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Chunxue Yu
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Wei Zhao
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Shasha Feng
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Jian Wang
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Zhenshuai Zhang
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Kaijian Lei
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China.
| | - Ming Li
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China.
| | - Tianxiao Wang
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
9
|
Seenivasan K, Arunachalam S, P B TP, Vasan SB, Venkateswaran MR, Siva D, Gothandam J, Achiraman S. Elucidating the interplay of PPAR gamma inhibition and energy demand in adriamycin-induced cardiomyopathy: In Vitro and In Vivo perspective. J Biochem Mol Toxicol 2024; 38:e23855. [PMID: 39328005 DOI: 10.1002/jbt.23855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Adriamycin is an anticancer anthracycline drug that inhibits the progression of topoisomerase II activity and causes apoptosis. The effective clinical application of the drug is very much limited by its adverse drug reactions on various tissues. Most importantly, Adriamycin causes cardiomyopathy, one of the life-threatening complications of the drug. Altered expression of PPARγ in adipocytes inhibited the glucose and fatty acids uptake by down regulating GLUT4 and CD36 expression and causes cardiotoxicity. Therefore, the influence of Adriamycin in cardiac ailments was investigated in vivo and in vitro. Adriamycin treated rats showed altered ECG profile, arrhythmic heartbeat with the elevated levels of CRP and LDH. Dysregulated lipid profiles with elevated levels of cholesterol and triglycerides were also observed. Possibilities of cardiac problems due to cardiomyopathy were analyzed through histopathology. Adriamycin treated rats showed no signs for atheromatous plaque formation in aorta but disorganized cardiomyocytes with myofibrillar loss and inflammation in heart tissue, indicative of cardiomyopathy. Reduced levels of antioxidant enzymes confirmed the incidence of oxidative stress. Adriamycin treatment significantly reduced glucose and insulin levels, creating energy demand due to decreased glucose and insulin levels with increased fatty acid accumulation, ultimately resulting in oxidative stress mediated cardiomyopathy. Since PPARs play a vital role in regulating oxidative stress, the effect of Adriamycin on PPARγ was analyzed by western blot. Adriamycin downregulated PPARγ in a dose-dependent manner in H9C2 cells in vitro. Overall, our study suggests that Adriamycin alters glucose and lipid metabolism via PPARγ inhibition that leads to oxidative stress and cardiomyopathy that necessitates a different therapeutic approach.
Collapse
Affiliation(s)
- Kalaiselvi Seenivasan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Tirupathi Pichiah P B
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sanjay B Vasan
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Meenakshi R Venkateswaran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Durairaj Siva
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Jeeva Gothandam
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugam Achiraman
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
10
|
Jiang CL, Lin FJ. Insights into the roles of Apolipoprotein E in adipocyte biology and obesity. Int J Obes (Lond) 2024; 48:1205-1215. [PMID: 38839985 DOI: 10.1038/s41366-024-01549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Apolipoprotein E (APOE) is a multifunctional protein expressed by various cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, astrocytes, etc. Initially, APOE was discovered as an arginine-rich peptide within very-low-density lipoprotein, but it was subsequently found in triglyceride-rich lipoproteins in humans and other animals, where its presence facilitates the clearance of these lipoproteins from circulation. Recent epidemiolocal studies and experimental research in mice suggest a link between ApoE and obesity. The latest findings highlight the role of endogenous adipocyte ApoE in regulating browning of white adipose tissue, beige adipocyte differentiation, thermogenesis and energy homeostasis. This review focuses on the emerging evidence showing the involvement of ApoE in the regulation of obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
- Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Sahin K, Sahin E, Orhan C, Er B, Akoglan B, Ozercan IH, Sahin N, Komorowski JR. The impact of magnesium biotinate and arginine silicate complexes on metabolic dysfunctions, antioxidant activity, inflammation, and neuromodulation in high-fat diet-fed rats. Clin Exp Med 2024; 24:176. [PMID: 39105860 PMCID: PMC11303438 DOI: 10.1007/s10238-024-01434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
Biotin and arginine play crucial roles in lipid metabolism and may offer promising interventions against obesity. This study examined the combined effect of magnesium biotinate (MgB) and inositol-stabilized arginine silicate complex (ASI) on obesity-related oxidative imbalance, inflammation, lipid metabolism and neuromodulation in rats on a high-fat diet (HFD). Forty rats were divided into five groups: (a) control: rats were fed a standard diet containing 12% of energy from fat; (b) HFD: rats were fed the HFD with 42% of energy from fat; (c) HFD + MgB: rats were fed the HFD and given 0.31 mg/kg body weight (BW) MgB, (d) HFD + ASI: rats were fed the HFD and were given 12.91 mg/kg BW ASI), and (e) HFD + MgB + ASI: rats were fed the HFD and given 0.31 mg/kg BW MgB and 12.91 mg/kg BW ASI). The combined administration of MgB and ASI reduced the levels of serum cholesterol, free fatty acid (FFA), and malondialdehyde (MDA), as well as liver inflammatory cytokines, sterol regulatory element-binding protein 1-c (SREBP-1c), and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) proteins (P < 0.001) compared to HFD rats without supplementation. Moreover, this combination increased the activities of antioxidant enzymes (P < 0.05) and boosted the brain-derived neurotrophic factor (BDNF), serotonin, dopamine (P < 0.001), as well as liver insulin receptor substrate 1 (IRS-1) and peroxisome proliferator-activated receptor gamma (PPAR-γ) (P < 0.001). These findings suggest that combining MgB and ASI could deter liver fat accumulation and enhance lipid metabolism in HFD-fed rats by modulating various metabolic pathways and neuromodulators related to energy metabolism. This combination demonstrates potential in addressing obesity and its related metabolic dysfunctions.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey.
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Besir Er
- Department of Biology, Faculty of Science, Firat University, 23119, Elazig, Turkey
| | - Bayram Akoglan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | | | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | | |
Collapse
|
12
|
Cifuentes M, Vahid F, Devaux Y, Bohn T. Biomarkers of food intake and their relevance to metabolic syndrome. Food Funct 2024; 15:7271-7304. [PMID: 38904169 DOI: 10.1039/d4fo00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) constitutes a prevalent risk factor associated with non communicable diseases such as cardiovascular disease and type 2 diabetes. A major factor impacting the etiology of MetS is diet. Dietary patterns and several individual food constituents have been related to the risk of developing MetS or have been proposed as adjuvant treatment. However, traditional methods of dietary assessment such as 24 h recalls rely greatly on intensive user-interaction and are subject to bias. Hence, more objective methods are required for unbiased dietary assessment and efficient prevention. While it is accepted that some dietary-derived constituents in blood plasma are indicators for certain dietary patterns, these may be too unstable (such as vitamin C as a marker for fruits/vegetables) or too broad (e.g. polyphenols for plant-based diets) or reflect too short-term intake only to allow for strong associations with prolonged intake of individual food groups. In the present manuscript, commonly employed biomarkers of intake including those related to specific food items (e.g. genistein for soybean or astaxanthin and EPA for fish intake) and novel emerging ones (e.g. stable isotopes for meat intake or microRNA for plant foods) are emphasized and their suitability as biomarker for food intake discussed. Promising alternatives to plasma measures (e.g. ethyl glucuronide in hair for ethanol intake) are also emphasized. As many biomarkers (i.e. secondary plant metabolites) are not limited to dietary assessment but are also capable of regulating e.g. anti-inflammatory and antioxidant pathways, special attention will be given to biomarkers presenting a double function to assess both dietary patterns and MetS risk.
Collapse
Affiliation(s)
- Miguel Cifuentes
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Farhad Vahid
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Yvan Devaux
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| |
Collapse
|
13
|
Lana JP, de Oliveira MC, Silveira ALM, Yamada LTP, Costa KA, da Silva SV, de Assis-Ferreira A, Gautier EL, Dussaud S, Pinho V, Teixeira MM, Marcelin G, Clément K, Ferreira AVM. Role of IL-18 in adipose tissue remodeling and metabolic dysfunction. Int J Obes (Lond) 2024; 48:964-972. [PMID: 38459259 DOI: 10.1038/s41366-024-01507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND/OBJECTIVES Proinflammatory cytokines are increased in obese adipose tissue, including inflammasome key masters. Conversely, IL-18 protects against obesity and metabolic dysfunction. We focused on the IL-18 effect in controlling adipose tissue remodeling and metabolism. MATERIALS/SUBJECTS AND METHODS We used C57BL/6 wild-type (WT) and interleukine-18 deficient (IL-18-/-) male mice fed a chow diet and samples from bariatric surgery patients. RESULTS IL-18-/- mice showed increased adiposity and proinflammatory cytokine levels in adipose tissue, leading to glucose intolerance. IL-18 was widely secreted by stromal vascular fraction but not adipocytes from mice's fatty tissue. Chimeric model experiments indicated that IL-18 controls adipose tissue expansion through its presence in tissues other than bone marrow. However, IL-18 maintains glucose homeostasis when present in bone marrow cells. In humans with obesity, IL-18 expression in omental tissue was not correlated with BMI or body fat mass but negatively correlated with IRS1, GLUT-4, adiponectin, and PPARy expression. Also, the IL-18RAP receptor was negatively correlated with IL-18 expression. CONCLUSIONS IL-18 signaling may control adipose tissue expansion and glucose metabolism, as its absence leads to spontaneous obesity and glucose intolerance in mice. We suggest that resistance to IL-18 signaling may be linked with worse glucose metabolism in humans with obesity.
Collapse
Affiliation(s)
- Jaqueline Pereira Lana
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina Chaves de Oliveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Letícia Malheiros Silveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Kátia Anunciação Costa
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Vargas da Silva
- Department of Cellular Biology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Agatha de Assis-Ferreira
- Department of Cellular Biology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geneviève Marcelin
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, Nutriomics, Research Unit, F-75013, Paris, France
- Assistance Publique Hôpitaux de Paris, APHP, Nutrition Department, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Karine Clément
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, Nutriomics, Research Unit, F-75013, Paris, France
- Assistance Publique Hôpitaux de Paris, APHP, Nutrition Department, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Adaliene Versiani Matos Ferreira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Oo TT, Pratchayasakul W, Chattipakorn K, Siri-Angkul N, Choovuthayakorn J, Charumporn T, Ongnok B, Arunsak B, Chunchai T, Kongkaew A, Songtrai S, Kaewsuwan S, Chattipakorn N, Chattipakorn S. Cyclosorus Terminans Extract Alleviates Neuroinflammation in Insulin Resistant Rats. Mol Neurobiol 2024; 61:4879-4890. [PMID: 38148371 DOI: 10.1007/s12035-023-03883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
High-fat diet consumption for an extended period causes obesity, systemic metabolic disturbance, and brain insulin resistance, resulting in neuroinflammation. Although the beneficial effect of Cyclosorus terminans extract on obesity-related insulin resistance has been demonstrated, little is known about how it affects neuroinflammation and brain insulin resistance in obese rats. Male Wistar rats were given either a normal diet (ND, n = 6) or a high-fat diet (HFD, n = 24) for a total of 14 weeks. At the beginning of the week, 13 rats in the ND group were given vehicle orally for 2 weeks, while rats on HFD diets were randomized to one of four groups and given either vehicle, 100 mg/kg/day of Cyclosorus terminans extract, 200 mg/kg/day of Cyclosorus terminans extract, or 20 mg/kg/day of pioglitazone orally for 2 weeks. After the experimental period, blood and brain samples were taken to assess metabolic and brain parameters. HFD-fed rats had obesity, systemic and brain insulin resistance, brain inflammation, microglial and astrocyte hyperactivity, and brain necroptosis. Treatment with 200 mg/kg/day of Cyclosorus terminans extract and pioglitazone equally attenuated obesity, insulin resistance, brain insulin dysfunction, and neuroinflammation in insulin resistant rats. Our findings suggest that Cyclosorus terminans extract may hold promise as a therapeutic agent for insulin resistance and neuroinflammation in obese conditions.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kenneth Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Natthapat Siri-Angkul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jirachaya Choovuthayakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thanapat Charumporn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Ongnok
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sujinda Songtrai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Sireewan Kaewsuwan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
15
|
Giallongo S, Ferrigno J, Caltabiano R, Broggi G, Alanazi AM, Distefano A, Tropea E, Tramutola A, Perluigi M, Volti GL, Barone E, Barbagallo IA. Aging exacerbates oxidative stress and liver fibrosis in an animal model of Down Syndrome. Aging (Albany NY) 2024; 16:10203-10215. [PMID: 38942607 PMCID: PMC11236314 DOI: 10.18632/aging.205970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 06/30/2024]
Abstract
Down Syndrome (DS) is a common genetic disorder characterized by an extra copy of chromosome 21, leading to dysregulation of various metabolic pathways. Oxidative stress in DS is associated with neurodevelopmental defects, neuronal dysfunction, and a dementia onset resembling Alzheimer's disease. Additionally, chronic oxidative stress contributes to cardiovascular diseases and certain cancers prevalent in DS individuals. This study investigates the impact of ageing on oxidative stress and liver fibrosis using a DS murine model (Ts2Cje mice). Our results show that DS mice show increased liver oxidative stress and impaired antioxidant defenses, as evidenced by reduced glutathione levels and increased lipid peroxidation. Therefore, DS liver exhibits an altered inflammatory response and mitochondrial fitness as we showed by assaying the expression of HMOX1, CLPP, and the heat shock proteins Hsp90 and Hsp60. DS liver also displays dysregulated lipid metabolism, indicated by altered expression of PPARα, PPARγ, FATP5, and CTP2. Consistently, these changes might contribute to non-alcoholic fatty liver disease development, a condition characterized by liver fat accumulation. Consistently, histological analysis of DS liver reveals increased fibrosis and steatosis, as showed by Col1a1 increased expression, indicative of potential progression to liver cirrhosis. Therefore, our findings suggest an increased risk of liver pathologies in DS individuals, particularly when combined with the higher prevalence of obesity and metabolic dysfunctions in DS patients. These results shed a light on the liver's role in DS-associated pathologies and suggest potential therapeutic strategies targeting oxidative stress and lipid metabolism to prevent or mitigate liver-related complications in DS individuals.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Jessica Ferrigno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Rosario Caltabiano
- Department G.F. Ingrassia, Section of Anatomic Pathology, University of Catania, Catania 95124, Italy
| | - Giuseppe Broggi
- Department G.F. Ingrassia, Section of Anatomic Pathology, University of Catania, Catania 95124, Italy
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Emanuela Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Roma, RM 00185, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Roma, RM 00185, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Eugenio Barone
- Department G.F. Ingrassia, Section of Anatomic Pathology, University of Catania, Catania 95124, Italy
| | | |
Collapse
|
16
|
Chandrasekaran P, Weiskirchen R. The signaling pathways in obesity-related complications. J Cell Commun Signal 2024; 18:e12039. [PMID: 38946722 PMCID: PMC11208128 DOI: 10.1002/ccs3.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Obesity, a rapidly expanding epidemic worldwide, is known to exacerbate many medical conditions, making it a significant factor in multiple diseases and their associated complications. This threatening epidemic is linked to various harmful conditions such as type 2 diabetes mellitus, hypertension, metabolic dysfunction-associated steatotic liver disease, polycystic ovary syndrome, cardiovascular diseases (CVDs), dyslipidemia, and cancer. The rise in urbanization and sedentary lifestyles creates an environment that fosters obesity, leading to both psychosocial and medical complications. To identify individuals at risk and ensure timely treatment, it is crucial to have a better understanding of the pathophysiology of obesity and its comorbidities. This comprehensive review highlights the relationship between obesity and obesity-associated complications, including type 2 diabetes, hypertension, (CVDs), dyslipidemia, polycystic ovary syndrome, metabolic dysfunction-associated steatotic liver disease, gastrointestinal complications, and obstructive sleep apnea. It also explores the potential mechanisms underlying these associations. A thorough analysis of the interplay between obesity and its associated complications is vital in developing effective therapeutic strategies to combat the exponential increase in global obesity rates and mitigate the deadly consequences of this polygenic condition.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular PathobiochemistryExperimental Gene Therapy and Clinical Chemistry (IFMPEGKC)RWTH University Hospital AachenAachenGermany
| |
Collapse
|
17
|
Avelino TM, Provencio MGA, Peroni LA, Domingues RR, Torres FR, de Oliveira PSL, Leme AFP, Figueira ACM. Improving obesity research: Unveiling metabolic pathways through a 3D In vitro model of adipocytes using 3T3-L1 cells. PLoS One 2024; 19:e0303612. [PMID: 38820505 PMCID: PMC11142712 DOI: 10.1371/journal.pone.0303612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/28/2024] [Indexed: 06/02/2024] Open
Abstract
Obesity, a burgeoning global health crisis, has tripled in prevalence over the past 45 years, necessitating innovative research methodologies. Adipocytes, which are responsible for energy storage, play a central role in obesity. However, most studies in this field rely on animal models or adipocyte monolayer cell cultures, which are limited in their ability to fully mimic the complex physiology of a living organism, or pose challenges in terms of cost, time consumption, and ethical considerations. These limitations prompt a shift towards alternative methodologies. In response, here we show a 3D in vitro model utilizing the 3T3-L1 cell line, aimed at faithfully replicating the metabolic intricacies of adipocytes in vivo. Using a workable cell line (3T3-L1), we produced adipocyte spheroids and differentiated them in presence and absence of TNF-α. Through a meticulous proteomic analysis, we compared the molecular profile of our adipose spheroids with that of adipose tissue from lean and obese C57BL/6J mice. This comparison demonstrated the model's efficacy in studying metabolic conditions, with TNF-α treated spheroids displaying a notable resemblance to obese white adipose tissue. Our findings underscore the model's simplicity, reproducibility, and cost-effectiveness, positioning it as a robust tool for authentically mimicking in vitro metabolic features of real adipose tissue. Notably, our model encapsulates key aspects of obesity, including insulin resistance and an obesity profile. This innovative approach has the potential to significantly impact the discovery of novel therapeutic interventions for metabolic syndrome and obesity. By providing a nuanced understanding of metabolic conditions, our 3D model stands as a transformative contribution to in vitro research, offering a pathway for the development of small molecules and biologics targeting these pervasive health issues in humans.
Collapse
Affiliation(s)
- Thayna Mendonca Avelino
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Pharmacology Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Marta García-Arévalo Provencio
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Luis Antonio Peroni
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Romênia Ramos Domingues
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Felipe Rafael Torres
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Paulo Sergio Lopes de Oliveira
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Adriana Franco Paes Leme
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Ana Carolina Migliorini Figueira
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Pharmacology Science, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
18
|
Yan S, Santoro A, Niphakis MJ, Pinto AM, Jacobs CL, Ahmad R, Suciu RM, Fonslow BR, Herbst-Graham RA, Ngo N, Henry CL, Herbst DM, Saghatelian A, Kahn BB, Rosen ED. Inflammation causes insulin resistance in mice via interferon regulatory factor 3 (IRF3)-mediated reduction in FAHFA levels. Nat Commun 2024; 15:4605. [PMID: 38816388 PMCID: PMC11139994 DOI: 10.1038/s41467-024-48220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Obesity-induced inflammation causes metabolic dysfunction, but the mechanisms remain elusive. Here we show that the innate immune transcription factor interferon regulatory factor (IRF3) adversely affects glucose homeostasis through induction of the endogenous FAHFA hydrolase androgen induced gene 1 (AIG1) in adipocytes. Adipocyte-specific knockout of IRF3 protects male mice against high-fat diet-induced insulin resistance, whereas overexpression of IRF3 or AIG1 in adipocytes promotes insulin resistance on a high-fat diet. Furthermore, pharmacological inhibition of AIG1 reversed obesity-induced insulin resistance and restored glucose homeostasis in the setting of adipocyte IRF3 overexpression. We, therefore, identify the adipocyte IRF3/AIG1 axis as a crucial link between obesity-induced inflammation and insulin resistance and suggest an approach for limiting the metabolic dysfunction accompanying obesity.
Collapse
Affiliation(s)
- Shuai Yan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02130, USA
| | - Anna Santoro
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02130, USA
| | - Micah J Niphakis
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Antonio M Pinto
- The Salk Institute for Biological Studies, 10010 N. Torey Pines Rd, La Jolla, CA, 92037-1002, USA
| | - Christopher L Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02130, USA
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Jasim Mohamad Al Bahar St., Kuwait City, Kuwait
| | - Radu M Suciu
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Bryan R Fonslow
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Rachel A Herbst-Graham
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Nhi Ngo
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Cassandra L Henry
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Dylan M Herbst
- Lundbeck La Jolla Research Center Inc., 10835 Road To The Cure Dr. #250, San Diego, CA, 92121, USA
| | - Alan Saghatelian
- The Salk Institute for Biological Studies, 10010 N. Torey Pines Rd, La Jolla, CA, 92037-1002, USA
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02130, USA
- Broad Institute of Harvard and MIT, 320 Charles St., Cambridge, MA, 02141, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA.
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02130, USA.
- Broad Institute of Harvard and MIT, 320 Charles St., Cambridge, MA, 02141, USA.
| |
Collapse
|
19
|
Branco A, Rayabaram J, Miranda CC, Fernandes-Platzgummer A, Fernandes TG, Sajja S, da Silva CL, Vemuri MC. Advances in ex vivo expansion of hematopoietic stem and progenitor cells for clinical applications. Front Bioeng Biotechnol 2024; 12:1380950. [PMID: 38846805 PMCID: PMC11153805 DOI: 10.3389/fbioe.2024.1380950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
As caretakers of the hematopoietic system, hematopoietic stem cells assure a lifelong supply of differentiated populations that are responsible for critical bodily functions, including oxygen transport, immunological protection and coagulation. Due to the far-reaching influence of the hematopoietic system, hematological disorders typically have a significant impact on the lives of individuals, even becoming fatal. Hematopoietic cell transplantation was the first effective therapeutic avenue to treat such hematological diseases. Since then, key use and manipulation of hematopoietic stem cells for treatments has been aspired to fully take advantage of such an important cell population. Limited knowledge on hematopoietic stem cell behavior has motivated in-depth research into their biology. Efforts were able to uncover their native environment and characteristics during development and adult stages. Several signaling pathways at a cellular level have been mapped, providing insight into their machinery. Important dynamics of hematopoietic stem cell maintenance were begun to be understood with improved comprehension of their metabolism and progressive aging. These advances have provided a solid platform for the development of innovative strategies for the manipulation of hematopoietic stem cells. Specifically, expansion of the hematopoietic stem cell pool has triggered immense interest, gaining momentum. A wide range of approaches have sprouted, leading to a variety of expansion systems, from simpler small molecule-based strategies to complex biomimetic scaffolds. The recent approval of Omisirge, the first expanded hematopoietic stem and progenitor cell product, whose expansion platform is one of the earliest, is predictive of further successes that might arise soon. In order to guarantee the quality of these ex vivo manipulated cells, robust assays that measure cell function or potency need to be developed. Whether targeting hematopoietic engraftment, immunological differentiation potential or malignancy clearance, hematopoietic stem cells and their derivatives need efficient scaling of their therapeutic potency. In this review, we comprehensively view hematopoietic stem cells as therapeutic assets, going from fundamental to translational.
Collapse
Affiliation(s)
- André Branco
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Janakiram Rayabaram
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia C. Miranda
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- AccelBio, Collaborative Laboratory to Foster Translation and Drug Discovery, Cantanhede, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Suchitra Sajja
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia L. da Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
20
|
Raja R, Sundararaj R, Kandasamy R. Identification of small molecule inhibitors against Lin28/let-7 to suppress tumor progression and its alleviation role in LIN28-dependent glucose metabolism. Med Oncol 2024; 41:118. [PMID: 38630184 DOI: 10.1007/s12032-024-02350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
The reciprocal suppression of an RNA-binding protein LIN28 (human abnormal cell lineage 28) and miRNA Let-7 (Lethal 7) is considered to have a prime role in hepatocellular carcinoma (HCC). Though targeting this inhibition interaction is effective for therapeutics, it causes other unfavorable effects on glucose metabolism and increased insulin resistance. Hence, this study aims to identify small molecules targeting Lin28/let-7 interaction along with additional potency to improve insulin sensitivity. Of 22,14,996 small molecules screened by high throughput virtual screening, 6 molecules, namely 41354, 1558, 12437, 23837, 15710, and 8319 were able to block the LIN28 interaction with let-7 and increase the insulin sensitivity via interacting with PPARγ (peroxisome proliferator-activated receptors γ). MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) analysis is used to re-score the binding affinity of docked complexes. Upon further analysis, it is also seen that these molecules have superior ADME (Absorption, Distribution, Metabolism, and Excretion) properties and form stable complexes with the targets for a significant period in a biologically simulated environment (Molecular Dynamics simulation) for 100 ns. From our results, we hypothesize that these identified 6 small molecules can be potential candidates for HCC treatment and the glucose metabolic disorder caused by the HCC treatment.
Collapse
Affiliation(s)
- Rachanaa Raja
- Centre for Excellence in Nanobio Translational Research, Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, Tamil Nadu, India
| | - Rajamanikandan Sundararaj
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research, Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
21
|
Wang Y, Li S, Liu Z, Li X, Yu Y, Liu H. Identification of PPAR-related differentially expressed genes liver hepatocellular carcinoma and construction of a prognostic model based on data analysis and molecular docking. J Cell Mol Med 2024; 28:e18304. [PMID: 38652093 PMCID: PMC11037413 DOI: 10.1111/jcmm.18304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a significant global health issue with limited treatment options. In this study, single-cell RNA sequencing (scRNA-seq) data were used to explore the molecular mechanisms of LIHC development and identify potential targets for therapy. The expression of peroxisome proliferator-activated receptors (PPAR)-related genes was analysed in LIHC samples, and primary cell populations, including natural killer cells, T cells, B cells, myeloid cells, endothelial cells, fibroblasts and hepatocytes, were identified. Analysis of the differentially expressed genes (DEGs) between normal and tumour tissues revealed significant changes in gene expression in various cell populations. PPAR activity was evaluated using the 'AUCell' R software, which indicated higher scores in the normal versus the malignant hepatocytes. Furthermore, the DEGs showed significant enrichment of pathways related to lipid and glucose metabolism, cell development, differentiation and inflammation. A prognostic model was then constructed using 8 PPARs-related genes, including FABP5, LPL, ACAA1, PPARD, FABP4, PLIN1, HMGCS2 and CYP7A1, identified using least absolute shrinkage and selection operator-Cox regression analysis, and validated in the TCGA-LIHC, ICGI-LIRI and GSE14520 datasets. Patients with low-risk scores had better prognosis in all cohorts. Based on the expression of the eight model genes, two clusters of patients were identified by ConsensusCluster analysis. We also predicted small-molecule drugs targeting the model genes, and identified perfluorohexanesulfonic acid, triflumizole and perfluorononanoic acid as potential candidates. Finally, wound healing assay confirmed that PPARD can promote the migration of liver cancer cells. Overall, our study offers novel perspectives on the molecular mechanisms of LIHC and potential areas for therapeutic intervention, which may facilitate the development of more effective treatment regimens.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Organ Transplantation and HepatobiliaryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shuqiang Li
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zihang Liu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xuanzheng Li
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yifan Yu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Hao Liu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
22
|
Navarro-Ledesma S, Hamed-Hamed D, Pruimboom L. A new perspective of frozen shoulder pathology; the interplay between the brain and the immune system. Front Physiol 2024; 15:1248612. [PMID: 38617059 PMCID: PMC11009429 DOI: 10.3389/fphys.2024.1248612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
Frozen shoulder (FS), also known as adhesive capsulitis of the shoulder (FS), is a fibrotic inflammatory process of unknown etiology whose main symptoms are pain, stiffness and the loss of joint mobility. These symptoms may be associated with pathologies such as diabetes, Dupuytren's syndrome and the prevalence of today's sedentary lifestyle. This literature review provides an overview of the epidemiology and pathogenesis of this pathology, as well as the mechanisms of lowgrade chronic inflammation and infection, insulin resistance, and omics-science associated with it. We also propose a new hypothesis related to the possibility that the GABAergic system could play a decisive role in the development of frozen shoulder and that therefore diabetes type 1, endocrinological autoimmune disorders and frozen shoulder are connected by the same pathophysiological mechanisms. If that is true, the combined presence of psycho-emotional stress factors and pathogenic immune challenges could be the main causes of frozen shoulder syndrome. Finally, we propose a series of possible intervention strategies based on a multifactorial etiological and mechanistic concept.
Collapse
Affiliation(s)
- Santiago Navarro-Ledesma
- Department of Physical Therapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, Melilla, Spain
- University Chair in Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Melilla, Spain
| | - Dina Hamed-Hamed
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Leo Pruimboom
- University Chair in Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Melilla, Spain
| |
Collapse
|
23
|
Xiong L, Yao X, Pei J, Wang X, Guo S, Cao M, Bao P, Wang H, Yan P, Guo X. Do microbial-gut-muscle mediated by SCFAs, microbial-gut-brain axis mediated by insulin simultaneously regulate yak IMF deposition? Int J Biol Macromol 2024; 257:128632. [PMID: 38061511 DOI: 10.1016/j.ijbiomac.2023.128632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
Ruminant rumen plays an important role in the digestibility of cellulose, hemicellulose, starch and fat. In this study, the yaks under graze and stall feeding were chosen as the models of different rumen bacteria and intramuscular fat (IMF). The characteristics of IMF deposition, serum indexes in yaks were detected; the bacteria, metabolites in rumen was explored by 16S rRNA sequencing technology, untargeted metabolomics based on liquid chromatography-mass spectrometer and gas chromatography, respectively; the transcriptome of longissimus thoracis was identified by RNA-Sequencing analysis. Based on above results, a hypothesis that yak IMF deposition is regulated by the combined action of microbiome-gut-brain and muscle axis was proposed. The short-chain fatty acids (SCFAs) and neurotransmitters precursors like acetylcholine produced in yak rumen promoted insulin secretion via central nervous system. These insulin resulted in the high expression of SREBF1 gene by gut-brain axis; SCFAs can directly arrive to muscular tissue via blood circulation system, then activated the expression of PPARγ gene by gut-muscle axis. The expression of lipogenesis gene SCD, FABP3, CPT1, FASN and ACC2 was accordingly up-regulated. This study firstly introduce the theory of microbiome-gut-brain/muscle axis into the study of ruminant, and comprehensively expounded the regulatory mechanism of yak IMF deposition.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xixi Yao
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Mengli Cao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China.
| |
Collapse
|
24
|
Moridpour AH, Kavyani Z, Khosravi S, Farmani E, Daneshvar M, Musazadeh V, Faghfouri AH. The effect of cinnamon supplementation on glycemic control in patients with type 2 diabetes mellitus: An updated systematic review and dose-response meta-analysis of randomized controlled trials. Phytother Res 2024; 38:117-130. [PMID: 37818728 DOI: 10.1002/ptr.8026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/20/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Although many randomized controlled trials (RCTs) have revealed the benefits of cinnamon on type 2 diabetes mellitus (T2DM), the effects of cinnamon supplementation on glycemic control in patients with T2DM are inconclusive. Therefore, the aim of this meta-analysis of RCTs was to assess the effects of cinnamon supplementation in managing glycemic control in patients with T2DM. Scientific international databases including Scopus, Web of Sciences, PubMed, Embase, and the Cochrane Library were searched till December 2022. For net changes in glycemic control, standard mean differences (SMDs) were calculated using random-effects models. Findings from 24 RCTs revealed that cinnamon supplementation had a statistically significant reduction in fasting blood sugar (SMD: -1.32; 95% CI: -1.77, -0.87, p < 0.001), Homeostatic Model Assessment for Insulin Resistance (SMD: -1.32; 95% CI: -1.77, -0.87, p < 0.001), and hemoglobin A1C (SMD: -0.67; 95% CI: -1.18, -0.15, p = 0.011) compared with the control group in patients with T2DM. Additionally, cinnamon did not change the serum levels of insulin (SMD: -0.17; 95% CI: -0.34, 0.01, p = 0.058) significantly. Our analysis indicated that glycemic control indicators are significantly decreased by cinnamon supplementation. Together, these findings support the notion that cinnamon supplementation might have clinical potential as an adjunct therapy for managing T2DM.
Collapse
Affiliation(s)
| | - Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaye Khosravi
- Department of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
25
|
Arely RJ, Cristian AE, Omar AX, Antonio PJJ, Isela SR, Yeimy Mar DLR, Xcaret Alexa HD, Omar AH. Iodine Promotes Glucose Uptake through Akt Phosphorylation and Glut-4 in Adipocytes, but Higher Doses Induce Cytotoxic Effects in Pancreatic Beta Cells. BIOLOGY 2024; 13:26. [PMID: 38248457 PMCID: PMC10813031 DOI: 10.3390/biology13010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Epidemiological clinical reports have shown an association between iodine excess with diabetes mellitus type 2 and higher blood glucose. However, the relationship between iodine, the pancreas, adipose tissue, and glucose transport is unclear. The goal of this study was to analyze the effect of iodine concentrations (in Lugol solution) on glucose transport, insulin secretion, and its cytotoxic effects in mature 3T3-L1 adipocytes and pancreatic beta-TC-6 cells. METHODS Fibroblast 3T3-L1, mature adipocytes, and pancreatic beta-TC-6 cells were treated with 1 to 1000 µM of Lugol (molecular iodine dissolved in potassium iodide) for 30 min to 24 h for an MTT proliferation assay. Then, glucose uptake was measured with the fluorescent analog 2-NBDG, insulin receptor, Akt protein, p-Akt (ser-473), PPAR-gamma, and Glut4 by immunoblot; furthermore, insulin, alpha-amylase, oxidative stress, and caspase-3 activation were measured by colorimetric methods and the expression of markers of the apoptotic pathway at the RNAm level by real-time PCR. RESULTS Low concentrations of Lugol significantly induce insulin secretion and glucose uptake in pancreatic beta-TC-6 cells, and in adipose cells, iodine-induced glucose uptake depends on the serine-473 phosphorylation of Akt (p-Akt) and Glut4. Higher doses of Lugol lead to cell growth inhibition, oxidative stress, and cellular apoptosis dependent on PPAR-gamma, Bax mRNA expression, and caspase-3 activation in pancreatic beta-TC-6 cells. CONCLUSIONS Iodine could influence glucose metabolism in mature adipocytes and insulin secretion in pancreatic beta cells, but excessive levels may cause cytotoxic damage to pancreatic beta cells.
Collapse
Affiliation(s)
- Reséndiz-Jiménez Arely
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Col. Industrial Ánimas, Xalapa 91190, Veracruz, Mexico (A.-X.O.)
| | - Arbez-Evangelista Cristian
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Col. Industrial Ánimas, Xalapa 91190, Veracruz, Mexico (A.-X.O.)
| | - Arroyo-Xochihua Omar
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Col. Industrial Ánimas, Xalapa 91190, Veracruz, Mexico (A.-X.O.)
| | - Palma-Jacinto José Antonio
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N, Unidad del Bosque, Xalapa 91190, Veracruz, Mexico; (P.-J.J.A.); (S.-R.I.)
| | - Santiago-Roque Isela
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N, Unidad del Bosque, Xalapa 91190, Veracruz, Mexico; (P.-J.J.A.); (S.-R.I.)
| | - De León-Ramírez Yeimy Mar
- Laboratorio de Biomedicina y Salud Pública, Instituto de Salud Pública, Universidad Veracruzana, Av. Luís Castelazo Ayala S/N, Col. Industrial Animas, Xalapa 91190, Veracruz, Mexico; (D.L.-R.Y.M.)
| | - Hernández-Domínguez Xcaret Alexa
- Laboratorio de Biomedicina y Salud Pública, Instituto de Salud Pública, Universidad Veracruzana, Av. Luís Castelazo Ayala S/N, Col. Industrial Animas, Xalapa 91190, Veracruz, Mexico; (D.L.-R.Y.M.)
| | - Arroyo-Helguera Omar
- Laboratorio de Biomedicina y Salud Pública, Instituto de Salud Pública, Universidad Veracruzana, Av. Luís Castelazo Ayala S/N, Col. Industrial Animas, Xalapa 91190, Veracruz, Mexico; (D.L.-R.Y.M.)
| |
Collapse
|
26
|
Pokushalov E, Ponomarenko A, Bayramova S, Garcia C, Pak I, Shrainer E, Voronina E, Sokolova E, Johnson M, Miller R. Evaluating the Impact of Omega-3 Fatty Acid (Soloways TM) Supplementation on Lipid Profiles in Adults with PPARG Polymorphisms: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023; 16:97. [PMID: 38201926 PMCID: PMC10780403 DOI: 10.3390/nu16010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Emerging evidence suggests that PPARG gene polymorphisms may influence lipid metabolism and cardiovascular risk, with omega-3 fatty acids proposed to modulate these effects. This study aims to assess the effects of fish oil supplementation on cardiovascular markers among adults with PPARG gene polymorphisms in a randomized, double-blind, placebo-controlled trial. A cohort of 102 patients with LDL-C 70-190 mg/dL was randomized to receive either 2000 mg of omega-3 fatty acids or a placebo daily for 90 days. In the omega-3 group with PPARG polymorphisms, LDL-C was reduced by 15.4% (95% CI: -19.8% to -11.0%), compared with a 2.6% decrease in the placebo group (95% CI: -4.1% to -1.1%; p < 0.01). In the omega-3 group without PPARG polymorphisms, LDL-C was reduced by 3.7% (95% CI: -6.9% to -0.6%), not significantly different from the placebo group's reduction of 2.9% (95% CI: -5.1% to -0.8%; p = 0.28). The reduction in LDL-C was notably 11.7% greater in those with PPARG polymorphisms than in those without (95% CI: -19.3% to -4.0%; p < 0.01). Triglycerides decreased by 21.3% in omega-3 recipients with PPARG polymorphisms (95% CI: -26.5% to -16.2%; p < 0.01), with no significant changes in HDL-C, total cholesterol, or hsCRP levels in any groups. Minor allele frequencies and baseline characteristics were comparable, ensuring a balanced genetic representation. Omega-3 fatty acids significantly reduce LDL-C and triglycerides in carriers of PPARG polymorphisms, underlining the potential for genetic-driven personalization of cardiovascular interventions.
Collapse
Affiliation(s)
- Evgeny Pokushalov
- Center for New Medical Technologies, 630090 Novosibirsk, Russia; (A.P.); (S.B.); (I.P.); (E.S.)
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA; (C.G.)
| | - Andrey Ponomarenko
- Center for New Medical Technologies, 630090 Novosibirsk, Russia; (A.P.); (S.B.); (I.P.); (E.S.)
| | - Sevda Bayramova
- Center for New Medical Technologies, 630090 Novosibirsk, Russia; (A.P.); (S.B.); (I.P.); (E.S.)
| | - Claire Garcia
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA; (C.G.)
| | - Inessa Pak
- Center for New Medical Technologies, 630090 Novosibirsk, Russia; (A.P.); (S.B.); (I.P.); (E.S.)
| | - Evgenya Shrainer
- Center for New Medical Technologies, 630090 Novosibirsk, Russia; (A.P.); (S.B.); (I.P.); (E.S.)
| | - Elena Voronina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.); (E.S.)
| | - Ekaterina Sokolova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.); (E.S.)
| | - Michael Johnson
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA; (C.G.)
| | - Richard Miller
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA; (C.G.)
| |
Collapse
|
27
|
Hetty S, Vranic M, Kamble PG, Lundqvist MH, Pereira MJ, Eriksson JW. CABLES1 expression is reduced in human subcutaneous adipose tissue in obesity and type 2 diabetes but may not directly impact adipocyte glucose and lipid metabolism. Adipocyte 2023; 12:2242997. [PMID: 37555665 PMCID: PMC10413912 DOI: 10.1080/21623945.2023.2242997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Cdk5 and Abl enzyme substrate 1 (CABLES1) is a cell cycle regulator that has previously been identified as a candidate gene for obesity-related phenotypes, but little is known about its role in adipose tissue metabolism. In this study, we explore the role of CABLES1 in obesity and type 2 diabetes (T2D) in human subcutaneous adipose tissue (SAT). We performed gene expression analysis of SAT obtained from subjects with and without T2D, and from a second validation cohort consisting of subjects without T2D. We used CRISPR/Cas9 genome editing to perform CABLES1 loss-of-function studies in human primary preadipocytes and assessed them functionally after differentiation. CABLES1 gene expression in SAT was decreased in T2D by almost 25%, and inversely associated with insulin resistance markers and hyperglycaemia. mRNA levels were reduced with increasing BMI and negatively correlated with obesity markers. We found that adipocytes are likely the main CABLES1-expressing cell type in SAT, but CABLES1 depletion in adipocytes caused no phenotypical changes in regards to differentiation, glucose uptake, or expression of key genes of adipocyte function. These findings suggest that CABLES1 gene expression in SAT might be altered in obesity and T2D as a consequence of metabolic dysregulation rather than being a causal factor.
Collapse
Affiliation(s)
- Susanne Hetty
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Milica Vranic
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Prasad G Kamble
- Innovation Strategies & External Liaison, Pharmaceutical Technologies & Development, AstraZeneca R&D, Mölndal, Sweden
| | - Martin H Lundqvist
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Abrahams Y, Willmer T, Patel O, Samodien E, Muller CJF, Windvogel S, Johnson R, Pheiffer C. A high fat, high sugar diet induces hepatic Peroxisome proliferator-activated receptor gamma coactivator 1-alpha promoter hypermethylation in male Wistar rats. Biochem Biophys Res Commun 2023; 680:25-33. [PMID: 37713959 DOI: 10.1016/j.bbrc.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 09/02/2023] [Indexed: 09/17/2023]
Abstract
Previously we reported that a high fat, high sugar (HFHS) diet induced adiposity, hyperinsulinaemia, hyperleptinaemia, hypertriglyceridaemia and increased liver mass in male Wistar rats. In the present study, the mechanisms underlying the increased liver mass were further elucidated by assessing hepatic lipid accumulation and the expression and methylation status of key metabolic genes using histology, quantitative real-time PCR and pyrosequencing, respectively. The HFHS diet induced hepatic steatosis, increased hepatic triglycerides (1.8-fold, p < 0.001), and increased the expression of sterol regulatory element-binding transcription factor 1 (Srebf1) (2.0-fold, p < 0.001) and peroxisome proliferator-activated receptor gamma (Pparg) (1.7-fold, p = 0.017) in the liver. The expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Pgc1a) was decreased (2.6-fold, p < 0.010), which was accompanied by hypermethylation (p = 0.018) of a conserved CpG site in the promoter of Pgc1a in HFHS fed rats compared to controls. In silico analysis identified putative binding sites for CCAAT/enhancer-binding protein beta (C/EBPß) and hepatocyte nuclear factor 1 (HNF1) within proximity to the hypermethylated CpG. As Pgc1a is a co-activator of several transcription factors regulating multiple metabolic pathways, hypermethylation of this conserved CpG site in the promoter of Pgc1a may be one possible mechanism contributing to the development of hepatic steatosis in response to a HFHS diet. However, further work is required to confirm the role of Pgc1a in steatosis.
Collapse
Affiliation(s)
- Yoonus Abrahams
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Oelfah Patel
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Ebrahim Samodien
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa, South Africa
| | - Shantal Windvogel
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
29
|
Liu S, Tian F, Qi D, Qi H, Wang Y, Xu S, Zhao K. Physiological, metabolomic, and transcriptomic reveal metabolic pathway alterations in Gymnocypris przewalskii due to cold exposure. BMC Genomics 2023; 24:545. [PMID: 37710165 PMCID: PMC10500822 DOI: 10.1186/s12864-023-09587-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Teleost fish have evolved various adaptations that allow them to tolerate cold water conditions. However, the underlying mechanism of this adaptation is poorly understood in Tibetan Plateau fish. RNA-seq combined with liquid chromatography‒mass spectrometry (LC‒MS/MS) metabolomics was used to investigate the physiological responses of a Tibetan Plateau-specific teleost, Gymnocypris przewalskii, under cold conditions. The 8-month G. przewalskii juvenile fish were exposed to cold (4 ℃, cold acclimation, CA) and warm (17 ℃, normal temperature, NT) temperature water for 15 days. Then, the transcript profiles of eight tissues, including the brain, gill, heart, intestine, hepatopancreas, kidney, muscle, and skin, were evaluated by transcriptome sequencing. The metabolites of the intestine, hepatopancreas, and muscle were identified by LC‒MS/MS. A total of 5,745 differentially expressed genes (DEGs) were obtained in the CA group. The key DEGs were annotated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The DEGs from the eight tissues were significantly enriched in spliceosome pathways, indicating that activated alternative splicing is a critical biological process that occurs in the tissues to help fish cope with cold stress. Additionally, 82, 97, and 66 differentially expressed metabolites were identified in the intestine, hepatopancreas, and muscle, respectively. Glutathione metabolism was the only overlapping significant pathway between the transcriptome and metabolome analyses in these three tissues, indicating that an activated antioxidative process was triggered during cold stress. In combination with the multitissue transcriptome and metabolome, we established a physiology-gene‒metabolite interaction network related to energy metabolism during cold stress and found that gluconeogenesis and long-chain fatty acid metabolism played critical roles in glucose homeostasis and energy supply.
Collapse
Affiliation(s)
- Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China
| | - Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Qinghai Naked Carp Rescue Center, Xining, Qinghai, China
| | - Yang Wang
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Qinghai Naked Carp Rescue Center, Xining, Qinghai, China
| | - Shixiao Xu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.
| |
Collapse
|
30
|
Son D, Lee M. Gene regulation of RMR-related DNAJC6 on adipogenesis and mitochondria function in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2023; 672:1-9. [PMID: 37331165 DOI: 10.1016/j.bbrc.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
In the pilot GWAS of children obesity, DNAJC6 gene was found as a regulator for resting metabolic rate (RMR) and obesity in children aged 8-9 years. To investigate whether DNAJC6 gene regulated obesity and energy metabolism, the physiological mechanisms during adipogenesis of 3T3-L1 preadipocytes were confirmed after DNAJC6 gene was overexpressed or inhibited. Overexpressing DNAJC6 gene maintained a 3T3-L1 preadipocyte status during cell differentiation (MTT, ORO, DAPI/BODIPY). It suppressed adipogenesis and adipokine production (leptin, adiponectin), insulin signaling with IRS-GLUT4 system (RT-PCR, Western blotting), and mitochondrial function (Mito Stress Test). DNAJC6 overexpressed cells inhibited mTOR expression, but maintained LC3 expression at a high level, indicating that autophagy occurred and energy was obtained. However, when DNAJC6 gene was inhibited, fat synthesis factor was highly expressed during differentiation (PPARr, C/EBPa, aP2, etc) and the intracellular stress level increased accordingly, which affected the reduction of reserve respiratory capacity during mitochondrial respiration. Our study confirmed gene regulation of DNAJC6, overexpression or inhibition, affects adipogenesis with energy metabolism and mitochondrial functions. This basic data can be used for clinic obesity studies to control an energy imbalance.
Collapse
Affiliation(s)
- Dajeong Son
- Department of Food & Nutrition, Sungshin Women's University, Seoul, 01133, Republic of Korea; Research Institute of Obesity Science, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Myougsook Lee
- Department of Food & Nutrition, Sungshin Women's University, Seoul, 01133, Republic of Korea; Research Institute of Obesity Science, Sungshin Women's University, Seoul, 01133, Republic of Korea.
| |
Collapse
|
31
|
Perry BW, McDonald AL, Trojahn S, Saxton MW, Vincent EP, Lowry C, Evans Hutzenbiler BD, Cornejo OE, Robbins CT, Jansen HT, Kelley JL. Feeding during hibernation shifts gene expression toward active season levels in brown bears ( Ursus arctos). Physiol Genomics 2023; 55:368-380. [PMID: 37486084 PMCID: PMC10642923 DOI: 10.1152/physiolgenomics.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states.
Collapse
Affiliation(s)
- Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Anna L McDonald
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Shawn Trojahn
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Michael W Saxton
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Ellery P Vincent
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Courtney Lowry
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | | | - Omar E Cornejo
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| | - Charles T Robbins
- School of the Environment, Washington State University, Pullman, Washington, United States
| | - Heiko T Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Joanna L Kelley
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| |
Collapse
|
32
|
Basha A, May SC, Anderson RM, Samala N, Mirmira RG. Non-Alcoholic Fatty Liver Disease: Translating Disease Mechanisms into Therapeutics Using Animal Models. Int J Mol Sci 2023; 24:9996. [PMID: 37373143 PMCID: PMC10298283 DOI: 10.3390/ijms24129996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a range of pathologies arising from fat accumulation in the liver in the absence of excess alcohol use or other causes of liver disease. Its complications include cirrhosis and liver failure, hepatocellular carcinoma, and eventual death. NAFLD is the most common cause of liver disease globally and is estimated to affect nearly one-third of individuals in the United States. Despite knowledge that the incidence and prevalence of NAFLD are increasing, the pathophysiology of the disease and its progression to cirrhosis remain insufficiently understood. The molecular pathogenesis of NAFLD involves insulin resistance, inflammation, oxidative stress, and endoplasmic reticulum stress. Better insight into these molecular pathways would allow for therapies that target specific stages of NAFLD. Preclinical animal models have aided in defining these mechanisms and have served as platforms for screening and testing of potential therapeutic approaches. In this review, we will discuss the cellular and molecular mechanisms thought to contribute to NAFLD, with a focus on the role of animal models in elucidating these mechanisms and in developing therapies.
Collapse
Affiliation(s)
- Amina Basha
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah C. May
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Ryan M. Anderson
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Niharika Samala
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
33
|
Szukiewicz D. Molecular Mechanisms for the Vicious Cycle between Insulin Resistance and the Inflammatory Response in Obesity. Int J Mol Sci 2023; 24:9818. [PMID: 37372966 DOI: 10.3390/ijms24129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The comprehensive anabolic effects of insulin throughout the body, in addition to the control of glycemia, include ensuring lipid homeostasis and anti-inflammatory modulation, especially in adipose tissue (AT). The prevalence of obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, has been increasing worldwide on a pandemic scale with accompanying syndemic health problems, including glucose intolerance, insulin resistance (IR), and diabetes. Impaired tissue sensitivity to insulin or IR paradoxically leads to diseases with an inflammatory component despite hyperinsulinemia. Therefore, an excess of visceral AT in obesity initiates chronic low-grade inflammatory conditions that interfere with insulin signaling via insulin receptors (INSRs). Moreover, in response to IR, hyperglycemia itself stimulates a primarily defensive inflammatory response associated with the subsequent release of numerous inflammatory cytokines and a real threat of organ function deterioration. In this review, all components of this vicious cycle are characterized with particular emphasis on the interplay between insulin signaling and both the innate and adaptive immune responses related to obesity. Increased visceral AT accumulation in obesity should be considered the main environmental factor responsible for the disruption in the epigenetic regulatory mechanisms in the immune system, resulting in autoimmunity and inflammation.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
34
|
Ahmad A, Alghamdi AA. Molecular docking analysis of PPARγ antagonists for obesity associated diabetes management. Bioinformation 2023; 19:633-637. [PMID: 37886153 PMCID: PMC10599684 DOI: 10.6026/97320630019633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 10/28/2023] Open
Abstract
Obesity is a major metabolic disorder in developed countries, with an increasing number of people affected globally. PPARγ is primarily expressed in adipose tissue with a lesser extent in other tissues. PPARγ is an important mediator in several metabolic processes such as insulin sensitivity and adipogenesis. Because of its critical role in these processes, PPARγ is regarded as a critical target for therapeutic intervention in obesity treatment. A library of 2,320 bioactive compounds was screened insilico to identify compounds that strongly interact with the PPARγ protein. The compounds Z1982689600, Z2235802137, Z2235801970, and Z2037275165, demonstrated notable binding affinity values towards the PPARγ protein with values of -12.1, -11.7, -11.4, and -11.4 kcal/mol, respectively, which were higher than the binding affinity value observed for the control compound (-10.5 kcal/mol). These compounds bind tightly to PPARγ and have several amino acid residue interactions in common with the control compound. In addition, these compounds meet the ADMET criteria. These compounds could aid in the development of PPARγ antagonists for the management of obesity associated diabetes. However, additional research is needed to optimize their efficacy in wet laboratory conditions.
Collapse
Affiliation(s)
- Aftab Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar A. Alghamdi
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Phung NV, Rong F, Xia WY, Fan Y, Li XY, Wang SA, Li FL. Nervonic acid and its sphingolipids: Biological functions and potential food applications. Crit Rev Food Sci Nutr 2023; 64:8766-8785. [PMID: 37114919 DOI: 10.1080/10408398.2023.2203753] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Nervonic acid, a 24-carbon fatty acid with only one double bond at the 9th carbon (C24:1n-9), is abundant in the human brain, liver, and kidney. It not only functions in free form but also serves as a critical component of sphingolipids which participate in many biological processes such as cell membrane formation, apoptosis, and neurotransmission. Recent studies show that nervonic acid supplementation is not only beneficial to human health but also can improve the many medical conditions such as neurological diseases, cancers, diabetes, obesity, and their complications. Nervonic acid and its sphingomyelins serve as a special material for myelination in infants and remyelination patients with multiple sclerosis. Besides, the administration of nervonic acid is reported to reduce motor disorder in mice with Parkinson's disease and limit weight gain. Perturbations of nervonic acid and its sphingolipids might lead to the pathogenesis of many diseases and understanding these mechanisms is critical for investigating potential therapeutic approaches for such diseases. However, available studies about this aspect are limited. In this review, relevant findings about functional mechanisms of nervonic acid have been comprehensively and systematically described, focusing on four interconnected functions: cellular structure, signaling, anti-inflammation, lipid mobilization, and their related diseases.
Collapse
Affiliation(s)
- Nghi Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wan Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xian Yu Li
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Shi An Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| | - Fu Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| |
Collapse
|
36
|
Zečević K, Popović N, Vuksanović Božarić A, Vukmirović M, Rizzo M, Muzurović E. Timing Is Important-Management of Metabolic Syndrome According to the Circadian Rhythm. Biomedicines 2023; 11:biomedicines11041171. [PMID: 37189789 DOI: 10.3390/biomedicines11041171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Physiological processes occur in accordance with a rhythm regulated by the endogenous biological clock. This clock is programmed at the molecular level and synchronized with the daily light-dark cycle, as well as activities such as feeding, exercise, and social interactions. It consists of the core clock genes, Circadian Locomotor Output Cycles Protein Kaput (CLOCK) and Brain and Muscle Arnt-Like protein 1 (BMAL1), and their products, the period (PER) and cryptochrome (CRY) proteins, as well as an interlocked feedback loop which includes reverse-strand avian erythroblastic leukemia (ERBA) oncogene receptors (REV-ERBs) and retinoic acid-related orphan receptors (RORs). These genes are involved in the regulation of metabolic pathways and hormone release. Therefore, circadian rhythm disruption leads to development of metabolic syndrome (MetS). MetS refers to a cluster of risk factors (RFs), which are not only associated with the development of cardiovascular (CV) disease (CVD), but also with increased all-cause mortality. In this review, we consider the importance of the circadian rhythm in the regulation of metabolic processes, the significance of circadian misalignment in the pathogenesis of MetS, and the management of MetS in relation to the cellular molecular clock.
Collapse
Affiliation(s)
- Ksenija Zečević
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Nataša Popović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | | | - Mihailo Vukmirović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Cardiology Clinic, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Manfredi Rizzo
- Promise Department, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Emir Muzurović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| |
Collapse
|
37
|
Sweetat S, Nitzan K, Suissa N, Haimovich Y, Lichtenstein M, Zabit S, Benhamron S, Akarieh K, Mishra K, Barasch D, Saada A, Ziv T, Kakhlon O, Lorberboum-Galski H, Rosenmann H. The Beneficial Effect of Mitochondrial Transfer Therapy in 5XFAD Mice via Liver–Serum–Brain Response. Cells 2023; 12:cells12071006. [PMID: 37048079 PMCID: PMC10093713 DOI: 10.3390/cells12071006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
We recently reported the benefit of the IV transferring of active exogenous mitochondria in a short-term pharmacological AD (Alzheimer’s disease) model. We have now explored the efficacy of mitochondrial transfer in 5XFAD transgenic mice, aiming to explore the underlying mechanism by which the IV-injected mitochondria affect the diseased brain. Mitochondrial transfer in 5XFAD ameliorated cognitive impairment, amyloid burden, and mitochondrial dysfunction. Exogenously injected mitochondria were detected in the liver but not in the brain. We detected alterations in brain proteome, implicating synapse-related processes, ubiquitination/proteasome-related processes, phagocytosis, and mitochondria-related factors, which may lead to the amelioration of disease. These changes were accompanied by proteome/metabolome alterations in the liver, including pathways of glucose, glutathione, amino acids, biogenic amines, and sphingolipids. Altered liver metabolites were also detected in the serum of the treated mice, particularly metabolites that are known to affect neurodegenerative processes, such as carnosine, putrescine, C24:1-OH sphingomyelin, and amino acids, which serve as neurotransmitters or their precursors. Our results suggest that the beneficial effect of mitochondrial transfer in the 5XFAD mice is mediated by metabolic signaling from the liver via the serum to the brain, where it induces protective effects. The high efficacy of the mitochondrial transfer may offer a novel AD therapy.
Collapse
|
38
|
Nikołajuk A, Stefanowicz M, Strączkowski M, Karczewska-Kupczewska M. Changes in Adipose Tissue Gene Expression of the Core Components of the Hippo Signaling Pathway in Young Adults with Uncomplicated Overweight or Obesity Following Weight Loss. J Nutr 2023; 153:665-672. [PMID: 36805181 DOI: 10.1016/j.tjnut.2023.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Appropriate adipogenesis leads to the "healthy" expansion of adipose tissue and is a crucial component in maintaining metabolic homeostasis. The Hippo signaling network may balance adipocyte proliferation/differentiation regulating adipogenic footpath. OBJECTIVES Our study aimed to assess subcutaneous adipose tissue (SAT) expression of genes involved in Hippo signaling network in subjects with marked overweight or obesity after dietary intervention (DI) in relation to obesity and insulin sensitivity. METHODS Forty overweight or obese subjects (O/O) [mean ± SD age 33 ± 7 y, 45% men, BMI (in kg/m2) 32.9 ± 3.1] completed DI [low-calorie diet (20 kcal/kg of proper body weight) for 12 wks]. The control group comprising 20 normal-weight subjects (mean ± SD age: 24 ± 2 y, 40% men, BMI: 22.4 ± 2.3 ) was examined at baseline only. Hyperinsulinemic-euglycemic clamp and SAT biopsy with gene expression analysis were performed. Student's t-test for unpaired and paired samples and Pearson correlation analysis were applied. This is an exploratory analysis of the DI program. RESULTS SAT mRNA expression of mammalian sterile 20-like kinase 2 (MST2) encoded by serine/threonine kinase 3 gene (STK3)-->, large tumor suppressor kinase 2 (LATS2), and salvador family WW domain containing protein 1 (SAV1), the upstream members of the Hippo pathway, were decreased (21%, 40%, and 36%, respectively) in O/O in comparison with weight subjects individuals before DI (all P < 0.05). At baseline, positive correlations between SAT SAV1, LATS2 expression and adiponectin (ADIPOQ) (r = 0.50, P < 0.001; r = 0.53, P = 0.004, respectively) and solute carrier family 2 member 4 (SLC2A4) (r = 0.35, P = 0.007; r = 0.28, P = 0.03, respectively) expression were observed in the entire study group. Body weight of the O/O group decreased during DI (11.2 ± 3.8 kg, P < 0.001), and there was an increase in insulin sensitivity (by 27%) and SAT expression of STK3, LATS2 (both by 19%), and SAV1 (by 26%) (all P < 0.05). After DI, SAT SLC2A4 expression was correlated with STK3 (r = 0.47, P = 0.003), LATS2 (r = 0.56, P < 0.001), and yes-associated protein (r = 0.50, P = 0.001) expression. CONCLUSIONS Obesity is associated with altered mRNA expression of upstream effectors of the Hippo pathway in SAT in young adults. DI may improve adipogenic capacity. J Nutr 20XX;xx:xx-xx.
Collapse
Affiliation(s)
- Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | |
Collapse
|
39
|
Li M, Qian M, Jiang Q, Tan B, Yin Y, Han X. Evidence of Flavonoids on Disease Prevention. Antioxidants (Basel) 2023; 12:antiox12020527. [PMID: 36830086 PMCID: PMC9952065 DOI: 10.3390/antiox12020527] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
A growing body of evidence highlights the properties of flavonoids in natural foods for disease prevention. Due to their antioxidative, anti-inflammatory, and anti-carcinogenic activities, flavonoids have been revealed to benefit skeletal muscle, liver, pancreas, adipocytes, and neural cells. In this review, we introduced the basic classification, natural sources, and biochemical properties of flavonoids, then summarize the experimental results and underlying molecular mechanisms concerning the effects of flavonoid consumption on obesity, cancers, and neurogenerative diseases that greatly threaten public health. Especially, the dosage and duration of flavonoids intervening in these diseases are discussed, which might guide healthy dietary habits for people of different physical status.
Collapse
Affiliation(s)
- Meng Li
- Hainan Institute, Zhejiang University, Sanya 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengqi Qian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Sanya 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-0571-88982446
| |
Collapse
|
40
|
Oskouei Z, Ghasemzadeh Rahbardar M, Hosseinzadeh H. The effects of Dendrobium species on the metabolic syndrome: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:738-752. [PMID: 37396948 PMCID: PMC10311982 DOI: 10.22038/ijbms.2023.65997.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/01/2023] [Indexed: 07/04/2023]
Abstract
Metabolic syndrome (MetS) is known as a global health challenge with different types of health conditions such as hypertension, hyperglycemia, the increasing prevalence of obesity, and hyperlipidemia. Despite much recent scientific progress, the use of traditional herbal medicines with fewer side effects is increasing worldwide. Dendrobium, the second-largest orchid genus, has been used as a natural source of drugs for the treatment of MetS. The beneficial effects of Dendrobium, including anti-hypertension, anti-hyperglycemia, anti-obesity, and anti-hyperlipidemic against MetS have been shown in the scientific evidence. The anti-oxidant and lipid-lowering effects of Dendrobium modulate hyperlipidemia via reducing lipid accumulation and maintaining lipid metabolism. Restoring pancreatic beta cells and regulating the insulin signaling pathway are involved in its antidiabetic properties. The hypotensive effects contribute to increasing nitric oxide (NO) generation and inhibiting extracellular signal-regulated kinase (ERK) signaling. More research projects, especially clinical trials, are needed to investigate the safety, efficacy, and pharmacokinetics of Dendrobium in patients. This review article provides, for the first time, comprehensive information about the efficacy of different species of Dendrobium. The described species can be a source of medicines for the treatment of MetS, which are reported in various evidence.
Collapse
Affiliation(s)
- Zahra Oskouei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
DNA methylation and gene expression analysis in adipose tissue to identify new loci associated with T2D development in obesity. Nutr Diabetes 2022; 12:50. [PMID: 36535927 PMCID: PMC9763387 DOI: 10.1038/s41387-022-00228-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Obesity is accompanied by excess adipose fat storage, which may lead to adipose dysfunction, insulin resistance, and type 2 diabetes (T2D). Currently, the tendency to develop T2D in obesity cannot be explained by genetic variation alone-epigenetic mechanisms, such as DNA methylation, might be involved. Here, we aimed to identify changes in DNA methylation and gene expression in visceral adipose tissue (VAT) that might underlie T2D susceptibility in patients with obesity. METHODS We investigated DNA methylation and gene expression in VAT biopsies from 19 women with obesity, without (OND = 9) or with T2D (OD = 10). Differences in genome-scale methylation (differentially methylated CpGs [DMCs], false discovery rate < 0.05; and differentially methylated regions [DMRs], p value < 0.05) and gene expression (DEGs, p value <0.05) between groups were assessed. We searched for overlap between altered methylation and expression and the impact of altered DNA methylation on gene expression, using bootstrap Pearson correlation. The relationship of altered DNA methylation to T2D-related traits was also tested. RESULTS We identified 11 120 DMCs and 96 DMRs distributed across all chromosomes, with the greatest density of epigenomic alterations at the MHC locus. These alterations were found in newly and previously T2D-related genes. Several of these findings were supported by validation and extended multi-ethnic analyses. Of 252 DEGs in the OD group, 68 genes contained DMCs (n = 88), of which 24 demonstrated a significant relationship between gene expression and methylation (p values <0.05). Of these, 16, including ATP11A, LPL and EHD2 also showed a significant correlation with fasting glucose and HbA1c levels. CONCLUSIONS Our results revealed novel candidate genes related to T2D pathogenesis in obesity. These genes show perturbations in DNA methylation and expression profiles in patients with obesity and diabetes. Methylation profiles were able to discriminate OND from OD individuals; DNA methylation is thus a potential biomarker.
Collapse
|
42
|
Heintz MM, Eccles JA, Olack EM, Maner-Smith KM, Ortlund EA, Baldwin WS. Human CYP2B6 produces oxylipins from polyunsaturated fatty acids and reduces diet-induced obesity. PLoS One 2022; 17:e0277053. [PMID: 36520866 PMCID: PMC9754190 DOI: 10.1371/journal.pone.0277053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple factors in addition to over consumption lead to obesity and non-alcoholic fatty liver disease (NAFLD) in the United States and worldwide. CYP2B6 is the only human detoxification CYP whose loss is associated with obesity, and Cyp2b-null mice show greater diet-induced obesity with increased steatosis than wildtype mice. However, a putative mechanism has not been determined. LC-MS/MS revealed that CYP2B6 metabolizes PUFAs, with a preference for metabolism of ALA to 9-HOTrE and to a lesser extent 13-HOTrE with a preference for metabolism of PUFAs at the 9- and 13-positions. To further study the role of CYP2B6 in vivo, humanized-CYP2B6-transgenic (hCYP2B6-Tg) and Cyp2b-null mice were fed a 60% high-fat diet for 16 weeks. Compared to Cyp2b-null mice, hCYP2B6-Tg mice showed reduced weight gain and metabolic disease as measured by glucose tolerance tests, however hCYP2B6-Tg male mice showed increased liver triglycerides. Serum and liver oxylipin metabolite concentrations increased in male hCYP2B6-Tg mice, while only serum oxylipins increased in female hCYP2B6-Tg mice with the greatest increases in LA oxylipins metabolized at the 9 and 13-positions. Several of these oxylipins, specifically 9-HODE, 9-HOTrE, and 13-oxoODE, are PPAR agonists. RNA-seq data also demonstrated sexually dimorphic changes in gene expression related to nuclear receptor signaling, especially CAR > PPAR with qPCR suggesting PPARγ signaling is more likely than PPARα signaling in male mice. Overall, our data indicates that CYP2B6 is an anti-obesity enzyme, but probably to a lesser extent than murine Cyp2b's. Therefore, the inhibition of CYP2B6 by xenobiotics or dietary fats can exacerbate obesity and metabolic disease potentially through disrupted PUFA metabolism and the production of key lipid metabolites.
Collapse
Affiliation(s)
- Melissa M. Heintz
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Jazmine A. Eccles
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Emily M. Olack
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kristal M. Maner-Smith
- Emory Integrated Metabolomics and Lipodomics Core, Emory University, Atlanta, Georgia, United States of America
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
43
|
Impact of Glyphosate on the Development of Insulin Resistance in Experimental Diabetic Rats: Role of NFκB Signalling Pathways. Antioxidants (Basel) 2022; 11:antiox11122436. [PMID: 36552644 PMCID: PMC9774325 DOI: 10.3390/antiox11122436] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Glyphosate, an endocrine disruptor, has an adverse impact on human health through food and also has the potential to produce reactive oxygen species (ROS), which can lead to metabolic diseases. Glyphosate consumption from food has been shown to have a substantial part in insulin resistance, making it a severe concern to those with type 2 diabetes (T2DM). However, minimal evidence exists on how glyphosate impacts insulin-mediated glucose oxidation in the liver. Hence the current study was performed to explore the potential of glyphosate toxicity on insulin signaling in the liver of experimental animals. For 16 weeks, male albino Wistar rats were given 50 mg, 100 mg and 250 mg/kg b. wt. of glyphosate orally. In the current study, glyphosate exposure group was linked to a rise in fasting sugar and insulin as well as a drop in serum testosterone. At the same time, in a dose dependent fashion, glyphosate exposure showed alternations in glucose metabolic enzymes. Glyphosate exposure resulted in a raise in H2O2 formation, LPO and a reduction in antioxidant levels those results in impact on membrane integrity and insulin receptor efficacy in the liver. It also registered a reduced levels of mRNA and protein expression of insulin receptor (IR), glucose transporter-2 (GLUT2) with concomitant increase in the production of proinflammatory factors such as JNK, IKKβ, NFkB, IL-6, IL-1β, and TNF-α as well as transcriptional factors like SREBP1c and PPAR-γ leading to pro-inflammation and cirrhosis in the liver which results in the development of insulin resistance and type 2 diabetes. Our present findings for the first time providing an evidence that exposure of glyphosate develops insulin resistance and type 2 diabetes by aggravating NFkB signaling pathway in liver.
Collapse
|
44
|
Cyclosorus terminans Extract Ameliorates Insulin Resistance and Non-Alcoholic Fatty Liver Disease (NAFLD) in High-Fat Diet (HFD)-Induced Obese Rats. Nutrients 2022; 14:nu14224895. [PMID: 36432581 PMCID: PMC9693870 DOI: 10.3390/nu14224895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Interruptins A and B exhibited anti-diabetic, anti-inflammatory, and anti-oxidative effects. This study aimed to investigate the therapeutic ability of extract enriched by interruptins A and B (EEI) from an edible fern Cyclosorus terminans on insulin resistance and non-alcoholic fatty liver disease (NAFLD) in a high-fat diet (HFD)-induced obese rats and elucidate their possible mechanisms. HFD-induced obese rats were treated with EEI for 2 weeks. Real-time polymerase chain reaction (PCR) was used to examine the molecular basis. We found that EEI supplementation significantly attenuated body and liver weight gain, glucose intolerance, and insulin resistance. Concurrently, EEI increased liver and soleus muscle glycogen storage and serum high-density lipoprotein (HDL) levels. EEI also attenuated NAFLD, as indicated by improving liver function. These effects were associated with enhanced expression of insulin signaling genes (Slc2a2, Slc2a4, Irs1 and Irs2) along with diminished expression of inflammatory genes (Il6 and Tnf). Furthermore, EEI led to the suppression of lipogenesis genes, Srebf1 and Fasn, together with an increase in fatty acid oxidation genes, Ppara and Cpt2, in the liver. These findings suggest that EEI could ameliorate HFD-induced insulin resistance and NAFLD via improving insulin signaling pathways, inflammatory response, lipogenesis, and fatty acid oxidation.
Collapse
|
45
|
Kang CW, Park M, Lee HJ. Mulberry (Morus alba L.) Leaf Extract and 1-Deoxynojirimycin Improve Skeletal Muscle Insulin Resistance via the Activation of IRS-1/PI3K/Akt Pathway in db/db Mice. Life (Basel) 2022; 12:life12101630. [PMID: 36295064 PMCID: PMC9604886 DOI: 10.3390/life12101630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/26/2022] Open
Abstract
Mulberry (Morus alba L.) leaves have been used to lower blood glucose in patients with diabetes. We evaluated the effects of mulberry leaves extract (MLE) and 1-deoxynojirimycin (1-DNJ) in improving insulin resistance through the activation of the IRS-1/PI3K/Akt pathway in the skeletal muscle of db/db mice. Histological analysis revealed an amelioration of muscle deformation and increased muscle fiber size. MLE and 1-DNJ positively raised the protein expression of related glucose uptake and increased the translocation of glucose transporter type 4 (GLUT4) to the membrane. Furthermore, MLE and 1-DNJ activated the IRS-1/PI3K/Akt pathway in the skeletal muscle and, subsequently, modulated the protein levels of glycogen synthase kinase-3beta (GSK-3β) and glycogen synthase (GS), leading to elevated muscle glycogen content. These findings suggest that MLE and 1-DNJ supplementation improves insulin resistance by modulating the insulin signaling pathway in the skeletal muscle of db/db mice.
Collapse
Affiliation(s)
- Chae-Won Kang
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
| | - Miey Park
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Correspondence: (M.P.); (H.-J.L.); Tel.: +82-31-750-4409 (M.P.); +82-31-750-5968 (H.-J.L.); Fax: +82-31-724-4411 (H.-J.L.)
| | - Hae-Jeung Lee
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Correspondence: (M.P.); (H.-J.L.); Tel.: +82-31-750-4409 (M.P.); +82-31-750-5968 (H.-J.L.); Fax: +82-31-724-4411 (H.-J.L.)
| |
Collapse
|
46
|
Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Cells 2022; 11:3215. [PMID: 36291082 PMCID: PMC9601205 DOI: 10.3390/cells11203215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has emerged as one of the most extensively studied transcription factors since its discovery in 1990, highlighting its importance in the etiology and treatment of numerous diseases involving various types of cancer, type 2 diabetes mellitus, autoimmune, dermatological and cardiovascular disorders. Ligands are regarded as the key determinant for the tissue-specific activation of PPAR-γ. However, the mechanism governing this process is merely a contradictory debate which is yet to be systematically researched. Either these receptors get weakly activated by endogenous or natural ligands or leads to a direct over-activation process by synthetic ligands, serving as complete full agonists. Therefore, fine-tuning on the action of PPAR-γ and more subtle modulation can be a rewarding approach which might open new avenues for the treatment of several diseases. In the recent era, researchers have sought to develop safer partial PPAR-γ agonists in order to dodge the toxicity induced by full agonists, akin to a balanced activation. With a particular reference to cancer, this review concentrates on the therapeutic role of partial agonists, especially in cancer treatment. Additionally, a timely examination of their efficacy on various other disease-fate decisions has been also discussed.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Bini Biswas
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Vishal Kumar Sahu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Amit Ranjan
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| |
Collapse
|
47
|
Iqbal A, Yu H, Jiang P, Zhao Z. Deciphering the Key Regulatory Roles of KLF6 and Bta-miR-148a on Milk Fat Metabolism in Bovine Mammary Epithelial Cells. Genes (Basel) 2022; 13:genes13101828. [PMID: 36292712 PMCID: PMC9602136 DOI: 10.3390/genes13101828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate the expression of their target genes involved in many cellular functions at the post-transcriptional level. Previously, bta-miR-148a showed significantly high expression in bovine mammary epithelial cells (BMECs) of Chinese Holstein cows producing high milk fat compared to those with low milk fat content. Here, we investigated the role of bta-miR-148a through targeting Krüppel-like factor 6 (KLF6) and further analyzed the role of KLF6 in regulating fat metabolism through targeting PPARA, AMPK/mTOR/PPARG, and other fat marker genes in BMECs of Chinese Holstein. The bioinformatics analysis showed that the 3’ UTR of KLF6 mRNA possesses the binding sites for bta-miR-148a, which was further verified through dual-luciferase reporter assay. The BMECs were transfected with bta-miR-148a-mimic, inhibitor, and shNC, and the expression of KLF6 was found to be negatively regulated by bta-miR-148a. Moreover, the contents of triglyceride (TG), and cholesterol (CHO) in BMECs transfected with bta-miR-148a-mimic were significantly lower than the contents in BMECs transfected with bta-miR-148a-shNC. Meanwhile, the TG and CHO contents were significantly increased in BMECs transfected with bta-miR-148a-inhibitor than in BMECs transfected with bta-miR-148a-shNC. In addition, the TG and CHO contents were significantly decreased in BMECs upon the down-regulation of KLF6 through transfection with pb7sk-KLF6-siRNA1 compared to the control group. Contrarily, when KLF6 was overexpressed in BMECs through transfection with pBI-CMV3-KLF6, the TG and CHO contents were significantly increased compared to the control group. Whereas, the qPCR and Western blot evaluation of PPARA, AMPK/mTOR/PPARG, and other fat marker genes revealed that all of the genes were considerably down-regulated in the KLF6-KO-BMECs compared to the normal BMECs. Taking advantage of deploying new molecular markers and regulators for increasing the production of better-quality milk with tailored fat contents would be the hallmark in dairy sector. Hence, bta-miR-148a and KLF6 are potential candidates for increased milk synthesis and the production of valuable milk components in dairy cattle through marker-assisted selection in molecular breeding. Furthermore, this study hints at the extrapolation of a myriad of functions of other KLF family members in milk fat synthesis.
Collapse
|
48
|
Khajebishak Y, Faghfouri AH, Soleimani A, Madani S, Payahoo L. Exploration of meteorin-like peptide (metrnl) predictors in type 2 diabetic patients: the potential role of irisin, and other biochemical parameters. Horm Mol Biol Clin Investig 2022:hmbci-2022-0037. [PMID: 36181729 DOI: 10.1515/hmbci-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/21/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Meteorin-like peptide (Metrnl), the newly discovered adipokines involves in glucose and lipid metabolism and energy homeostasis. The aim of the present study was to explore the potential predictors of Metrnl by emphasizing the Irisin, glycemic indices, and lipid profile biomarkers in type 2 diabetic patients. METHODS This cross-sectional study was carried out on 32 obese types 2 diabetic patients, 31 healthy obese, and 30 healthy normal weight people between August 2020 and March 2021. Serum Metrnl and Irisin, fasting blood glucose (FBS), fasting insulin (FI), fasting insulin (FI), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), HbA1c and eAG levels were measured in a standard manner. To assay insulin resistance and insulin sensitivity, the homeostatic model assessment insulin resistance (HOMA-IR) and quantitative check index (QUICKI) model were used. Quantile regression analysis with the backward elimination method was used to explore predictors. The significant level was defined as p<0.05. RESULTS Between variables entered into the model, only the group item showed to be the main predictor of Metrnl in type 2 diabetic patients. Besides, the serum level of Irisin was lower in diabetic patients, and a significant difference was detected between obese diabetic patients and the normal weight group (p=0.024). CONCLUSIONS Given the multi-causality of diabetes and also the possible therapeutic role of Metrnl in the management of type 2 diabetic patients' abnormalities, designing future studies are needed to discover other predictors of Metrnl and the related mechanisms of Metrnl in the management of diabetes.
Collapse
Affiliation(s)
- Yaser Khajebishak
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Soleimani
- Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Sadra Madani
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Laleh Payahoo
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
49
|
Huang Z, Liu X. Network Pharmacology and Molecular Docking Analysis on Targets and Mechanisms of Berberine in Atypical Antipsychotic-Induced Metabolic Syndrome. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221129106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, possesses multiply pharmacological effects as a potential therapeutic drug for antipsychotic-induced metabolic syndrome (MetS). However, the underlying therapeutic mechanisms have not been fully elucidated. In this study, we aim to investigate the possible mechanisms by identifying the key targets and biological pathways through network pharmacology and molecular docking analysis. A total of 23 overlapping targets in the intersection set among BBR, atypical antipsychotic drugs (AADs), and MetS were determined. PPI network analysis showed that 22 out of the 23 overlapping targets closely interacted with the others. The following pathway enrichment analysis and molecular docking indicated a central role of peroxisome proliferator-activated receptor-γ (PPARG) as the key target of BBR against AAD-induced MetS by acting on the PPAR signaling pathway, lipid and atherosclerosis, and AMP activated protein kinase (AMPK) signaling pathway. In addition, cytochrome P-450 2D6 (CYP2D6) could be considered as another target of BBR in ameliorating antipsychotic-induced metabolic side effects. Collectively, this study investigated the central targets and biological pathways of BBR against AAD-induced MetS from a systematic perspective, and thus brings novel insights into further understanding of the protective effects of BBR.
Collapse
Affiliation(s)
- Zhuowei Huang
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei Province, China
- Department of Traditional Chinese Integrated Western Medicine, Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, China
| | - Xiaolan Liu
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei Province, China
- Department of Traditional Chinese Integrated Western Medicine, Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, China
| |
Collapse
|
50
|
Li H, Meng Y, He S, Tan X, Zhang Y, Zhang X, Wang L, Zheng W. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022; 11:cells11193001. [PMID: 36230963 PMCID: PMC9562180 DOI: 10.3390/cells11193001] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of obesity has reached alarming levels, which is considered a major risk factor for several metabolic diseases, including type 2 diabetes (T2D), non-alcoholic fatty liver, atherosclerosis, and ischemic cardiovascular disease. Obesity-induced chronic, low-grade inflammation may lead to insulin resistance, and it is well-recognized that macrophages play a major role in such inflammation. In the current review, the molecular mechanisms underlying macrophages, low-grade tissue inflammation, insulin resistance, and T2D are described. Also, the role of macrophages in obesity-induced insulin resistance is presented, and therapeutic drugs and recent advances targeting macrophages for the treatment of T2D are introduced.
Collapse
Affiliation(s)
- He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya Meng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuwang He
- Shandong DYNE Marine Biopharmaceutical Co., Ltd., Rongcheng 264300, China
| | - Xiaochuan Tan
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujia Zhang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiuli Zhang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (L.W.); (W.Z.); Tel.: +86-010-63165233 (W.Z.)
| | - Wensheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Correspondence: (L.W.); (W.Z.); Tel.: +86-010-63165233 (W.Z.)
| |
Collapse
|